Biomarkers

Biomarkers

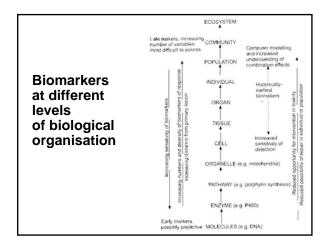
- markers in biological systems with a sufficently long half-life which allow location where in the biological system change occur and to quantify the change.

Toxicology - present status:

- identification of markers of long-term risks
 - : human (health, toxicology and carcinogenesis)
 - : ecotoxicology early markers of toxic effects

Biomarkers - summary

Biomarker:


change which occurs as response to "stressors" (xenobiotics, disease, temperature...) which extend the adaptive response beyond the normal range

In vivo biomarkers:

changes measured in stressed animals ("classical biomarkers")

- vitro biomarkers
 in vitro testing to characterize potencies of xenobiotic to induce specific biological activity
 (genotoxicity, estrogenicity, dioxin-like activity, tumor promotion ...)
 - = biological potencies (markers) of potential hazards

Biomarkers - classification

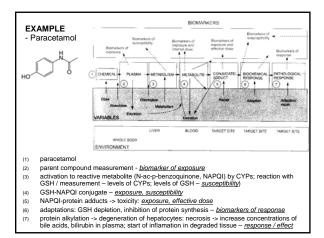
Categorization US National Academy of Sciences

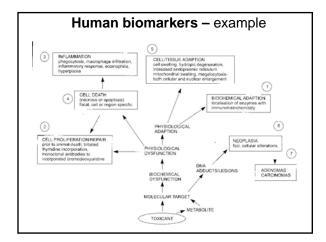
- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

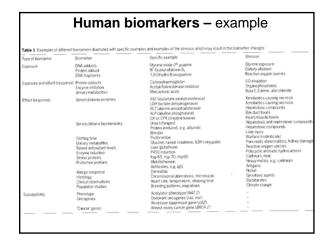
Continuum exists among biomarkers

example: adducts of toxicant with DNA ? biomarker of exposure / ? response

Specific (selective) in vivo biomarkers


- Biomarkers selectively reflecting specific types (mechanisms) of toxicity
- E.g. inhibition of AcCholE: exposure = organophosphates; effect = neurotoxicity
- + provides specific information
- multiple biomarkers must be measured in parallel

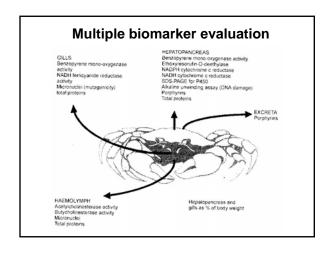

Non-specific (non-selective) in vivo biomarkers


- Biomarkers of general stress
- E.g. induction of Heat Shock Proteins (hsp)
- + general information about stress
- sensitive to many "stressors" (temperature, salinity ...)

In vivo biomarkers - sampling

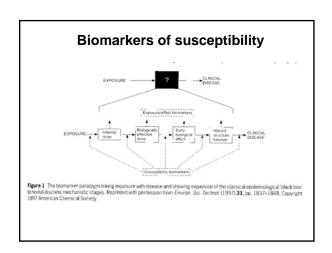
- Non-destructive (non-invasive)
 - : blood / haemolymph collection & analyses
 - : skin, feather, hair ...
 - : life of the organism not affected
- Destructive (invasive)
 - : whole animal -> multiple biomarker evaluation

	Table 9.2 Availability of biomarkers in blood				
Further	Biomarker	Blood	Tissue of choice	Comment	
examples	AChE inhibition	+?	Brain	Effects in blood more transient	
	Neurotoxic esterases	-	Brain	Enzyme is limited to brain	
Toxicity	Biogenic amines	-	Brain	Changes in blood too transient	
<u>biomarkers</u>	DNA Strand breakage	?	Wide range	Nucleated avian red blood cells are possible	
	Adduct formation	+	Wide range	Haemoglobin is good substitute for DNA	
	SCE	+	Wide range	Blood lymphocytes can be used	
	Degree of methylation	?	Wide range	Nucleated avian red blood cells are possible	
	MFO	-	Liver	Western blotting technique on leucocytes is possible	
	Thyroid	+	Thyroid	Circulating levels of T ₃ and T ₄ are sensitive	
	Retinols	+	Liver	Advances to use plasma are being made	
	Porphyrins	+?	Liver	Advances to use plasma are likely	
	ALAD	+	Blood	Tissue of choice	
	Enzymes	+	Blood	Tissue of choice	
	Immunotoxic	~	Lymphatic cells, bone marrow	Limited number of tests available for blood	


What kind of biomarkers to measure?

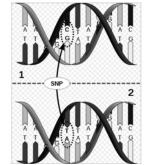
Do we know possible exposure (toxicant)?

- <u>: specific biomarkers</u> ? estrogenic effects in effluents
- ? dioxin-like effects, mutagenicity in urban areas
- ? neurotoxicity (AcChE) in rural areas


Do we expect complex exposures/contamination?

- integrated approach needed
- nonspecific biomarkers (hsp) ...

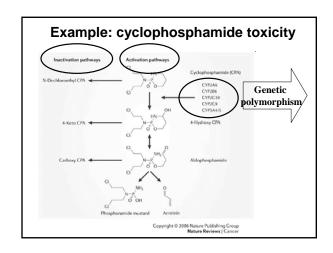
Biomarkers of susceptibility

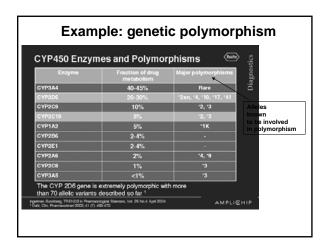


Biomarkers of susceptibility

Metabolism and genotype

- genetic polymorphism in detoxification enzymes
- variability in specific isoenzymes
- susceptibility to "activate" toxicants: <u>example:</u> N-acetylation of arylamines – NAT2
- familial cancers
- susceptibility to genotoxins
- susceptibility to drugs (including anticancer drugs)

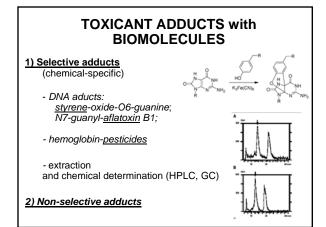

Example: genetic polymorphism SNPs - single nucleotide polymorphism



SNP -> affects protein functions

Many genotypes (from many individuals) must be sequenced to identify SNPs

(Some) SNPs identified for some (few) genes


Biomarkers of EXPOSURE

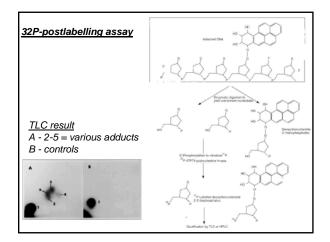
Biomarkers of Exposure

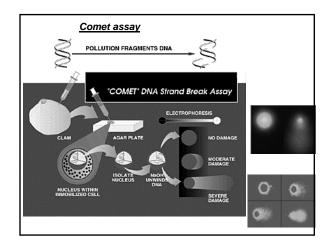
Biomarkers of ... internal / effective dose depending on toxicokinetics

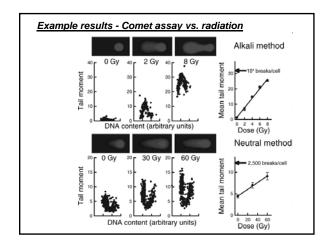
- internal dose (short / long term)
 - Cd in urine, DDE in fat tissues
 - should be easy to sample (urine, breath)
 - instrumental analytical methods (analyses of toxicant)

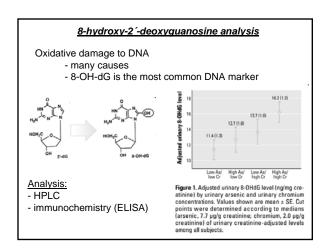
- effective dose
- the chemical interacted with the biological target = ADDUCTS

Chemical	*** ** **		
(type of exposure)	Adduct/analyte	Method	Adduct level (nmol g - haemoglobin)
N, N-Dimethylformamide (occupational)	3-Methyl-5-isopropylhydantoin	Hydrolysis; GC-MS	75–1000 (exposed) 4–12 (control)
Epichlorohydrin (occupational)	N-(2, 3-Ditydroxypropytivaline	Modified Edman; GC-MS	0.020 (exposed smokers) 0.007 (exposed non-smokers) 0.013 (control smokers) 0.007 (control non-smakers)
Acetaminophen (drug overdose)	34Cystein-S-yllacetaminophen	Immunoassay	100-4100
PAHs (occupational)	BPDF-Hb	Spectrofluorimetry	0.005-0.139
Ethylene oxide (occupational)	N-Hydroxyethylvaline	Modified Edman; GC-MS	5–20 (exposed) 0.1–0.5 (control smokers) 0.01–0.1 (control non-smokers
Ethene (occupational)	N- Hydroxyethylvaline	Modified Edman; GC-MS	0.02
Propylene oxide (occupational)	N- Hydroxypropylvaline	Modified Edman; GC-MS	0.05=3.5 (exposed) < 0.02 (unexposed)
Acrylonitrile (smoking)	N- Cyanoethylvaline	Modified Edman; GC-MS	0.09
NNK (smoking)	4- Hydroxy-1-(3 pyridyl) butan-1-one	Hydrolysis; GC-MS	0.0015 (smokers) 0.0005 (non-smokers)
4-ABP (smoking)	4ABP-cysteine	Hydrolysis; GC-MS	0.00025-0.0025 (smokers) 0.00005-0.0005 (non-smokers
Acrylamide (occupational, smoking)	N- (2-Carbamoylethy()valine	Modified Edman; GC-MS	9.5 (production workers) 0.054 (laboratory workers) 0.116 (smokers) 0.031 (non-smokers)
Butadiene (occupational)	N-12,3,4-Trihydroxybutythvaline	Modified Edman; GC-MS	0.010-0.014 (exposed) 0.002-0.003 (control)
Styrene (occupational)	2-Phenylethanol	Cleavage with Raney nickel, GC-MS	3.7-8.0 (exposed) 2.0-8.6 (control)


TOXICANT ADDUCTS with BIOMOLECULES


2) Non-selective aducts


 binding with DNA (proteins) but no further information on the structure of aduct (causative agent)


- Analysis:


- 32P-postlabelling assay
- DNA-strand breaks
 - comet assay
- identification of oxy-DNA 8-hydroxy-2´-deoxyguanosine

