Cold atoms

Lecture 7.
$21^{\text {st }}$ February, 2007

Preliminary plan/reality in the fall term

Lecture 1	Something about everything (see next slide)	Sep 22
\ldots	The textbook version of BEC in extended systems	

Lecture 2 thermodynamics, grand canonical ensemble, extended
Oct 4 gas: ODLRO, nature of the BE phase transition
Lecture 3 atomic clouds in the traps - independent bosons, what Oct 18 is BEC?, "thermodynamic limit", properties of OPDM
Lecture 4 atomic clouds in the traps - interactions, GP equation at Nov 1 zero temperature, variational prop., chem. potential
Lecture 5 Infinite systems: Bogolyubov theory Nov 15
Lecture 6 BEC and symmetry breaking, coherent states Nov 29

Lecture 7 Time dependent GP theory. Finite systems: BEC theory preserving the particle number

Recapitulation

Offering many new details and alternative angles of view

BEC in atomic clouds

Nobelists I. Laser cooling and trapping of atoms

The Nobel Prize in Physics 1997
"for development of methods to cool and trap atoms with laser light"

Steven Chu
$1 / 3$ of the prize

USA

Stanford University
Stanford, CA, USA
b. 1948

Claude CohenTannoudji
$1 / 3$ of the prize
France

Collège de France; École Normale Supérieure Paris, France
b. 1933
(in Constantine, Algeria)

William D. Phillips
$1 / 3$ of the prize
USA

National Institute of Standards and
Technology
Technology
Gaithersburg, MD, USA
b. 1948

Doppler cooling in the Chu lab

Doppler cooling in the Chu lab

Nobelists II. BEC in atomic clouds

The Nobel Prize in Physics 2001
'for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell
$1 / 3$ of the prize
USA

University of Colorado, JILA Boulder, CO, USA
b. 1961

Wolfgang Ketterle
$1 / 3$ of the prize
Federal Republic of Germany

Carl E. Wieman
$1 / 3$ of the prize

USA

University of Colorado, JILA

 Boulder, CO, USAb. 1951

Trap potential

Typical profile

This is just one direction
Presently, the traps are mostly 3D
The trap is clearly from the real world, the atomic cloud is visible almost by a naked eye

Ground state orbital and the trap potential

$$
\begin{aligned}
& \begin{array}{ll}
\text { level } \\
\text { number }
\end{array} \\
& \psi_{0}(x, y, z)=\phi_{0 x}(x) \phi_{0 y}(y) \phi_{0 z}(z) \\
& \phi_{0}(u)=\frac{1}{\sqrt{a_{0} \pi}} \mathrm{e}^{-\frac{u^{2}}{2 a_{0}^{2}}}, \quad a_{0}=\sqrt{\frac{\hbar}{m \omega}}, \quad E_{0}=\frac{1}{2} \hbar \omega=\frac{1}{2} \cdot \frac{\hbar^{2}}{m a_{0}^{2}}=\frac{1}{2} \cdot \frac{\hbar^{2}}{M u_{m} a_{0}^{2}} \\
& V(u)=\frac{1}{2} m \omega^{2} u^{2}=\frac{1}{2} \hbar \omega\left(\frac{u}{a_{0^{4}}}\right)^{2} \quad \begin{array}{c}
\text { characteristic energy }
\end{array}
\end{aligned}
$$

BEC observed by TOF in the velocity distribution

Figure 7. Observation of Bose-Einstein condensation by absorption imaging. Shown is absorption vs. two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion observed after 6 ms time-of-flight. The left picture shows an expanding cloud cooled to just above the transition point; middle: just after the condensate appeared; right: after further evaporative cooling has left an almost pure condensate. The total number of atoms at the phase transition is about 7×10^{5}, the temperature at the transition point is $2 \mu \mathrm{~K}$.

Ketterle explains BEC to the King of Sweden

High
Temperature T :
thermal velocity v
density d^{3}
"Billiard balls"
Low
Temperature T :
De Broglie wavelength
$\lambda_{\mathrm{d}} \mathrm{d}=\mathrm{h} / \mathrm{my}$ \& $\mathrm{T}^{-1 / 2}$
Wave packets"

$\mathrm{T}=\mathrm{T}_{\text {crit }}$:
Bose-Einstein Condensation
$\lambda \mathrm{de} \approx \mathrm{d}$
"Matter wave overlap"

Simple estimate of T_{C} (following the Ketterle slide)

The quantum breakdown sets on when
the wave clouds of the atoms start overlapping

Critical temperature

ESTIMATE

$$
T_{c} \square \frac{h^{2}}{m k_{B}} \cdot\left(\frac{N}{V}\right)^{\frac{2}{3}}
$$

TRUE EXPRESSION

$$
T_{c}=\frac{h^{2}}{4 \pi m k_{B}} \cdot\left(\frac{N}{2,612 V}\right)^{\frac{2}{3}}
$$

Interference of atoms

Two coherent condensates are interpenetrating and interfering. Vertical stripe width $15 \mu \mathrm{~m}$
Horizontal extension of the cloud 1,5mm

Today, we will be mostly concerned with the extended ("infinite") BE gas/liquid

Microscopic theory well developed over nearly 60 past years

Interacting atoms

Importance of the interaction - synopsis

Without interaction, the condensate would occupy the ground state of the oscillator (dashed -----)
In fact, there is a significant broadening of the condensate of 80000 sodium atoms in the experiment by Hau et al. (1998), perfectly reproduced by the solution of the GP equation

Many-body Hamiltonian

$$
\hat{H}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq b} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)
$$

True interaction potential at low energies (micro-kelvin range) replaced by an effective potential, Fermi pseudopotential $U(r)=g \cdot \delta(\boldsymbol{r})$

Mean-field treatment of interacting atoms

Many-body Hamiltonian and the Hartree approximation

$$
\hat{H}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)
$$

We start from the mean field approximation.
This is an educated way, similar to (almost identical with) the HARTREE APPROXIMATION we know for many electron systems.

Most of the interactions is indeed absorbed into the mean field and what remains are explicit quantum correlation corrections

$$
\begin{aligned}
& \hat{H}_{\mathrm{GP}}=\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right)+V_{H}\left(\boldsymbol{r}_{a}\right) \\
& V_{H}\left(\boldsymbol{r}_{a}\right)=\int_{\mathrm{d}} \mathrm{~d} \boldsymbol{r}_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) n\left(\boldsymbol{r}_{b}\right)=g \cdot n\left(\boldsymbol{r}_{a}\right) \quad \text { self-consistent } \\
& n(\boldsymbol{r})=\sum_{\alpha} n_{\alpha}\left|\varphi_{\alpha}(\boldsymbol{r})\right|^{2} \\
&\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+V_{H}(\boldsymbol{r})\right) \varphi_{\alpha}(\boldsymbol{r})=E_{\alpha} \varphi_{\alpha}(\boldsymbol{r})
\end{aligned}
$$

Gross-Pitaevskii equation at zero temperature

Consider a condensate. Then all occupied orbitals are the same and we have a single self-consistent equation for a single orbital

$$
\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+g N\left|\varphi_{0}(\boldsymbol{r})\right|^{2}\right) \varphi_{0}(\boldsymbol{r})=E_{0} \varphi_{0}(\boldsymbol{r})
$$

Putting

$$
\Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})
$$

we obtain a closed equation for the order parameter:

The lowest level coincides with the chemical potential

$$
\left(\frac{1}{2 m} p^{2}+V(\boldsymbol{r})+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
$$

This is the celebrated Gross-Pitaevskii equation.

For a static condensate, the order parameter has ZERO PHASE.
Then

$$
\begin{aligned}
& \Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})=\sqrt{n(\boldsymbol{r})} \\
& N[n]=N=\int \mathrm{d}^{3} \boldsymbol{r}|\Psi(\boldsymbol{r})|^{2}=\int \mathrm{d}^{3} \boldsymbol{r} \cdot n(\boldsymbol{r})=N
\end{aligned}
$$

Gross-Pitaevskii equation - homogeneous gas

The GP equation simplifies

$$
\left(-\frac{\hbar^{2}}{2 m} \Delta+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
$$

For periodic boundary conditions in a box with $V=L_{x} \cdot L_{y} \cdot L_{z}$

$$
\begin{aligned}
& \varphi_{0}(\boldsymbol{r})=\frac{1}{\sqrt{V}} \\
& \Psi(\boldsymbol{r})=\sqrt{N} \cdot \varphi_{0}(\boldsymbol{r})=\sqrt{\frac{N}{V}}=\sqrt{n} \\
& g|\Psi(\boldsymbol{r})|^{2} \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r}) \quad \ldots \text { GP equation } \\
& \left.|\mu=g| \Psi(\boldsymbol{r})\right|^{2}=g n \mid \\
& \frac{E}{N}=\frac{1}{N} \int \mathrm{~d}^{3} \boldsymbol{r}\left\{\frac{\hbar^{2}}{2 m}(\operatorname{n})^{2}+\sqrt{n}+\frac{1}{2} g n^{2}\right\}=\frac{1}{2} g n
\end{aligned}
$$

Field theoretic reformulation (second quantization)

Purpose: go beyond the GP approximation, treat also the excitations

Field operator for spin-less bosons
Definition by commutation relations

$$
\left[\psi(\boldsymbol{r}), \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \quad\left[\psi(\boldsymbol{r}), \psi\left(\boldsymbol{r}^{\prime}\right)\right]=0, \quad\left[\psi^{\dagger}(\boldsymbol{r}), \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=0
$$

basis of single-particle states (κ complete set of quantum numbers)
$\{|\kappa\rangle\} \quad\langle\kappa \mid \beta\rangle=\delta_{\kappa \beta} \quad|\psi\rangle=\sum|\kappa\rangle\langle\kappa \mid \psi\rangle, \quad \psi \quad \ldots$ single particle state
$\langle\boldsymbol{r} \mid \kappa\rangle=\varphi_{\kappa}(\boldsymbol{r}) \quad\langle\boldsymbol{r} \mid \psi\rangle=\sum\langle\boldsymbol{r} \mid \kappa\rangle\langle\kappa \mid \psi\rangle$
decomposition of the field operator

$$
\begin{aligned}
& \psi(\boldsymbol{r})=\sum \varphi_{\kappa}(\boldsymbol{r}) a_{\kappa}, \quad a_{\kappa}="\langle\kappa \mid \psi\rangle "=\int \mathrm{d}^{3} \varphi_{\kappa}^{*}(\boldsymbol{r}) \psi(\boldsymbol{r}) \\
& \psi^{\dagger}(\boldsymbol{r})=\sum \varphi_{\kappa}^{*}(\boldsymbol{r}) a_{\kappa}^{\dagger}
\end{aligned}
$$

commutation relations

$$
\left[a_{\kappa}, a_{\lambda}^{\dagger}\right]=\delta_{\kappa \lambda}, \quad\left[a_{\kappa}, a_{\lambda}\right]=0, \quad\left[a_{\kappa}^{\dagger}, a_{\lambda}^{\dagger}\right]=0
$$

Action of the field operators in the Fock space

 basis of single-particle states$\{|\kappa\rangle\} \quad\langle\kappa \mid \beta\rangle=\delta_{\kappa \beta} \quad|\psi\rangle=\sum|\kappa\rangle\langle\kappa \mid \psi\rangle, \quad \psi \quad \ldots$ single particle state
$\langle\boldsymbol{r} \mid \kappa\rangle=\varphi_{\kappa}(\boldsymbol{r}) \quad\langle\boldsymbol{r} \mid \psi\rangle=\sum\langle\boldsymbol{r} \mid \kappa\rangle\langle\kappa \mid \psi\rangle$

FOCK SPACE F space of many particle states
basis states ... symmetrized products of single-particle states for bosons specified by the set of occupation numbers $\mathbf{0 , 1 , 2 , 3 , \ldots}$ $\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots, \kappa_{p}, \ldots\right\}$
$\Psi_{\left\{n_{k}\right\}}=\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle \quad n$-particle state $n=\Sigma n_{p}$
$a_{p}^{\dagger}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}+1}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}+1, \ldots\right\rangle$
$a_{p}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\sqrt{n_{p}}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}-1, \ldots\right\rangle$

Action of the field operators in the Fock space

Average values of the field operators in the Fock states
Off-diagonal elements only!!! The diagonal elements vanish:

$$
\begin{aligned}
& \left\langle n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right| a_{p}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle= \\
& \left\langle n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right| \sqrt{n_{p}}\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}-1, \ldots\right\rangle=0
\end{aligned}
$$

Creating a Fock state from the vacuum:

$$
\left|n_{1}, n_{2}, n_{3}, \ldots, n_{p}, \ldots\right\rangle=\prod_{p} \frac{1}{\sqrt{n_{p}!}}\left(a_{p}^{\dagger}\right)^{n_{p}}|\mathrm{vac}\rangle
$$

Field operator for spin-less bosons - cont'd

Important special case - an extended homogeneous system
Translational invariance suggests to use the
Plane wave representation (BK normalization)

$$
\begin{aligned}
& \psi(\boldsymbol{r})=V^{-1 / 2} \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} a_{\boldsymbol{k}}, \quad a_{\boldsymbol{k}}=V^{-1 / 2} \int \mathrm{~d}^{3} \boldsymbol{r} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} r} \psi(\boldsymbol{r}) \\
& \boldsymbol{\psi}^{\dagger}(\boldsymbol{r})=V^{-1 / 2} \sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}} a_{\boldsymbol{k}}^{\dagger}=V^{-1 / 2} \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k} r} a_{-\boldsymbol{k}}^{\dagger}
\end{aligned}
$$

The other form is of made possible by the inversion symmetry (parity)
\& important, because the combination

$$
u \cdot a_{k}+v \cdot a_{-k}^{\dagger}
$$

corresponds to the momentum transfer by \boldsymbol{k}
Commutation rules do not involve a δ-function, because the BK momentum is discrete, albeit quasi-continuous:

$$
\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}, \quad\left[a_{k}, a_{k^{\prime}}\right]=0, \quad\left[a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right]=0
$$

Operators

Additive observable

$$
X=\sum X_{j} \quad \rightarrow \quad X=\iint \mathrm{d}^{3} r \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r})\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle \psi\left(\boldsymbol{r}^{\prime}\right)
$$

General definition of the one particle density matrix - OPDM

$$
\begin{aligned}
\langle X\rangle & \left.=\left\langle\iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r})\langle\boldsymbol{r}| X \mid \boldsymbol{r}^{\prime}\right\rangle \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle=\iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime}\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle \underbrace{\left\langle\psi^{\dagger}(\boldsymbol{r}) \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle}_{\left\langle\boldsymbol{r}^{\prime}\right| \rho|\boldsymbol{r}\rangle} \\
& \equiv \iint \mathrm{d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime}\langle\boldsymbol{r}| X\left|\boldsymbol{r}^{\prime}\right\rangle\left\langle\boldsymbol{r}^{\prime}\right| \boldsymbol{\rho}|\boldsymbol{r}\rangle=\operatorname{Tr} X \rho
\end{aligned}
$$

Particle number

$$
\begin{gathered}
N=\sum 1_{\mathrm{OP}, j} \rightarrow \quad N=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r}) \psi(\boldsymbol{r}) \\
N=\sum a_{\kappa}^{\dagger} a_{\kappa}
\end{gathered}
$$

Momentum

$$
\begin{gathered}
\boldsymbol{P}=\sum \boldsymbol{p}_{j} \quad \rightarrow \quad \boldsymbol{P}=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})(-\mathrm{i} \hbar \nabla) \psi(\boldsymbol{r}) \\
\boldsymbol{P}=\sum \hbar \boldsymbol{k} \cdot a_{\kappa}^{\dagger} a_{\kappa}
\end{gathered}
$$

Hamiltonian

$$
\begin{aligned}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right) \text { single-particle additive } \\
& +\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) \text { two-particle binary } \\
& \rightarrow \int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r}) \\
& +\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{aligned}
$$

Hamiltonian

$$
\begin{aligned}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right) \quad \text { single-particle additive } \\
& +\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) \text { two-particle binary } \\
& \rightarrow \int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r}) \\
& +\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{aligned}
$$

Hamiltonian

$$
\begin{aligned}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V\left(\boldsymbol{r}_{a}\right) \quad \text { single-particle additive } \\
& +\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right) \text { two-particle binary } \\
& \rightarrow \int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r}) \\
& +\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{aligned}
$$

But . .

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state (ergodic property)

$$
P=P(H), \quad[N, P]=0
$$

On symmetries and conservation laws

Hamiltonian is conserving the particle number

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state (ergodic property)

$$
P=P(H), \quad[N, P]=0
$$

Typical selection rule

$$
\langle\psi(\boldsymbol{r})\rangle=\operatorname{Tr} \psi(\boldsymbol{r}) \boldsymbol{P}=0
$$

is a consequence: (similarly $\langle\psi \psi\rangle=0,\left\langle\psi \psi \psi^{\dagger}\right\rangle=0, \ldots$)

Proof:

$$
\begin{aligned}
& 0=\operatorname{Tr}(\psi[\mathcal{N}, \mathscr{P}])=\operatorname{Tr}(\mathscr{P}[\psi, \mathcal{N}])=\operatorname{Tr}(\mathscr{P} \psi) \quad \operatorname{Tr} A[B, C]=\operatorname{Tr} C[A, B] \\
& {\left[\psi(x), \int \mathrm{d} x^{\prime} \psi^{\dagger}\left(x^{\prime}\right) \psi\left(x^{\prime}\right)\right]=\int \mathrm{d} x^{\prime}\left(\psi^{\dagger}\left(x^{\prime}\right)\left[\psi(x), \psi\left(x^{\prime}\right)\right]+\left[\psi(x), \psi^{\dagger}\left(x^{\prime}\right)\right] \psi\left(x^{\prime}\right)\right)=\psi(x)}
\end{aligned}
$$

Deeper insight: gauge invariance of the $1^{\text {st }}$ kind

Gauge invariance of the 1st kind

Particle number conservation

$$
[H, N]=0
$$

Equilibrium density operators and the ground state (ergodic property)

$$
P=P(H),[N, P]=0
$$

Gauge invariance of the $1^{\text {st }}$ kind

$$
[H, N]=0 \quad \Leftrightarrow \quad \mathrm{e}^{\mathrm{i} N \varphi} H \mathrm{e}^{-\mathrm{i} N \varphi}=H \quad \text { unitary transform }
$$

The equilibrium states have then the same invariance property:

$$
[N, P]=0 \quad \Leftrightarrow \quad \mathrm{e}^{-\mathrm{i} N \varphi} P \mathrm{e}^{\mathrm{i} N \varphi}=P
$$

Selection rule rederived:
$\operatorname{Tr} \psi P=\operatorname{Tr} \psi \mathrm{e}^{-\mathrm{i} \varphi N} P \mathrm{e}^{\mathrm{i} \varphi N}=\operatorname{Tr} \mathrm{e}^{\mathrm{i} \varphi N} \psi \mathrm{e}^{-\mathrm{i} \varphi N} P=\mathrm{e}^{\mathrm{i} \varphi} \operatorname{Tr} \psi P$
$\left(1-\mathrm{e}^{\mathrm{i} \varphi}\right) \operatorname{Tr} \psi P=0 \Rightarrow \operatorname{Tr} \psi(\boldsymbol{r}) P=\langle\psi(\boldsymbol{r})\rangle=0$

Hamiltonian of a homogeneous gas

$$
\begin{array}{rlr}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

To study the symmetry properties of the Hamiltonian Proceed in three steps ...
in the direction reverse to that for the gauge invariance

Hamiltonian of the homogeneous gas

$$
\begin{array}{rlr}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

- Translationally invariant system ... how to formalize (and to learn more about the $\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \quad \ldots$ translation vector gauge invariance)

Hamiltonian of the homogeneous gas

$$
\begin{array}{rlrl}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

- Translationally invariant system ... how to formalize (and to learn more about the

$$
\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \quad \ldots \text { translation vector }
$$

- Constructing the unitary operator $\mathcal{T}(\boldsymbol{a})$

Translation in the one-particle orbital space

$$
T(\boldsymbol{a}) \varphi(\boldsymbol{r})=\varphi(\boldsymbol{r}-\boldsymbol{a})=\sum \frac{1}{n!}(-\nabla \boldsymbol{a})^{n} \varphi(\boldsymbol{r})=\sum \frac{1}{n!}\left(\frac{-\mathrm{i} \boldsymbol{p} \boldsymbol{a}}{\hbar}\right)^{n} \varphi(\boldsymbol{r})=\mathrm{e}^{-\mathrm{i} \boldsymbol{p} \boldsymbol{a} / \hbar} \varphi(\boldsymbol{r})
$$

Hamiltonian of the homogeneous gas

$$
\begin{array}{rlr}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

- Translationally invariant system ... how to formalize (and to learn more about the

$$
\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \quad \ldots \text { translation vector }
$$

- Constructing the unitary operator $\mathcal{T}(\boldsymbol{a})$

$$
\begin{aligned}
& \mid \mathcal{T}(\boldsymbol{a}) \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \ldots \boldsymbol{r}_{p}, \ldots \boldsymbol{r}_{N}\right)=\Psi\left(\boldsymbol{r}_{1}-\boldsymbol{a}, \boldsymbol{r}_{2}-\boldsymbol{a}, \boldsymbol{r}_{3}-\boldsymbol{a}, \ldots \boldsymbol{r}_{p}-\boldsymbol{a}, \ldots \boldsymbol{r}_{N}-\boldsymbol{a}\right) \\
& =\prod \mathrm{e}^{-\mathrm{i} \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \sum \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \mathcal{P} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)
\end{aligned}
$$

Hamiltonian of the homogeneous gas

$$
\begin{array}{rlr}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

- Translationally invariant system ... how to formalize (and to learn more about the

$$
\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \quad \ldots \text { translation vector }
$$

- Constructing the unitary operator $\mathcal{T}(\boldsymbol{a})$

$$
\begin{array}{r}
\mid \mathcal{T}(\boldsymbol{a}) \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \ldots \boldsymbol{r}_{p}, \ldots \boldsymbol{r}_{N}\right)=\Psi\left(\boldsymbol{r}_{1}-\boldsymbol{a}, \boldsymbol{r}_{2}-\boldsymbol{a}, \boldsymbol{r}_{3}-\boldsymbol{a}, \ldots \boldsymbol{r}_{p}-\boldsymbol{a}, \ldots \boldsymbol{r}_{N}-\boldsymbol{a}\right) \\
=\prod \mathrm{e}^{-\mathrm{i} \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \sum \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \mathcal{P} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right) \\
\mathcal{T}(\boldsymbol{a})=\mathrm{e}^{-\mathrm{i} \mathcal{P} \boldsymbol{a} / \hbar} \quad \ldots \text { compare } O(\varphi)=\mathrm{e}^{-\mathrm{i} \mathcal{V} \varphi}
\end{array}
$$

Hamiltonian of the homogeneous gas

$$
\begin{array}{rlr}
H & =\sum_{a} \frac{1}{2 m} p_{a}^{2}+V+\frac{1}{2} \sum_{a \neq} \sum_{b} U\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right), & V=\text { const. } \\
& =\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})
\end{array}
$$

- Translationally invariant system ... how to formalize (and to learn more about the

$$
\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \quad \ldots \text { translation vector }
$$

- Constructing the unitary operator $\mathcal{T}(\boldsymbol{a})$

$$
\begin{array}{r}
\mid \mathcal{T}(\boldsymbol{a}) \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \ldots \boldsymbol{r}_{p}, \ldots \boldsymbol{r}_{N}\right)=\Psi\left(\boldsymbol{r}_{1}-\boldsymbol{a}, \boldsymbol{r}_{2}-\boldsymbol{a}, \boldsymbol{r}_{3}-\boldsymbol{a}, \ldots \boldsymbol{r}_{p}-\boldsymbol{a}, \ldots \boldsymbol{r}_{N}-\boldsymbol{a}\right) \\
=\Pi \mathrm{e}^{-\mathrm{i} \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \sum \boldsymbol{p}_{\ell} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right)=\mathrm{e}^{-\mathrm{i} \boldsymbol{P} \boldsymbol{a} / \hbar} \Psi\left(\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{N}\right) \\
T(\boldsymbol{a})=\mathrm{e}^{-\mathrm{i} \boldsymbol{P} \boldsymbol{a} / \hbar} \quad \ldots \text { compare } O(\varphi)=\mathrm{e}^{-\mathrm{i} \mathcal{V} \varphi}
\end{array}
$$

- Infinitesimal translation

$$
[\mathcal{H}, \mathcal{N}]=0
$$

$$
\mathcal{H}=\mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathrm{e}^{+\mathrm{i} P \boldsymbol{P} / \hbar} \mathcal{H} \mathrm{e}^{-\mathrm{i} P \boldsymbol{P} / \hbar} \approx \mathcal{H}+\mathrm{i} / \hbar \mathbb{P} \boldsymbol{a} \mathcal{H}-\mathrm{i} / \hbar \mathcal{H} \mathcal{P} \boldsymbol{a}+O\left(a^{2}\right)
$$

$$
\Rightarrow \quad[\mathcal{H}, \mathscr{P}] \boldsymbol{a}=0 \quad \Leftrightarrow \quad\left[\mathcal{H}, \mathscr{P}_{x, y, z}\right]=0 \quad \text {... momentum conservation }
$$

Summary: two symmetries compared

Gauge invariance of the $1^{\text {st }}$ kind	Translational invariance
universal for atomic systems	specific for homogeneous systems
$\begin{gathered} O^{\dagger}(\varphi) \mathcal{H O}(\varphi)=\mathcal{H}, \quad \varphi \in\langle 0,2 \pi\rangle \\ O(\varphi)=\mathrm{e}^{-\mathrm{i} \mathfrak{N} \varphi} \end{gathered}$	$\begin{gathered} \mathcal{T}^{\dagger}(\boldsymbol{a}) \mathcal{H} \mathcal{T}(\boldsymbol{a})=\mathcal{H}, \quad \boldsymbol{a} \in R_{3} \\ \mathcal{T}(\boldsymbol{a})=\mathrm{e}^{-\mathrm{i} \boldsymbol{P} \boldsymbol{a} / \hbar} \end{gathered}$
global phase shift of the wave function	global shift in the configuration space
$[\mathcal{H}, \mathcal{N}]=0$ particle number conservation	$\left[\mathcal{H}, \mathbb{P}_{x, y, z}\right]=0$ total momentum conservation
$[N, P]=0 \Leftrightarrow \mathrm{e}^{-\mathrm{i} N \varphi} P \mathrm{e}^{\mathrm{i} N \varphi}=P$ for equilibrium states	$[\mathscr{P}, P]=0 \Leftrightarrow \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} P a} P \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \mathscr{P} a}=P$ for equilibrium states
selection rules $\left\langle\psi \psi \cdots \psi^{\dagger}\right\rangle=0$ unless there are as many ψ^{\dagger} as ψ.	selection rules $\left\langle a_{\boldsymbol{k}} a_{\boldsymbol{k}^{\prime}} \cdots a_{\boldsymbol{k}^{\prime \prime}}^{\dagger}\right\rangle=0$ unless the total momentum transfer $-\boldsymbol{k}-\boldsymbol{k}^{\prime} \cdots+\boldsymbol{k}^{\prime \prime} \text {; } \mathfrak{s} \text { Ozero }$

Hamiltonian of the homogeneous gas

In the momentum representation

$$
\begin{gathered}
H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} \boldsymbol{q}} U_{\boldsymbol{q}} a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \\
U_{\boldsymbol{k}}=\int \mathrm{d}^{3} \boldsymbol{r} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}} U(\boldsymbol{r}) \\
(\boldsymbol{k}+\boldsymbol{q})+\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right)-\boldsymbol{k}-\boldsymbol{k}^{\prime}=0
\end{gathered}
$$

Particle number conservation
$a^{\dagger} a^{\dagger} a \quad a$

Hamiltonian of the homogeneous gas

In the momentum representation
For the Fermi pseudopotential

$$
U_{q}=U_{0} \equiv U(=g)
$$

$$
\begin{aligned}
& H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} \boldsymbol{q}} U_{\boldsymbol{q}} a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \\
& U_{\boldsymbol{k}}=\int \mathrm{d}^{3} \boldsymbol{r} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}} U(\boldsymbol{r})
\end{aligned}
$$

Momentum conservation
$(\boldsymbol{k}+\boldsymbol{q})+\left(\boldsymbol{k}^{\prime}-\boldsymbol{q}\right)-\boldsymbol{k}-\boldsymbol{k}^{\prime}=0$
Particle number conservation
$a^{\dagger} a^{\dagger} a a$

Bogolyubov method

Originally, intended and conceived for extended (rather infinite) homogeneous system.
Reflects the 'Paradoxien der Unendlichen'

Basic idea

Bogolyubov method

is devised for boson quantum fluids with weak interactions - at $T=0$ now
no interaction

$$
\begin{gathered}
g=0 \\
N=N_{\mathrm{BE}}=\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square 1
\end{gathered}
$$

weak interaction

$$
\begin{gathered}
g \neq 0 \\
N=N_{\mathrm{BE}}+\sum_{\boldsymbol{k} \neq 0}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \approx N_{\mathrm{BE}} \square 1
\end{gathered}
$$

The condensate dominates, but some particles are kicked out by the interaction (not thermally)

Basic idea

Bogolyubov method

is devised for boson quantum fluids with weak interactions - at $T=0$ now

$$
\begin{array}{|cc|}
\hline \text { no interaction } & \text { weak interaction } \\
g=0 & g \neq 0 \\
N=N_{\mathrm{BE}}=\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square 1 & N=N_{\mathrm{BE}}+\sum_{\boldsymbol{k} \neq 0}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \approx N_{\mathrm{BE}} \square 1 \\
\hline
\end{array}
$$

The condensate dominates, but some particles are kicked out by the interaction (not thermally)

Strange idea introduced by Bogolyubov

$$
\begin{gathered}
N_{0}=\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square 1 \Rightarrow\left\langle a_{0}^{\dagger} a_{0}\right\rangle \square a_{0}^{\dagger} a_{0}-a_{0} a_{0}^{\dagger}=1 \Rightarrow \text { like } c \text {-numbers } \\
a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}
\end{gathered}
$$

$$
N=N_{0}+\sum_{k \neq 0} a_{k}^{\dagger} a_{k} \quad \ldots \text { mixture of } c \text {-numbers and } q \text {-numbers }
$$

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$ $H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U_{q} a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-q}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}}$

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$ $H=\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U_{q} a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-q}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}}$

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V}
\end{aligned}
$$

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-q}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V}
\end{aligned}
$$

$$
3^{\text {rd }} \& 4^{\text {th }} \text { order }
$$

neglected

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-q}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V}
\end{aligned}
$$

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \quad \text { use } N_{0}=N-\sum_{\boldsymbol{k} \neq 0} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V}
\end{aligned}
$$

The idea: replace the unknown condensate occupation by the known particle number neglecting again higher than pair excitations

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \quad \text { use } N_{0}=N-\sum_{\boldsymbol{k} \neq 0} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V} \\
& =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+2 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N^{2}}{2 V}
\end{aligned}
$$

The idea: replace the unknown condensate occupation by the known particle number neglecting again higher than pair excitations

Approximate Hamiltonian

Keep at most two particles out of the condensate, use $a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}$

$$
\begin{aligned}
H & =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{1}{2} V^{-1} \sum_{\boldsymbol{k} \boldsymbol{k}^{\prime} q} U a_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger}, a_{\boldsymbol{k}^{\prime}-\boldsymbol{q}}^{\dagger} a_{\boldsymbol{k}^{\prime}} a_{\boldsymbol{k}} \quad \text { use } N_{0}=N-\sum_{\boldsymbol{k} \neq 0} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}} \\
& \rightarrow \sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N_{0}}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+4 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N_{0}^{2}}{2 V} \\
& =\sum \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+\frac{U N}{2 V} \sum_{\boldsymbol{k} \neq 0}\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+2 a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}+\frac{U N^{2}}{2 V}
\end{aligned}
$$

—— condensate particle

Bogolyubov transformation

Last rearrangement

$$
H=\frac{1}{2} \sum \underbrace{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)}_{\text {mean field }}\left\{a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}+a_{-\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}\right\}+\frac{g n}{2} \sum_{\boldsymbol{k}} \underbrace{\left\{a_{\boldsymbol{k}}^{\dagger} a_{-\boldsymbol{k}}^{\dagger}+a_{\boldsymbol{k}} a_{-\boldsymbol{k}}\right\}}_{\text {anomalous }}+\frac{g N^{2}}{2 V}
$$

Conservation properties: momentum ... YES, particle number ... NO

Bogolyubov transformation

Last rearrangement

$$
H=\frac{1}{2} \sum_{\text {mean field }}^{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)}\left\{a_{k}^{\dagger} a_{k}+a_{-k}^{\dagger} a_{-k}\right\}+\frac{g n}{2} \sum_{k} \underbrace{\left\{a_{k}^{\dagger} a_{-k}^{\dagger}+a_{k} a_{-k}\right\}}_{\text {anomalous }}+\frac{g N^{2}}{2 V}
$$

Conservation properties: momentum ... YES, particle number ... NO
NEW FIELD OPERATORS notice momentum conservation!!

$$
\begin{gathered}
b_{k}=u_{k} a_{k}+v_{k} a_{-k}^{\dagger} \\
b_{-k}^{\dagger}=v_{k} a_{k}+u_{k} a_{-k}^{\dagger}
\end{gathered} \begin{gathered}
a_{k}=u_{k} b_{k}-v_{k} b_{-k}^{\dagger} \\
a_{-k}^{\dagger}=-v_{k} b_{k}+u_{k} b_{-k}^{\dagger}
\end{gathered}
$$

requirements
(1) New operators should satisfy the boson commutation rules

$$
\begin{gathered}
{\left[b_{k}, b_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}, \quad\left[b_{k}, b_{k^{\prime}}\right]=0, \quad\left[b_{k}^{\dagger}, b_{k^{\prime}}^{\dagger}\right]=0} \\
\text { iff } \quad u_{k}^{2}-v_{k}^{2}=1
\end{gathered}
$$

(2) In terms of the new operators, the anomalous terms in the Hamiltonian have to vanish

Bogolyubov transformation - result

Without quoting the transformation matrix

$$
\begin{aligned}
& H=\frac{1}{2} \sum_{\text {independent quasiparticles }}^{\varepsilon(\boldsymbol{k})\left\{b_{k}^{\dagger} b_{\boldsymbol{k}}+b_{-k}^{\dagger} b_{-k}\right\}}+\underbrace{\frac{g N^{2}}{2 V}+\text { higher order constant }}_{\text {ground state energy } E} \\
& \varepsilon(\boldsymbol{k})=\sqrt{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)^{2}-(g n)^{2}}=\sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}} \sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+2 g n}
\end{aligned}
$$

Bogolyubov transformation - result

Without quoting the transformation matrix

$\begin{gathered} \uparrow \\ \varepsilon(k) \end{gathered}$	$\begin{aligned} & H=\frac{1}{2} \sum_{\text {ind. quasi-particles }} \underbrace{\varepsilon(\boldsymbol{k}) b_{\boldsymbol{k}}^{\dagger} b_{\boldsymbol{k}}}_{\text {ground state energy } E}+\underbrace{\frac{g N^{2}}{2 V}+\text { higher order constant }} \\ & \varepsilon(\boldsymbol{k})=\sqrt{\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+g n\right)^{2}-(g n)^{2}}=\sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}} \sqrt{\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+2 g n} \end{aligned}$		
		high energy region quasi-particles are nearly just particles sound region quasi-particles are collective excitations	cross-over $k_{\times}=\sqrt{\frac{4 m g n}{\hbar^{2}}}$ defines scale for k

More about the sound part of the dispersion law

Entirely dependent on the interactions, both the magnitude of the velocity and the linear frequency range determined by $g$$$
\omega(\boldsymbol{k})=c \cdot k
$$

Can be shown to really be a sound:

$$
c=" \sqrt{\frac{K}{\rho}} "=\sqrt{\frac{V \partial_{V V} E}{m \cdot n}}, \quad E=\frac{g N^{2}}{2 V}+\cdots
$$

$$
c=\sqrt{\frac{g n}{m}}
$$

Even a weakly interacting gas exhibits superfluidity; the ideal gas does not.
The phonons are actually Goldstone modes corresponding to a broken symmetry
The dispersion law has no roton region, contrary to the reality in ${ }^{4} \mathrm{He}$
The dispersion law bends upwards \Rightarrow quasi-particles are unstable, can decay

Particles and quasi-particles

At zero temperature, there are no quasi-particles, just the condensate.
Things are different with the true particles. Not all particles are in the condensate, but they are not thermally agitated in an incoherent way, they are a part of the fully coherent ground state

$$
\left\langle a_{k}^{\dagger} a_{\boldsymbol{k}}\right\rangle=\left\langle\left(-v_{\boldsymbol{k}} b_{\boldsymbol{k}}+u_{\boldsymbol{k}} b_{-k}^{\dagger}\right)\left(u_{\boldsymbol{k}} b_{-\boldsymbol{k}}-v_{\boldsymbol{k}} b_{k}^{\dagger}\right)\right\rangle=v_{\boldsymbol{k}}^{2} \neq 0
$$

The total fraction of particles outside of the condensate is

$$
\frac{N-N_{0}}{N} \approx \frac{8}{3 \sqrt{\pi}} \underbrace{a_{s}^{3 / 2} n^{1 / 2}}_{\sqrt{a_{s}^{3} n}}
$$

square root of the gas parameter is the expansion variable

What is the Bogolyubov approximation about

The results for various quantities are

$$
\left.\begin{array}{c}
N_{0} \approx N \times\left(1-\frac{8}{3 \sqrt{\pi}} a_{s}^{3 / 2} n^{1 / 2}\right) \\
E \approx \frac{g n}{2} N \times\left(1+\frac{128}{15 \sqrt{\pi}} a_{s}^{3 / 2} n^{1 / 2}\right) \\
\mu \approx g n \times\left(1+\frac{32}{3 \sqrt{\pi}} a_{s}^{3 / 2} n^{1 / 2}\right)
\end{array}\right\}
$$

square root of the gas parameter $\sqrt{a_{s}^{3} n}$
is the expansion variable
general pattern

$$
[\mathrm{BG}] \approx[\mathrm{GP}] \times\left(1+\frac{\cdots}{\cdots \sqrt{\pi}} a_{s}^{3 / 2} n^{1 / 2}\right)
$$

The Bogolyubov theory is the lowest order correction to the mean field (GrossPitaevskii) approximation

It provides thus the criterion for the validity of the mean field results It is the simplest genuine field theory for quantum liquids with a condensate

Trying to understand the Bogolyubov method

Notes to the contents of the Bogolyubov theory

\bigcirc
The first consistent microsopic theory of the ground state and elementary excitations (quasi-particles) for a quantum liquid (1947)The quantum condensate turns into the classical order parameter in the thermodynamic limit $\mathcal{N} \rightarrow \infty, \quad \mathcal{V} \rightarrow \infty, \quad \mathcal{N} / \mathcal{V}=n=$ const.The Bogolyubov transformation became one of the standard technical means for treatment of "anomalous terms" in many body Hamiltonians (...de Gennes)Central point of the theory is the assumption

$$
a_{0} \approx \sqrt{N_{0}}, \quad a_{0}^{\dagger} \approx \sqrt{N_{0}}
$$Its introduction and justification intuitive, surprisingly lacks mathematical rigor. Two related problems:

lowering operator $\longleftarrow ? ~ \longrightarrow \quad$ gauge symmetry, s. rule

$$
a_{0}|G, N\rangle \in \mathrm{H}_{N-1} \quad\langle G, N| a_{0}|G, N\rangle=\sqrt{N_{0}} \quad\left\langle a_{0}\right\rangle=0
$$

Additional assumptions: something of a crutch/bar to study of finite systems

- homogeneous system
- infinite system

Infinity as a problem: philosophical, mathematical, physical

ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system

$$
\begin{aligned}
& \left\langle\boldsymbol{r}^{\prime}\right| \rho|\boldsymbol{r}\rangle=\left\langle\psi^{\dagger}(\boldsymbol{r}) \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle=V^{-1}\left\langle\sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k} r} a_{\boldsymbol{k}}^{\dagger} \cdot \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} a_{\boldsymbol{k}^{\prime}}\right\rangle \quad \text { by definition } \\
& =V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}^{\prime}}\right\rangle=V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} r}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { transl. invariance }
\end{aligned}
$$

Off-diagonal long range order

ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system

$$
\begin{aligned}
& \left\langle\boldsymbol{r}^{\prime}\right| \rho|\boldsymbol{r}\rangle=\left\langle\psi^{\dagger}(\boldsymbol{r}) \psi\left(\boldsymbol{r}^{\prime}\right)\right\rangle=V^{-1}\left\langle\sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}} a_{\boldsymbol{k}}^{\dagger} \cdot \sum \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} a_{\boldsymbol{k}^{\prime}}\right\rangle \quad \text { by definition } \\
& =V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}^{\prime}}\right\rangle=V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { transl. invariance }
\end{aligned}
$$

ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system

$$
\begin{aligned}
& \langle\boldsymbol{r}| \rho\left|\boldsymbol{r}^{\prime}\right\rangle=\left\langle\psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\right\rangle=V^{-1}\left\langle\sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} a_{\boldsymbol{k}^{\prime}}^{\dagger} \cdot \sum a_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\right\rangle \quad \text { by definition } \\
& =V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}^{\prime}}^{\dagger} a_{\boldsymbol{k}}\right\rangle=V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { transl. invariance }
\end{aligned}
$$

General expression for the one particle density matrix with condensate

$$
\begin{aligned}
\rho\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) & =V^{V^{-1} \sum_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle \quad \boldsymbol{k}_{0} \rightarrow 0,\left\langle n_{0}\right\rangle=N_{0}} \\
& =\underbrace{V^{-1} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{0}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{0}^{4}\right\rangle}_{\begin{array}{c}
\text { coherent across } \\
\text { the sample }
\end{array}}+\underbrace{V^{-1} \sum_{\boldsymbol{k} \neq \boldsymbol{k}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r} \boldsymbol{r} \boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle}_{\begin{array}{c}
F T \text { of a smooth function } \\
\text { has a finite range }
\end{array}} \quad \Psi(\boldsymbol{r})=\sqrt{\frac{N_{0}}{V}} \cdot \mathrm{e}^{\mathrm{i} \varphi} \cdot \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{0} \boldsymbol{r}} \\
& =\underbrace{\Psi(\boldsymbol{r}) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right)}_{\text {dyadic }}+V^{-1} \sum_{\boldsymbol{k} \neq \boldsymbol{k}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle
\end{aligned} \varphi \ldots \text { an arbitrary phase }
$$

ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system

$$
\begin{aligned}
& \langle\boldsymbol{r}| \rho\left|\boldsymbol{r}^{\prime}\right\rangle=\left\langle\psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\right\rangle=V^{-1}\left\langle\sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} a_{\boldsymbol{k}^{\prime}}^{\dagger} \cdot \sum a_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\right\rangle \quad \text { by definition } \\
& =V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}^{\prime}}^{\dagger} a_{\boldsymbol{k}}\right\rangle=V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { transl. invariance }
\end{aligned}
$$

General expression for the one particle density matrix with condensate

$$
\rho\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=V^{-1} \sum_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle \quad \boldsymbol{k}_{0} \rightarrow 0,\left\langle n_{0}\right\rangle=N_{0}
$$

$$
\begin{aligned}
& \text { We know }=\underbrace{V^{-1} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{0}^{*}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{0}\right\rangle}_{\begin{array}{c}
\text { coherent across } \\
\text { the sample }
\end{array}}+\underbrace{V^{-1} \sum_{\boldsymbol{k} \neq \boldsymbol{k}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle}_{\begin{array}{c}
F T \text { of a smooth function } \\
\text { has a finite range }
\end{array}} \\
& =\underbrace{\Psi(\boldsymbol{r}) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right)}_{\text {dyadic }}+V^{-1} \sum_{\boldsymbol{k} \neq \boldsymbol{k}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle
\end{aligned}
$$

$\Psi(\boldsymbol{r})=\sqrt{\frac{N_{0}}{V}} \cdot \mathrm{e}^{\mathrm{i} \varphi}$
$\varphi \ldots$ an arbitrary phase

ODLRO in the Bogolyubov theory

Basic expressions for the OPDM for a homogeneous system

$$
\begin{aligned}
& \langle\boldsymbol{r}| \rho\left|\boldsymbol{r}^{\prime}\right\rangle=\left\langle\psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\right\rangle=V^{-1}\left\langle\sum \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}} a_{\boldsymbol{k}^{\prime}}^{\dagger} \cdot \sum a_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}}\right\rangle \quad \text { by definition } \\
& =V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}^{\prime}}^{\dagger} a_{\boldsymbol{k}}\right\rangle=V^{-1} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \boldsymbol{r}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k}^{\prime} \boldsymbol{r}^{\prime}}\left\langle a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}\right\rangle \boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { transl. invariance }
\end{aligned}
$$

General expression for the one particle density matrix with condensate

$$
\rho\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=V^{-1} \sum_{\boldsymbol{k}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}\left\langle n_{\boldsymbol{k}}\right\rangle \quad \boldsymbol{k}_{0} \rightarrow 0,\left\langle n_{0}\right\rangle=N_{0}
$$

$$
\Psi(r)=\sqrt{\frac{N_{0}}{V}} \cdot \mathrm{e}^{\mathrm{i} \varphi}
$$

$\varphi \ldots$ an arbitrary phase

Interpretation in the Bogolyubov theory - at zero temperature

$$
\rho\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=V^{-1 / 2}\left\langle a_{0}\right\rangle \cdot V^{-1 / 2}\left\langle a_{0}^{\dagger}\right\rangle+V^{-1} \sum_{\boldsymbol{k} \neq \boldsymbol{k}_{0}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)} v_{\boldsymbol{k}}^{2}
$$

Rich microscopic content hinging on the Bogolyubov assumption

Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators
Why so important? ... microscopic view of the condensate phase quasi-particles and superfluidity basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:
\mathscr{H} relax the particle number conservation \mathscr{H} work in the thermodynamic limit

Three methods of reformulating the Bogolyubov theory

In the original BEC theory ... no need for non-zero averages of linear field operators
Why so important? ... microscopic view of the condensate phase quasi-particles and superfluidity basis for a perturbation treatment of Bose fluids

We shall explore three approaches having a common basic idea:
\& relax the particle number conservation of work in the thermodynamic limit

I	explicit construction of the classical part of the field operators	Pitaevski in LL IX (1978)
II	the condensate represented by a coherent state	Cummings \& Johnston (1966) Langer, Fisher \& Ambegaokar $(1967-1969)$
III	spontaneous symmetry breakdown, particle number conservation violated	Bogolyubov (1960) Hohenberg\&Martin (1965) P W Anderson (1983 - book)

I.
 explicit construction of the classical part of the field operators

130
Quotation from Landau-Lifshitz IX Irn, t| имеем, таким образом, по определению, частиц в конденсате,

$$
\hat{\mathrm{E}}|m, N+1\rangle=\Xi|m, N\rangle, \quad \hat{\mathrm{E}}+|m, N\rangle=\Xi^{*}|m, N+1\rangle,
$$

где символы $|m, N\rangle$ и $|m, N+1\rangle$ обозначают два «одинаковых», состояния, отличающихся только числом частиц в системе, а Ξ - некоторое комплексное число. Эти утверждения справедливы строго в пределе $N \rightarrow \infty$. Поэтому определение величины Ξ следует записать в виде

$$
\begin{align*}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\Xi}|m, N+1\rangle & =\Xi \\
\lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Xi}^{+}\left|m, N^{3}\right\rangle & =\Xi^{*} \tag{26,3}
\end{align*}
$$

переход к пределу совершается при заданном конечном значении плотности жидкости N / V.

Если представить ψ-операторы в виде

$$
\begin{equation*}
{ }^{-} \hat{\Psi}=\hat{\Xi}+\hat{\Psi}^{\prime}, \quad \hat{\Psi}^{+}=\hat{\Xi}^{+}+\hat{\Psi}^{\prime+}, \tag{26,4}
\end{equation*}
$$

то остальная («надконденсатная») их часть переводит состояние $|m, N\rangle$ в ортогональные ему состояния, т. е. матричные эле-. менты ${ }^{1}$)

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\Psi}^{\prime}|m, N+1\rangle=0, \quad \lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Psi}^{\prime+}|m, N\rangle=0 . \tag{26,5}
\end{equation*}
$$

В пределе $N \rightarrow \infty$ разница между состояниями $|m, N\rangle$ и $|m, N+1\rangle$ исчезает вовсе, и в этом смысле величина Ξ становится средним значением оператора $\hat{\Psi}$ по. этому состоянию. Подчеркнем, что характерным для системы с конденсатом яв-
ляется именно конечность этого предела.
... that part of the Ψ operators, which changes the condensate particle number by 1 , we have, then, by definition

$$
\hat{\Xi}|m, N+1\rangle=\Xi|m, N\rangle, \quad \hat{\Xi}+|m, N\rangle=\Xi|m, N+1\rangle
$$

the symbols $|m, N\rangle$ и $|m, N+1\rangle$ denoting two "identical" states, differing only by the number of the particles in the system, and
Ξ-is a complex number. These statements are strictly valid in the limit $N \rightarrow \infty$. The definition of the quantity Ξ. has thus to be written in the form

$$
\begin{array}{r}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\xi}|m, N+1\rangle=\Xi \\
\lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Xi}^{+}|m, N\rangle=\Xi^{*} \tag{26,3}
\end{array}
$$

the limiting transition is to be performed at a given fixed value of the
liquid density N / V.
Если представить ψ-операторы в виде

$$
\begin{equation*}
-\hat{\Psi}=\hat{\Xi}+\hat{\Psi}^{\prime}, \quad \hat{\Psi}^{+}=\hat{\Xi}^{+}+\hat{\Psi}^{\prime+}, \tag{26,4}
\end{equation*}
$$

то остальная («надконденсатная») их часть переводит состояние $|m, N\rangle$ в ортогональные ему состояния, т. е. матричные эле-. менты ${ }^{1}$)

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\Psi}^{\prime}|m, N+1\rangle=0, \quad \lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Psi}^{\prime}+|m, N\rangle=0 . \tag{26,5}
\end{equation*}
$$

В пределе $N \rightarrow \infty$ разница между состояниями $|m, N\rangle$ и $|m, N+1\rangle$ исчезает вовсе, и в этом смысле величина Ξ становится средним значением оператора $\hat{\Psi}$ по этому состоянию. Подчеркнем, что характерным для системы с конденсатом является именно конечность этого предела.
... that part of the Ψ operators, which changes the condensate particle number by 1 , we have, then, by definition

$$
\mathrm{\Xi}|m, N+1\rangle=\Xi|m, N\rangle, \quad \hat{\mathrm{E}}+|m, N\rangle=\Xi^{*}|m, N+1\rangle,
$$

the symbols $|m, N\rangle$ и $|m, N+1\rangle$ denoting two "identical" states, differing only by the number of the particles in the system, and
Ξ-is a complex number. These statements are strictly valid
in the limit $N \rightarrow \infty$. The definition of the quantity
Ξ - has thus to be written in the form

$$
\begin{align*}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\xi}|m, N+1\rangle & =\Xi \\
\lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Xi}^{+}|m, N\rangle & =\Xi^{*} \tag{26,3}
\end{align*}
$$

the limiting transition is to be performed at a given fixed value of the liquid density N / V.
If the Ψ operators are represented in the form

$$
\begin{equation*}
\hat{\Psi}=\hat{\Xi}+\hat{\Psi}^{\prime}, \quad \hat{\Psi}^{+}=\hat{\Xi}+\hat{\Psi}^{\prime+} \tag{26,4}
\end{equation*}
$$

then their remaining ("supercondensate") parts transform the state $|m, N\rangle \quad$ to states which are orthogonal to it, that is, the matrix elements are

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle m, N| \hat{\Psi}^{\prime}|m, N+1\rangle=0, \quad \lim _{N \rightarrow \infty}\langle m, N+1| \hat{\Psi}^{\prime+}|m, N\rangle=0 \tag{26,5}
\end{equation*}
$$

In the limit $N \rightarrow \infty$, the difference between the states $|m, N\rangle$ and $|m, N+1\rangle$ vanishes entirely and in this sense the quantity Ξ becomes the mean value of the operator $\hat{\Psi}$ over this state.
... that part of the Ψ operators, which changes the condensate particle number by 1 , we have, then, by definition

$$
\hat{\Xi}|m, N+1\rangle=\Xi|m, N\rangle, \quad \hat{\Xi}+|m, N\rangle=\Xi|m, N+1\rangle
$$

the symbols $|m, N\rangle$ и $|m, N+1\rangle$ denoting two "identical" states, differing only by the number of the particles in the system, and Ξ-is a complex number. These statements are strictly valid in the limit $N \rightarrow \infty$. The definition of the quantity Ξ. has thus to be written in the form

$$
\begin{gathered}
\lim _{N \rightarrow \infty}\langle m, N| \xi|m, N+1\rangle=\Xi, \\
\lim _{N \rightarrow \infty}\langle m, N+1| \hat{\theta^{+}+}|m, N\rangle=\Xi^{*} ;
\end{gathered}
$$

If the Ψ operators are represented in the form
$|m, N\rangle \quad$ t $₫$ states which are orthodonal to it, that is, the matrix elements are
Kdornuzzeš pochopitis pochop
In the limit $N \rightarrow \infty$, the difference between the states $|m, N\rangle$ and $|m, N+1\rangle$ vanishes entirely and in this sense the quantity Ξ becomes the mean value of the operator $\hat{\Psi}$ over this state.

II.

the condensate represented by a coherent state

Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many particle wave function. Looks like he wanted

$$
a_{0}|\Psi\rangle=\Lambda|\Psi\rangle, \quad \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \phi} \text {, so that }
$$

$$
\left\langle a_{0}\right\rangle=\Lambda \quad \text { The ground state }
$$

This is in contradiction with the selection rule, $\left\langle a_{0}\right\rangle=0$
The above eigenvalue equation is known and defines the ground state to be a coherent state with the parameter Λ

Reformulation of the Bogolyubov requirements

Bogolyubov himself and his faithful followers never speak of the many particle wave function. Looks like he wanted

$$
a_{0}|\Psi\rangle=\Lambda|\Psi\rangle, \quad \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \phi} \text {, so that }
$$

$$
\left\langle a_{0}\right\rangle=\Lambda \quad \text { The ground state }
$$

This is in contradiction with the selection rule, $\left\langle a_{0}\right\rangle=0$
The above eigenvalue equation is known and defines the ground state to be a coherent state with the parameter Λ

HISTORICAL REMARK

If The coherent states (not their name) discovered by Schrödinger as the minimum uncertainty wave packets, obtained by shifting the ground state of a harmonic oscillator.

If These states were introduced into the quantum theory of the coherence of light by Roy Glauber (NP 2005). Hence the name.

If The uses of the coherent states in the many body theory and quantum field theory have been manifold.

About the coherent states

OUR BASIC DEFINITION

$$
a_{0}|\Psi\rangle=\Lambda|\Psi\rangle, \quad \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \phi}, \quad\left\langle a_{0}\right\rangle=\Lambda
$$

If a particle is removed from a coherent state, it remains unchanged ($c f$. the Pitaevskii requirement above). It has a rather uncertain particle number, but a reasonably well defined phase

General coherent state

$$
|\Lambda\rangle=\mathrm{e}^{-|\Lambda|^{2} / 2} \cdot \mathrm{e}^{\Lambda a_{0}^{\dagger}}|\mathrm{vac}\rangle
$$

$$
\langle\Lambda| a_{0}|\Lambda\rangle=\Lambda
$$

$$
\langle\Lambda| a_{0}^{\dagger} a_{0}|\Lambda\rangle=|\Lambda|^{2}
$$

$$
\langle\Lambda| a_{0}^{\dagger} a_{0} a_{0}^{\dagger} a_{0}|\Lambda\rangle=|\Lambda|^{4}+|\Lambda|^{2}
$$

$$
\Delta n_{0}=|\Lambda|
$$

Condensate

$$
=|\Psi\rangle
$$

$$
=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \phi}
$$

$$
\left\langle n_{0}\right\rangle=N_{0}
$$

$$
\left\langle n_{0}^{2}\right\rangle=N_{0}^{2}+N_{0}
$$

$$
\Delta n_{0}=\sqrt{N_{0}} \square \quad N_{0}
$$

New vacuum and the shifted field operators

Does all that make sense? Try to work in the full Fock space F rather in its fixed N sub-space H_{N} This implies using the "grand Hamiltonian"

$$
H-\mu N
$$

L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND TO THE EXPERIMENTAL CONDITIONS

... a truism difficult to satisfy
(1) For large systems, this is not so sensitive for two reasons

- System serves as a thermal bath or particle reservoir all by itself
- Relative fluctuations (distinguishing mark) are negligible
(2) Adiabatic system Real system Isothermal system

SB heat exchange - the slowest medium fast process

- temperature lag
- interface layer
(3) Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange (laser cooling). A small number of atoms may be kept (one to, say, 40). With 10^{7}, they form a bath already. Besides, they are cooled by evaporation and they form an open (albeit non-equilibrium) system.
(4) Sometime, $N=$ const. crucial (persistent currents in non-SC mesoscopic rings)

L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND TO THE EXPERIMENTAL CONDITIONS

... a truism difficult to satisfy
(1) For large systems, this is not so sensitive for two reasons

- System serves as a thermal bath or particle reservoir all by itself
- Relative fluctuations (distinguishing mark) are negligible
(2) Adiabatic system Real system Isothermal system

SB heat exchange - the slowest medium fast the fastest process

- temperature lag
- interface layer
(3) Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange (laser cooling). A small number of atoms may be kept (one to, say, 40). With 10^{7}, they form a bath already. Besides, they are cooled by evaporation and they form an open (albeit non-equilibrium) system.
(4) Sometime, $N=$ const. crucial (persistent currents in non-SC mesoscopic rings)

L1: Thermodynamics: which environment to choose?

THE ENVIRONMENT IN THE THEORY SHOULD CORRESPOND TO THE EXPERIMENTAL CONDITIONS

... a truism difficult to satisfy
(1) For large systems, this is not so sensitive for two reasons

- System serves as a thermal bath or particle reservoir all by itself
- Relative fluctuations (distinguishing mark) are negligible
(2)

Adiabatic system
SB heat exchange - the slowest

Real system Isothermal system medium fast process

- temperature lag - interface layer
the fastest

(3) Atoms in a trap: ideal model ... isolated. In fact: unceasing energy exchange (laser cooling). A small number of atoms may be kept (one to, say, 40). With 10^{7}, they form a bath already. Besides, they are cooled by evaporation and they form an open (albeit non-equilibrium) system.
(4) Sometime, $N=$ const. crucial (persistent currents in non-SC mesoscopic rings)

L1: Homogeneous one component phase:
boundary conditions (environment) and state variables

```
SVN additive variables, have densities s=S/V n=N/V "extensive"
\imath\downarrow\downarrow
T P 


L1: Homogeneous one component phase:
boundary conditions (environment) and state variables
```

SVN additive variables, have densities s=S/V n=N/V "extensive"
\imath
downarrow
T P
"intensive"

```


\section*{New vacuum and the shifted field operators}

Does all that make sense? Try to work in the full Fock space F rather in its fixed \(N\) sub-space \(\mathrm{H}_{N}\) This implies using the "grand Hamiltonian"
\[
H-\mu N
\]

\section*{New vacuum and the shifted field operators}

Does all that make sense? Yes: work in the full Fock space \(F\) rather than in its fixed \(N\) sub-space \(\mathrm{H}_{N}\) This implies using the "grand Hamiltonian"
\[
H-\mu N
\]

Let us define the shifted field operator
\[
\begin{aligned}
& b_{0}=a_{0}-\Lambda, \quad b_{0}^{\dagger}=a_{0}^{\dagger}-\Lambda^{*} \\
& {\left[b_{0}, b_{0}^{\dagger}\right]=1, \quad b_{0}|\Psi\rangle=0 \quad \ldots \text { new vacuum }}
\end{aligned}
\]

\section*{New vacuum and the shifted field operators}

Does all that make sense? Yes: work in the full Fock space \(F\) rather than in its fixed \(N\) sub-space \(\mathrm{H}_{N}\) This implies using the "grand Hamiltonian"
\[
H-\mu N
\]

Let us define the shifted field operator
\[
\begin{aligned}
& b_{0}=a_{0}-\Lambda, \quad b_{0}^{\dagger}=a_{0}^{\dagger}-\Lambda^{*} \\
& {\left[b_{0}, b_{0}^{\dagger}\right]=1, \quad b_{0}|\Psi\rangle=0 \quad \ldots \text { new vacuum }}
\end{aligned}
\]

What next? \(\qquad\) is this coherent state able to represent the condensate?

Test example: ideal Bose gas - limit of a BE system without interactions
\[
\begin{aligned}
& (H-\mu N)|\Psi\rangle=\sum\left(\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}-\mu\right) a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}|\Psi\rangle \\
& =-\mu a_{0}^{\dagger} a_{0}|\Psi\rangle=0 \quad \text { for } \quad \mu=0
\end{aligned}
\]

Here, \(|\Psi\rangle\) is a true eigenstate, \(\mu\) coincides with the previous result for the particle number conserving state \(|B\rangle=\left|N_{0}, 0,0, \ldots, 0, \ldots\right\rangle\)
Two different, but macroscopically equivalent possibilities.

General case: the approximate vacuum
\(H=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\)

Non-zero interaction, repulsive forces make the lowest energies N dependent
\[
g \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
\]
- Inhomogeneous, possibly finite, system with a confinement potential
- There is no privileged symmetry related basis of one-particle orbitals

General case: the approximate vacuum
\(H=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\)
Trial function ... a coherent state a marked generalization!!
\[
g \delta\left(r-r^{\prime}\right)
\]
\[
\psi(r)|\Psi\rangle=\Psi(r)|\Psi\rangle
\]

WVe should minimize the average grand energy
\[
\begin{aligned}
\langle\Psi| H-\mu N|\Psi\rangle= & \int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \Psi(\boldsymbol{r}) \\
& +\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \Psi^{*}(\boldsymbol{r}) \Psi(\boldsymbol{r}) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right) \Psi\left(\boldsymbol{r}^{\prime}\right)
\end{aligned}
\]

This is precisely the energy functional of the Hartree type we met already and the Egler-Lagrange equation is the good old Gross-Pitaevski equation
\[
\left(\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})+g|\Psi(\boldsymbol{r})|^{2}\right) \Psi(\boldsymbol{r})=\mu \Psi(\boldsymbol{r})
\]
with the normalization condition
\[
N[n]=N=\int \mathrm{d}^{3} \boldsymbol{r}|\Psi(\boldsymbol{r})|^{2}
\]

General case: the approximate vacuum
\(H=\int \mathrm{d}^{3} \boldsymbol{r} \psi^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})\right) \psi(\boldsymbol{r})+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) U\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r})\)
Trial function ... a coherent state a marked generalization!!
\[
g \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
\]
\[
\psi(r)|\Psi\rangle=\Psi(r)|\Psi\rangle
\]
\(\checkmark\) Ke should minimi

\section*{PROPERTIES OF THE COHERENT GROUND STATE}

This is precisel and the Egler-L
with the normal
- Ground state in the mean field approximation
- All particles at zero temperature are in the condensate
- \(|\Psi(\boldsymbol{r})|^{2}=n(\boldsymbol{r})\)
\(\mu) \Psi(r)\)
\(\left.-\boldsymbol{r}^{\prime}\right) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right) \Psi\left(\boldsymbol{r}^{\prime}\right)\)
we met already itaevski equation
\(\psi(r)\)

\section*{General case: perturbative expansion}

Define the shifted field operators and the condensate as the new vacuum
\[
\begin{aligned}
& \eta(r)=\psi(r)-\Psi(\boldsymbol{r}), \quad \eta^{\dagger}(\boldsymbol{r})=\psi^{\dagger}(\boldsymbol{r})-\Psi^{*}(\boldsymbol{r}) \\
& {\left[\eta(\boldsymbol{r}), \eta^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \text { etc., } \quad \eta(\boldsymbol{r})|\Psi\rangle=0}
\end{aligned}
\]

Expansion parameter ... concentration of the supra-condensate particles deviation from the MF condensate \(=\eta\)-operators If we keep only the terms not more than quadratic in the new operators, the resulting approximate Hamiltonian becomes

\section*{General case: perturbative expansion}

Define the shifted field operators and the condensate as the new vacuum
\[
\begin{aligned}
& \eta(\boldsymbol{r})=\psi(\boldsymbol{r})-\Psi(\boldsymbol{r}), \quad \eta^{\dagger}(\boldsymbol{r})=\psi^{\dagger}(\boldsymbol{r})-\Psi^{*}(\boldsymbol{r}) \\
& {\left[\eta(\boldsymbol{r}), \eta^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right]=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \text { etc., } \quad \eta(\boldsymbol{r})|\Psi\rangle=0}
\end{aligned}
\]

Expansion parameter ... concentration of the supra-condensate particles deviation from the MF condensate \(=\eta\)-operators
If we keep only the terms not more than quadratic in the new operators, the resulting approximate Hamiltonian becomes
\[
\begin{aligned}
H-\mu N= & \int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+\frac{1}{2} g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r}) \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r})+\text { h.c. } \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
\]

Here (see in a moment )
\[
n_{\mathrm{BE}}(\boldsymbol{r})=|\Psi(\boldsymbol{r})|^{2}
\]

General case: perturbative expansion
\[
\begin{aligned}
H-\mu N & =\int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+\frac{1}{2} g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r}) \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r})+\text { h.c. } \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
\]

General case: perturbative expansion
\[
\begin{aligned}
H-\mu N & =\int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+\frac{1}{2} g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r}) \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+\boldsymbol{g} n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r})+\text { h.c. } \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
\]
1. The linear part must vanish to have minimum at \(\eta=0\). This is identical with the Gross-Pitaevskii equation and justifies the identification
\[
n_{\mathrm{BE}}(\boldsymbol{r})=|\Psi(\boldsymbol{r})|^{2}
\]

\section*{General case: perturbative expansion}
\[
\begin{aligned}
H-\mu N & =\int \mathrm{d}^{3} \boldsymbol{r}\left(-\frac{1}{2}\right) g n_{\mathrm{BE}}^{2}(\boldsymbol{r}) \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r})+\text { h.c. } \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
\]
1. The linear part must vanish to have minimum at \(\eta=0\). This is identical with the Gross-Pitaevskii equation and justifies the identification
\[
n_{\mathrm{BE}}(\boldsymbol{r})=|\Psi(\boldsymbol{r})|^{2}
\]
2. The zero-th order part simplifies - substitute from the GPE

\section*{General case: perturbative expansion}
\[
\begin{aligned}
H-\mu N= & \int \mathrm{d}^{3} \boldsymbol{r}\left(-\frac{1}{2}\right) g n_{\mathrm{BE}}^{2}(\boldsymbol{r}) \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \boldsymbol{\eta}^{\dagger}(\boldsymbol{r})\left(\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\boldsymbol{\mu}+g n_{\mathrm{BE}}(\boldsymbol{r})\right) \Psi(\boldsymbol{r})+\text { h.c. } \\
& +\int \mathrm{d}^{3} \boldsymbol{r} \eta^{\dagger}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \eta(\boldsymbol{r}) \\
& +\frac{g}{2} \int \mathrm{~d}^{3} \boldsymbol{r} n_{\mathrm{BE}}(\boldsymbol{r})\left\{\eta^{\dagger}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r})+4 \eta^{\dagger}(\boldsymbol{r}) \eta(\boldsymbol{r})+\eta(\boldsymbol{r}) \eta(\boldsymbol{r})\right\}
\end{aligned}
\]
1. The linear part must vanish to have minimum at \(\eta=0\). This is identical with the Gross-Pitaevskii equation and justifies the identification
\[
n_{\mathrm{BE}}(\boldsymbol{r})=|\Psi(\boldsymbol{r})|^{2}
\]
2. The zero-th order part simplifies - substitute from the GPE
3. There remains to eliminate the anomalous terms from the quadratic part: Bogolyubov transformation

\section*{General case: the Bogolyubov transformation}

A simple method: use EOM for the field operators
\[
\begin{aligned}
\mathrm{i}_{t} \eta(\boldsymbol{r}, t) & =[\eta(\boldsymbol{r}, t), H-\mu N] \\
& =\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+2 g n_{\mathrm{BE}}(\boldsymbol{r})\right) \eta(\boldsymbol{r}, t)+g n_{\mathrm{BE}}(\boldsymbol{r}) \eta^{\dagger}(\boldsymbol{r}, t) \\
-\mathrm{i}_{t} \eta^{\dagger}(\boldsymbol{r}, t) & =\left[\eta^{\dagger}(\boldsymbol{r}, t), H-\mu N\right] \\
& =\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu+2 g n_{\mathrm{BE}}(\boldsymbol{r})\right) \eta^{\dagger}(\boldsymbol{r}, t)+g n_{\mathrm{BE}}(\boldsymbol{r}) \eta(\boldsymbol{r}, t)
\end{aligned}
\]

These are linear eqs. To find their mode structure, make a linear ansatz
\[
\begin{aligned}
\eta(\boldsymbol{r}, t) & =\sum b_{k} u_{k}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} E_{k} t}+b_{k}^{\dagger} v_{k}^{*}(\boldsymbol{r}) \mathrm{e}^{+\mathrm{i} E_{k} t} \\
\eta^{\dagger}(\boldsymbol{r}, t) & =\sum b_{k} v_{k}(\boldsymbol{r}) \mathrm{e}^{-\mathrm{i} E_{k} t}+b_{k}^{\dagger} u_{k}^{*}(\boldsymbol{r}) \mathrm{e}^{+\mathrm{i} E_{k} t}
\end{aligned}
\]

Reminescent of the old \(u\) and \(v\) for infinite system.
Substitute into the EOM and separate individual frequencies.
Bogolyubov - de Gennes eqs. are obtained.

\section*{General case: the Bogolyubov transformation}

Bogolyubov - de Gennes eqs.
\[
\begin{aligned}
E_{k} u_{k} & =\left(-\frac{\hbar^{2}}{2 m} \Delta+V-\mu+2 g n_{\mathrm{BE}}\right) u_{k}+g n_{\mathrm{BE}} v_{k}^{*} \\
-E_{k} v_{k} & =\left(-\frac{\hbar^{2}}{2 m} \Delta+V-\mu+2 g n_{\mathrm{BE}}\right) v_{k}+g n_{\mathrm{BE}} u_{k}^{*}
\end{aligned}
\]

Strange coupled "Schrödinger" equations.
Strange orthogonality relations:
\[
\begin{aligned}
& \int \mathrm{d}^{3} \boldsymbol{r}\left(u_{k}^{*} u_{\ell}-v_{k}^{*} v_{\ell}\right)(\boldsymbol{r})=\boldsymbol{\delta}_{k \ell} \quad \text { It is our choice to normalize to unity } \\
& \int \mathrm{d}^{3} \boldsymbol{r}\left(u_{k} v_{\ell}-v_{k} u_{\ell}\right)(\boldsymbol{r})=0
\end{aligned}
\]

The definition of the QP field operators can be inverted
\[
\begin{aligned}
\eta(\boldsymbol{r}) & =\sum b_{k} u_{k}(\boldsymbol{r})+b_{k}^{\dagger} v_{k}^{*}(\boldsymbol{r}) \\
\eta^{\dagger}(\boldsymbol{r}) & =\sum b_{k} v_{k}(\boldsymbol{r})+b_{k}^{\dagger} u_{k}^{*}(\boldsymbol{r})
\end{aligned} \quad \begin{aligned}
& b_{k}=\int \mathrm{d}^{3} \boldsymbol{r}\left(+u_{k}^{*} \eta-v_{k}^{*} \eta^{\dagger}\right)(\boldsymbol{r}) \\
& b_{k}^{\dagger}=\int \mathrm{d}^{3} \boldsymbol{r}\left(-v_{k} \eta+u_{k} \eta^{\dagger}\right)(\boldsymbol{r})
\end{aligned}
\]

\section*{General case: the Bogolyubov transformation}

These field operators satisfy the correct commutation rules
\[
\left[b_{k}, b_{\ell}^{\dagger}\right]=\delta_{k \ell}, \quad\left[b_{k}, b_{\ell}\right]=0, \quad\left[b_{k}^{\dagger}, b_{\ell}^{\dagger}\right]=0
\]

Finally,
\[
H-\mu N=\int \mathrm{d}^{3} \boldsymbol{r}\left(-\frac{1}{2}\right) g n_{\mathrm{BE}}^{2}(\boldsymbol{r})+\sum\left\{E_{k} b_{k}^{\dagger} b_{k}-\int \mathrm{d}^{3} \boldsymbol{r}\left|v_{k}(\boldsymbol{r})\right|^{2}\right\}
\]
a neat QP form of the grand Hamiltonian.

\section*{Detail: the mean-field for a homogeneous system}

Before: minimize the energy functional with fixed particle number \(N\), find the chemical potential \(\mu\) afterwards
Now: minimize the grand energy functional with fixed chemical potential, find the average particle number in the process

\section*{Detail: the mean-field for a homogeneous system}

Before: minimize the energy functional with fixed particle number \(N\), find the chemical potential \(\mu\) afterwards
Now: minimize the grand energy functional with fixed chemical potential, find the average particle number in the process

Homogeneous system:
order parameter \(\Psi(\boldsymbol{r}) \equiv \Psi=\) const. \(=\sqrt{N_{0} / V} \equiv \sqrt{n}\)
\(\langle\Psi H-\mu N \mid \Psi\rangle=\int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r})\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\boldsymbol{r})-\mu\right) \Psi(\boldsymbol{r})\)
\(+\frac{1}{2} \iint \mathrm{~d}^{3} \boldsymbol{r} \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \Psi^{*}(\boldsymbol{r}) \Psi(\boldsymbol{r}) g \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \Psi^{*}\left(\boldsymbol{r}^{\prime}\right) \Psi(\boldsymbol{r})\)
\[
=V \times(\underbrace{-\mu|\Psi|^{2}+\frac{1}{2} g|\Psi|^{4}})
\]
energy per unit volume
\(\in(\Psi)\)
\(\langle\Psi| N|\Psi\rangle=\int \mathrm{d}^{3} \boldsymbol{r} \Psi^{*}(\boldsymbol{r}) \Psi(\boldsymbol{r})=V \underbrace{\times|\Psi|^{2}}\)
average particle density
\(n(\Psi)\)

\section*{Detail: the mean-field for a homogeneous system}

The GP equation reduces from differential to an algebraic one:
\[
\begin{gathered}
\frac{\partial}{\partial x} \in(x)=0, \quad|\Psi| \equiv x \\
-2 \mu x+\frac{1}{2} g \cdot 4 x^{3}=0, \quad|\Psi|_{\max }=0, \quad|\Psi|_{\min }=\sqrt{\frac{\mu}{g}}, \quad \in_{\min }=-\frac{1}{2} g|\Psi|_{\min }^{4}=-\frac{\mu^{2}}{2 g} \\
\Rightarrow n=|\Psi|_{\min }^{2}=\frac{\mu}{g}
\end{gathered}
\]

\section*{Detail: the mean-field for a homogeneous system}

The GP equation reduces from differential to an algebraic one:
\[
\begin{gathered}
\frac{\partial}{\partial x} \in(x)=0, \quad|\Psi| \equiv x \\
-2 \mu x+\frac{1}{2} g \cdot 4 x^{3}=0, \quad|\Psi|_{\max }=0, \quad|\Psi|_{\min }=\sqrt{\frac{\mu}{g}}, \quad \in_{\min }=-\frac{1}{2} g|\Psi|_{\min }^{4}=-\frac{\mu^{2}}{2 g}
\end{gathered}
\]
\[
\Rightarrow n=|\Psi|_{\min }^{2}=\frac{\mu}{g}
\]

Plot in relative units
choose \(\mu_{\text {ref }} ; \quad\left|\Psi_{\text {ref }}\right|=\sqrt{\mu_{\text {ref }} / g}\)
\(\mu=\tilde{\mu} \cdot \mu_{\mathrm{ref}} \quad|\Psi|=\tilde{\Psi} \cdot\left|\Psi_{\mathrm{ref}}\right|\)
\(\in=\tilde{\varepsilon} \cdot g\left|\Psi_{\text {ref }}\right|^{4}\)

III.
broken symmetry and quasi-averages

Zero temperature limit of the grand canonical ensemble
\[
\begin{aligned}
\mathscr{P} & =Z^{-1} \mathrm{e}^{-\beta(\mathcal{H}-\mu \mathcal{N})} \\
& =Z^{-1} \sum|\alpha N\rangle \mathrm{e}^{-\beta\left(E_{\alpha N}-\mu N\right)}\langle\alpha N| \\
& \rightarrow Z^{-1} \sum|0 \tilde{N}\rangle \mathrm{e}_{\uparrow}^{-\beta\left(E_{0 \tilde{N}}-\mu \tilde{N}\right)}\langle 0 \tilde{N}| \propto \sum|0 \tilde{N}\rangle\langle 0 \tilde{N}|
\end{aligned}
\]

Picks up the correct ground state energy, all ground states are taken with equal statistical weight


Degenerate ground state


Characterized by a classical order parameter ... macroscopic quantity
Typical cause: a symmetry degeneracy
Everything depends on the system characteristic parameters
Ginsburg - Landau phenomenological model

stable equilibrium non-degenerate
metastable equilibrium degenerate

Degenerate ground state


Characterized by a classical order parameter ... macroscopic quantity
Typical cause: a symmetry degeneracy
Everything depends on the system characteristic parameters
Ginsburg - Landau phenomenological model

stable equilibrium non-degenerate
metastable equilibrium degenerate

\section*{Rovnovážná struktura molekul \(\mathrm{AB}_{3}\)}

\(U\) adiabatická potenciální energie

\section*{Equilibrium structure of the \(\mathrm{AB}_{3}\) molekules}

stable equilibrium non-degenerate ground state
metastable equilibrium degenerate ground state

\section*{Equilibrium structure of the \(\mathrm{AB}_{3}\) molekules}


\(U\) adiabatic potential energy
stable equilibrium non-degenerate ground state
metastable equilibrium degenerate ground state

\section*{Equilibrium structure of the \(\mathrm{AB}_{3}\) molekules}
discrete set of equivalent
    equilibria states


\section*{Broken continouous symmetries in extended systems}

Three popular cases
\begin{tabular}{|c|c|c|c|}
\hline System & \begin{tabular}{c} 
Isotropic \\
ferromagnet
\end{tabular} & \begin{tabular}{c} 
Atomic crystal \\
lattice
\end{tabular} & Bosonic gas/liquid \\
\hline Hamiltonian & \begin{tabular}{c} 
Heisenberg spin \\
Hamiltonian
\end{tabular} & \begin{tabular}{c} 
Distinguishable \\
atoms with int.
\end{tabular} & \begin{tabular}{c} 
Bosons with short \\
range interactions
\end{tabular} \\
\hline Symmetry & \begin{tabular}{c} 
3D rotational in \\
spin space
\end{tabular} & Translational & \begin{tabular}{c} 
Global gauge \\
invariance
\end{tabular} \\
\hline Order parameter & \begin{tabular}{c} 
homogeneous \\
magnetization
\end{tabular} & \begin{tabular}{c} 
periodic \\
particle density
\end{tabular} & \begin{tabular}{c} 
macroscopic \\
wave function
\end{tabular} \\
\hline \begin{tabular}{c} 
Symmetry \\
breaking field
\end{tabular} & \begin{tabular}{c} 
external magnetic \\
field
\end{tabular} & \begin{tabular}{c} 
"empty lattice" \\
potential
\end{tabular} & \begin{tabular}{c} 
particle \\
source/drain
\end{tabular} \\
\hline Goldstone modes & magnons & acoustic phonons & sound waves \\
\hline
\end{tabular}

For a nearly exhaustive list see the PWA book of 1983

\section*{Bose condensate - degeneracy of the ground state} The coherent ground state
mean field energy \(\quad E(\Psi)=\left(-\mu|\Psi|^{2}+\frac{1}{2} g|\Psi|^{4}\right)\)
order parameter
mf ground state
\[
\begin{array}{ll}
\Psi=\sqrt{\left\langle N_{0}\right\rangle} \cdot \mathrm{e}^{\mathrm{i} \phi} \square \text { any from }(0,2 \pi) & \text { degeneracy } \\
|\Psi\rangle=\mathrm{e}^{-\left.\frac{1}{2} \Psi\right|^{2}} \cdot \mathrm{e}^{\sqrt{N_{0}} \cdot \mathrm{e}^{\mathrm{i} \phi} a_{0}}|\mathrm{vac}\rangle & \begin{array}{l}
\text { genuinely different } \\
\text { for different } \phi
\end{array}
\end{array}
\]

\section*{Selection rule}
\[
\begin{aligned}
& \left\langle a_{0}\right\rangle_{\phi}=|\Psi| \mathrm{e}^{\mathrm{i} \phi} \neq 0 \\
& \left\langle a_{0}\right\rangle=\int \mathrm{d} \phi\left\langle a_{0}\right\rangle_{\phi}=0
\end{aligned}
\]
average over all degenerate states

"Mexican hat"

\section*{Symmetry breaking - removal of the degeneracy}

\section*{The coherent ground state}
mean field energy \(\quad E(\Psi)=\left(-\mu|\Psi|^{2}+\frac{1}{2} g|\Psi|^{4}\right)\)
order parameter
mf ground state
\[
\begin{array}{ll}
\Psi=\sqrt{\left\langle N_{0}\right\rangle} \cdot \mathrm{e}^{\mathrm{i} \phi} \square \text { any from }(0,2 \pi) & \text { degeneracy } \\
\left.\left.|\Psi\rangle=\mathrm{e}^{-\left.\frac{1}{2} \Psi\right|^{2}} \cdot \mathrm{e}^{\sqrt{N_{0}} \cdot \mathrm{e}^{\mathrm{i} \phi} a_{0}} \right\rvert\, \text { vac }\right\rangle & \text { genuinely different } \\
\text { for different } \phi
\end{array}
\]

Symmetry broken by a small perturbation picking up one \(\boldsymbol{\phi}\)
\(\mathcal{H}-\mu \mathcal{N} \rightarrow\)
\[
\mathcal{H}-\mu \mathcal{N}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right)
\]
particle number NOT conserved

"Mexican hat"

\section*{Symmetry breaking - removal of the degeneracy}

\section*{The coherent ground state}
mean field energy \(\quad E(\Psi)=\left(-\mu|\Psi|^{2}+\frac{1}{2} g|\Psi|^{4}\right)\)
order parameter
mf ground state
\[
\begin{array}{ll}
\Psi=\sqrt{\left\langle N_{0}\right\rangle} \cdot \mathrm{e}^{\mathrm{i} \phi} \square \text { any from }(0,2 \pi) & \text { degeneracy } \\
|\Psi\rangle=\mathrm{e}^{-\left.\frac{1}{2} \Psi\right|^{2}} \cdot \mathrm{e}^{\sqrt{N_{0}} \cdot \mathrm{e}^{\mathrm{i} \phi} a_{0}}|\mathrm{vac}\rangle & \begin{array}{l}
\text { genuinely different } \\
\text { for different } \phi
\end{array}
\end{array}
\]

Symmetry broken by a small perturbation picking up one \(\phi\)
\(\mathcal{H}-\mu \mathcal{N} \rightarrow\)
\[
\mathcal{H}-\mu \mathcal{N}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right)
\]
particle number NOT conserved
For \(\lambda \rightarrow 0\)
one particular phase selected

"Mexican hat"

\section*{How the symmetry breaking works - ideal BE gas}

Without interactions, the ground level is uncoupled from the excited levels:
\[
\begin{aligned}
& \mathcal{H}-\mu \mathcal{N}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right) \\
& =-\mu a_{0}^{\dagger} a_{0}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right)+\sum_{k \neq 0} \frac{\hbar^{2}}{2 m}\left(\boldsymbol{k}^{2}-\mu\right) a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}} \\
& \rightarrow-\mu a_{0}^{\dagger} a_{0}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right)
\end{aligned}
\]

The control parameter is the chemical potential \(\mu\), but it will be adjusted to yield a fixed average particle number in the condensate.

Transformation:
\[
\begin{aligned}
& -\mu a_{0}^{\dagger} a_{0}-\lambda\left(a_{0}^{\dagger} \mathrm{e}^{\mathrm{i} \phi}+a_{0} \mathrm{e}^{-\mathrm{i} \phi}\right)=-\mu\left(a_{0}^{\dagger} a_{0}+\frac{\lambda}{\mu} \mathrm{e}^{\mathrm{i} \hat{\phi}} a_{0}^{\dagger}+\frac{\lambda}{\mu} \mathrm{e}^{-\mathrm{i} \hat{\phi}} a_{0}\right) \\
& \equiv-\mu\left(a_{0}^{\dagger} a_{0}-\Lambda a_{0}^{\dagger}-\Lambda^{*} a_{0}\right)=-\mu\left(\left(a_{0}^{\dagger}-\Lambda^{*}\right)\left(a_{0}-\Lambda\right)-\Lambda^{*} \Lambda\right) \\
& \equiv-\mu\left(b_{0}^{\dagger} b_{0}-\Lambda^{*} \Lambda\right)
\end{aligned}
\]

\section*{How the symmetry breaking works - ideal BE gas}

Now we determine the many-body ground state
\(-\mu\left(b_{0}^{\dagger} b_{0}-\Lambda^{*} \Lambda\right)|\Psi\rangle=\mathcal{E}|\Psi\rangle, \quad b_{0}=a_{0}-\Lambda, \quad \Lambda=-\lambda \mu^{-1} \mathrm{e}^{\mathrm{i} \hat{\phi}}, \quad \mu \leq 0\)
The lowest energy corresponds to
\[
\begin{aligned}
& b_{0}|\Psi\rangle=0, \text { i.e. } a_{0}|\Psi\rangle=\Lambda|\Psi\rangle \ldots \text { coherent state } \\
& \Lambda^{*} \Lambda=\langle\Psi| a_{0}^{\dagger} a_{0}|\Psi\rangle=N_{0}, \quad \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \bar{\phi}} \\
& \mathcal{E}=\mu \Lambda^{*} \Lambda=\mu N_{0} \quad \mu=-\lambda / \sqrt{N_{0}}
\end{aligned}
\]

The control parameter is the chemical potential \(\mu\), but it will be adjusted to yield a fixed average particle number in the condensate.
Infinitesimal symmetry breaking field \(\lambda \rightarrow 0\)
\[
\begin{aligned}
& \lambda \rightarrow 0 \text { with } N_{0} \text { fixed: } \\
& \hline \mu \rightarrow 0-0 \\
& E \rightarrow 0 \\
& \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \hat{\phi}}, \quad|\Psi\rangle \text { fixed }
\end{aligned}
\]

\section*{How the symmetry breaking works - ideal BE gas}

Now we determine the many-body ground state
\(-\mu\left(b_{0}^{\dagger} b_{0}-\Lambda^{*} \Lambda\right)|\Psi\rangle=\mathcal{E}|\Psi\rangle, \quad\)
The lowest energy corresponds to
\[
\begin{aligned}
& b_{0}|\Psi\rangle=0, \text { i.e. } a_{0}|\Psi\rangle=\Lambda|\Psi\rangle \ldots \text { coherent state } \\
& \Lambda^{*} \Lambda=\langle\Psi| a_{0}^{\dagger} a_{0}|\Psi\rangle=N_{0}, \quad \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \hat{\phi}} \\
& \mathbb{E}=\mu \Lambda^{*} \Lambda=\mu N_{0} \quad \mu=-\lambda / \sqrt{N_{0}}
\end{aligned}
\]

The control parameter is the chemical potential \(\mu\), but it will be adjusted to yield a fixed average particle number in the condensate.
Infinitesimal symmetry breaking field \(\lambda \rightarrow 0\)
\[
\begin{aligned}
& \lambda \rightarrow 0 \text { with } N_{0} \text { fixed: } \\
& \hline \mu \rightarrow 0-0 \\
& \mathcal{E} \rightarrow 0 \\
& \Lambda=\sqrt{N_{0}} \mathrm{e}^{\mathrm{i} \hat{\phi}},|\Psi\rangle \text { fixed }
\end{aligned}
\]
- The coherent state is the exact ground state for the ideal BE gas
- The order parameter picks up the phase from the perturbing field
- The order of limits: first \(\lambda \rightarrow 0\), only then the thermodynamic limit \(N_{0} \rightarrow \infty\)

The end```

