In vivo biomarkers of effects / response

Do we know the agent ? Do we expect the effect ? : specific biomarkers / non-specific changes

Behavioural and Clinical biomarkers Pathology Clinical chemistry and hematology Enzymatic changes Protein synthesis biomarkers Oxidative stress markers

Behavioural and clinical biomarkers

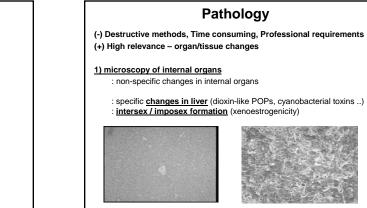
Behavioural and clinical biomarkers

(Histo)pathology

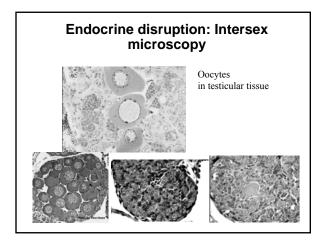
biomarkers

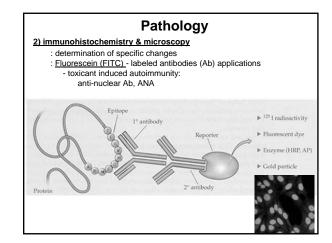
Parameters evaluated

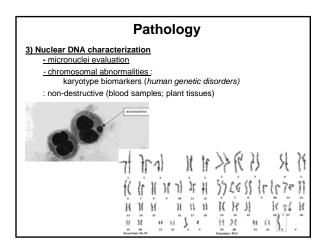
- body weight
- food consumption
- fitness & welness

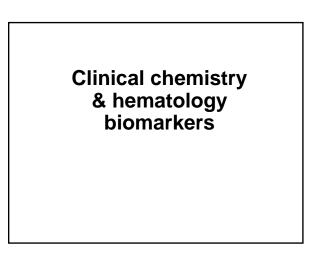

Interpretation

- : are these ? biomarkers ? (effects already demonstrated in vivo)
- biomarkers of existing serious stress / intoxication

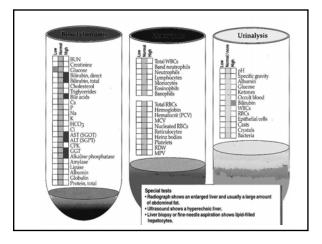

Behavioural and clinical biomarkers


Table 7.4 Effect of some agricultural chemicals on behavioural parameters of the rainbow trout


Chemical	(96hr)	capacity	activity	frequency	Daphnia consumed	% consuming daphnia	% survival from predation
Carbaryl	1.95	0.1-1	0.1-1	>1	0.1-I	0.1-1	<0.01
Chlordane	0.042	>0.02	0.002-0.02	0.002-0.02	0.002-0.02	0.002-0.02	0.002-0.02
DEF	0.66	0.05-0.1	0.005-0.05	0.005-0.05	< 0.005	0.005-0.05	0.005-0.05
2,4-DMA	100	5-50	5-50	5-50	5.50	0.5-5	5-50
Methyl parathion	3.7	>0.1	< 0.01	0.01-0.1	<0.1	0.01-0.1	0.01-0.1
Pentachlorophenol	0.052	>0.02	0.002-0.02	0.002-0.02	0.0002-0.002	>0.02	0.002-0.02



Example: Liver damage by cyanobacterial toxins microcystins

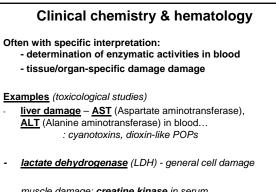

Clinical chemistry & hematology

Non-destructive (BLOOD, URINE sampling)

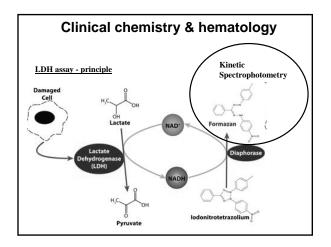
Multipe parameters can be measured

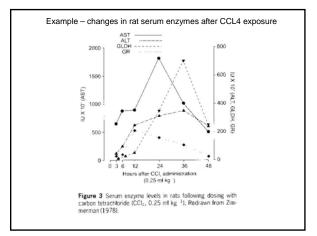
- responses to various types of stresses (including toxic stress)

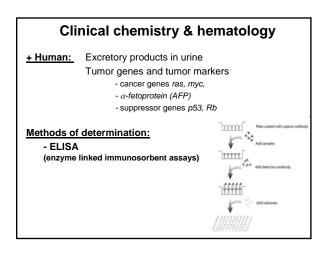
- "normal" value ranges known for humans, rats and few other species (*limited use as biomarkers in other organisms*)



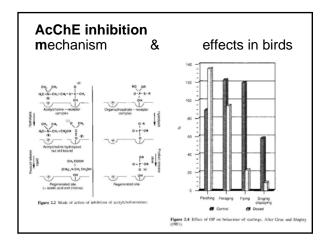
Clinical chemistry & hematology

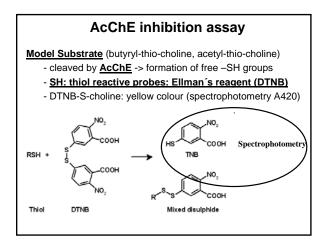

Methods:

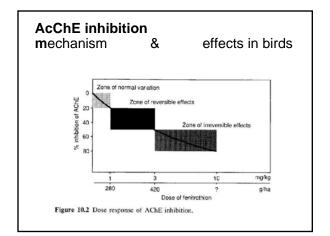

- automatic biochemical and hematological analyzers - different "analytes" various principles of methods

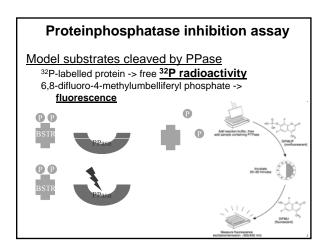


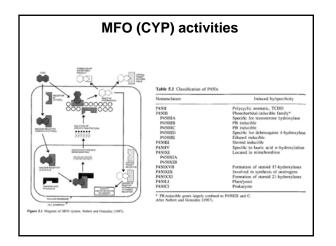
muscle damage: <u>creatine kinase</u> in serum
isozymes - tissue specific (brain, muscle, heart);

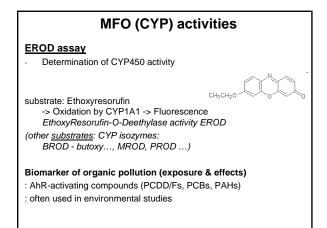


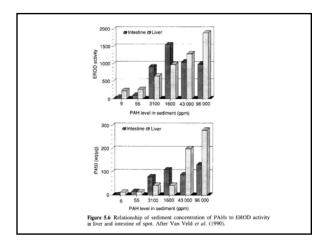

PHAHs		
DDE	+ Quail	Dieter (1974)
	+ Starling	Dieter (1975)
DDT	= Redstart	Karlsson et al. (1974)
PCBs	= Redstart	Karisson er al. (1974)
	+ Quail	Dieter (1974)
	+ Starling	Dieter (1975)
Endrin	- Fish	Sharma et al. (1979)
	(Ophiocephalus)	(1979)
Photomirex	+ Rat	Chu et al. (1981)
OPs		
Malathion	+ Rat	Dragomirescu et al. (1975)
	+ Quail	Dieter (1974)
	+ Starling	Dieter (1975)
	- Carp	Dragomirescu et al. (1975)
Methylparathion	+ Chicken	Somlyay et al. (1989)
Phosmethylan	+ Chicken	
Methidathion	+ Carp	Asztalos et al. (1990)
Metals		
Cadmium chloride	= Brook trout	Christensen et al. (1977)
Copper sulphate	+ Carp	Dragomirescu et al. (1975)
Lead nitrate	= Brook trout	Christensen et al. (1977)
Mercuric chloride	+ Quail	Dieter (1974)
	= Brook trout	Christensen et al. (1977)
	+ Fish	Verma and Chand (1986)
	(Notopterus)	
Methylmercury	+ Starling	Dicter (1975)
Others		
Oil	= Striped mullet	Chambers et al. (1979)
Paraquat	+ Carp	Asztalos et al. (1990)

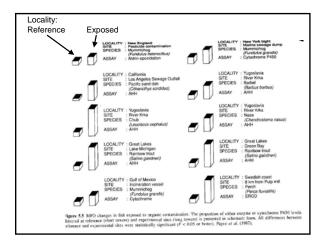


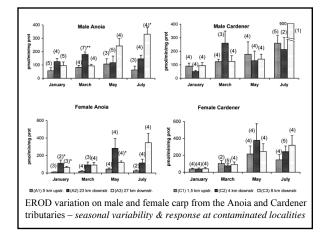

Changes in enzyme activities

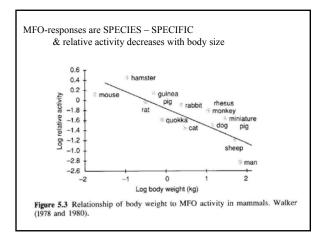


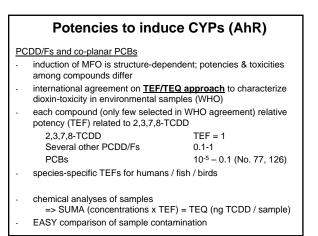


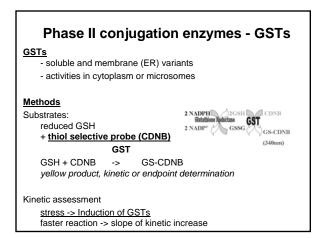


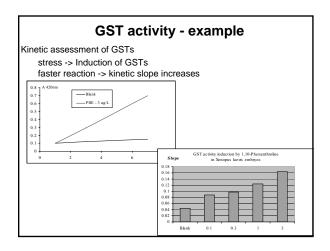












TEFs for selected PCDDs					
CONGENER	TOXIC EQUIVALENCY FACTOR (TEF)				
	HUMANS MAMMAI		BIRDS ^a		
2,3,7,8-TCDD	1	1	1		
1,2,3,7,8-PeCDD	1	1	1 f		
1,2,3,4,7,8-HxCDD	0.1 a	0.5	0.05 f		
1,2,3,6,7,8-HxCDD	0.1 *	0.01	0.01 f 0.1 f		
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	0.1 * 0.01	0.01 ° 0.001	<0.001 f		
1,2,5,4,6,7,8-mpCDD	0.001 *	0.001	<0.001		

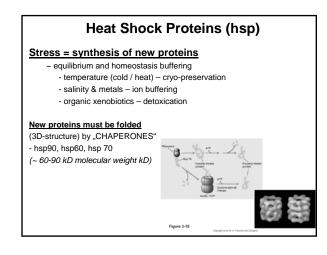
Congener Number	IUPAC Chlorobiphenyl Prefix	1994 WHO TEFs(1)	1997 WHO TEFs(2)		
			Humans/ Mammals	Fish	Birds
PCB-77	3,3',4,4'-Tetra-	0.0005	0.0001	0.0001	0.05
PCB-81	3,4,4',5-Tetra-	-	0.0001	0.0005	0.1
PCB-105	2,3,3',4,4'-Penta-	0.0001	0.0001	<0.000005	0.0001
PCB-114	2,3,4,4',5-Penta-	0.0005	0.0005	<0.000005	0.0001
PCB-118	2,3',4,4',5-Penta-	0.0001	0.0001	<0.000005	0.00001
PCB-123	2,3',4,4',5'-Penta-	0.0001	0.0001	<0.000005	0.00001
PCB-126	3,3',4,4',5-Penta-	0.1	0.1	0.005	0.1
PCB-156	2,3,3',4,4',5-Hexa-	0.0005	0.0005	<0.000005	0.0001
PCB-157	2,3,3',4,4',5'-Hexa-	0.0005	0.0005	<0.000005	0.0001
PCB-167	2,3',4,4',5,5'-Hexa-	0.00001	0.00001	<0.000005	0.00001
PCB-169	3,3',4,4',5,5'-Hexa-	0.01	0.01	0.00005	0.001
PCB-170	2,2',3,3',4,4',5-Hepta-	0.0001	-		-
PCB-180	2,2',3,4,4',5,5'-Hepta-	0.00001	-		-
PCB-189	2,3,3',4,4',5,5'-Hepta-	0.0001	0.0001	< 0.000005	0.00001

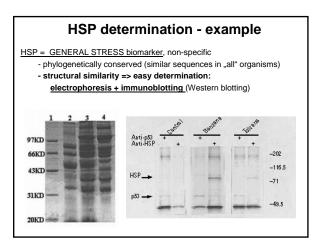
Protein levels (synthesis) biomarkers

PROTEIN SYNTHESIS

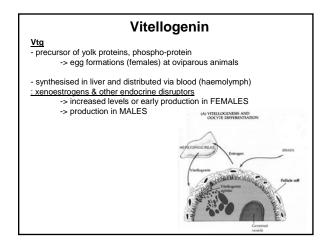
Protein determination

amount (concentration)
activity (see enzymatic assays)

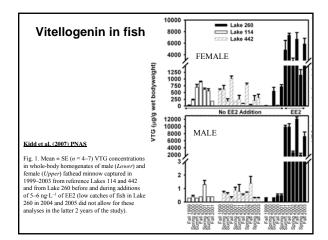

Amount quantification

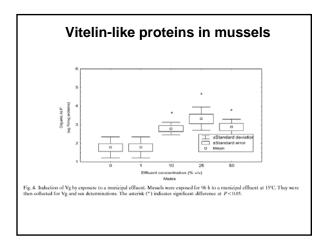

- mRNA levels (*in vitro assays*) - protein
 - electrophoresis and Western-(immuno)blotting
 - ELISA techniques

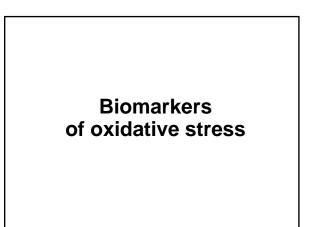
Examples


heat shock proteins (hsp90, hsp60, hsp 70, ubiquitin) metalothioneins

Vitellogenin(-like) Vtg proteins in male

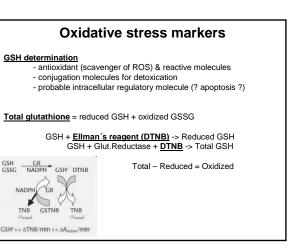

Vitellogenin

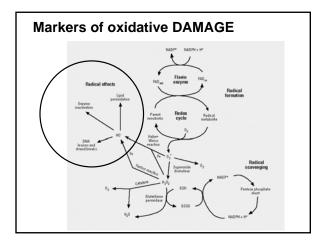

VTG Determination

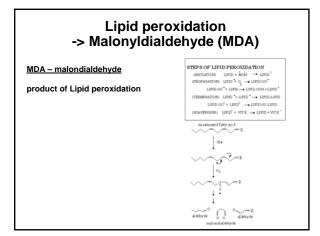

- 1) ELISA (exposed organisms F/M, in vitro - in vivo - exposed organisms (*biomarker in vivo*) - in vitro production in hepatocytes exposed to effluents
- (marker of estrogen-like presence (-) specific Antibodies necessary for each species (low crossreactivity)

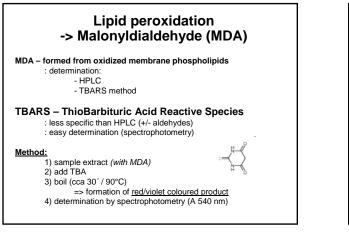
2) "Vitelin-like proteins"

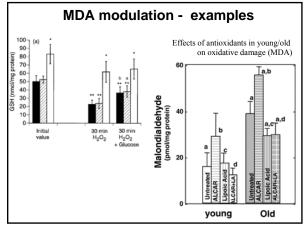
- total amount of "alkali-labile" phosphate in haemolymph (mussels)
- alkaline extraction of P from sample & determination


Oxidative stress markers


Several parameters respond to oxidative stress


: enzymes (GPx, GR, GSTs) - enzymatic activities (see elsewhere)


: antioxidants (GSH, vit E)


: markers of oxidative damage - <u>MDA</u>, - 80H-dG (see DNA damage)

