Biomarkers

Biomarkers

- markers in biological systems with a sufficiently long half-life which allow location *where* in the biological system change occur and *to quantify* the change.

Toxicology – present status:

- identification of markers of long-term risks

- : human (health, toxicology and carcinogenesis)
- : ecotoxicology early markers of toxic effects

Biomarkers - summary

Biomarker:

change which occurs as response to "stressors" (xenobiotics, disease, temperature...) which <u>extend</u> the adaptive response beyond the normal range

In vivo biomarkers:

changes measured in stressed animals ("classical biomarkers")

In vitro biomarkers

in vitro testing to characterize potencies of xenobiotic to induce <u>specific biological activity</u> (genotoxicity, estrogenicity, dioxin-like activity, tumor promotion ...)

= biological potencies (markers) of potential hazards

Biomarkers & Exposure

- h: homeostatic conditions
- c: reversible stage
- r: irreversible effects of pollutants

Biomarkers:

- temporal change
- B5, B2; short period: B4
- continuous increase B3
- repeated occurrence (B5)
 irreversible change

Biomarkers at different levels of biological organisation

Biomarkers - classification

Categorization US National Academy of Sciences

- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

Continuum exists among biomarkers <u>example:</u> adducts of toxicant with DNA ? biomarker of exposure / ? response

Specific (selective) in vivo biomarkers

- Biomarkers selectively reflecting specific types (mechanisms) of toxicity
- E.g. inhibition of AcCholE : exposure = organophosphates; effect = neurotoxicity
- + provides specific information
- multiple biomarkers must be measured in parallel

Non-specific (non-selective) in vivo biomarkers

- Biomarkers of general stress
- E.g. induction of Heat Shock Proteins (hsp)
- + general information about stress
- sensitive to many "stressors" (temperature, salinity ...)

In vivo biomarkers - sampling

- Non-destructive (non-invasive)
 - : blood / haemolymph collection & analyses
 - : skin, feather, hair ...
 - : life of the organism not affected
- Destructive (invasive)
 - : whole animal -> multiple biomarker evaluation

- (1) paracetamol
- (2) parent compound measurement *biomarker of exposure*
- (3) activation to reactive metabolite (N-ac-p-benzoquinone, NAPQI) by CYPs; reaction with GSH / measurement levels of CYPs; levels of GSH <u>susceptibility</u>)
- (4) GSH-NAPQI conjugate *exposure, susceptibility*
- (5) NAPQI-protein adducts -> toxicity: <u>exposure, effective dose</u>
- (6) adaptations: GSH depletion, inhibition of protein synthesis *biomarkers of response*
- (7) protein alkylation -> degeneration of hepatocytes: necrosis -> increase concentrations of bile acids, bilirubin in plasma; start of inflamation in degraded tissue <u>response / effect</u>

Human biomarkers – example

Human biomarkers – example

Table 1 Examples of different biomarkers illustrated with specific examples and examples of the stressor which may result in the biomarker changes

Type of biomarker	Biomarker	Specific example	Stressor
Exposure	DNA adducts Protein adduct DNA fragments	Styrene oxide- <i>0</i> ⁶ guanine N ⁷ -Guanyl-aflatoxin B ₁ 7,8-Dihydro-8-oxoguanine	Styrene exposure Dietary aflatoxin Reactive oxygen species
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholinesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1,3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alanine aminotransferase) ALP (alkaline phosphatase) CK or CPK (creatine kinase)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/muscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilirubin	Hepatotoxic and nephroloxic compounds Hepatotoxic compounds Liver injury
	Clotting time Urinary metabolites Raised antioxidant levels Enzyme induction Stress proteins Protective proteins	Prothrombin Glucose, raised creatinine, GSH conjugates Liver glutathione P450 induction hsp 60, hsp 70, hsp90 Metallothionein Antibodies, e.g. IgG Dermatitis	Warfarin (rodenticide) Pancreatic abnormalities, kidney damage Reactive oxygen species Polycyclic aromatic hydrocarbons Cadmium, heat Heavy metals, e.g. cadmium Antigens Nickel
	Allergic response Histology Clinical observations Population studies	Chromosomal aberrations, micronuclei Heart rate, temperature, sleeping time Breeding patterns, migrations	Genotoxic agents Barbiturates Climate change
Susceptibility	Phenotype Oncogenes	Acetylator phenotype (<i>NAT 2</i>) Dominant oncogenes (<i>ras. mic</i>) Recessive suppressor gene (<i>p52</i>)	-
	'Cancer' genes	Breast-ovary cancer gene (BRCA 1)	

Further examples

Toxicity biomarkers

Table 9.2 Availability of biomarkers in blood					
Biomarker	Blood	Tissue of choice	Comment		
AChE inhibition	+?	Brain	Effects in blood more transient		
Neurotoxic esterases	-	Brain	Enzyme is limited to brain		
Biogenic amines	-	Brain	Changes in blood too transient		
DNA					
Strand breakage	?	Wide range	Nucleated avian red blood cells are possible		
Adduct formation	+	Wide range	Haemoglobin is good substitute for DNA		
SCE	+	Wide range	Blood lymphocytes can be used		
Degree of methylation	?	Wide range	Nucleated avian red blood cells are possible		
MFO	-	Liver	Western blotting technique on leucocytes is possible		
Thyroid	+	Thyroid	Circulating levels of T_3 and T_4 are sensitive		
Retinols	+	Liver	Advances to use plasma are being made		
Porphyrins	+?	Liver	Advances to use plasma are likely		
ALAD	+	Blood	Tissue of choice		
Enzymes	+	Blood	Tissue of choice		
Immunotoxic		Lymphatic cells, bone marrow	Limited number of tests available for blood		

What kind of biomarkers to measure ?

Do we know possible exposure (toxicant) ?

- : specific biomarkers
- ? estrogenic effects in effluents
- ? dioxin-like effects, mutagenicity in urban areas
- ? neurotoxicity (AcChE) in rural areas

Do we expect complex exposures/contamination ?

- integrated approach needed
- nonspecific biomarkers (hsp) ...

Multiple biomarker evaluation

Biomarkers of susceptibility

Figure 2 Representation of the relationships between ambient exposure and critical target dose and the progressive decrease in effective exposure due to various biological barriers. Source: *Low-Dose Extrapolation of Cancer Risks: Issues and Perspectives*, p. 188. Used with permission. \pm 1995 International Life Sciences Institute, Washington, DC, U.S.A.

Toxicokinetics

& Biomarkers of susceptibility

Biomarkers of susceptibility

Figure 1 The biomarker paradigm linking exposure with disease and showing expansion of the classical epidemiological 'black box' to reveal discrete mechanistic stages. Reprinted with permission from *Environ, Sci. Technol.* (1997) **31**, pp. 1837–1848. Copyright 1997 American Chemical Society.

Biomarkers of susceptibility

Metabolism and genotype

- genetic polymorphism in detoxification enzymes
- variability in specific isoenzymes
- susceptibility to "activate" toxicants: <u>example:</u> N-acetylation of arylamines – NAT2
- familial cancers
- susceptibility to genotoxins
- susceptibility to drugs (including anticancer drugs)

Example: genetic polymorphism SNPs - single nucleotide polymorphism

SNP -> affects protein functions

Many genotypes (from many individuals) must be sequenced to identify SNPs

(Some) SNPs identified for some (few) genes

Example: genetic polymorphism

CYP450 Enzymes and Polymorphisms

Enzyme	Fraction of drug metabolism	Major polymorphisms
CYP3A4	40-45%	Rare
CYP2D6	20-30%	*2xn, *4, *10, *17, *41
CYP2C9	10%	*2, *3
CYP2C19	5%	*2, *3
CYP1A2	5%	*1K
CYP2B6	2-4%	-
CYP2E1	2-4%	-
CYP2A6	2%	*4, *9
CYP2C8	1%	*3
CYP3A5	<1%	*3

Alleles known to be involved in polymorphism

The CYP 2D6 gene is extremely polymorphic with more than 70 allelic variants described so far ¹

Ingelman-Sundberg, TRENDS in Pharmacological Sciences, Vol. 25 No.4 April 2004 ¹ Dahl, Clin. Pharmacokinet 2002; 41 (7): 453-470

AMPLICHIP

Roche

Diagnostics

Biomarkers of EXPOSURE

Biomarkers of Exposure

Biomarkers of ... internal / effective dose depending on toxicokinetics

- internal dose (short / long term)

- Cd in urine, DDE in fat tissues
- should be easy to sample (urine, breath)
- instrumental analytical methods (analyses of toxicant)

- effective dose

the chemical interacted with the biological target
 = ADDUCTS

TOXICANT ADDUCTS with BIOMOLECULES

н

O =

NΗ

- 1) Selective adducts (chemical-specific)
 - DNA aducts: <u>styrene</u>-oxide-O6-guanine; N7-guanyl-<u>aflatoxin</u> B1;
 - hemoglobin-pesticides

- extraction and chemical determination (HPLC, GC)

2) Non-selective adducts

Table 1 Reported human haer			
Chemical (type of exposure)	Adduct/analyte	Method	Adduct level (nmol g ⁻ haemoglobin)
N, N- Dimethylformamide (occupational)	3-Methyl-5-isopropylhydantoin	Hydrolysis; GC-MS	
Epichlorohydrin (occupational)	N- (2, 3-Dihydroxypropyl)valine	Modified Edman; GC–MS	0.020 (exposed smokers) 0.007 (exposed non-smokers) 0.013 (control smokers) 0.007 (control non-smokers)
Acetaminophen (drug overdose)	3-(Cystein-S-yl)acetaminophen	Immunoassay	100-4100
PAHs (occupational)	BPDF-Hb	Spectrofluorimetry	0.005-0.139
Ethylene oxide (occupational)	<i>N</i> -Hydroxyethylvaline	Modified Edman; GC–MS	5–20 (exposed) 0.1–0.5 (control smokers) 0.01–0.1 (control non-smokers)
Ethene (occupational)	N-Hydroxyethylvaline	Modified Edman; GC-MS	0.02
Propylene oxide (occupational)	N- Hydroxypropylvaline	Modified Edman; GC–MS	0.05-3.5 (exposed) < 0.02 (unexposed)
Acrylonitrile (smoking)	N- Cyanoethylvaline	Modified Edman; GC–MS	0.09
NNK (smoking)	4- Hydroxy-1-(3-pyridyl) butan-1-one	Hydrolysis; GC-MS	0.0015 (smokers) 0.0005 (non-smokers)
4-ABP (smoking)	4-ABP-cysteine	Hydrolysis; GC-MS	0.00025–0.0025 (smokers) 0.00005–0.0005 (non-smokers)
Acrylamide (occupational, smoking)	N- (2-Carbamoylethyl)valine	Modified Edman; GC–MS	9.5 (production workers) 0.054 (laboratory workers) 0.116 (smokers) 0.031 (non-smokers)
Butadiene (occupational)	N- (2,3,4-Trihydroxybutyl)valine	Modified Edman; GC–MS	0.010–0.014 (exposed) 0.002–0.003 (control)
Styrene (occupational)	2-Phenylethanol	Cleavage with Raney nickel, GC–MS	3.7–8.0 (exposed) 2.0–8.6 (control)

TOXICANT ADDUCTS with BIOMOLECULES

2) Non-selective aducts

 binding with DNA (*proteins*) but no further information on the structure of aduct (*causative agent*)

- Analysis:

- 32P-postlabelling assay
- DNA-strand breaks
 - comet assay
- identification of oxy-DNA 8-hydroxy-2´-deoxyguanosine

<u>32P-postlabelling assay</u>

<u>TLC result</u> A - 2-5 = various adducts B - controls

Comet assay

Example results - Comet assay vs. radiation

8-hydroxy-2´-deoxyguanosine analysis

Oxidative damage to DNA

- many causes
- 8-OH-dG is the most common DNA marker

Analysis:

- HPLC
- immunochemistry (ELISA)

Figure 1. Adjusted urinary 8-OHdG level (ng/mg creatinine) by urinary arsenic and urinary chromium concentrations. Values shown are mean \pm SE. Cut points were determined according to medians (arsenic, 7.7 µg/g creatinine; chromium, 2.0 µg/g creatinine) of urinary creatinine-adjusted levels among all subjects.

PAH-DNA adducts

Occup. exposure (Low / Intermed. / High)

Occupational Non-exposed (NS) VS. Exposed (S)