Examples of tests

Brno 2007

1 Tests on parameters of normal distribution

Let X_{1}, \ldots, X_{n} be a sample from $\mathcal{N}\left(\xi, \sigma^{2}\right)$ with the density

$$
\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{n \xi^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{1}{2 \sigma^{2}} \sum x_{i}^{2}+\frac{\xi}{\sigma^{2}} \sum x_{i}\right)
$$

1.1 Tests on σ^{2}

Denote

$$
\theta=-\frac{1}{2 \sigma^{2}}, \quad \vartheta=\frac{n \xi}{\sigma^{2}}, \quad U(x)=\sum x_{i}^{2}, T(x)=\bar{x}
$$

Then the statistic

$$
V=\sum\left(X_{i}-\bar{X}\right)^{2}=U-n T^{2}
$$

is ancillary for θ and is increasing in U. Then $\mathbf{H}_{1}: \sigma \leq \sigma_{0}$ is equivalent to $\theta \leq \theta_{0}$, and the UMP unbiased test rejects \mathbf{H}_{1} if $\sum\left(X_{i}-\bar{X}\right)^{2} \geq C_{\alpha}$, where

$$
\int_{C / \sigma_{0}^{2}}^{\infty} \chi_{n-1}^{2}(y) d y=\alpha
$$

Consider the hypothesis $\mathbf{H}_{2}: \sigma=\sigma_{0}$. Because V is linear in U, the UMP unbiased test rejects \mathbf{H}_{2} provided

$$
\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{0}^{2}} \leq C_{1} \text { or } \geq C_{2}
$$

where the constants are determined so that

$$
\int_{C_{1}}^{C_{2}} \chi_{n-1}^{2}(y) d y=\frac{1}{n-1} \int_{C_{1}}^{C_{2}} y \chi_{n-1}^{2}(y) d y=1-\alpha
$$

On the other hand,

$$
\frac{1}{n-1} y \chi_{n-1}^{2}(y)=\frac{1}{(n-1) 2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} y^{\frac{n-1}{2}} \mathrm{e}^{-\frac{y}{2}}=\frac{1}{2^{\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)} y^{\frac{n+1}{2}-1} \mathrm{e}^{-\frac{y}{2}}=\chi_{n+1}^{2}(y)
$$

hence the constants C_{1}, C_{2} are determined by the system of equations

$$
\int_{C_{1}}^{C_{2}} \chi_{n-1}^{2}(y) d y=\int_{C_{1}}^{C_{2}} \chi_{n+1}^{2}(y) d y=1-\alpha
$$

1.2 Tests on ξ

Consider the reparametrization

$$
\theta=\frac{n \xi}{\sigma^{2}}, \quad \vartheta=-\frac{1}{2 \sigma^{2}}, \quad U(x)=\bar{x}, T(x)=\sum x_{i}^{2} .
$$

Consider the hypothesis $\mathbf{H}_{3}: \xi=\xi_{0}$ and without loss of generality assume that $\xi_{0}=0$ (otherwise we put $X_{i}^{\prime}=X_{i}-\xi_{0}$). Then $\theta \leq 0$ is equivalent to $\xi \leq 0$ and

$$
V=\frac{\bar{X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}}=\frac{U}{\sqrt{T-n U^{2}}}
$$

is under $\xi=0$ independent of T, because under $\xi=0$ its multiple has t_{n-1} distribution, hence independent of the nuisance parameter σ. Thus the UMP unbiased test for \mathbf{H}_{3} rejects provided $t(x) \geq C_{0}$, where

$$
t(x)=\frac{\sqrt{n} \bar{x}}{\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

Consider the hypothesis $\mathbf{H}_{4}: \xi=\xi_{0}=0$ and the statistic

$$
W=\frac{\bar{X}}{\sqrt{\sum X_{i}^{2}}}=\frac{U}{\sqrt{T}} .
$$

Then W is also independent of T under $\xi=0$ and it is linear in $U=\bar{X}$. Under $\xi=0$, the distribution of W is symmetric around 0 . Thus, the UMP unbiased test of \mathbf{H}_{4} would reject it for $|W| \geq C$, where $\mathbb{P}_{\xi=0}\left(W \geq C^{\prime}\right)=\alpha$. Because

$$
t(x)=\frac{\sqrt{(n-1) n} W(x)}{\sqrt{1-n W^{2}(x)}},
$$

then $|t(x)|$ is an increasing function of $|W(x)|$, and the rejection region of the UMP unbiased test is equivalent to

$$
|t(x)| \geq C
$$

and

$$
\int_{C}^{\infty} t_{n-1}(y) d y=\frac{\alpha}{2}, \quad \int_{C_{0}}^{\infty} t_{n-1}(y) d y=\alpha
$$

The tests of more general hypotheses with $\xi_{0} \neq 0$ would have the criterion

$$
t(x)=\frac{\sqrt{n}\left(\bar{x}-\xi_{0}\right)}{\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

2 Comparing the variances of two normal distributions

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be samples from the normal distributions $\mathcal{N}\left(\xi, \sigma^{2}\right)$ and $\mathcal{N}\left(\eta, \tau^{2}\right)$. Then the joint density of (\mathbf{X}, \mathbf{Y}) is

$$
C(\xi, \eta, \sigma, \tau) \exp \left(-\frac{1}{2 \sigma^{2}} \sum x_{i}^{2}-\frac{1}{2 \tau^{2}} \sum y_{j}^{2}+\frac{m \xi}{\sigma^{2}} \bar{x}+\frac{n \eta}{\tau^{2}} \bar{y}\right) .
$$

Consider the reparametrization

$$
\theta=-\frac{1}{2 \tau^{2}}, \quad \vartheta_{1}=-\frac{1}{2 \sigma^{2}}, \quad \vartheta_{2}=\frac{n \eta}{\tau^{2}}, \quad \vartheta_{3}=\frac{m \xi}{\sigma^{2}}
$$

and the sufficient statistics

$$
U=\sum Y_{j}^{2}, \quad T_{1}=\sum X_{i}^{2}, \quad T_{2}=\bar{Y}, \quad T_{3}=\bar{X} .
$$

We want to test the hypothesis $\mathbf{H}_{5}: \tau^{2} \leq \Delta_{0} \sigma^{2}$. It is convenient still to reparametrize

$$
\theta^{*}=-\frac{1}{\tau^{2}}+\frac{1}{2 \Delta_{0} \sigma^{2}}, \quad \vartheta_{i}^{*}=\vartheta_{i}, \quad i=1,2,3
$$

and to consider the statistics

$$
U^{*}=\sum Y_{j}^{2}, \quad T_{1}^{*}=\sum X_{i}^{2}+\frac{1}{\Delta_{0}} \sum Y_{j}^{2}, \quad T_{2}^{*}=\bar{Y}, \quad T_{3}=\bar{X} .
$$

The test is based on the statistic

$$
V=\frac{\sum\left(Y_{j}-\bar{Y}\right)^{2} / \Delta_{0}}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum\left(Y_{j}-\bar{Y}\right)^{2} / \tau^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2} / \tau^{2}} .
$$

Under $\tau^{2}=\Delta_{0} \sigma^{2}$, the distribution of V does not depend on ξ, η, τ, σ, hence V is stochastically independent of $T_{1}^{*}, T_{2}^{*}, T_{3}^{*}$. The rejection region of the UMP unbiased test of \mathbf{H}_{5} can be written as

$$
\mathcal{F}=\frac{\sum\left(Y_{j}-\bar{Y}\right)^{2} / \Delta_{0}(n-1)}{\sum\left(X_{i}-\bar{X}\right)^{2} /(m-1)} \geq C_{0} .
$$

When $\tau^{2}=\Delta_{0} \sigma^{2}$, then \mathcal{F} has the F-distribution with $n-1$ and $m-1$ degrees of freedom, thus

$$
\int_{C_{0}}^{\infty} F_{n-1, m-1}(y) d y=\alpha .
$$

If we want to test the hypothesis $\mathbf{H}_{6}: \tau^{2}=\Delta_{0} \sigma^{2}$, we should consider the statistic

$$
W=\frac{\sum\left(Y_{j}-\bar{Y}\right)^{2} / \Delta_{0}}{\sum\left(X_{i}-\bar{X}\right)^{2}+\frac{1}{\Delta_{0}} \sum\left(Y_{j}-\bar{Y}\right)^{2}} .
$$

Under $\tau^{2}=\Delta_{0} \sigma^{2}$, it is also independent of $T_{1}^{*}, T_{2}^{*}, T_{3}^{*}$ and it is linear in U^{*}. Under $\tau^{2}=\Delta_{0} \sigma^{2}$, the distribution of W is the beta-distribution with the density

$$
B_{\frac{n-1}{2}, \frac{m-1}{2}}(w)=\frac{\Gamma\left[\frac{m+n-2}{2}\right]}{\Gamma\left[\frac{m-1}{2}\right] \Gamma\left[\frac{n-1}{2}\right]} w^{(n-3) / 2}(1-w)^{(m-3) / 2}, \quad 0<w<1
$$

and $\mathbb{E} W=\frac{n-1}{m+n-2}$. We reject \mathbf{H}_{6} provided $W \leq C_{1}$ or $W \geq C_{2}$ and C_{1}, C_{2} are determined through the relations

$$
\int_{C_{1}}^{C_{2}} B_{\frac{n-1}{2}, \frac{m-1}{2}}(w) d w=\int_{C_{1}}^{C_{2}} B_{\frac{n+1}{2}, \frac{m-1}{2}}(w) d w=1-\alpha .
$$

The relation between the beta and F-distribution is such that $W=\frac{Y}{1+Y}$, where $\frac{(m-1) Y}{n-1}$ has the distribution $F_{n-1, m-1}$.

3 Comparing the means of two normal distributions

If we want to compare ξ and η and the variances σ^{2} are τ^{2} are unknown and unequal, then it is the Behrens-Fisher problem, that cannot be treated in similar way. Thus suppose that $\sigma=\tau$. Then the joint density of (\mathbf{X}, \mathbf{Y}) is

$$
C(\xi, \eta, \sigma) \exp \left[-\frac{1}{2 \sigma^{2}}\left(\sum x_{i}^{2}+\sum y_{j}^{2}\right)+\frac{\xi}{\sigma^{2}} \sum x_{i}+\frac{\eta}{\sigma^{2}} \sum y_{j}\right] .
$$

Reparametrization:

$$
\theta=\frac{\eta}{\sigma^{2}}, \quad \vartheta_{1}=\frac{\xi}{\sigma^{2}}, \quad \vartheta_{2}=-\frac{1}{2 \sigma^{2}}
$$

the sufficient statistics:

$$
U=\sum Y_{j}, \quad T_{1}=\sum X_{i}, \quad T_{2}=\sum X_{i}^{2}+\sum Y_{j}^{2}
$$

Consider the hypothesis $\mathbf{H}_{7}: \eta-\xi \leq 0$. The it is better to reparametrize

$$
\theta^{*}=\frac{\eta-\xi}{\left(\frac{1}{m}+\frac{1}{n}\right) \sigma^{2}}, \quad \vartheta_{1}^{*}=\frac{m \xi+n \eta}{(m+n) \sigma^{2}}, \quad \vartheta_{2}^{*}=\vartheta_{2}
$$

with the sufficient statistics

$$
U^{*}=\bar{Y}-\bar{X}, \quad T_{1}^{*}=m \bar{X}+n \bar{Y}, \quad T_{2}^{*}=\sum X_{i}^{2}+\sum Y_{j}^{2}
$$

When $\eta=\xi$, then we have the statistic

$$
V=\frac{\bar{Y}-\bar{X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}+\sum\left(Y_{j}-\bar{Y}\right)^{2}}}=\frac{U^{*}}{\sqrt{T_{2}^{*}-\frac{1}{m+n} T_{1}^{* 2}-\frac{m n}{m+n} U^{* 2}}}
$$

that does not depend on $\xi=\eta$ and on σ, hence it is independent of T_{1}^{*}, T_{2}^{*}. Thus, we reject \mathbf{H}_{7} provided $t(X, Y) \geq C_{0}$, where

$$
t(X, Y)=\frac{\bar{Y}-\bar{X} / \sqrt{\frac{1}{m}+\frac{1}{n}}}{\sqrt{\left[\sum\left(X_{i}-\bar{X}\right)^{2}+\sum\left(Y_{j}-\bar{Y}\right)^{2}\right]} /(m+n-2)}
$$

and $\int_{C_{0}}^{\infty} t_{m+n-2}(y) d y=\alpha$.
For the hypothesis $\mathbf{H}_{8}: \eta-\xi=0$, we should consider the statistics (linear in U^{*} with coefficients dependent only on T^{*}, with distribution symmetric around 0)

$$
W=\frac{\bar{Y}-\bar{X}}{\sqrt{\sum X_{i}^{2}+\sum Y_{j}^{2}-\frac{1}{m+n}\left(\sum X_{i}+\sum Y_{j}\right)^{2}}}
$$

that is related to V through

$$
V=\frac{W}{\sqrt{1-\frac{m n}{m+n} W^{2}}}
$$

Hence, we reject \mathbf{H}_{8} provided $|t(X, Y)| \geq C$, and $\int_{C}^{\infty} t_{m+n-2}(y) d y=\frac{\alpha}{2}$.

3.1 Test of independence in bivariate normal distribution

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be a sample from the bivariate normal distribution with density

$$
\frac{1}{\left(2 \pi \sigma \tau \sqrt{1-\rho^{2}}\right)^{n}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{1}{\sigma^{2}} \sum\left(x_{i}-\xi\right)^{2}-\frac{2 \rho}{\sigma \tau} \sum\left(x_{i}-\xi\right)\left(y_{i}-\eta\right)+\frac{1}{\tau^{2}} \sum\left(y_{i}-\eta\right)^{2}\right)\right]
$$

Consider the hypotheses $\mathbf{H}_{9}: \rho \leq 0$ and $\mathbf{H}_{10}: \rho=0$.
Reparametrization:

$$
\begin{aligned}
& \theta=\frac{\rho}{\sigma \tau\left(1-\rho^{2}\right)}, \quad \vartheta_{1}=\frac{-1}{2 \sigma^{2}\left(1-\rho^{2}\right)}, \quad \vartheta_{2}=\frac{-1}{2 \tau^{2}\left(1-\rho^{2}\right)} \\
& \vartheta_{3}=\frac{1}{1-\rho^{2}}\left(\frac{\xi}{\sigma^{2}}-\frac{\eta \rho}{\sigma \tau}\right), \quad \vartheta_{4}=\frac{1}{1-\rho^{2}}\left(\frac{\eta}{t a u^{2}}-\frac{\xi \rho}{\sigma \tau}\right)
\end{aligned}
$$

and the sufficient statistics

$$
U=\sum X_{i} Y_{i}, \quad T_{1}=\sum X_{i}^{2}, \quad T_{2}=\sum Y_{i}^{2}, \quad T_{3} \sum X_{i}, \quad \sum Y_{i}
$$

\mathbf{H}_{9} is equivalent to $\theta \leq 0$. The ancillary statististic is the sample corellation coefficient

$$
R=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}},
$$

because it is invariant to transformations $X_{i} \mapsto \frac{X_{i}-\xi}{\sigma}$ and $Y_{i} \mapsto \frac{Y_{i}-\eta}{\tau}$ and hence under $\rho=\theta=0$ its distribution is independent of $\vartheta_{1}, \ldots, \vartheta_{4}$. It is nondecreasing in U. Thus the UMP unbiased test of H_{9} rejects when $R \geq C_{0}$ or when

$$
\frac{R}{\sqrt{1-R^{2}}} \sqrt{(n-2)} \geq K_{0}
$$

where K_{0} is determined so that $\int_{K_{0}}^{\infty} t_{n-2}(y) d y=\alpha$. The statistic R is linear in U, hence the UMP test of \mathbf{H}_{10} rejects when

$$
\frac{|R|}{\sqrt{1-R^{2}}} \sqrt{(n-2)} \geq K_{1}, \quad \text { where } \quad \int_{K_{1}}^{\infty} t_{n-2}(y) d y=\frac{\alpha}{2}
$$

3.2 Regression

We have observations $\left(Y_{1}, x_{1}\right), \ldots,\left(Y_{n}, x_{n}\right)$ and consider the simple regression $\mathbb{E}[Y \mid x]=\alpha+\beta x$. Start with the transformations

$$
v_{i}=\frac{x_{i}-\bar{x}}{\sqrt{\sum\left(x_{j}-\bar{x}\right)^{2}}}
$$

and denote $\gamma+\delta v_{i}=\alpha+\beta x_{i}$, thus $\sum v_{i}=0, \quad \sum v_{i}^{2}=1$. Then

$$
\alpha=\gamma-\delta \frac{\bar{x}}{\sqrt{\sum\left(x_{j}-\bar{x}\right)^{2}}}, \quad \beta=\frac{\delta}{\sqrt{\sum\left(x_{j}-\bar{x}\right)^{2}}} .
$$

The joint density of Y_{1}, \ldots, Y_{n} is

$$
\left.\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \exp \left[-\frac{1}{2 \sigma^{2}} \sum\left(y_{i}-\gamma-\delta v_{i}\right)^{2}\right)\right]
$$

Reparametrization:

$$
\theta=\frac{\delta}{\sigma^{2}}, \quad \vartheta_{1}=-\frac{1}{2 \sigma^{2}}, \quad \vartheta_{2}=\frac{\gamma}{\sigma^{2}}
$$

sufficient statistics

$$
U=\sum v_{i} Y_{i}, \quad T_{1}=\sum Y_{i}^{2}, \quad T_{2}=\sum Y_{i}
$$

The UMP test of hypothesis $\mathbf{H}_{11}: \beta=\delta=0$ is based on the criterion

$$
A=\frac{\left|\sum v_{i} Y_{i}\right|}{\sqrt{\frac{1}{n-2}\left[\sum\left(Y_{i}-\bar{Y}\right)^{2}-\left(\sum v_{i} Y_{i}\right)^{2}\right]}}
$$

and rejects when $A \geq C$, where $\int_{C}^{\infty} t_{n-2}(y) d y=\frac{\alpha}{2}$.

4 Comparison of two Poisson distributions

Let X and Y be two independent variables with Poisson distributions $\mathcal{P}(\lambda)$ and $\mathcal{P}(\mu)$. Joint distribution of X, Y is

$$
\mathbb{P}\{X=x, Y=y\}=\frac{\mathrm{e}^{-(x+y)}}{x!y!} \exp \left[y \log \frac{\mu}{\lambda}+(x+y) \log \lambda\right]
$$

Reparametrization: $\theta=\log \frac{\mu}{\lambda}, \quad \vartheta=\log \lambda$, sufficient statistics $U=Y, \quad T=X+Y$. Consider the hypotheses $\mathbf{H}_{12}: \mu \leq \lambda \sim \theta \leq 0$ and $\mathbf{H}_{13}: \mu=\lambda \sim \theta=0$. The test is conditional for given $T=t$. The conditional distribution of Y given $X+Y=t$ is

$$
\mathbb{P}(Y=y \mid X+Y=t)=\binom{t}{y}\left(\frac{\mu}{\lambda+\mu}\right)^{y}\left(\frac{\lambda}{\lambda+\mu}\right)^{t-y}
$$

the binomial $B\left(t, p=\frac{\mu}{\lambda+\mu}\right)$. The hypothesis \mathbf{H}_{12} is equivalent to $p \leq \frac{1}{2}$ and is rejected when $Y>C(t)$ and rejected with probability $\gamma(t)$ when $Y=C(t)$, where

$$
\sum_{i=C(t)+1}^{t}\binom{t}{y}+\gamma(t)\binom{t}{C(t)}=2^{t} \alpha
$$

Similarly, the hypothesis \mathbf{H}_{13} is equivalent to $p=\frac{1}{2}$ and is rejected when $Y<C_{1}(t)$ and $Y>C_{2}(t)$ and rejected with probability $\gamma_{i}(t)$ when $Y=C_{i}(t)$; due to the symmetry it holds $C_{1}(t)-\frac{t}{2}=\frac{t}{2}-C_{2}(t)$ and $\gamma_{1}(t)=\gamma_{2}(t)$.

5 Comparison of two binomial distributions

Let X, Y be two independent variables with binomial distributions $B\left(m, p_{1}\right)$ and $B\left(n, p_{2}\right)$, respectively. Their joint distribution is

$$
\begin{aligned}
& \mathbb{P}(X=x, Y=y)=\binom{m}{x} p_{1}^{x} q_{1}^{m-x}\binom{n}{y} p_{2}^{x} q_{2}^{n-y} \\
& =\binom{m}{x}\binom{n}{y} p_{2}^{x} q_{2}^{n-y} q_{1}^{m} q_{2}^{n} \exp \left[y\left(\log \frac{p_{2}}{q_{2}}-\log \frac{p_{1}}{q_{1}}\right)+(x+y) \log \frac{p_{1}}{q_{1}}\right]
\end{aligned}
$$

Reparametrization:

$$
\theta=\log \left(\frac{p_{2}}{q_{2}} / \frac{p_{1}}{q_{1}}\right), \quad \vartheta=\log \frac{p_{1}}{q_{1}}
$$

sufficient statistics $U=Y, \quad T=X+Y$. Under $\theta=0$, the conditional distribution of Y given $X+Y=t$ is the hypergeometric distribution

$$
\mathbb{P}(Y=y \mid X+Y=t)=\frac{\binom{m}{t-y}\binom{n}{y}}{\binom{m+n}{t}}
$$

Hence, we reject the hypothesis $\mathbf{H}_{14}: p_{2} \leq p_{1} \sim \theta \leq 0$ when $Y>C(t)$ and reject with probability $\gamma(t)$ when $Y=C(t)$ where

$$
\mathbb{P}(Y>C(t) \mid X+Y=t)+\gamma(t) \mathbb{P}(Y=C(t) \mid X+Y=t)=\alpha
$$

6 Test for independence in a 2×2 table

Consider the population of n individuals; for each individual we check whether it has properties A and B. The results we write in the table

	A	\bar{A}	sums
B	X	X^{\prime}	M
\bar{B}	Y	Y^{\prime}	N
sums	Q	Q^{\prime}	s

where X is the number of individuals which have simultaneously A and B, etc. Denote $p_{A B}$ the probability that an individual has both A and B, and similarly we denote the probabilities $p_{\bar{A} B}, p_{A \bar{B}}, p_{\bar{A} \bar{B}}$. Moreover, let p_{A} and p_{B} be the probabilities that an individual has property A, B, respectively. Then

$$
p_{A}=p_{A B}+p_{A \bar{B}}, \quad p_{B}=p_{A B}+p_{\bar{A} B}
$$

The joint distribution of variables $X, Y, X^{\prime}, Y^{\prime}$ is multinomial and is given by

$$
\begin{align*}
& \mathbb{P}\left(X=x, X^{\prime}=x^{\prime}, Y=y, Y^{\prime}=y^{\prime}\right)=\frac{n!}{x!x^{\prime}!y!y^{\prime}!} p_{A B}^{x} p_{\bar{A} B}^{x^{\prime}} p_{A \bar{B}}^{y} p_{\bar{A} \bar{B}}^{y^{\prime}} \tag{6.1}\\
& \frac{n!}{x!x^{\prime}!y!y^{\prime}!}\left(p_{\bar{A} \bar{B}}\right)^{n} \exp \left(x \log \frac{p_{A B}}{p_{\bar{A} \bar{B}}}+x^{\prime} \log \frac{p_{\bar{A} B}}{p_{\bar{A} \bar{B}}}+y \log \frac{p_{A \bar{B}}}{p_{\bar{A} \bar{B}}}\right)
\end{align*}
$$

We wish to test the hypothesis, that properties A, B appear independently in the population. More precisely, we wish to test the hypothesis of independence

$$
\mathbf{H}_{1}: p_{A B}=p_{A} \cdot p_{B} \text { against } \mathbf{K}_{1}: p_{A B} \neq p_{A} \cdot p_{B}
$$

or the hypothesis of positive dependence

$$
\mathbf{H}_{2}: p_{A B} \geq p_{A} \cdot p_{B} \text { against } \mathbf{K}_{2}: p_{A B}<p_{A} \cdot p_{B}
$$

Rewrite the distribution (6.1) as follows:

$$
\frac{n!}{x!x^{\prime}!y!y^{\prime}!}\left(p_{\bar{A} \bar{B}}\right)^{n} \exp \left\{\theta_{1} T_{1}+\theta_{2} T_{2}+\mid \text { thet } a_{3} T_{3}\right\}
$$

where

$$
\begin{aligned}
& \theta_{1}=-\log \frac{p_{\bar{A} B}}{p_{\bar{A} \bar{B}}}-\log \frac{p_{A \bar{B}}}{p_{\bar{A} \bar{B}}}+\log \frac{p_{A B}}{p_{\bar{A} \bar{B}}} \\
& \theta_{2}=\log \frac{p_{\bar{A} B}}{p_{\bar{A} \bar{B}}}, \quad \theta_{3}=\log \frac{p_{A \bar{B}}}{p_{\bar{A} \bar{B}}}, \\
& T_{1}=X, \quad T_{2}=X+X^{\prime}, \quad T_{3}=X+Y
\end{aligned}
$$

The hypotheses \mathbf{H}_{1} and \mathbf{H}_{2} can be then rewritten as

$$
\begin{array}{ll}
\mathbf{H}_{1}: \theta_{1}=0, & \mathbf{K}_{1}: \theta \neq 0 \\
\mathbf{H}_{2}: \theta_{1} \leq 0, & \mathbf{K}_{2}: \theta>0
\end{array}
$$

The tests are conditional, based on the conditional distribution of T_{1} given T_{2}, T_{3} under $\theta_{1}=0$. First we get

$$
\mathbb{P}_{\theta_{1}=0}\left(X=x, Y=y \mid X+X^{\prime}=m\right)=\binom{m}{x}\binom{n-m}{y} p_{A}^{x+y}\left(1-p_{A}\right)^{n-x-y}
$$

and this under condition $X+Y=q$ gives

$$
\mathbb{P}_{\theta_{1}=0}\left(X=x \mid X+X^{\prime}=m, X+Y=q\right)=\frac{\binom{m}{x}\binom{n-m}{q-x}}{\binom{n}{q}} .
$$

The conditional test of \mathbf{H}_{2} is called the Fisher-Irwin test; it has the form

$$
\Phi(x, m, q)=\left\{\begin{array}{lll}
1 & \text { if } & x<C_{1}(m, q) \\
\gamma(m, q) & \text { if } & x=C(m, q), \\
0 & \text { if } & C_{1}(m, q)<x
\end{array}\right.
$$

where $C_{1}, \gamma_{1}, 2 \quad\left(C_{1}\right.$, integer $)$ are determined so that

$$
\sum_{i \leq C_{1}-1}\binom{m}{i}\binom{n-m}{q-i}+\gamma_{1}\binom{m}{C_{1}}\binom{n-m}{q-C_{1}}=\alpha\binom{n}{q} .
$$

