Cell communication & regulation - target of toxicants

Signal transduction - target of toxicants

Regulation of cell life / death (apoptosis)

- metabolism
- proliferation
- differentiation
- death (apoptosis)

- Signalling

- "network" of general pathways
- similar in all cells / different cell-specific effects

Signalling disruption

 Consequences of signalling disruption - unwanted changes in proliferation/differentiation/apoptosis -> cell transformation (carcinogenicity) -> embryotoxicity -> immunotoxicity -> reproduction toxicity other chronic types of toxicity

Signal transduction - principles

: major processes

- protein-(de)phosphorylation (PKinases, PPases)
- secondary messengers (cAMP / IP3, PIP2, DAG, Ca2+, AA)

1: Membrane receptors (G-protein, kinases) -> PKA activation: cAMP

2: Membrane receptors -> PLC / PKC activation -> PKC activation: IP3, PIP2, DAG, Ca2+, AA

3: Cytoplasmic (nuclear) receptors

Membrane receptors (PKs): G-proteins

G PROTEIN-COUPLED RECEPTORS

<u>1:</u> Membrane receptors (PKs)

-> Adenylate cyclase -> cAMP -> PKA - modulation

Mitogen Activated Protein Kinases (MAPK) – dependent effects

Crosstalk

Transcription Factors

- NFAT = Nuclear Factor of Activated T-cells
 - SRF) = Serum Response Factor
- CREB) = CAMP Response Element Binding protein

O'Day

Examples

ER-dependent estrogenicity (DDE) [other lecture] xenoestrogenicity, binding to ER + activation

ER-independent estrogenicity (PAHs) modulation of PKs/PPases: phosphorylation -> activation of ER-dependent genes

AhR-dependent anti-estrogenicity, retinoid toxicity modulation of estrogen / retinoid levels [other lectures] AhR -> CYPs -> steroid-metabolism

PAHs/POPs -> inhibition of Aromatase (CYP19)

PAHs significantly potentiate the effect of 17β-estradiol (*via increased phosporylation of ER*)

Vondráček et al. 2002 Toxicol Sci 70(2) 193

Examples

Microcystins -> liver tumor promotion inhibition of PPases [other lecture]

Immunotoxicity

- (Cyano)bacterial lipopolysaccharides, heavy metals ...
- Cholera toxin
 - AC: cAMP -> effects

PAHs -> Inhibition of Gap-junctions - Gap-junctional intercellular communication

Cholera toxin binds to a specific membrane receptor, enters the cell, and activates adenylate cyclase

Inhibition of GJIC - biomarker of tumor promotion

- <u>gap-junctional intercellular communication (GJIC)</u>
 transfer of signalling molecules via protein
 channels (*gap junctions*)
- regulation of proliferation, differentiation, apoptosis
- inhibition of GJIC -> proliferation ~ tumor promotion
- relevance: tumors *in vivo* have inhibited gapjunctions

from Trosko and Ruch 1998, Frontiers in Bioscience 3:d208

Scrape loading / dye transfer assay (GJIC inhibition)

Rat liver WB-F344 (normal stem-like cells)

Toxicity to membrane gradients and transport

 Semipermeability of membranes: several key functions

 cytoplasmic membrane: signalling, neural cells Na+/K+ gradient
 mitochondrial membrane: electrone flow -> ATP synthesis
 endoplasmatic reticulum Ca²⁺ signalling

- Membrane fusion / transport neurotransmitter release

Membrane gradient disruption

Ion transfer ("ionofors") antibiotics (K+, Ca2+, Mg2+)

Ion Channel BLOCKERS / ACTIVATORS

Neuromodulators (drugs)

Neurotoxins (cyanobacterial)

OCH₃

Botulotoxin, Tetanotoxin

- proteases (!)

selective inhibition of neutrotransmitter release (membrane vesicles)

Cytoskeleton as target of toxicants microtubules / actin-myosin

Cytoskeleton – function

- intracellular transport
- cell replication and division (mitotic poisons)
- muscle movement
- membrane (vesicles) fusion

TOXINS: effects on (DE)POLYMERIZATION

TOXINS: effects on (DE)POLYMERIZATION

