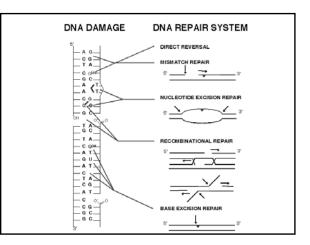

DNA damage mutagenicity and genotoxicity

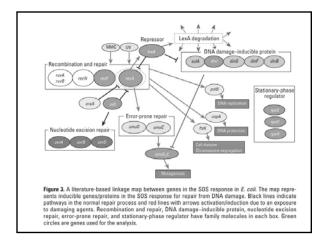
DNA:

- principal molecule for life of the cell
- structure and function carefully checked
- changes rapidly repaired - irreversible changes -> cell death (apoptosis)

Mutagenesis - MUTATIONS

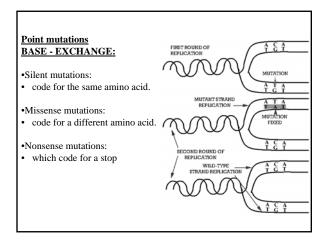
- changes in the sequences of deoxynucleotides
- natural mutations (billions of nucleotides/day) : variability in genoms; reparations
- chemical-induced mutagenesis

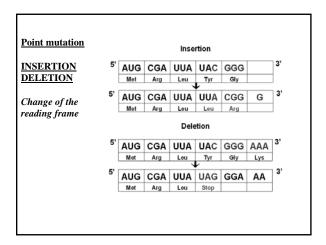


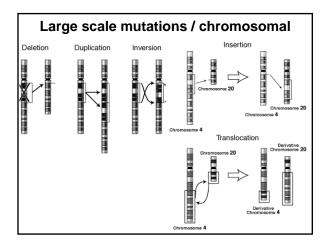

DNA repair

Damage of DNA is carefully controlled constitutively expressed proteins

Changes in DNA

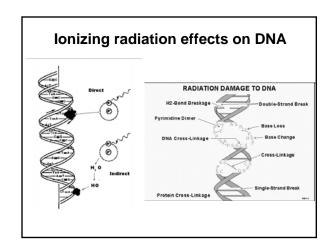

induction of reparation enzymes ("SOS-repair") = biomarker of DNA damage

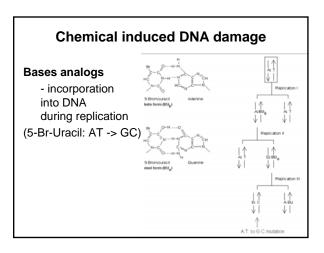


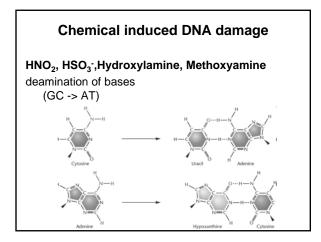


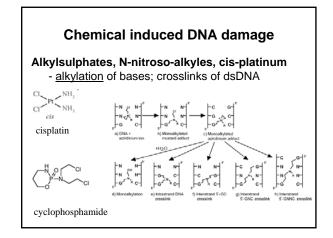
Induced mutations MUTAGENS - ionizing radiation and UV

- chemicals
 - Base analogs inserted into the DNA strand during replication in place of the substrates.
 - <u>Agents reacting with DNA</u> structural changes leading to miscopying of the template strand
 - Indirect mutagens affect cells that synthesize chemicals with direct mutagenic effect

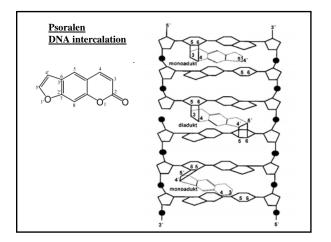

Physical factors & DNA damage

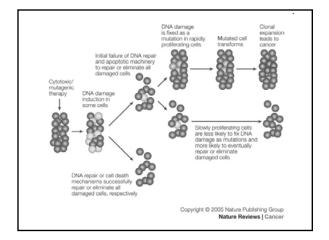

Ionizating radiation

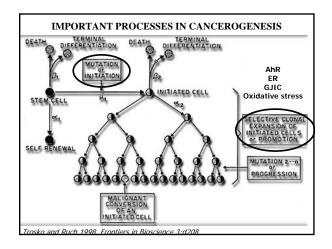

- direct interaction with hydrogen atoms in water (and bases)
 - -> OH* radicals; H_2O_2 , O_2 -
- oxidation of bases; dimerization ...

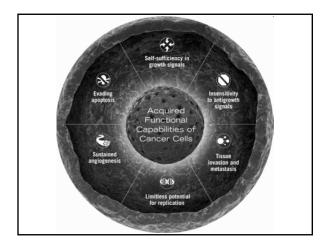

UV radiation

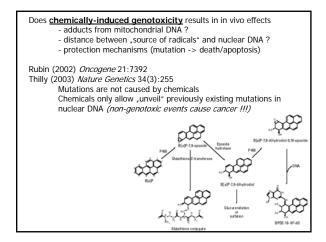

- interaction with aromatic cycles (bases)
- base dimerization (T=T)







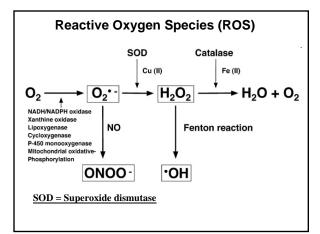


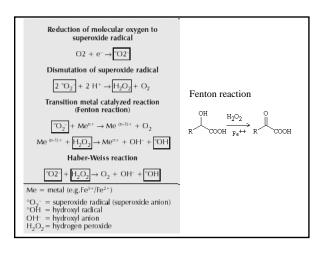


Redox homeostasis & oxidative stress

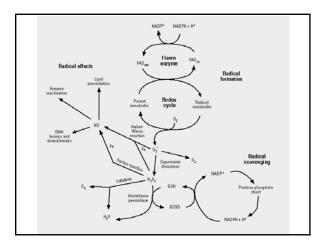
Redox homeostasis - natural levels of oxidants (O_2) and antioxidants in each cell

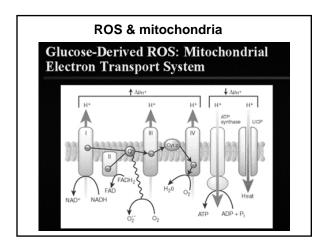
Disruption of redox homeostasis

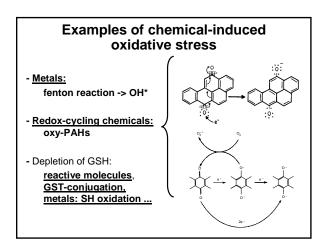

- -> depletion of oxygen: metabolism disruption, acidosis in tissues, cell necrosis rare: INSIDE TUMORS
- -> overproduction of oxidants: = oxidative stress GENERAL MECHANISM OF TOXICITY

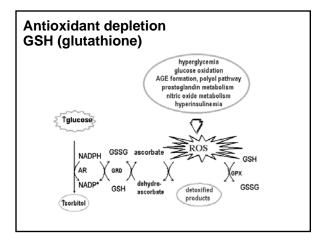

Overproduction of oxidants

<u>Oxygen</u> – principal molecule in living organisms Oxygen increase or reactive derivatives -> toxicity


ROS = Reactive Oxygen Species: Sources


- production in mitochondria (byproducts)
- redox-cycling (quinones of xenobiotics)
- Fenton-reaction (metals)
- oxidations mediated via MFO (CYP)
- depletion of antioxidants (reactive molecules)





eactive Oxygen Species (ROS			
ROS	Antioxidant	$\begin{array}{c} R ate \\ constant, \\ M^{-l} \cdot sec^{-l} \end{array}$	
Superoxide anion of oxygen	carnosine carnosine ascorbate α-tocopherol	$\begin{array}{c} 5.0 \cdot 10^{-5} \\ 0.8 \cdot 10^{-5} \\ 2.7 \cdot 10^{-5} \\ 2.0 \cdot 10^{-5} \end{array}$	
Singlet oxygen	carnosine imidazole ergothioneine NaN ₃	$\begin{array}{r} 3 \cdot 10^{-7} \\ 2 \cdot 10^{-7} \\ 2 \cdot 10^{-7} \\ 44 \cdot 10^{-7} \end{array}$	
Hydroxyl radical	carnosine	(5-8) · 10 ⁻⁹ 9 · 10 ⁻⁹	

Biomarkers of oxidative damage				
Lipid Peroxidation				
F ₂ -isoprostanes	Plasma, urine	GCMS, HPLC-MS/MS		
Oxidized low-density lipoprotein	Plasma, serum	ELISA		
(oxLDL)				
Malondialdehyde (MDA)	Plasma, serum, saliva, urine,	Colorimetry, spectrophotometry,		
	exhaled breath condensate	HPLC +fluorescence, GC/MS		
Protein Oxidation				
Protein carbonyls	Plasma, serum	ELISA		
DNA Oxidation				
8-hydroxy-2-deoxyguanosine (8-	Plasma, serum, urine	HPLC-EC, HPLC-MS/MS*, GC/MS		
OHdG)		Cornet assay*		