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Figure 10.6 Molecular signalling in the E£. colf chemosensory
system. (a) The Tsr receptor-transducer protein accepts a
repellant molecule (Leu). CheW and CheA are activated. CheA
accepts phosphate from ATP and passes it on CheY. CheY
diffuses to the flagellar motor and induces a clockwise rotation
and hence tumbling. CheY is eventually dephosphorylated by
CheZ. (b) The Tsr receptor-transducer accepts an attractant
molecule (Ser). The consequent conformational change
inactivates CheA and CheW so that CheY remains unphos-
phorylated and consequently inactive. The flagellum resumes
its anticlockwise motion and the bacterium swims smoothly
forward. A = CheA; W = CheW:; Y = CheY: Z — CheZ. Data
from Bourrett, Borkovich and Simon, 1891
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2 Cichové systemy

accessory olfactory bulb (AOB).

vomeronasal organ (VNO)

main olfactory epithelium (MOE) consists predominantly of ciliated olfactory
sensory neurons (OSNSs), which project to the main olfactory bulb (MOB)
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Figure 7.7

Olfactory epithelium (A) Sche-
matic cross section of olfactory
epithelium. (B) Scanning micrograph
of a dendritic knob and dendrites of
a human olfactory receptor neuron.
Magnification: 18,500%. (From
Morrison and Costanzo, 1990.)

Dendritic knob

4Olfdctm'y cilia

Receptor

cell
Sustentacular * Basal Receptor
cell cell axons

(B)




olfactory
bulb

cerebral

hemisphere tectum

olfactory bulb | SIDE VIEW

(@

DORSAL VIEW olfactory DORSAL VIEW
bulb T

optic cerebral optic

cerebellum medulla .
hemisphere tectum

cerebellum medulla

1.6 mm (b) 3 mm

fromial
[obe

b
¢ \|. “preticular formation
.4 |I | ! \Ill.
q amyodala =k
olfactory ! » | amygd -
= | T
bulh / : S il sond
) hypothalamus spinal cor
mammillary \“—ﬂ/
body '

sre 10.1  The limbic system (the main limbic system structures are shown 1




Rat

Kadde viirw Eodlonm view

il oy bulbs

Human
Sade view Bollinm view

NEUROBIOLOGY
Gary G. Matthaws

A Lazwam
Scmnce







(1) Increase in cAMP

Extracelular Auid

Olfactory

3 Teq fe
Cilium of receptor

alfactory
neuron

Cytoplasm

ib) Increase in 115

Extracellular fluid

Olfactory
receplor

Cytoplasm

Cilia of olfactory
neuron

/ Odorant Adenylyl

malecule cyclase

Odorarit
maolecule

X

Phospholipase C

SENSORY PROCESSES 385

Figure 13.36 Olfactory transduction mechanisms in cilia membranes of olfactory neu-
rons (a) Many odorants act to increase cyclic AMP. The odorant binds to an adorant
receptor on the ciliary membrane; the receptor activates a G protein to activate adenylyl
cyclase, producing cAMP. Cyclic AMP binds to and opens a cation channel, allowing entry
of Na' and Ca?* ions to depolarize the cell. Ca®" binds to Ca**-activated CI- channels, aug-
menting the depolarization. (b) Some olfactory responses increase IP,. This mechanism
also starts with odorant binding to a G protéin-coupled receptor, but in this case the G
protein activates phospholipase C, forming IP, from PIP, (see Figure 12.21). IP; binds to
and opens a calcium channel, letting Ca** enter to depolarize the cell. As in (a), Ca**-acti-
vated C|” channels augment the depolarization.

Cation Ca?'_activated
CE’IE.I‘[I'[E\ 1™ ¢channel

Ca’ —activated
CI™ channel

G protein

}
Ao

IP;




Adenylyl

cyelase (1) Cuclia
. yelie
Aktivace : i nucleotide-
. Naw gated channel
Odorant
o Catls
alcium-
dependent
O chloride
._ channel
Odorant
receptor
Transduction
Termin‘atiﬂnf -

Odorant
receptor

Cyelic
nucleotide-
gated channel




et
irwebe i de

Cidorzind |
molecules

Chiermical
slruciire A

5O

Chenscal

sirocime W

i'
g-"c::}n Eretected by bath X and ¥

ﬁ\f\.ﬁ
A

Betecied oaly by X

Dreescied only by Y

Degectad by nather X nor'y

NEUROBIOLOGY
Gary G. Matthews

Alacrael
Goence




— A. Olfactory pathway and olfactory sensor specificity
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Konvergence na prislusny glomerulus

MOE = main olfactory epithelium,
OB = olfactory bulb.

AOB = accessory olfactory bulb.
VNO = vomeronasal organ.

To lateral olfaciory ag —————— 3=




Podobnost architektury sensorickych obvodu a drah
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Comparison between simplified basic circuit diagrams of the vertebrate r
bulb. (After Shepherd, 1978)
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Figure 13.7 Oifactory bulb. (a) The figure shows olfactory
axons passing through the cribriform plate to end in glomeruli
in the olfactory bulb. (b) Basic circuit of the mammalian
olfactory bulb. Layers: EPL =external plexiform layer; GL =
glomerular layer; GRL = granule cell layer; OT = olfactory tract;
MCL = mitral cell layer. Cells: G, = deep granule cell;, G, =
superficial granule cell; M = mitral cell; PG = periglomerular cell;
T =tufted cell. Inhibitory celis stippled. Simplified from
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Také adaptace muze byt na urovni vysSich pater smyslové drahy
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Fig. 11.11 Extracellular single-unit recordings of responses to odors of receptor cells (left) and
mitral cells (right) in the salamander, showing different types of responses and different temporal
patterns of activity. (After Kauer, 1974, and Getchell and Shepherd. 1978)
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Response specificity to size and composition
of odorant molecule

a) pheromone receptor of Mameasira
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Antennal lobe: two major classes of
Neurons

projection neuron




Inhibition ‘sharpens’ the PN response
(temporal and odor discrimination)
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Even when following an odor trace,
perception 1s discontinuous
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PNs may have narrower response
spectra than receptor neurons

& odor ligands 2
specialist ‘ordinary’ PNs

J.G. Hildebrand 1996
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Vomeronasalni, Jacobsonuv organ

MOE = main olfactory epithelium,
OB = olfactory bulb.

AOB = accessory olfactory bulb.
VNO = vomeronasal organ.

To lateral olfaciory ag —————— 3=




Hjernen

Lugtkolben

T

Lugtepithelet

Nasehulen
Vomeronasale

/ organ
T\

BioSite 14/8,03




The location of chemosensory organs in the mouse and

(@) 'Hil (s Drosophila. (a) A sensory neuron in the olfactory epithelium
Olfactory r;capturs of mice expresses one of about 1,000 olfactory receptors.
Olfactory epithelium Neurons in the apical and basal layers of the vomeronasal

organ express distinct, unrelated classes of G-protein-
coupled pheromone receptors (V1Rs in the apical and V2Rs
in the basal layer). In addition, a small family of MHC class I-
like molecules is coexpressed with V2Rs in neurons of the
basal layer. The taste cells in the tongue, palate and pharynx
express other classes of GPCRs, one encoding sweet-taste
receptors (T1Rs) and one encoding receptors for bitter

VZRs + MHC compounds (T2Rs). Note that V1Rs and T2Rs are related to
I \ each other, as are V2Rs and T1Rs, respectively. (b) The
olfactory neurons of Drosophila are located in two pairs of

Vomeronasal organ

. Tas}ﬁ buds appendages in the head, the third antennal segment and the
maxillary palps, and each neuron expresses very few,
possibly just one, of the 61 olfactory receptor genes

: V.Y P identified so far. The gustatory or taste sensory neurons are
ot \‘I'RR-S. located in numerous organs, including the two labial palps on

the head, internal sensory clusters in the pharynx (not
shown), all the legs and the anterior wing margin. Each
(b) neuron expresses a few, possibly just one, gustatory
receptor gene. A few gustatory receptor genes are also
expressed in olfactory neurons of the antenna and maxillary
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— E. Evaluation of taste stimuli
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Labelled-line model Across-fibre models
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Figure 2 | Encoding of taste qualities at the periphery. There are two opposing views of how taste qualities are encoded in the periphery. a, In the labelled-
line model, receptor cells are tuned to respond to single taste modalities — sweet, bitter, sour, salty or umami — and are innervated by individually tuned
nerve fibres. In this case, each taste quality is specified by the activity of non-overlapping cells and fibres. b, ¢, Two contrasting models of what is known as
the ‘across-fibre pattern’ This states that either individual TRCs are tuned to multiple taste qualities (indicated by various tones of grey and multicoloured
stippled nuclei), and consequently the same afferent fibre carries information for more than one taste modality (b), or that TRCs are still tuned to single
taste qualities but the same afferent fibre carries information for more than one taste modality (c). In these two models, the specification of any one

taste quality is embedded in a complex pattern of activity across various lines. Recent molecular and functional studies in mice have demonstrated that
different TRCs define the different taste modalities, and that activation of a single type of TRC is sufficient to encode taste quality, strongly supporting
the labelled-line model.
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Figure 2 | Encoding of taste qualities at the periphery. There are two opposing s of how taste qualities are encoded in the periphery. a, In the labelled-
line model, receptor cells are tuned to respond to single taste modalities — sweet \itter, sour, salty or umami — and are innervated by individually tuned
nerve fibres. In this case, each taste quality is specified by the activity of non-overlafping cells and fibres. b, ¢, Two contrasting models of what is known as
the ‘across-fibre pattern’ This states that either individual TRCs are tuned to multip[§aste qualities (indicated by various tones of grey and multicoloured
stippled nuclei), and consequently the same afferent fibre carries information for mor&than one taste modality (b), or that TRCs are still tuned to single
taste qualities but the same afferent fibre carries information for more than one taste m®&ality (c). In these two models, the specification of any one

taste quality is embedded in a complex pattern of activity across various lines. Recent mol§gular and functional studies in mice have demonstrated that
different TRCs define the different taste modalities, and that activation of a single type of TQC is sufficient to encode taste quality, strongly supporting
the labelled-line model.




Taste bud SENMSORY PROCESSES 383

fa) Salt () Sour fc) Sweek
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it), producing depelarization. (d) The amino acid glutamate (monosodi-
um glutamate, M5G) stimulates the taste guality umami {a savory or
meaty guality). Glutamate binds to a G protein—coupled receptor
(related to synaptic metabotropic glutamate receptors) to activate a
phosphodiesterase (PDE) and decrease the concentration of cAMP. The
decrease in cAMP leads to an increase in intracellular Ca** concentra-
tion. {e) Bitter taste mechanisms can involve a G protein—coupled
receptor for bitter substances that acts via a G protein and phospholi-
pase C to produce |P,. P, liberates Ca*" ions from intracellular stores,

fsugars to a G protein—coupled receptor, which acts via a G protein to eliciting transmitter release without requiring depolarization. Other
ivate adenylyl cyclase and produce cyclic AMP. Cyclic AMP then acti- bitter substances bind to K* channels and close them to depolarize

tes protein kinase A (PKA) to close a K™ channel (by phosphorylating the cell.

jgure 13.34 Taste-transduction mechanisms differ for different

ste qualities  All transduction mechanisms except the |P; action in
I lead to depolarization, which spreads to the basal end of the cell

nd opens voltage-gated Ca®' channels to allow Ca®” entry and trans-
itter release. (a) For salt taste, sodium ions enter a taste bud cell
rough amiloride-sensitive cation channels, directly depolarizing the
||, () In sour taste, either H™ ions enter the cell through amiloride-
nsitive cation channels, or they clase K* channels to produce depo-
ization. {c) Sweet taste is most commoenly mediated by the binding
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— C. Gustatory pathways
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FIGURE 7-18 The ‘‘cold-moist-dry’’ triad sensory sensillum of the cockroach contains
three bipolar sensory neurons; one neuron of the hygroreceptor responds to high humid-
ity (‘‘moist’’ receptor) and one to low humidity (‘‘dry”” receptor). The receptor cavity of

the poreless sensillum is filled with a dense secretion. (Modified from Yokokiari and Tateda
1976; Schaller 1978.)
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Figure 1 a, Diagram of Melanephila (body length
10 mm). The infrared pit organs, situated next to

the coxae of the middle legs, are completely
exposed during flight. b, An intrared sensillum,
redrawn from ref. 3.
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Figure 2 The responses of a neuron, recorded
from the pit organ, to various infrared stimuli.
Fach trace shows the original response to one
stimulus. Horizontal bars indicate exposure
times. Each trial was repeated three times. The
number of action potentials decreases with
decreasing stimulus duration; 2 ms was sufficient
to generate a response. If the mirror was covered,
no response was recorded at any of the infrared
intensities and shutter speeds tested.

pass infrared filter (50% cut-on at 1.8 pum)
and neutral-density filters. At a radiation
intensity of 24 mW c¢m ™ single neurons




a Spinal cord and dorsal root ganglion b Skin

Merkel cells Hair-root plexus, Hair follicle
Lowy -threshold

Temperature and
mechanoreceptors

pain receptors Fuffini's endings

Dor=al horn

Afferent Meissner's corpuscle Free nerve
(sensoryl endings
Facinian —

corpuscle I

Epidermis {

Diermis

!_'_.“

Laminae of, ,__{':._-
spinal cord ""ﬁ_' :

Efferant
[rmotor)

_________ e o= 4 c Histological section
1

e
——

Skeletal muscle

=
i)
=

Dermis

E flerant
fibres

Figure 1 | Anatomic and functional organization of touch. a | Spinal merves farmed by the joining of afferert ([sensory) and efferent
(motor) rocts provide perpheral innervation to skin, skeletal muscle, viscera and glands. Arrows denote the direction of incoming
senscry and outgoing motor impulses. The cell bodies of motor neurons are located within the ventral horn |aminae VII-1¥) of the spinal
cord. Cell bodies of sensory neurons are located in the dorsal root ganglia (DRG], Within the DRG there are subclasses of sensory
neurons known as proprioceptive (blue), low-threshold mechanosensitive red) and temperature- and pain-sensing neurcns [green).
These neurons project centrally to dorsal horn interneurons (laminae -V of the spinal cord) and penpherally to target tissues.
Proprioceptive neurons (blue fibre) project to specialized structures within target tissues such as muscle, and sense muscle stretch.

b | Low-threshold mechanosensitive neurons red fibres) project to end organs that transmit mechanical stimuli. Five types of mechano-
sensitive assermblies have been described and are illustrated in the figure. Temperature and pain sensing neurons [green) do not project
to specialized end organs; instead they terminate as free nerve endings in all layers of the skin, and near blood vessels and hair follicles.
c | Section of skin showang free nerve endings (green fibres) stained with the pan-neuronal marker PGF2.5. The nuclel of skin cells are
stained (blue) vath 4. 6-diamidino- 2 -pherylindole (DAPI). Free nerve endings are found in both the epidermal and dermal layers.
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Figure 2 | Average discharge frequency of individual cold-
and warm-sensitive fibres in response to changes in
skin temperature. The dotted line indicates the normal skin
temperature (33°C). Caold-sensitive fibres respond only to
cooling, whereas warm-sensitive fibres respond to warming.
MNeither type of fibre responds to mechanical stimulation,
Adapted, with permission, from REER 13 @ (1969) The
Physiological Society.
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Figure 3 | Domain organization and temperature thresholds of temperature-activated
transient receptor potential ion channels (thermoTRPs) a | TRP channels are composed of
A o Labive e nbranie-spanrinng ornits o e eoyteg slasr s arnine: ancd con L=asyl tenrnini . Scnres TRP=
al=o hawve variablz numbers of ankyrin repeats at the amino terminus, or a conserved TRP domain
ol 25 amino acids alter the transmembrane regions. b | Temperatures ranging from noxious heat
Lo noxious cold activate several members of the TR family. The cocling com pound menthol and
capsaicin the hot ingredient of chilli pepeer) act as non-thermmal activators of TrpmE and Trpwl,
respectively. The thresholds of activation and maximal activation are bas=d on activity of these
channels in heterclogous systems; some of thesea thresholds are averaged values from different
studies. Dashed lines indicate an uncenainty in the exact slope of the lines.




