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Preliminary plan/reality in the fall ferm

Lecture 1  Something about everything (see next slide) Sep 22
The textbook version of BEC in extended systems

Lecture 2  thermodynamics, grand canonical ensemble, extended Oct 4
gas: ODLRO, nature of the BE phase transition

Lecture 3  atomic clouds in the traps — independent bosons, what Oct 18
is BEC?, "thermodynamic limit", properties of OPDM

Lecture 4  atomic clouds in the traps — interactions, GP equation at Nov 1
zero temperature, variational prop., chem. potential

Lecture 5 Infinite systems: Bogolyubov theory Nov 15

Lecture 6 BEC and symmetry breaking, coherent states Nov 29

Lecture 7 Time dependent GP theory. Finite systems: BEC theory

preserving the particle number




Recapitfulation

Offering many new details and
alternative angles of view




BEC in atomic clouds




Nobelists |. Laser cooling and frapping of atoms

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with
laser light"

' .
b
Steven Chu Claude Cohen- William D. Phillips
Tannoudji
1/3 of the prize 1/3 of the prize 1/3 of the prize
USA France USA
Stanford University Collége de France; Ecole National Institute of
Stanford, CA, USA Normale Supérieure Standards and
Paris, France Technology

Gaithersburg, MD, USA

b. 1948 b. 1933 b. 1948
(in Constantine, Algeria)




Doppler cooling in the Chu lab




Doppler cooling in the Chu lab

atomic clotd




Nobelists Il.

BEC in atomic clouds

The Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms,
and for early fundamental studies of the properties of the condensates"

Eric A. Cornell

1/3 of the prize

USA

University of Colorado, JILA
Boulder, CO, USA

b. 1961

Wolfgang Ketterle

1/3 of the prize

Federal Republic of Germany

Massachusetts Institute of
Technology (MIT)
Cambridge, MA, USA

b. 1957

Carl E. Wieman

1/3 of the prize

USA

University of Colorado, JILA
Boulder, CO, USA

b. 1951




Trap potential

evaporation
— cooling

Typical profile

-10 -5 0 5 10

coordinate/ microns -

This is just one direction
Presently, the traps are mostly 3D

The trap is clearly from the real world, the
atomic cloud is visible almost by a naked eye




Ground state orbital and the trap potential
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BEC observed by TOF in the velocity distribution

Figure 7. Observation of Bose-Einstein condensation by absorption imaging. Shown is absorption
vs. two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion
observed after 6 ms time-of-flight. The left picture shows an expanding cloud cooled to just
above the transition point; middle: just after the condensate appeared; right: after further
evaporative cooling has left an almost pure condensate. The total number of atoms at the phase

transition is about 7 X 10°, the temperature at the transition point is 2 uK.
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Ketterle explains BEC to the King of Sweden

High
Temperature T:
thermal velocity v

density d*
‘Billiard balls™

Low
Temperature T:
De Broglie wavelength
hap=himy = T%
“Wave packels”

T=Terit:
Bose-Einstein
Condensation

fdB ~
"Matter wave overlap”®

T=0:
Pure Bose
condensate

‘Glant matter wava"
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Simple estimate of T~ (following the Keftterle slide)

The quantum breakdown sets on when
the wave clouds of the atoms start overlapping

thermal

1
mean ( 1% T - h
interatomic > de Broglie
N mkpT, wavelength

distance

Critical temperature
2

2 3
ESTIMATE T / N
mk, \\V

. h? N )3
TRUE EXPRESSION —
© 4mmk, | 2,612V
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Interference of atoms

'r'r

.4 ,ﬂuﬂm,,-; M

(1 Absorphon 50%

Two coherent condensates are interpenetrating and interfering.
Vertical stripe width .... 15 pm
Horizontal extension of the cloud .... 1,5mm
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Today, we will be mostly concerned with
the extended (" infinite" ) BE gas/liquid

Microscopic theory well developed
over nearly 60 past years




Inferacting atoms




Importance of the interaction — synopsis
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Without interaction, the
condensate would occupy the
ground state of the oscillator

In fact, there is a significant
broadening of the condensate of
80 000 sodium atoms in the
experiment by Hau et al. (1998),

perfectly reproduced by the
solution of the GP equation
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Many-body Hamiltfonian

A=Y p2+V )+ ¥ YU, 1)

2 a b

True interaction potential at low energies (micro-kelvin range)

replaced by an effective potential, Fermi pseudopotential

U(r)=gLo(r)

4110 H° .
g= % : a, ... the scattering length

S

m
Experimental data\

AN

!
Ce (au.) Be (au.) a, (a.u.)

Li, 1388 7 65 —27.3°
**Na, 1472 € 89 77.3 ¢
K, 3897 ¢ 129 —331
®Rb, 4700 € 164 —369¢
*'Rb, 4700 ¢ 165 106 ¢

133, 6890 1 197 2400




Mean-field freatment of inferacting atoms




Many-body Hamiltfonian and the Hartree approximation
n 1 1
H=§Ep§ "'V(’”a)*‘z > U, —n)

a # b

We start from the mean field approximation.

This is an educated way, similar to (almost identical with) the
HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is indeed absorbed into the mean field and
what remains are explicit quantum correlation corrections

A 1
Hap =2 5 —py +V (1) +Vy (1)

2 system
n(r) = ng|fa (r)
a

(Lpz ong <r>j¢a (r)=E, 8, (r)

2m
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Gross-Pitaevskil equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and
we have a single self-consistent equation for a single orbital

(Lpz +V(r) + gN |8, (")\2)% (r) = Eo#y (r)

2m
Putting
The lowest level

Y(r)= \/N [, (r) coincides with the

we obtain a closed equation for the order parameter: chemical potential
3 o

Lyt avis g“#(r)‘zj‘#(r) N

This is the celebrated Gross-Pitaevskii equation.

For a static condensate, the order parameter has ZERO PHASE.

N W) = IN By (1) = Jn(r)

Nn]=N=[d&rl@@)| =[drh@r) =N
21




Gross-Pitaevskii equation — homogeneous gas

The GP equation simplifies

( h2A+g\w \jw(r):yw(r)

2m

For periodic boundary conditions in a box with V" =L [L [L,

_ 1
¢0(r)_\/;
wr):ﬁﬂﬁo(r):\/g:ﬁ

g“’U ‘2 ‘:U( ) = ,uQU(r) ... GP equation

g\‘#
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Field theoretic reformulation
(second quantization)

Purpose: go beyond the GP
approximation, treat also the excitations




Field operator for spin-less bosons

Definition by commutation relations

W) =3 =), (W () ]=0, (@) |=0
basis of single-particle states ( kK complete set of quantum numbers)

{‘K>} <K‘,3> =0 ‘(ﬂ> = Z‘K><K‘¢/>, Y ... single particle state
(rlxy=2.(r)  (rlgp)= 2 (rlx){Klw)

decomposition of the field operator
w(r) =20 (r) e a, ="(xly)"=1d" ¢, (r)(r)
v'(r) =34:() @

commutation relations

[ak,a;] =0,,, [ak,aA] =0, [ai,aﬂ =0
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Action of the field operators in the Fock space

basis of single-particle states

{‘K>} <K‘,8>=5Kﬁ ‘w>=Z‘K><K‘(ﬂ>, Y ... single particle state
(rl€) =@ (r)  (rle) =2 (r[x)(k]¢)

FOCK SPACE F space of many particle states
basis states ... symmetrized products of single-particle states for bosons

specified by the set of occupation numbers 0,1, 2, 3, ...
{KI,KZ,K3,...,KP,...}

{n) :‘n19n29n39--.,np,...> n-particle state n=2xn,

T —
| s nz,n3,...,np,...>—,/np +1‘ Ny, My, My, oo, +1,...>

a,| Ny, Ny, gy ey, > :,/np ‘ My, Myy gy ooy -1.... >
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Action of the field operators in the Fock space

Average values of the field operators in the Fock states

Off-diagonal elements only!!! The diagonal elements vanish:

<n1, 9 NN (S ap‘ Ny, My gy ey > =

<”1» Myy Mgy ey My ,/np ‘ Ny, Myy Mgy ooy —1.... > =0

Creating a Fock state from the vacuum:

1 n
_|—| Ty P
J,!

26




Field operator for spin-less bosons — cont'd

Important special case — an extended homogeneous system
Translational invariance suggests to use the

Plane wave representation (BK normalization)
w(") — V—1/2Zeikr a,, a, = 12 st po ik ‘/’(”)
wT (l") —1/226—1kr ak —1/2Zeikr a_Tk

The other form is made possible by the inversion symmetry (parity)

important, because the combination
ulh, +vd
corresponds to the momentum transfer by k

Commutation rules do not involve a O - function, because the BK momentum
is discrete, albeit quasi-continuous:

[a aT] Or» [ak,ak,}:O, [a}:,az,]:O
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Operators

Additive observable
_ — 3., 13
X—ZXJ. S xX=]]drd r ) (r| X|r (e
General definition of the one particle density matrix — OPDM

X )= drdry o) (r|x|rpen) = [drde (e X]r) @' epe)

N J

EI:d3rd3r'<r‘X‘r'><r",0‘r>:TTX,O <”"/g"’>

Particle number

N:ZIOP,]' - N=Id3rW(r)¢/(F)

N = ZaZaK
Momentum

P=Xp, - P=ldry'o(-ind)yw
P => nklila,

28




Hamiltonian

H = Z— p, +V(r,) single-particle additive

+— Z ZU (r, —r,) two-particle binary

q jdww(r)(—%mwr))w(r)
+L[[drd’r @' ' (U (¢ = Y (e (1)

29




Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

*fd?””‘”“”)(‘%“”(”))‘”(”) acts in the whole Fock spacc_F

+L[[&Erd e @ oW U = r e (r)
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Hamiltonian

H = Z— p, +V(r,) single-particle additive

= Z ZU (” —l’b) two-particle binary

a # b

- | d?’rw*(r)(—%mV(r))w(r)

+L[[drdr ' W' (U = e (r)

Particle number conservation

[H.N]=0

but ...

Equilibrium density operators and the ground state (ergodic property)

p=pH), [N.p]=0

31




On symmetries and conservation laws




Hamiltonian is conserving the particle number

~ Particle number conservation N
[H.N]=0
Equilibrium density operators and the ground state (ergodic property)
N p=pH), [N,p]=0 .
Typical selection rule
(@) =Trgp(r)p =0
is a consequence: (similarly (@) =0, <w¢W> =0,...)
Proof:
0=Tr(¢[N,p]) = Tr(ply,N1) = Tr(p) Tr A[B,C]=TrC[ 4, B]
[ (x),Jdx'@" (Y (x)] = 1dx' (@' O (0,0 (D] + (0.0 () =@ (x)

QED

Deeper insight: gauge invariance of the 1stkind 23




Gauge invariance of the 1st kind

J

N

Particle number conservation
[H.N]=0
Equilibrium density operators and the ground state (ergodic property)

p=pH), [N.p]=0

e

Gauge invariance of the 1st kind
[H ,N ] =0 = ¢e"N?H e™?=H unitary transform

The equilibrium states have then the same invariance property:

[N.p]=0 = e™pe™f=p

Selection rule rederived:
Tryp =Trye N pe™ =Tre'" we™" p=e” Tryp
(1= Trgp =0 = Trgp(r)p =(Y(r)) =0

34




Hamiltonian of a homogeneous gas

H = Z—pa+V+—ZZU(r -r), V = const.

a ®# b

= d3rw*‘<r>( LAV (o) + L[ dr dr' @ ey U (= r (e ()

To study the symmetry properties of the Hamiltonian
Proceed in three steps ...
INn the direction reverse to that for the gauge invariance




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V = const.

a ®# b

= [@r ' ) (~L-A+V () + S [[dr & g e @)U = ()

@® Translationally invariant system ... how to formalize (and to learn more about the

T'(a)HT (a) = H, a 1R, ... translation vector

gauge invariance)




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V' = const.

2a¢b

= [@r ' ) (~L-A+V () + S [[dr & g e @)U = ()

@® Translationally invariant system ... how to formalize (and to learn more about the

T'(a)HT (a) = H, a 1R, ... translation vector

® Constructing the unitary operatorT (a)
Translation in the one-particle orbital space

gauge invariance)

T@Y(r) = p(r~a) = LTy ¢ = X ( ”j p(r)=e 7 lp(r)




Hamiltonian of the homogeneous gas

H = Z—pa +V+—Z ZU(r -r), ) = const.

a ®# b

=[Erg O A4V o 3 [[ard g e e e

@® Translationally invariant system ... how to formalize (and to learn more about the

: auge invariance
T'(@)HT(a) = #, a 1R, ... translation vector Jand )

® Constructing the unitary operatorT (a)
|T(a Y(n,r,r,...1,,...ry) =¥ —a,r,-a,r,~a,.r, —a,.r, —a)
=[e “ipalm QU(rl,...rN) =g i2palh Y(r,...r,) =g 1Pa/h IQU(rI,...rN)




Hamiltonian of the homogeneous gas

H = Z—pa+V+—ZZU(r -r), V' = const.

a ®# b

=[&r @ )~ A+V g + L[ Erdr g e (U = e )

@® Translationally invariant system ... how to formalize (and to learn more about the

: auge invariance
T'(@)HT(a) = #, a 1R, ... translation vector Jand )

® Constructing the unitary operatorT (a)
|T(a Y(n,r,r,...1,,...ry) =¥ —a,r,-a,r,~a,.r, —a,.r, —a)
=[e “ipalm QU(rl,...rN) =g i2palh Y(r,...r,) =g 1Pa/h IQU(rI,...rN)

T(a)=e P47 ... compare O(¢)=¢




Hamiltonian of the homogeneous gas

H = Z—pa+V+§ZZU(r -r), V' = const.
a* b

= [@r ' ) (~L-A+V () + S [[dr & g e @)U = ()

@® Translationally invariant system ... how to formalize (and to learn more about the

: auge invariance
T'(@)HT(a) = #, a 1R, ... translation vector Jand )

® Constructing the unitary operatorT (a)

|T(a Y(r,r,,r,, ourty) =¥ (1, —a,r,—a,r,~a,...r, —a,...r, —a)
=[e “ipalm QU(rl,...rN):e_izpf”/h QU(I”I,...I’N):e_iq)a/h|QU(l”1,...l’N)
T(a)=e P47 ... compare O(¢)=¢

|H , N =0

@® [nfinitesimal translation
H =T (a)HT (a) =" 317 CY " = 97 +1) hPad —i/ hHPa + O(a?)

= [H,Pla=0 = | H,P 0 ... momentum conservation

xyz]




- Summary: two symmetries compared -

Gauge invariance of the 1st kind

Translational invariance

universal for atomic systems

specific for homogeneous systems

o' (¢)HO(p) =35 ¢1(0,2m)

T (a)HT(a)=H, alR,

global phasfsnscg:‘;t:f the wave global shift in the configuration space
[}[99\[]:0 [ﬂQ@x,y,Z] = O

particle number conservation

total momentum conservation

[N.p]=0 = e fpe?=p

for equilibrium states

[2.p]=0 = ¢ pei=p

for equilibrium states

selection rules
<¢¢. : .¢T> =0

unless there are as many(,[/T asyy .

selection rules

+\
<akak, . --ak,,> =0
unless the total momentum transfer

—k—-k'---+ k" 3(ero




Hamiltonian of the homogeneous gas

In the momentum representation

2 _
H=>21kaa, +% VIZU a, . an._,a,a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a’ gﬁg a
RN

42




Hamiltonian of the homogeneous gas

For the Fermi pseudopotential

Uq :UO EU(:g)

In the momentum representation

2 _
H=>21kaa, +% VIZU a, . an._,a,a,

U, =d*re™ U(r)
k k'

Momentum conservation
(k+q)+(k'—q)—k—-k'=0

Particle number conservation

a’ gﬁg a
RN
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Bogolyubov method

Originally, intended and conceived for
extended (rather infinite) homogeneous
system.

Reflects the 'Paradoxien der Unendlichen'




Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0
N =N, =(aja,)0 1 N =Ny +Y (aja,)= Ny 0 1
k%0

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)

45




Basic idea

Bogolyubov method
is devised for boson quantum fluids with weak interactions — at T=0 now
no interaction weak interaction
g=0 g% 0

N =Ny =(aja,)0 1 N=Ny + (aja,) =Ny 0 1
k%0

The condensate dominates,
but some particles are kicked out
by the interaction (not thermally)

Strange idea introduced by Bogolyubov
N, = <a§a0 > 0 1= <aga0 > 0 ala, —ayal =1= like c-numbers

N=N, + Za;ﬁak ... mixture of c-numbers and g-numbers
k#0

46




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

N2 g2t 1y P
H —szk aa, t5V ZUqak+q,ak,_qak,ak

kk'q

47




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

A N/l 1 /-1 to ot
H —ka aa, t5V ZUqak+q,ak,_qak,ak

kk'q

48




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = N0 ,

2 _
H=>21kaa, +5V"'>Uaj,,a a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 2 g ala, + 7 {aka +4a,a, ta,a_ ¢+
k#0

49




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = JN 0> ag =~ 1/

2 _
H=>21kaa, +5V"'>Uaj,,a a.a,

kk'q
2 + UN, . t UN?
- 2 Lok a,a, + A {aka +4a,q, +aka—k} + >
k#0
—_
3rd & 4t order 2nd order O order
neglected pair excitations condensate

1st order
IS zero
violates k-conservation

50




Approximate Hamiltonian

Keep at most two particles out of the condensate, use g, = N0 ,

2 _
H=>21kaa, +5V"'>Uaj,,a a.a,

kk'q
UN?
2V

2 UN +ot +
. 2 2 g ala, + 7 {aka +4a,a, ta,a_ ¢+
k#0

51




Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

2 _
H=>21kaa, +5V"'> U aj,,a a.a, use Ny=N~->Y aja,

kk'q
UN?
2V

2 UN +ot +
. 2 2 g ala, + 7 {aka +4a,aq, +aka_k} +
k#0

k%0

The idea: replace the unknown condensate occupation by the known particle number

neglecting again higher than pair excitations
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Approximate Hamiltonian

0

Keep at most two particles out of the condensate, use g, = JN,, ag = /N,

2 _
H=>21kaa, +5V"'> U aj,,a a.a, use NO:N—Za,iak

kk'q
UN?
2V

2 UN +ot 0
. 2 2 g ala, + 7 {aka +4a,aq, +aka_k} +
k#0

UN*

2 UN P i
= 2 2 g2 ala, +2- Ve {aka +2a,a, +aka_k} + =5

k%0

k%0

The idea: replace the unknown condensate occupation by the known particle number

neglecting again higher than pair excitations
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Approximate Hamiltonian

Keep at most two particles out of the condensate, use a, =,/N,, ag = /N,

2 _
H=>21kaa, +5V"'> U aj,,a a.a, use Ny=N~->Y aja,
kk'q k%0
UN’
. 2 kzakak g];/[" {ax,ﬁcfr +4azak+aka_k}+ Y
k#0
2 UN P i UN?
= 2 2 g2 ala, +2- Ve {aka +2a,a, +aka_k} + =

k%0

53

condensate particle
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Bogolyubov tfransformation

Last rearrangement

— h2 7.2 t gn gN?
22( k +gn){akak+aka }+72{aka +a,a_ }+7
k .

mean ﬁeld anomalous

Conservation properties: momentum ... YES, particle number ... NO

55




Bogolyubov tfransformation

Last rearrangement

_ n2 2 i gn gN*
22( k +gn){akak+aka }+72{aka +a,a_ }+7
k o

/

mean ﬁeld anomalous

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

— T — _ T
b, =u.a, tval, | a, =ub, —v,b,
T = T

oo i

requirements
©® New operators should satisfy the boson commutation rules
| besby | =0 | biuby |20, | BB =0
iff u,f —v,f =1

® Interms of the new operators, the anomalous terms in the Hamiltonian
have to vanish

56




Bogolyubov transformation — result

Without quoting the transformation matrix

gN”
H == é‘(k){b,fbk +b'. b k} + A + higher order constant
independent auasiparticles \ ground state energy E J

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn

57




Bogolyubov transformation — result

Without quoting the transformation matrix

N .
H =3 f‘(k)b,fbkj + éV + higher order constanf
ind. quasi-particles ground state energy E

2
E(k) :\/(%k2 +gn) —(gn)2 = %kz %kz +2gn

asymptoticall
merge

high energy region

) 22 s
Sk +gn o
(k) 2t - quasi-particles are
i Hep nearly just particles cross-over
_ [4mgn
k, = -
- k) =ctk sound region defines scale for &k

k, _ |gn quasi-particles are
C—.,[— collective excitations

58




More about the sound part of the dispersion law

@ Entirely dependent on the interactions, both the magnitude of the velocity
and the linear frequency range determined by g awk)=clk

@ Can be shown to really be a sound: an

\/7 \/VaVVE E:g_]\/v2 €~ ;
’ 2V

@ Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.

@ The phonons are actually Goldstone modes corresponding to a broken
symmetry

@ The dispersion law has no roton region, contrary to the reality in 4He

@ The dispersion law bends upwards = quasi-particles are unstable, can
decay

59




Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.

Things are different with the true particles. Not all particles are in the

condensate, but they are not thermally agitated in an incoherent way, they
are a part of the fully coherent ground state

<a}:ak> = <(—vkbk +ukbfk)(ukb_k —vkb,j)> =v. 20

The total fraction of particles outside of the condensate is
N_No - 3 3/2 1/2

= a.n
N  3Jmrse—

3

square root of the
gas parameter
IS
the expansion
variable
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What is the Bogolyubov approximation about

The results for various quantities are

3/21/2
a’*n"
S
J

3/2.1/2
s N
J

1+ ——a
15\

3/2.1/2
a n
S
J

general [BG] ~ [GP]X(] +

pattern

3/2_1/2
a.“n ]

square root of the
gas parameter

3
an
Is the expansion
variable

The Bogolyubov theory is the lowest order correction to the mean field (Gross-

Pitaevskii) approximation

It provides thus the criterion for the validity of the mean field results

It is the simplest genuine field theory for quantum liquids with a condensate
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Trying to understand the Bogolyubov
method




© 6 0 O

O

Notes to the contents of the Bogolyubov theory

The first consistent microsopic theory of the ground state and elementary
excitations (quasi-particles) for a quantum liquid (1947)

The quantum condensate turns into the classical order parameter in the
thermodynamic limit N — o, 9 — 0o, N /1 =n= const.

The Bogolyubov transformation became one of the standard technical means for
treatment of "anomalous terms" in many body Hamiltonians (...de Gennes)

Central point of the theory is the assumption

_ ¥
a, =Ny, a "\/No

lts introduction and justification intuitive, surprisingly lacks mathematical rigor.
Two related problems:

lowering operator — ? — gauge symmetry, s. rule
a,|G,NYOH,_,  {(G,Nla,)|G,N) =N, (a,)=0

Additional assumptions: something of a crutch/bar to study of finite systems
 homogeneous system * infinite system

Infinity as a problem: philosophical, mathematical, physical 63




ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
(r'|plr) = <tﬂT(r)(ﬂ(r')> = V_1<Z e "al EEeik'r'ak,> by definition
=V Zelkr ik <akak > V_lzelkr ik <azak>5kk transl.invariance

64




Off-diagonal long range order

ODLRO in the Bogolyubov Theor}:ix

One particle density ma
Basic expressions for the OPDM for a homogeneous system

<r'|,0|r> = <¢T(r)(ﬂ(r')> = V_1<Z e_”"az EZeik"'ak,> by definition

— 171 ik'r’ ik — 771 ik'r' -k . .
=V Zel Te’ r<a£ak,> =V Ze‘ Te’ "<a,tak>5kk, transl.invariance
k.k' k.k'
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ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)¢(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr Tk <ak ak> V_lzelkr ik <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

o(r,r') = V_IZelk(’_") <nk> k,- 0, <n0> =N,

/

V—l iky(r— r)< O +V e1k(r r)<
~ g k#k
coherent across N 0 g y L'U(,,-) @1¢ @1"0’”
the sample FT of a smooth function

has a finite range

—WwEW ey  +V Z QKT <”k> ... an arbltrary phase
) dyadic ’ k#kq
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ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)¢(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,- 0, <n0> =N,

L

V—l iky(r— r)< O +V e1k(r—r') <nk>

oW N ~ - k#k
\(‘ O((\ coherent across N 0 -~ L,U ( ]/') @1 ¢
a\“ the sample FT of a smooth function
\\ \:\ has a finite range

.

=WEW ey  +V Z QKT <”k> ... an arbltrary phase
) dyadic ’ k#kq

67




ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system
<r|,0|r’> = <¢T(r’)w(r)> = V_1<Z e *"al, [Da, eik"> by definition
=V Zelkr e <ak ak> V_lzelkr e <azak>5kk transl.invariance

General expression for the one particle density matrix with condensate

p(r,r') = V_IZeik(’_") <nk> k,- 0, <n0> =N,

L

V—l iky(r— r)< O +V e1k(r—r') <nk>

oW N ~ - k#k
\k O((\ coherent across N 0 -~ L,U ( ]/’) @1 ¢
a\“ the sample FT of a smooth function
\\ \:\ has a finite range

.

=WEW ey  +V Z QKT <”k> ... an arbltrary phase
) dyadic ’ k#kq

Interpretation in the Bogolyubov theory — at zero temperature

,O(r,r') — V—1/2 <a0 > I:V—l/z <ag> + V—l Z e1k(r r') i

k#k,

Rich microscopic content hinging on the Bogolyubov assumption 68




Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators

Why so important? ... microscopic view of the condensate phase
quasi-particles and superfluidity
basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:

3t relax the particle number conservation ¥ work in the thermodynamic limit
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Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators

Why so important? ... microscopic view of the condensate phase
quasi-particles and superfluidity
basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:

3t relax the particle number conservation ¥ work in the thermodynamic limit

[ |explicit construction of the classical Pitaevski in LL IX (1978)
part of the field operators

[T | the condensate represented by a Cummings & Johnston (1966)
coherent state Langer, Fisher & Ambegaokar
(1967 — 1969)
11 | spontaneous symmetry breakdown, Bogolyubov (1960)

particle number conservation violated | Hohenberg&Martin (1965)
P W Anderson (1983 — book)
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.
explicit construction of the classical part of
the field operators




136 CBEPXTRKYUYECTE

votation from Landau-Lifshitz IX ™. u

\p-orepaToOpoB, XOTOpas MeHAET Ha 1 4YMCIO yactup p KOHek
HMeeM, TaKHM o6pasoM, IO OMnpejeseHHIO, - Care,

Blm, NH1>=E|m, N>, E*|m, N>=B¥m, yij

rae cuMBOJHI [m, N> u |m, N+ 1> o6osnauaior npa “OlMHaKOBYy, -

COCTOSIHUSA, OT/IHMYAIOWHMXCA TONBKO YHC/IOM YacTHL B CHCTeMe
a E-— HEKOTOpoe KOMIIJIEKCHOE YHCJO. DTi YTBEPZKICHUS Cpapey.
JHBbI cTporo B mpepese N — qo. ITostomy OnpejeJie Hie 1.=,eJ11~1qHHIIl,~
E cJenyeT samHcaTh B BHIE !

lim <m, N|E|m, N+1>=8,

Now

lim <m, N+1|E+|m, N¥>=B*:

N->w

(26,3)

NMEPEXON K NpEfiesy COBEPINAETCH NPH 3aJaHHOM KOHEUHOM 3Hade.
HHH IJIOTHOCTH KHAKOCTH N/V. ' 5
Ecau nmpencraButh p-onepaTopel B Buje

-~

S =R Pt =B+ P+ - (26,4)

TO OCTalbHas (<HaAKOHIEHCATHAS») HX YACTH NEePEeBOAUT COCTOSHHE

|m, N> B oproronanpube EMY COCTOSIHHSA, T. €. MAaTPHYHBIE 3Jie-

MEHTHI 1)
amcm, N [m, N4-15=0,  limcm, Not1|%+ |m, N>=0.
i ; N—w , :

(26,5)

- %Vnpf,neﬂe N — 0o pasunna MEXNIy COCTOSHHAMH |m, N> H
s V 4+ 1> Hcyezaer BOBCE, M B 3TOM CMBICJIe BeJHYHHA & CTaHO-

BHTCS CPeIHUM 3HaueHuem onmeparopa ¥ mo. 3ToMy COCTOSIHHIO.

3
;;:éqepKHEM’ ATO XapaKTepHBIM NS CHCTEMBI C KOHJeHCATOM fIB-
CA HMEHHO KOHEUHOCTb 3TOrO mpegeda. |

ADATYTTAMMN ~A- - NN A

/2
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CBEPXTEKYYECTE
[ra, o

... that part of the W operators, which changes the condensate particle number by 1,
we have, then, by definition

Elm, N1>=8|m, N>, E*|m, N>=E*|m, Ny

the symbols ~ [m, N> u |m, N+1> denoting two "identical"
states, differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit ¥ —o00. The definition of the quantity

2. has thus to be written in the form
lim <m, N|E|m, N+1>=8,

Now

lim <m, N41]8+|m, ¥>— =%

N-o>w

the limiting transition is to be performed at a given fixed value of the

~liquid density n/V. -
Ecan npeacraButs p-omepaToprl B Buzue

T—E 19, U+ = B+ P+ - (26,4)

(26,3)

il'r(:'l Oj%TaJIbHaH («H&J_’(KOH}LEHC&TH&H») HX JaCThb IEPEeBOJUT COCTOSHHE
, V> B OpTOroHaJsiLbHbIE EMY COCTOAHUSA, T. e. MAaTpPHYHEIE 3JIe-

MEHTHI 1)
Tim m, N9 [m, N 415 =0, Jim<m, N 1197+ |m, > =0.

(26,5)

B ‘ |
mpenene N — oo pasuuna MEXIY COCTOAHHAMH |m, N> H

m, N
|m, + 1> ucyesaer BOBCE, W B 3TOM CMBICJE BeJIHUHHA B CTaHO-

BUT

Ho;ft?e pclfzgl\ldmm SHAUeHHEM onepatopa ¥ mo. 3TOMY COCTOSHHIO.

et e ATO XapaKTePHBIM JJIsI CHCTEMbl C KOHIGHCATOM SAB- 73
EHHO_}OHEQHOCTL\ STOTO IIpenieJa.

AVAYITAMA ~e - s A
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[ra, o

.. that part of the W operators, which changes the condensate particle number by 1,

we have, then, by definition
Blm, N+1>=B[m, N>, E*|m, N>=E*m, N4y

the symbols ~ [m, N> u |m, N+1> denoting two "identical"
states, differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit N —o00.  The definition of the quantity
E- has thus to be written in the form

lim <m, N|E|m, N4+1>=8,

Now

lim <m, N+1]|8+%|m, ¥>— 5 - (263

> Noow :
the limiting transition is to be performed at a given fixed value of the
: liquid density N/V .-
If the W operators are represented in the form :
SR PV, W B LW e
'then their remaining ("supercondensate") parts transform the state

|m, N> to states which are orthogonal to it, that is, the matrix
elements are

dimim, N9 |m, N+-1>=0, limqm, N1 ]9+ i, WSl
In the limit N — o0, the difference between the states |m, N>and

|m, N+ Iyvanishes entirely and in this sense the quantity . be-
comes the mean value of the operator ¥ over this state.
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.. that part of the W operators, which changes the condensate particle number by 1,

we have then by definition

the symbols ~ [m, N> u |m, N+1> denoting two "identical"
states differing only by the number of the particles in the system, and
E-is a complex number. These statements are strictly valid
in the limit N — 0. The definition of the quantity
E- has thus to be written in the form

lim <m, N|E|m, N4+1>=8,

Now

11m <m N+1]|8+|m, ¥y =5 - (26,3)

Qurmc )6te potest,-capiat

If the W operators are_ repreéented in the form

Let anyor¢ 2ct Bt 1his who.can

|m, N> ates which are orthodonal to it, that is, the matrix
elements are

Kdormizes pochopiti, pochgp

In the limit ~ — oo , the difference between the states |m, N>and
|m, N+ 1svanishes entlrely and in this sense the quantity g. be-

comes the mean value of the operator ¥ over this state.
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.
the condensate represented by
a coherent state




Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many
particle wave function. Looks like he wanted

a,|W)=A|W), A=N,e"?, so that
<a0> =/ The ground state
This is in contradiction with the selection rule, <a0> =0

The above eigenvalue equation is known and defines the ground state to be
a coherent state with the parameter /1

/7




Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many
particle wave function. Looks like he wanted

a,|W)=A|W), A=N,e"?, so that

() =4 i

This is in contradiction with the selection rule, <a0> =0

The above eigenvalue equation is known and defines the ground state to be
a coherent state with the parameter /1

¥ The coherent states (not their name) discovered by Schrodinger as the
minimum uncertainty wave packets, obtained by shifting the ground state
of a harmonic oscillator.

¥ These states were introduced into the quantum theory of the
coherence of light by Roy Glauber (NP 2005). Hence the name.

iy




About the coherent states

OUR BASIC DEFINITION
a,|W) = = /N, ', (ay)

If a particle is removed from a coherent state, it remains unchanged (cf. the
Pitaevskii requirement above). It has a rather uncertain particle number, but
a reasonably well defined phase

General coherent state Condensate
Ay =75 |vac) =|W)

(Aa| )= = [N, ¢
(Alajaq| 1) =] A (M) = N,
(Alatayaia,| Ay =|A+|A (ng)=N; +N,
An, = |/ An, =N, 0 N,
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New vacuum and the shifted field operators

Does all that make sense? Try to work in the full Fock space F rather in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H -uN

80




L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND
TO THE EXPERIMENTAL CONDITIONS

. a truism difficult to satisfy

O For large systems, this is not so sensitive for two reasons
« System serves as a thermal bath or particle reservoir all by itself
 Relative fluctuations (distinguishing mark) are negligible

(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

 temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND

TO THE EXPERIMENTAL CONDITIONS )
... atruism difficult to satisfy >
——

O For large systems, this is not so sensitive for two reasons
« System serves as a thermal bath or particle reservoir all by itself
 Relative fluctuations (distinguishing mark) are negligible

(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

» temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND

TO THE EXPERIMENTAL CONDITIONS )
... atruism difficult to satisfy >
——

« System serves as a thermal bath or particle reservoir all by itself

O For large systems, this is not so sensitive for two reasons
 Relative fluctuations (distinguishing mark) are negligible >

e — R
(2 Adiabatic system Real system |Isothermal system
SB heat exchange — the slowest medium fast the fastest
process

» temperature lag

* interface layer

© Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange
(laser cooling). A small number of atoms may be kept (one to, say, 40).
With 107, they form a bath already. Besides, they are cooled by evaporation
and they form an open (albeit non-equilibrium) system.

® Sometime, N =const. crucial (persistent currents in non-SC mesoscopic rings)
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L1: Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"

OR0N

I' P i1 dual variables, intensities "Intensive"

S V' N 1solated, conservative

open SV 1 Q@
S PN 1sobaric

1sothermal 7V N

grand TV 1 Q)

notinuse 17 Pu &




L1: Homogeneous one component phase:
boundary conditions (environment) and state variables

S V' N additive variables, have densities s=S/V n=N/V "extensive"

OR0N

I' P i1 dual variables, intensities "Intensive"

S V' N 1solated, conservative

At zero temperature the
two coincide

T=0 - S=0  (Thjrcf
Principle) ]

grand 7'V i Q
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New vacuum and the shifted field operators

Does all that make sense? Try to work in the full Fock space F rather in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H —-uN
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New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its

fixed N sub-space H, This implies using the "grand Hamiltonian"
H —-uN
Let us define the shifted field operator

by=a,—/, bl =al -/
[bo,bg]:L bO‘LIJ>=O ... New vacuum

*
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New vacuum and the shifted field operators

Does all that make sense? Yes: work in the full Fock space F rather than in its
fixed N sub-space H, This implies using the "grand Hamiltonian"

H —-uN
Let us define the shifted field operator

by=a,—/, bl =al -/
[bo,bg]:L bO‘LIJ>=O ... New vacuum

What next? ... is this coherent state able to represent the condensate?

*

Test example: ideal Bose gas — limit of a BE system without interactions
_ — n? o2 _ f
(H -uN)|¥) -Z(mk ﬂ)“z«ak\"’>
Z—ﬂagaO‘LP> =0 for u=0

Here, ‘LIJ> Is a true eigenstate, coincides with the previous result for the
particle number conserving state B> =‘ N,,0 ,0,...,0,... >

Two different, but macroscopically equivalent possibilities. 38




General case: the approximate vacuum
H=[dry' (-2 A+V 0))pr) + 5 [[€rdr ¢ oW (UG =y (r)

g5(r—r')

confinement potential

e There is no privileged symmetry related basis
of one-particle orbitals

S

89




General case: the approximate vacuum
H = [drg'o)(-LA+V o) |wr) + 5[ drde ' o3 DU =g (r)

\/'Frial function ... a coherent state a marked generalization!! g5(r — ,,')
()W) =¢(r)|¥)
‘)Ne should minimize the average grand energy
(WH -uN |W) = [@r ') (- L5 A+ V () - ) ¥ (r)
i [[ardr @ ewEUE - W e

This is precisely the energy functional of the Hartree type we met already

and thes,dler-Lagrange equation is the good old Gross-Pitaevski equation

h2
LEA +V(r)+ g‘W(r)‘zjlﬂ(r) = ,uQU(r)
with the normalization condition
N [n]=N = jd3 r“//(r)‘z
90




General case: the approximate vacuum
H=[dry' )~ A+V O )p@) + 3 [[drdr g o' o0 - rp e

‘/'Yrial function ... a coherent state a marked generalization!! g5(r — r')

g (r)|W)=¥(r)|¥)

‘)Ne should minimi

(WH

u)¥(r)
- W () ()

This is precisel

and the ga’ler-

we met already

itaevski equation

(r)

with the normal
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General case: perturbative expansion
Define the shifted field operators and the condensate as the)yew vacuum

n(r)=g(r)=¥(r), 7'(r)=¢"(r)-¥(r
[/7(1”),/7*(1")] = J(r —r') etc., l](r)‘LIJ> =0

Expansion parameter ... concentration of the supra-condensate particles
deviation from the MF condensate = /7-operators

If we keep only the tgrms not more than quadratic in the new operators, the
resulting approximate Hamiltonian becomes
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General case: perturbative expansion
Define the shifted field operators and the condensate as the{ew vacuum

n(r)=g(r)=¥(r), 7'(r)=¢"(r)-¥(r
[/7(1*),/7*(1")] = J(r —r’) etc., /7(r)‘Lp> =0

Expansion parameter ... concentration of the supra-condensate particles
deviation from the MF condensate = /7-operators

If we keep only the tgrms not more than quadratic in the new operators, the
resulting approximate Hamiltonian becomes

H-uN =[d'ry’ (r)( LA+V () -+ 28nBE(r))‘/’(")
+Hd'r @)~ A+ V() =+ g ()W (r) +he
+H[&rn' @) (- A+V () - )0

+& [dr nye ({7 W7 @)+ 40" () + 00}

Here (see in a moment )

r) =% (r)




General case: perturbative expansion

H =pN = [&r @) (=25 A+ V (1) = 4 S g () ¥/ (1)

+[drn' @) ~454+V0) = u)(r)
+£ [&r ng (N{0" @1 @) + 40" () + () §

+[dr @) (L A+V @) =+ gnye () (1) +hoc.
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General case: perturbative expansion

H —uN = [d'r ')~ L A+ V() = 1+ gy, (1)) # (1)

3.t _n _
+ 5 == +h.c.

& )1 A+ V) - u)nr)
+£[&r nge (O @7 @) + 47" () + 07 }

1. The linear part must vanish to have minimum at /7 =0 . This is identical
with the Gross-Pitaevskii equation and justifies the identification

nBE(r) =‘W(r)‘2
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General case: perturbative expansion

H —uN :J.d3r (—%)gnéE(r)

3.t _n _
+ - =5 +h.c.

+jd3r HT(r)(—%A +V(r) _ﬂ)”(’”)
+4£ [ my, ({7 @0 )+ 47" @)+ }

1. The linear part must vanish to have minimum at /7 =0 . This is identical
with the Gross-Pitaevskii equation and justifies the identification

nBE(r) =‘W(r)‘2

2. The zero-th order part simplifies — substitute from the GPE
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General case: perturbative expansion

H —uN =Id3r (—%)gnéE(r)

3.t _ h? _
+ 5 == +h.c.

+H[drn'@)(~454+V ) - u)n(r)
& [&r ny ({7 )+ 47 () + M) }

1. The linear part must vanish to have minimum at /7 =0 . This is identical
with the Gross-Pitaevskii equation and justifies the identification

2
=|w(r)
2. The zero-th order part simplifies — substitute from the GPE

3. There remains to eliminate the anomalous terms from the quadratic part:
Bogolyubov transformation
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General case: the Bogolyubov transformation

A simple method: use EOM for the field operators
i0,7(r,t) =[n(r,t),H =N |
=(~ L A+V () = 428y, (1)) 1(r,0) + g (717 ()
~i0,7"(r,t)=| n'(r,0).H ~uN |
= (=L A+V ()= pr+ 2gmy, ()7 (r,0) + gy, (1¥7(r,1)

These are linear egs. To find their mode structure, make a linear ansatz
—- —iEkt o +'1Ekt
n(r,t) = 2b.u, (r)e + by v (r)e
7' (r,0) = Zbyy (r)e " +bfuy (r)e™™
Reminescent of the old u and v for infinite system.
Substitute into the EOM and separate individual frequencies.

Bogolyubov — de Gennes egs. are obtained.
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General case: the Bogolyubov transformation
Bogolyubov — de Gennes egs.
Eouy, = (_%A +V -+ 2gnBE)uk i gnBEvZ
—E,v, = (_%A +V -+ 2gnBE)Vk i gnBEuZ

Strange coupled “Schrodinger” equations.

Strange orthogonality relations:

| d’r (u;u A )(r) =0,, ltis our choice to normalize to unity

[ d*r (ukvg —V.u, )(r) =0

The definition of the QP field operators can be inverted
n(r)=Xbau, (r) +blv(r) | b, = [dr (+u;n=v;n")(r)

n' ) = by () +blu () | b =[dr (-vn+unt) @)
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General case: the Bogolyubov transformation

These field operators satisfy the correct commutation rules

b,b] |=3,. |b.b, |=0, |B],b]=0

Finally,

H —uN = J‘dsr (_%) gnéE (r)+ Z{ Ekb;bk — Id3r‘vk (l”)‘z}

a neat QP form of the grand Hamiltonian.
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Detail: the mean-field for a homogeneous system

Before: minimize the energy functional with fixed particle number N, find the

chemical potential i afterwards

Now: minimize the grand energy functional with fixed chemical potential, find
the average particle number in the process
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Detail: the mean-field for a homogeneous system

Before: minimize the energy functional with fixed particle number A, find the
chemical potential i afterwards

Now: minimize the grand energy functional with fixed chemical potential, find
the average particle number in the process

Homogeneous system:
order parameter ¥ (r)=%¥ = const. = W =/n
(WH -uN |W) = [&r ¢ () (- 22 A+ V ()~ 1) ¥ (1)
L [[drd e W e (g (r - )¢ (¥ (1)

=V x(-ule + L)
energy per unit volume D(QU )
(WIN W)= [¢r @ @) = VW]

average particle density n ("U) 102




Detail: the mean-field for a homogeneous system
The GP equation reduces from differential to an algebraic one:

Z0(x)=0, ¥]=x

—2/,Ix+%g@rx320, ‘QU =0, ‘(,U = ﬂ, Dmin:—%g‘(ﬂ{ __H
max min g min 2g
p— :(//2. :E
n ‘ min gv/
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Detail: the mean-field for a homogeneous system
The GP equation reduces from differential to an algebraic one:

0
—[lx)=0. || =
ax (X) ? ‘ ‘

—2,le+%g [4x° =0, ‘QU

=0, ||¥

max min min min

= E, D , :—%g‘QU“
g

Plot in relative units 0

\//'Iref/g
/'I:I[”j'lref ‘L'U‘ :(/J ref
[1=&p|¥

choose [ .; ‘QU

ref

1ocus of the
minima

ref




11l
broken symmetry and quasi-averages




Zero temperature limit of the grand canonical ensemble

Q) — Z—l e_ﬁ(j‘[_/JW)

=7 aN>e"3(E“N‘”N) (aN|

= 27 XJoN)e A (o

[

0 Z\oﬁ}(oﬁ

Picks up the correct ground state energy,

all ground states are taken with equal statistical weight

- | NORMAL

SYSTEMS | <

NON-DEGENERATE GROUND STATE

~ "ANOMALOUS"

DEGENERATE GROUND STATE
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Degenerate ground state

- | NORMAL NON-DEGENERATE GROUND STATE

SYSTEMS | <

~ "ANOMALOUS" DEGENERATE GROUND STATE

Characterized by a classical order parameter ...

Typical cause: a symmetry degeneracy

Everything depends on the system characteristic parameters
Ginsburg — Landau phenomenological model

E(Y)=a¥? +bp¥*

a>0 a<(
stable equilibrium metastable equilibrium
non-degenerate degenerate
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Degenerate ground state

- | NORMAL NON-DEGENERATE GROUND STATE

SYSTEMS | <

~ "ANOMALOUS" DEGENERATE GROUND STATE

Characterized by a classical order parameter ...

Typical cause: a symmetry degeneracy

Everything depends on the system characteristic parameters
Ginsburg — Landau phenomenological model

@
E(Y)=a¥? +bp¥*
a>0 a<(
stable equilibrium metastable equilibrium
non-degenerate degenerate
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H Rovnhovazna struktura molekul AB,

BF,

\|/

rovina F h rovina H h

U adiabaticka potencialni energie
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H Equilibrium structure of the AB, molekules

»

F plane

h

v

H :plane h

U adiabatic potential energy

stable equilibrium
non-degenerate
ground state

metastable equilibrium
degenerate
ground state
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H Equilibrium structure of the AB, molekules H

BF; . NH; -

»

F plane h H :plane h

v

U adiabatic potential energy

stable equilibrium metastable equilibrium
non-degenerate degenerate
ground state ground state
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“ Equiliorium structure of the AB; molekules H

Ammonia molecule
pyramidal molecule.
two minima of
potential energy
separated by a barrier.

Different from a typical
extended system:

& Small system:
quantum barrier & tunneling
35 Discrete symmetry
broken:

discrete set of equivalent
equilibria states

\>, )
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Broken contfinouous symmetries in extended systems

Three popular cases

Isotropic Atomic crystal . o
System p oy Bosonic gas/liquid
ferromagnet lattice
. . Heisenberg spin Distinguishable | Bosons with short
Hamiltonian . . . . .
Hamiltonian atoms with 1int. range mteractions
3D rotational 1n . Global gauge
Symmetry : Translational : 5aUE
spin space invariance
homogeneous eriodic macroscopic
Order parameter SENCe p : b
magnetization particle density wave function
Symmetry external magnetic "empty lattice" particle
breaking field field potential source/drain
Goldstone modes magnons acoustic phonons sound waves

For a nearly exhaustive list see the PWA book of 1983




Bose condensate - degeneracy of the ground state

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W= ,/<NO> 3'%0 any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Selection rule

<a0 >¢ = “’U‘em %0
<a0> =quﬂ<ao>¢ =0

average over all degenerate states

"Mexican hat" 114




Symmeitry breaking — removal of the degeneracy

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W= ,/<NO> 3'%0 any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Symmetry broken by a small
perturbation picking up one @

H = UN -
H — UN -/ (ag e'?+aq, e_w)

particle number NOT conserved

"Mexican hat" 115




Symmeitry breaking — removal of the degeneracy

The coherent ground state

mean field energy E(‘»U) = (_:U“’U‘z +%g‘gu‘4)

order parameter W= ,/<NO> 3'%0 any from (0,27)  degeneracy
1 2 . . .
Ly N @ %4, genuinely different
mf ground state ‘QU > =€ 2 FAR VaC> for different @

Symmetry broken by a small
perturbation picking up one @

H = UN -
H — UN -/ (ag e'P+a, e_w)

particle number NOT conserved

ForA - 0

one particular phase selected

"Mexican hat" 116




How the symmetry breaking works — ideal BE gas

Without interactions, the ground level is uncoupled from the excited levels:
H = UN -/ (ag e'%+a, e_w)

. _: 2
=—Uaa, - A (ag e'Y+a, e 140) + Z“;’—m(k2 —,u) ala,
k%0
~ —Uala, - A (ag e'Y+aq, e_1¢)
The control parameter is the chemical potential u, but it will be adjusted to yield
a fixed average particle number in the condensate.

Transformation:

1 -1 A 1 /] —iﬁ
—Haya, _A( a,e'+a,e ¢)__ﬂ(agao+ﬂ ¢§ ,U §0an

,u(aoao Na] - /|*a0) = —,u((ag —/I*)(ao —/I)—/l*/l)
~p4(bib, = A°A)
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How the symmetry breaking works — ideal BE gas

Now we determine the many-body ground state

~u(bib, AN WY =E[W), |, =a,-A, A=-Aue?, p<0

The lowest energy corresponds to
b, “-IJ> =0, 1e. q, “-IJ> = /I‘ l-IJ> ... coherent state
AN=(P|dla)|W)=N,, A=N,e?
E = puN' /N = UN, pu=-1/ N,

The control parameter is the chemical potential , but it will be adjusted to yield
a fixed average particle number in the condensate.

Infinitesimal symmetry breaking field A - 0
A - 0 with N, fixed:

,U—)O_O
E - 0

/I:\/Vgei@, |W) fixed 18




How the symmetry breaking works — ideal BE gas

Now we determine the many-body ground state

~p(bjby, = A N)|W) = E| W),

C=a,-A, A=-Aue?, u<o

The lowest energy corresponds to

b, |W)=0, ie. a,|W)=A|W) .

.. coherent state

AN=(P|dla)|W)=N,, A=N,e?
E = puN' /N = UN, pu=-1/yN,

The control parameter is the chemical potential , but it will be adjusted to yield
a fixed average particle number in the condensate.

Infinitesimal symmetry breaking field A — 0

A - 0 with N, fixed:

,U—)O_O
E - 0

/I:\/Vgei@, |W) fixed

(. The coherent state is the exact
ground state for the ideal BE gas
* The order parameter picks up the
phase from the perturbing field
 The order of limits: first A — 0, only
then the thermodynamic limit N, — oo

@,




The end




