Narušení regulace buněčného cyklu, programované buněčné smrti či mezibuněčné komunikace prostřednictvím organických polutantů – mechanismy karcinogeneze?

Polycyclic aromatic hydrocarbons (PAHs):

Sir John Percivall Pott (1775): "first published description of an occupational cancer related to coal soot"

Sir Ernest Kennaway (1931): "first single PAH carcinogen"

Reality is not so simple:

- alternative bioactivation pathways;
- tumor promoting effects of PAH metabolites;
- direct cellular effects of parental compounds;
- to describe nongenotoxic effects of POPs, it is necessary to study their mechanisms of effects of at cellular and molecular level.

Model chemical carcinogens vs. environmental pollutants

Possibilities open for alternative effects of PAHs:

 direct alteration of signaling pathways (mitogen-activated protein kinases; tyrosine kinases; Ca²⁺; modulation of phospholipid metabolism)

- interation with nuclear receptors (estrogen receptor- α ; estrogen receptor- β ; and rogen receptor; peroxisome proliferator-activated receptors);
- deregulation of cell-to-cell communication gap junctions; adherens junctions;
- deregulation of cell proliferation and programmed cell death;
- aberrant function of cell cycle checkpoints and DNA repair;
- epigenetic effects;
- alternative biotransformation and oxidative stress;
- activation of the aryl hydrocarbon receptor (AhR) and related effects;

Activation and effects of AhR:

"Classical" AhR-regulated genes: contain <u>xenobiotic response elements</u> (XRE) or dioxin responsive elements (DRE) in their promoter region:

• phase I and II enzymes - CYP1A1, CYP1A2, CYP1B1, UDPglucuronosyltransferase, GST-Ya, NQO1;

<u>AhRR</u>.

AhR-regulated genes involved in control of cell proliferation and cell death:

• pro-apoptotic genes - Bax;

• immediate - early response genes - Jun, Fos;

• <u>cell cycle regulation</u> - p27^{Kip1}, p21^{Waf/Cip}.

Majority of cells are not actively proliferating – they are in a quiescent GO phase of cell cycle. *In vitro* model of contact-inhibited cells.

Effects of PAHs on contact-inhibited WB-F344 cells

Chramostová et al., 2004

cell numbers

Expression of dnAhR blocks the proliferative effects of AhR ligands:

Proteins involved in control of contact inhibition:

AhR ligands modulate expression of proteins involved in G1→S cell cycle transition:

Transient knock-down of AhR blocks cyclin A induction:

Andrysík et al., 2007

Cyclin A/cdk2 activity control is essential for the maintenance of contact inhibition:

Induction of cell proliferation is independent of the dimerization partner ARNT:

WB-F344 cells

WB-F344 cells

WHIL PAS			
Arnt		А ///// В 💈	
	1	449	774
Arnt∆b	65 88	A ///// B 🕅	

The story is more complex – AhR ligands disrupt also control of cellto-cell communication – cell adhesion and gap junctional intercellular communication:

DMSO DMSO TCDD TCDD

The complex story gets even more complex – AhR ligands interact with inflammatory and growth regulators:

Umannová et al., 2007