

Androgens

- Role in males similar to the of estrogens in females

- development of male sexual characteristics
- stimulating protein synthesis, growth of bones
- cell differenciation, spermatogenesis
- male type of behaviour

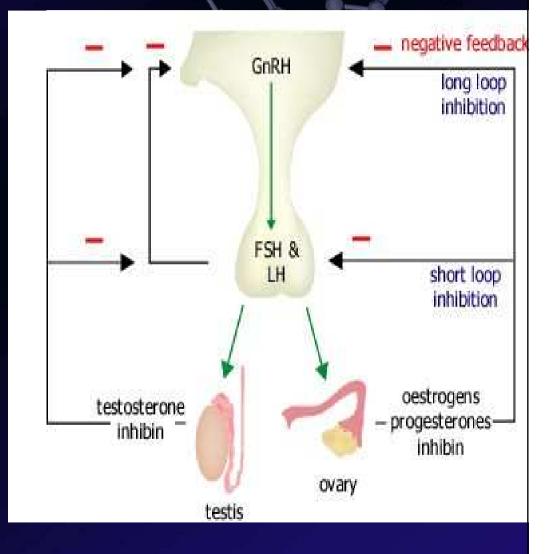
Androgens

- Endogenous ligands – androgen hormones

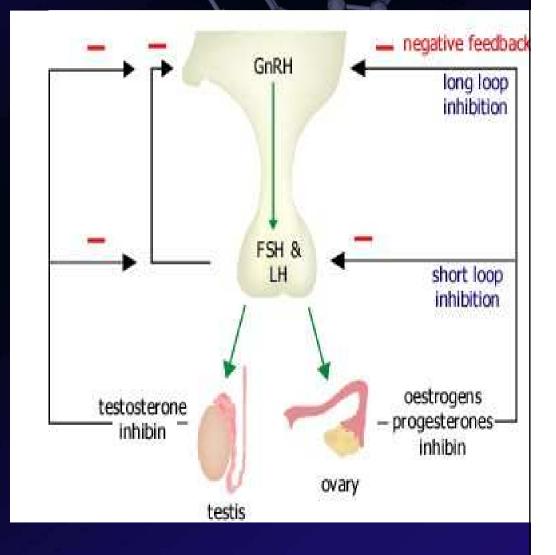
- <u>testosterone</u>

- <u>dihydrotestosterone (DHT)</u>

- androstanediol


- dehydroepiandrosterone

- androstenedione


Hypothalamo-pituitary axis

- Regulation of testosterone synthesis
- Hypothalamus –
 Gonadotropin releasing
 hormone
- Pituitary folicle
 stimulating and
 luteineising hormone

Hypothalamo-pituitary axis

- Folicle stimulating hormone
 Stimulates synthesis of androgen binding proteins
 and spermatogenesis in Sertoli cells (testis)
- Luteineizing hormone
 - Stimulates testosterone
 production in Leydig cells

Testosterone

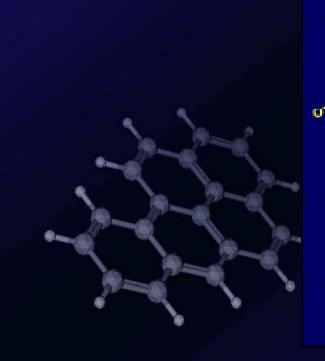
Testicular Biosynthetic Pathway of Testosterone

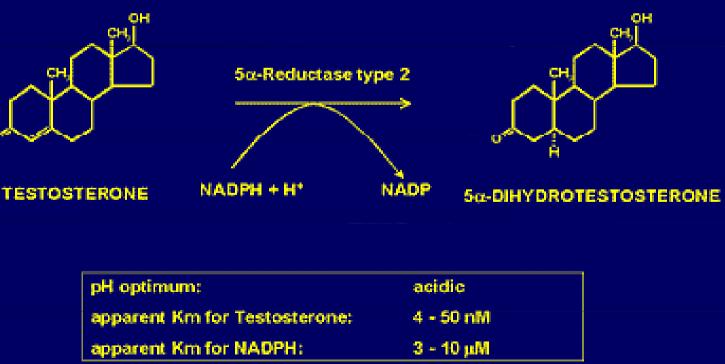
Cholesterol P450sec Pregnenolone Progesterone -Methyl group Cholesterol 17α-Hydroxylase Major Pathways in Steroid Biosynthesis 17α-Hydroxypregnenolone 17α-Hydroxyprogesterone 17-hydroxy Dehydroepiandrosterone СH₃ с=о Pregnenolone c=0 preanenolone C17,20-Lyase CYP17 CYP17 Androstenedione Dehydroepiandrosterone 3 6 HSD 36HSD 3βHSD 17_β-Hydroxysteroid 17-hydroxy Progesterone c=0 progesterone Androstenedione dehydrogenase TESTOSTERONE Androstenediol CYP21A2 CYP21A2 3β-Hydroxysteroid VDIO dehydrogenase Deoxy-corticosteror 11-deoxycortisol Estrone Testosterone - synthetized in testis (Leydig 178HSD çн₂он Corticosterone Cortisol Estradiol cells)

Aldosterone

17βHSD

ajor progestager faior mineralocorticoid

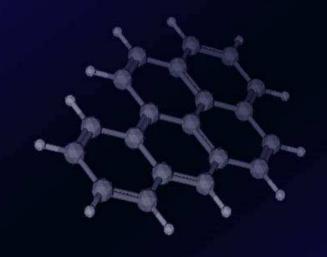

lajor gonadal estrogens Major gonadal androgen


faior glucocorticoid (species variation)

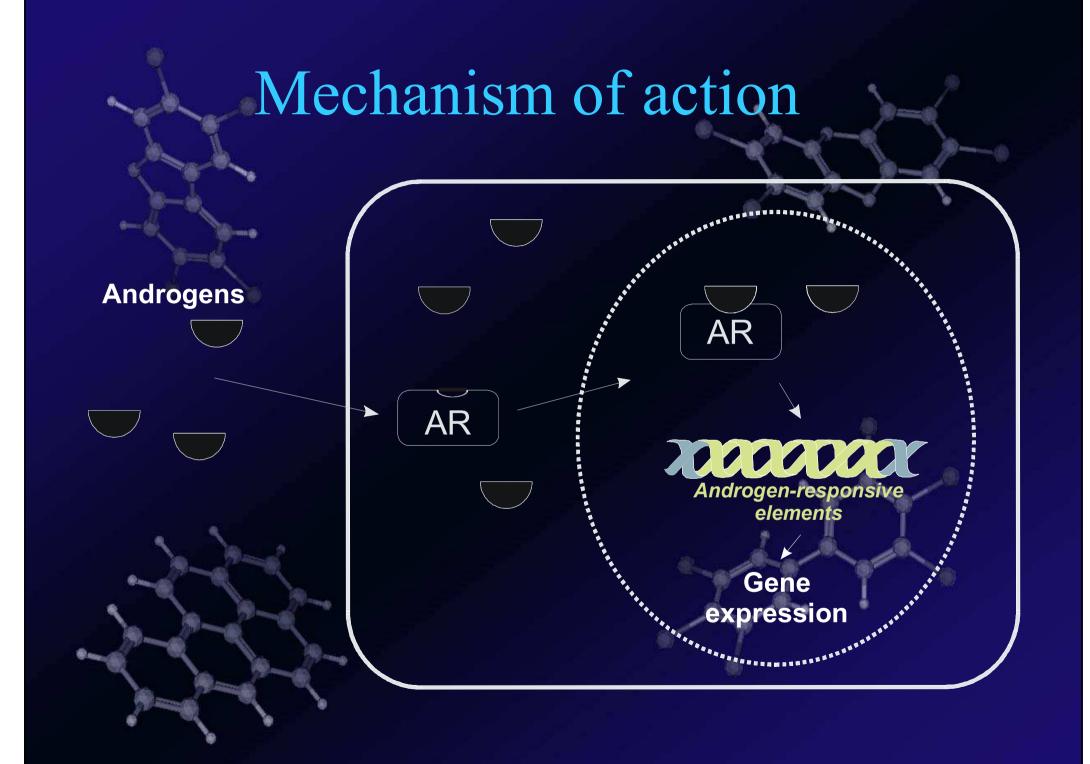
- in lesser extent in adrenals

Dihydrotestosterone

- The most important derivative of testosterone
- Formed extratesticulary from testosterone
- 5α-reductase Metabolism of Testosterone to 5α Dihydrotestosterone



Dihydrotestosterone


In several tissues (seminal vesicles, prostate, skin)
 higher affinity to androgen receptor than
 testosterone

- Daily production 5-10% of testosterone

Dihydrotestosterone

OH

- Illegitimate activation of AR
- Binding to AR without activation
- Decrease of AR cellular levels
- FSH/LH signalling disruption
- Changes in androgen metabolism

Binding to AR

- Mostly competitive inhibition xenobiotics do mostly NOT activate AR-dependent transcription
- Few compounds are able to activate AR in absence of androgen hormones x in presence of T/DHT antiandrogenic (metabolites of funghicide vinclozoline, some PAHs)

Decrease of AR levels

- Under normal circumstances, DHT treatment leads to increase of AR level

BUT no effect observed during co-treatment with Cyproterone acetate or hydroxyflutamide (drugs/pesticides)

FSH/LH (gonadotropins) signalling disruption

- FSH/LH expression - regulation via negative feedback by testosterone

- Suppressing leads to alterations of spermatogenesis

Alterations of testosterone synthesis

 Inhibition of P450scc needed for side chain cleavage of cholesterol (fungicide <u>ketoconazol</u>)

 Inhibition of 17- α-hydroxylase and other CYPs - – enzymes needed for testosterone synthesis (ketoconazol)

Testosterone metabolic clearance

 Induction of UDP-glucuronosyltransferase or monooxygenases CYP1A, 1B involved in androgen catabolism

- Pesticides Endosulfan, Mirex, o-p'-DDT

Effects of male exposure to antiandrogens

Exposure during prenatal development: -malformations of the reproductive tract - reduced anogenital distance - hypospadias (abnormal position of the urethral opening on the penis) vagina development undescendent ectopic testes atrophy of seminal vesicles and prostate gland

Effects of male exposure to antiandrogens

Exposure in prepubertal age:

- delayed puberty
- reduced seminal vesicles
- reduced prostate

Exposure in adult age:

- oligospermia
- azoospermia
- libido diminution

AR-binding - potencies

(*Ref: DHT EC50 ~ 0.1 uM*)

Compound	IC ₅₀ (μM)
Benz[a]anthracene	3,2
Benzo[a]pyrene	3,9
Dimethylbenz[a]anthracene	10,4
Chrysene	10,3
Dibenzo[a,h]anthracene	activation in range 0,1-10µM
Bisphenol A	5
vinclozolin metabolites	9,7
hydroxyflutamide	5
Aroclor typical values	0,25-1,11
Individual PCBs typical values	64 - 87
tris-(4-chlorophenyl)-methanol	0,2

Antiandrogenic compounds

tris-(4-chlorophenyl)-methanol

- Ubiquitous contaminant of uncertain origin
- Probable metabolite of DDT-mixture contaminant
- Levels in human blood serum cca. 50nM
- EC50 cca. 200nM

In vivo antiandrogenicity assessment

Hershberger assay

- castrated rats treated with substance examined

 Endpoint – after 4-7 days – seminal vesicles and ventral prostate weight

Measurement of testosterone concentration in serum

In vitro

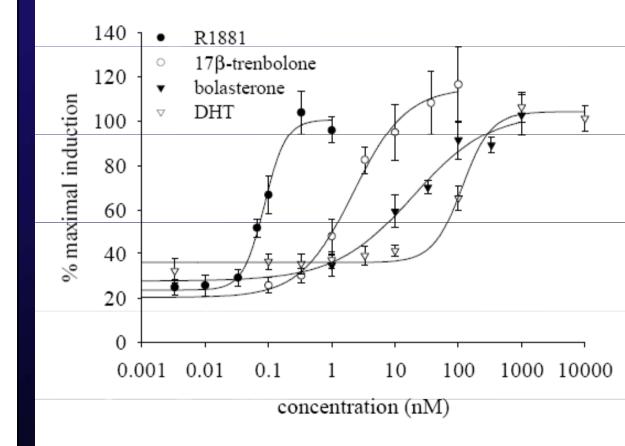
antiandrogenicity assessment

Most often employed – prostatic cell lines

Cell proliferation assays – cell lines with androgendependent growth;

- Treatment with tested chemical only (androgenicity) or cotreatment with DHT (antiandrogenicity)
 - mammary carcinoma cell lines

- prostatic carcinoma cell lines


In vitro antiandrogenicity assessment

Receptor-reporter assays

- Gene for luciferase or GFP synthesis under transcriptional control of AR
- Luciferase:
- AR-Calux (human breast carcinoma T47D)
 PALM (human prostatic carcinoma PC-3)
 CHO515 (Chinese hamster ovary CHO)

AR-binding - potencies

(*Ref:* $DHT EC50 \sim 0.1 \ uM = 100 nM$)

Figure 2 Luciferase induction in AR-LUX cells by various known androgens relative to the calculated maximum of R1881 (n=3, avg. +/- SD). Cells were dosed with the compounds for 24 hr. EC₅₀ R1881: 86.40 pM; EC₅₀ 17β-trenbolone: 2.18 nM; EC₅₀ bolasterone: 18.88 nM; EC₅₀ DHT: 115 nM.

In vitro antiandrogenicity assessment

 Possibility of nondestructive measurement (fluorescence of intact cells)

Х

Less sensitive – lack of enzymatic amplification

- Human prostatic cell lines

In vitro antiandrogenicity assessment

Yeast assays

- Mostly β -galactosidase as reporter enzyme

- Easy cultivation and experimental design

Х

Cell wall may obstruct transport of chemical into cell=>
 false negatives