Diferenciace buněk a struktura chromatinu Buněčná diferenciace je proces při kterém buňky získávají nový fenotyp, který je spojen se specifickou buněčnou funkcí. Pro daný buněčný typ Je charakteristická aktivace (inaktivace) skupiny genů, které jsou zodpovědné za navození terminálni diferenciaci. Epithelial cell Nerve cell G£ phase Cell Differentiation Cell Growth Anti-phospho H3 ^ ^^^^ Prophase-^ W ■ Cell Cycle Role of E2Fs Growth Factors Al Al a 3 S 2 a V* es ./^~*^ CONTROL ■ NaBt 72 h í ^*fcta. sĚWSU CONTROL Gl = 57.2% S = 17.8% G2-M = 25.0% B2 NaBt 72 hours Gl = 75.1% S = 18.2% G2-M = 6.7% 30 60 90 120 150 Channels (FL2-A) 90 120 150 Channels (FL2-A) 6h 24 h 48 h 72 h n *** *. * " p27KTP1 (27 kDa) Cycli Dl (34 kDa) Total protein level C NaBt C NaBt C NaBt C NaBt - |i '- š- E - 3 C Lu V - U ^ v _ £ 0 BO SO Cannels (FL2-A) NaBt 24h GO/1 - 71.1% S = 15.6% G2-M= 13.3% 1ZQ 150 Cannels (FL2-A) NaBt72h GO/1 = 83. S =4, G2/M = 12 0% 4% ,6% 1EQ Cannels (FL2-A) 59 ■Jifl I HSA 8 and related structures Harničarová et al., 2006 6 h 24 h 48 h 72 h »••:. i ■ usr| *~«m ^-* fc^ai &-..A c-Myc - (67kDa) Total protein level C NaBt C NaBt C NaBt C NaBt Oi '+-č k tr- C A) chromosome-to-centre of gravity/R 0.03 Ě 0.02 0.111 0.00 *=-*- Control NaBt 24h kfc Jl NaBt 72h II, .III n 0 20 40 60 BO 100 0 20 40 60 »0 10« 0 20 40 60 80 100 Distance in [%] of nuclear radius B) centromere-to-centre of gravity/R Control NaBt 24h NaBt 72h -I lit 0 20 40 60 SO 100 0 20 41) 60 W 1(H) i\ 2(1 40 60 SO 100 Distance in [%] of nuclear radius ! I C) c-myc-to-centre of gravity/R 0.03 0.02 0.01 0.00 4--*>- Control ■JL ik NaBt 24h J í NaBt 72h \—-p- 0 20 40 60 80 100 9 20 40 60 SO 10« 0 20 40 60 80 100 Distance in [%] of nuclear radius Chromoso me-to-cente r of gravity/R; mean±SE in % of radius Normal Derivative A Control (n = 149) 67.7±1.6 75.1 ±1.6* NaBt 24 h (n = 132) 67.2±1.5 71.9 ±1.5 NaBt 72 h (n = 153) 67.6±1.6 73.6 ±1.4* Centromere-to- center of gravity/R; mean±SE in % of radius Normal Derivative B Control (n = 512) 63.4 ±1.0 74.7±0.9* NaBt 24 h (rl = 536) 64.5 ±1.1 76.4±0.8* NaBt 72 h (íi-575) 70.5 ±1.0* 83.1±0.7 ' c-myc- to-center of gravity/R; mean±SE in % of radius Normal Derivative C Control (n = 149) 71.5 ±1.4 78.2 ±0.7* NaBt 24 h (n = 132) 69.1 ±1.2 76.9 ±0.9 NaBt 72 h (n = 153) 69.0 ±1.7 76.0 ±0.8* c-myc to-center of gravity of chromosome/n mean±SE in % of radius of chromosome territory Normal Derivative D Control (n = 149) 63.9 ±1.1 58.5 ±0.7* NaBt 24 h (n = 132) 56.3 ±1.0* 57.8±0.7 NaBt 72 h (n = 153) 57.2 ±1.0* 59.9 ±0.8 Harničarová et al., 2006 Human c-myc gene and two resultant protein products Sequences of oligoprobes were used according to Singer group and are follows 5' — t r*P0 r+P1r*P2 -L-Jb ttenuation sits -Or 1 H J— r 1 Exon 1 y ,' „c-Myc V*'' Exon 2 Exon 2 y rr*'' £'' Eior E*Oll 3 3 ------C02H c-Myc 2 c-Myc 1 CI HZN — only 1 G AUG l j. 1 Transact řváti o n domain NL BR HLH ĽZ Ryan and Birnie, 1996 (1) 5'-TCG T*AG TCG AGG T*CA TAG TTC CT*G TTG GTG AAG CT*A ACG TT*G AGG GGC AT-3' T) 5'-CCA CAT* ACA GTC CTG GAT* GAT GAT TTT T*TG ATG AAG GT*C TCG TCG T*CC G-3' i) 5'-TGA CCT* TTT GCC AGG AGC CT*G CCT CTT TT*C CAC AGA AAC AAC AT*C GAT* TT-3' Í4) 5'-CTG GT*G CAT TTT CGG T*TG TTG CTG AT*C TGT CTC AGG ACT* CTG ACA CT*G TC-3' ^) 5'-GGC CTT* TTC ATT* GTT TT*C CAA CTC CGG GAT* CTG GT*C ACG CAG GGC AAA AA-3' JAGGAACAAGAAGATGAC EXON1 5'CCCCCGAGCTGTGCTGCTCGCGGCCGCCAC CGCCGGGCCCCGGCCGTCCCTGGCTCCCCTCC TGCCTCGAGAAGGGCAGGGCTTCTCAGAGGC TTGGCGGGAAAAAGAACGGAGGGAGGGATC GCGCTGAGTATAAAAGCCGGTTTTCGGGGCT TTATCTAACTCGCTGTAGTAATTCCAGCGAGA GGCAGAGGGAGCGAGCGGGCGGCCGGCTAG GGTGGAAGAGCCGGGCGAGCAGAGCTGCGC TGCGGGCGTCCTGGGAAGGGAGATCCGGAGC GAATAGGGGGCTTCGCCTCTGGCCCAGCCCT CCCGCTGATCCCCCAGCCAGCGGTCCGCAAC CCTTGCCGCATCCACGAAACTTTGCCCATAGC AGCGGGCGGGCACTTTGCACTGGAACTTACA ACACCCGAGCAAGGACGCGACTCTCCCGACG CGGGGAGGCTATTCTGCCCATTTGGGGACAC TTCCCCGCCGCTGCCAGGACCCGCTTCTCTGA AAGGCTCTCCTTGCAGCTGCTTAGACGCTGG ATTTTTTTCGGGTAGTGGAAAACCAG 3' CTACGACTCGGTGCAGCCGTATTTCTACTGCGACGAGGAGGAGAi TCTACCAGCAGCAGCAGCAGAGCGAGCTGCAGCCCCCGGCGCCC CGAGGATATCTGGAAGAAATTCGAGCTGCTGCCCACCCCGCCCC: CCCCTAGCCGCCGCTCCGGGCTCTGCTCGCCCTCCTACGTTGCGG, ACACCCTTCTCCCTTCGGGGAGACAACGACGGCGGTGGCGGGAG' GACATGGTGAACi (2)CGGACGAC&1 GTATGTGG ^CCTTCATCAAAAACATC. 3GCCACAGCGTCTGCTCCACCTCCAGCTTGTACCTGCAGGATCTC ľGCCGCCGCCTCAGAGTGCATCGACCCCTCGGTGGTCTTCCCCTA ľTCTCAACGACAGCAGCTCGCCCAAGTCCTGCGCCTCGCAAGAC' \GCGCCTTCTCTCCGTCCTCGGATTCTCTGCTCTCCTCGACGGAG, rCCCCGCAGGGCAGCCCCGAGCCCCTGGTGCTCCATGAGGAGAC (3)AAATCG. CA :AA'i'cci'AU'i'Ai'A'i'AU'i'Acc'i'AU'i'A'i'i'Ai'Auu'i'A(_ c-myc gene-to-C HT29 70.5±1.5% Distances in % of radius ~ ~ ~ ~ 0.04 0.03 0.02 0.01 0.00 A549 71.8±0.6% 0 20 40 60 80 100 _d. Distances in % of radius T T T 0 20 40 60 80 100 HT29-APC 38.7±1.4% Distances in % of radius 0 20 40 60 80 100 I 20 I 40 60 80 100 0.04 0.03 HT29-APC-ZnCl2 41.1±1.3% stances in % of radius I I I I 20 40 60 80 100 0.04 0.03 - 4549 43.2 ±2.1% 0 20 40 60 80 100 c-myc /DNA Aa Ab Ac Ad t 1 1^. a B c-myc 7 DNA I c-myc /pKi-67 GO early Gl mid Gl late Gl G2 metaphase SC35/c-mvcT \lav projvťtiun B PML/c-myc1 Max, projection 11» li« i! 5 £ 21) I 1 1 XII g _ 60 IS z 9 a ^ 4(1 v — s « ig IM 2 c S 211 _u A549 HT29 A549 HT29 n s* o n i 3 n H 03 % of c-myc RNA signals associated with nucleoli % of c-myc RNA signals co-localized with RNAP II m c » c x > h-» SSaSSSňiíÄSiííaÄSa^^ **^******$***SSS*Sa5SK*íK > 'Jí -U vO í*í»íSa*****í5*»*5*í*N*5 ^^^^^^^ Western blot analysis ON H m u < I H es u a. r, = 1 i 1 "— 5 1 l 1=1 ■ 0 1 U ■J 1 ■ Cells with c-myc transcription site cap JiiiGppp pofyA denyfation ##u*** pofyA tail spliceosomes RNA splicing messenger RNA 1. Differentiation of mouse emryonic cells (ES and EC) division => Zygote (0cl4 positive) Morula (Qct4 positive) Embryoidni tělíska (EBs) 4>v 4P Diiferenliated cells (Ocl4 negative) Cultured ES cells (Oc*4 positive) Inner Cell Mass (1CM, Oct4 positive) .Trophoblast (Oci4 negative) Základ extra-em ryon Blastocyst tkání extraction If 1CM cells (Oct4 positive) ES: Embryonální kmenové buňky (ES) jsou imortalizované buněčné linie derivované z vnitřní buněčné masy 3.5 denní blastocysty. Tyto buňky se mohou rozmnožovat v nevydiferencovaném stavu za přítomnosti LIF faktoru. ES buňky mají schopnost diferencovat in vitro v progenitorová stádia. ES buňky tvoří tak zvaná emryoidní tělíska (EBs), což jsou třídimenzionální struktury se schopností diferencovat do různých buněčných typů, například: hematopoietických, myogenických, neurálních a jiných. Ovlivnění těchto buněk například RA vede k indukci neurální diferenciace. 27 Neurální diferenciace ES / EC buněk ■ spontánně v EB ■ spontánně v monovrstvě ■ v EB v přítomnosti kyseliny retinové (RA) ■ v monovrstvě bez přítomnosti séra ■ v monovrstvě bez přítomnosti séra + RA ? bezsérové médium doplňky média: ITS, N2, B27 inhibitory jiných diferenciací: Noggin, Chordin, Follistatin 33 Release of RXR, PML, PLZF, ate. Release of co-repressars ATRA DIFFERENTIATION ▼ *<" ^T ^-repressors S M% , -—^ v. Str "*"'■* S f V * . PWlL-RARfj APOPTOSiS s: Restored retinoid signaling + PWIL-RARíí / ••• Release effetts an other pathways i •\ i PML- RARalphe degradation ■ » » * * • ■ ■ ■ 4 * * * ■ w • • Up- regulation of RAR alpha Nuclear Bodies reappeared with relocalization of PMLand c-Eher MB proteins M E F h ES cell a b • c MEFs /hES cells (OCT4) MEF/OCT4 hES cell/OCT4 d MEFs/hES cells - RA (OCT4) Bone marrow *—** MSCICpŕHge ■'■•; **» Myeloblast Promyelocyt Rrtmüoctfei Eosinophil x / \ \^ ^wiutrophll^ X & BsUdiacylsil . V ' i; } ReHukxym N ÖyBuiOCylO • DoSopNI § 9 Myocyte Monoblaft •É-ié-4 Metamyelocyte é é i Band form Segmented form F^öheralujgod •% Degenerate form Lymphatic sjůiew Thymus To 9 ô B niťKuwiirwiŕvl^Et i"-._.-._i-j__t ö iťľtmvTottesr COTrtriDä PtomibĽHf ■ Cwottyla \ T Tn-tfCtiiB €H l:JL i.i<. I • Hi"*:" BjHraghetyií Ti^rpUocyw Peripheral blood řU I.OiYDlchf LrfHrfldtftb.ikUf^TWni ■"J *"l»rimrtil Ulf- Bone marrow *—** MSCICpŕHge ■'■•; **» Myeloblast Promyelocyt Rrtmüoctfei Eosinophil x / \ \^ ^wiutrophll^ X & BsUdiacylsil . V ' i; } ReHukxym N ÖyBuiOCylO • DoSopNI § 9 Myocyte Monoblaft •É-ié-4 Metamyelocyte é é i Band form Segmented form F^öheralujgod •% Degenerate form Lymphatic sjůiew Thvmus To 9 ô B niťKuwiirwiŕvl^Et i"-._.-._i-j__t ö iťľtmvTottesr COTrtriDä PtomibĽHf ■ Cwottyla \ T --miiinoHaH €H PÍM '.!<• i • Hi"*:" BjHraghetyií Ti^rpUocyw Peripheral blood řU I.Oirmwiiftkxricťlh.ibHfiirixin ■"J *"l»rimrtil Ulf- Beta-like globin gene cluster PAC 4396 (180 Kb) I—//-BAC 4396-44 (100 Kb) ,_ 5'HS: 5 4 3 2 1 , -18 -10,9 5 H^: 1 -214 -14,7 -6,1 +21,8 1 < 1 , I £ GY AT f P 5 P I T7-*-h«-SP8 V s- Arrayed on chromosome 11, encodes one embryonic (e) and two fetal (Gy, Ay) and two adult (8, ß) globin chains. Expression of ß-like genes undergoes a developmental related switching mechanism: s: expressed in early embryo fetal y: fetal life. o, ß: adulthood. Chiiuvbz hi b-iikb vbiib bryihuiü ssii anibrbsiťiaťiuú. Probability density Probability density Probability density Probability density Probability density o o o o Is > a a" O w 3 § s I I I 1 ] O K M "* » P! ís ^ i-i h- t"1 H- «# \\ -'! v"-1 *x \V- '••* ■ \\\\\1 .WWWWWN Ö A B 0.030 0.02? 3 0.020 ■g 0.015 .o 2 o.oio 0.00? 0.000 K562 / CONTROL C- BCR - ABL/R = 70.8±0.6% 0.030 0.02? 0.020 0.01? 0.010 0.00? 0.000 K562 / PMA C- BCR- ABL/R = 74.7*0.7%* H n. D 0.030 0.02? & 0.020 0.015 0.010 0.00? 0.000 HL60 / CONTROL C-BCR/R = 50.4± 0.8 % H 0.030 0.02? 0.020 0.01? 0.010 0.00? 0.000 HL60 / PMA C-BCR/R = 49.4±0.6 % n_ F 0.030 ! HL60 / CONTROL ; C-ABL/R = 55.3 ± 1.8' 0.020 0.01? 0.010 0.00? 0.000 _Q o o 5 o •f o 2 o P-, o o o o o 040 035 030 023 020 015 -010 00? 000 Ph+ CML C-BCR/R = 52.5 ± 1.3 % C-ABL/R = 53.5 ± 1.3 % Ô 20 40 60 80 100 Distance m % of radius 0.030 0.02? 0.020 0.01? 0.010 0.00? 0.000 HL60 / PMA C-ABL/R = 53.8 ± 0.6 % n 20 40 60 80 100 Distance m ° o of radius Bártova et al., Figure 4 MICRONUCLEI a. b. Bártova et al., Figure 6 210 kDa 135 kDa 65 kDa 45 kDa 1 2 3 4 5 6 — — • «i • m\ «—» « •» -• «• w H O *o O C/5 3 n o X! > Bcr-Abl c-Abl Lamin B Cleavage "*** fragment Total protein level E Acetyl H3 (K9) — s 1 Lamin B m Cleavage fragment di-meH3(K9) • —• «M as *3 Total protein level > n *0 > &5 H H O ■o O in O Bártova et al., Figure 7 ZAVMi Diferenciace je charakteristická nejenom specifickými změnami na úrovni morfologie buněk, ale významně se mění i struktura chromatinu. Tyto strukturální změny v genomu mají velký význam z hlediska transkripční aktivity genů.