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The single large or several small (SLOSS) problem has been addressed in a large number of
empirical and theoretical studies, but no coherent conclusion has yet been reached. Here I
study the SLOSS problem in the context of metapopulation dynamics. I assume that there is
a fixed total amount A0 of habitat available, and I derive formulas for the optimal number n
and area A of habitat patches, where n ¼ A0=A: I consider optimality in two ways. First, I
attempt to maximize the time to metapopulation extinction, which is a relevant measure for
metapopulation viability for rare and threatened species. Second, I attempt to maximize the
metapopulation capacity of the habitat patch network, which corresponds both with
maximizing the distance to the deterministic extinction threshold and with maximizing the
fraction of occupied patches. I show that in the typical case, a small number of large patches
maximizes the metapopulation capacity, while an intermediate number of habitat patches
maximizes the time to extinction. The main conclusion stemming from the analysis is that the
optimal number of patches is largely affected by the relationship between habitat patch area
and rates of immigration, emigration and local extinction. Here this relationship is
summarized by a single factor z; termed the patch area scaling factor.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

The acronym SLOSS stands for the phrase
single large or several small, referring to the
question of whether it would be beneficial for the
conservation of species to divide a given total
amount of habitat into one large or several small
habitat patches. The SLOSS problem has been
addressed in a large number of empirical and
theoretical studies. However, the objectives,
methods and interpretations of these studies
have been so distinctive that no coherent
conclusion has yet appeared.

Throughout this paper, I will denote by SL
and SS the ‘‘single large’’ and ‘‘several small’’
nE-mail address: otso.ovaskainen@helsinki.fi
. Ovaskainen).
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strategies, respectively. More precisely, SL
stands for a strategy where a few (if not just
one) large patches are preferred, and SS for a
strategy in which a large number of small
patches is preferred. I will denote by IN the
intermediate strategy, where a compromise
between the SL and SS ends of the continuum
is optimal.

I will address the SLOSS problem in the
context of single-species metapopulation dy-
namics, assuming that the long-term persistence
of the species is based on recolonizations of
empty habitat patches by migrants from extant
populations. I will seek for the optimal number
of habitat patches with two specific objectives in
mind. First, I attempt to maximize the time to
metapopulation extinction, which is an adequate
r 2002 Elsevier Science Ltd. All rights reserved.
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objective for the conservation of rare species.
Second, I attempt to maximize the metapopula-
tion capacity of the habitat patch network.
As shown by Hanski & Ovaskainen (2000),
metapopulation capacity sets the deterministic
threshold condition for persistence, and thus
maximizing metapopulation capacity is equiva-
lent with minimizing the risk of deterministic
extinction. In addition, maximizing metapopula-
tion capacity corresponds with maximizing the
Tabl

Sample of the SLOSS literature according to the
maximize the number of species that will eventual

occurring species, (3) maximize time to extinc

Type of study Objec

Biogeographical theory, birds in islands 1
Biogeographical theory 1
Biogeographical theory 1
Biogeographical theory 1

Arthropods in experimental islands 2
Higher plants in quarry reserves 2
Birds in islands 2
Literature study 2
Vascular plants in deciduous woods 2
Mammals in islands 2
Birds in islands 2
32 data sets of different taxa 2
Vascular plants in islands 2
Vascular plants in woodlots 2
Vascular plants in woodlots 2
Birds in woodlots 2
27 data sets of different taxa 2
Vascular plants in deciduous woods 2
10 data sets of different taxa 2
Butterflies in forest fragments 2
Small mammals in mountaintop ‘‘islands’’ 2
148 data sets of different taxa 2
Vascular plants in mires 2
Vascular plants in woodlots 2

Analytical model 3
Analytical model 3
Stochastic simulation model 3
Experiment with Drosophila flies 3
Analytical model and five data sets 3
Experiment with bacteria and protozoa 3
Stochastic simulation model 3
Analytical model 3
Analytical model 3

Analytical model 4
Analytical model 4

nThe abbreviations SL and SS stand for the ‘‘single la
abbreviation IN stands for an intermediate strategy.
average fraction of occupied patches (Hanski &
Ovaskainen, 2000), and it relates thus to max-
imizing the abundance of the species.

I start by discussing the existing SLOSS
literature according to the objective assigned
for the SLOSS problem. A sample of the
literature is summarized in Table 1.

1. Maximize the number of species that will

eventually survive: From the conservational point
e 1
objective assigned for the SLOSS problem: (1)

ly survive, (2) maximize the number of currently

tion, (4) maximize metapopulation capacity.

tive Conclusion Reference

SL Diamond (1975)
SL May (1975)
SL Wilson & Willis (1975)
SL Diamond & May (1976)

SS Simberloff & Abele (1976)
SS Higgs & Usher (1980)
IN Gilpin & Diamond (1980)
SS Simberloff & Abele (1982)
SS Järvinen (1982)
SL Patterson & Atmar (1986)
SL Patterson (1987)
SS Quinn & Harrison (1988)
SL Deshaye & Morriset (1989)
SS Dzwonko & Loster (1989)
SS Zacharias & Brandes (1990)
SL Blake (1991)
SLOSS Wright & Reeves (1992)
SS Sætersdal (1994)
IN Lomolino (1994)
SS Baz & Garcia-Boyero (1996)
SS Skaggs & Boecklen (1996)
SS Boecklen (1997)
SS Virolainen et al. (1998)
SS Honney et al. (1999)

SL Wright & Hubbell (1983)
SL or IN Quinn & Hastings (1987)
SL Burkey (1989)
SL Forney & Gilpin (1989)
SL Burkey (1995)
SL Burkey (1997)
SLOSS Pelletier (2000)
SL Etienne & Heesterbeek (2000)
IN Present study

IN Etienne & Heesterbeek (2000)
SL Present study

rge’’ and ‘‘several small’’ strategies, respectively, and the
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of view, the most natural definition of the
SLOSS problem is to ask which kind of network
would ensure the long-term persistence of the
largest number of species. In spite of its
fundamental importance, this question has been
addressed almost solely in the beginning of the
SLOSS debate. In their seminal works, Diamond
(1975), May (1975) and Wilson & Willis (1975)
approached this question through the theory of
island biogeography (MacArthur & Wilson,
1967), the species–area curve and exponentially
distributed relaxation times. The authors gave
support for the SL strategy, reasoning that many
species that would have a good chance of
surviving in a single large reserve would have
their survival chances reduced if the same area
were apportioned among several smaller re-
serves. These studies did not account for
metapopulation dynamics, i.e. that a network
of habitat patches may buffer the species against
extinction by allowing for recolonizations of
empty habitat patches by migrants from extant
populations.

Simberloff & Abele (1976) conducted an
experimental study in a mangrove island archi-
pelago, and found out that an SS network
contained more species than an SL network,
and questioned the earlier results. Terborgh
(1976) noted that the objectives of these two
studies had been different: in the experiment of
Simberloff & Abele (1976), there was a mainland
acting as a continuous source of migrants,
whereas the studies based on the theory of island
biogeography had assumed that all habitat
outside of the nature protection network would
be lost. The debate continued, but the original
question was almost forgotten. Only recently,
the interest has returned to the question of
maximizing the number of species that will
eventually survive (Cabeza & Moilanen, 2001).

2. Maximize the number of currently occurring
species: Like the pioneering study of Simberloff
& Abele (1976), most empirical SLOSS studies
have compared whether an SL or an SS habitat
patch network currently contains more species,
not considering whether the species will survive
or not. The majority of these studies has
concluded that SS is the better strategy, but
there are also exceptions (Table 1). The most
coherent conclusion from these studies is that
the result depends on the level of nestedness
(Simberloff & Mertin, 1991; Bolger et al., 1991;
Wright & Reeves, 1992). A biota is said to
exhibit a nested pattern if species compositions
from species poor samples are largely subsets of
those from species rich samples (Patterson,
1987). If the biota is highly nested, small habitat
patches typically contain species that are found
as a subset of species present in a large habitat
patch, and consequently SL is found to be the
better strategy. However, if the biota is not
highly nested, SS tends to maximize the number
of species.

Though comparing whether an SL or an SS
network contains more species has an interest in
itself, it has been criticized that the numerous
studies on this topic do not really contribute to
the design of nature conservation networks. Cole
(1981) argued that many of the empirical studies
finding the SS strategy to be better were
influenced by a mainland acting as a source. If
the mainland would not be protected, many of
the species in the small habitat patches would be
lost. It has also been questioned whether it is
simply the species number that matters, or
whether one should weigh the species in one
way or another. For example, in a study of
vascular plants in fragments of old-growth
forests, Fukamachi et al. (1996) found that the
maximum number of species was achieved by the
SS strategy, but most of the rarest species were
found solely in the largest forest patches.

3. Maximize time to extinction: Much of the
theoretical SLOSS literature has focused on
maximizing the persistence time of a single
species. The models have been typically based
on some specific type of local dynamics con-
nected by some specific type of metapopulation
dynamics. Most of these studies have concluded
that the SL strategy is optimal (Table 1). It is,
however, important to note that this conclusion
depends critically on the underlying causes of
local extinctions (see, e.g. Quinn & Hastings,
1987; Etienne & Heesterbeek, 2000). Let me
illustrate by considering two extreme cases.
First, if local extinctions are caused solely by
demographic stochasticity, the lifetime of a local
population scales exponentially with the number
of individuals (Goel & Richter-Dyn, 1974) and
thus (assuming constant density) exponentially
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with the size of the habitat patch. Almost
independent of the type of metapopulation
dynamics, this assumption will favour the SL
strategy. The other extreme is to assume that
local extinctions are caused solely by cata-
strophic events, which always kill the local
population independent of its size. This assump-
tion is likely to lead to the SS strategy, as now
the risk of extinction should be spread among a
large set of small populations. Another impor-
tant factor is the type of metapopulation
dynamics assumed. If there is no migration
between habitat patches, recolonizations are
not possible, and practically all that matters
are the lifetimes of local populations, favouring
the SL strategy. The only factor that could
favour the SS strategy is that a large number of
patches provides a large number of independent
populations, and the metapopulation is extinct
only after all of the patches have become extinct.
However, this advantage is likely to be negligible
as compared to the advantages of the SL
strategy. In contrast, if migration is included,
the possibility of recolonizations may change the
result completely, now in favour of the SS
strategy.

For example, Quinn & Hastings (1987)
assumed no migration between habitat patches.
They found that if extinctions are caused by
demographic stochasticity, SL is a better strat-
egy once local populations reach a small thresh-
old size. If local extinctions were caused by
environmental stochasticity, Quinn & Hastings
(1987) found that the time to extinction is
maximized when the number of habitat patches
equals the square root of the number of
individuals potentially inhabiting them, suggest-
ing an IN strategy. Burkey (1989) and Wright &
Hubbell (1983) modelled migration between
habitat patches, but assumed solely demographic
stochasticity, concluding that SL is the optimal
strategy.

An exception to the general pattern was given
by Pelletier (2000), who concluded that SS is the
optimal strategy if migration is not allowed for,
even if local population dynamics are driven
solely by demographic stochasticity. Pelletier
(2000) derived his conclusions from a stochastic
simulation model, but as he did not specify the
details of the model, it is not possible to assess
the reason for the unexpected result. Pelletier
(2000) found that SL is the optimal strategy if
migration with high mortality is assumed. This
is to be expected, as in this case the loss of
emigrating individuals is not compensated by
immigration, and a large patch is expected to
have a low per capita emigration rate. Assuming
a lower mortality level, he concluded that neither
of the SL nor the SS strategies is optimal, but the
species persistence is maximized by a self-similar
distribution of patch sizes.

Etienne & Heesterbeek (2000) based their
analysis on the plausible assumption that, for a
fair comparison, SL, IN and SS networks should
have the same density of habitat. As Etienne &
Heesterbeek (2000) restricted their analysis to
nearest-neighbour dispersal, this assumption en-
tails that larger patches have larger interpatch
distances. Assuming further that dispersal
success decreases exponentially with distance,
Etienne & Heesterbeek (2000) concluded that
close to the SL end of the continuum, the time to
metapopulation extinction is roughly given by
the lifetime of a local population, in which case
the SL strategy is optimal. However, the verbal
argument of Etienne & Heesterbeek (2000)
essentially ignores the possibility that metapo-
pulation level dynamics may compensate what is
lost at the level of local population dynamics.

There appear to be no field studies that would
have addressed the persistence time of a single
species in the SLOSS context. In experimental
laboratory studies, both Forney & Gilpin (1989)
and Burkey (1997) found that the SL strategy is
optimal for maximizing the time to extinction.
This is consistent with the theoretical studies in
the sense that the effect of environmental
stochasticity is likely to be low in laboratory
studies.

4. Maximize metapopulation capacity: Hanski
& Ovaskainen (2000) considered a deterministic
metapopulation model with variation in patch
areas and connectivities. They concluded that
metapopulation persistence is possible only if
the metapopulation capacity of the landscape is
greater than the ratio of extinction and coloniza-
tion rate parameters, that is, if lM4d holds,
where lM is the metapopulation capacity of the
landscape and d ¼ e=c is a species parameter
determined by the extinction and colonization
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rate parameters e and c; respectively. Metapo-
pulation capacity is a landscape index, which
characterizes the ability of a habitat patch
network to support a viable metapopulation of
the focal species. The metapopulation capacity
of a particular landscape depends on the spatial
scale at which the focal species migrates, but is
independent of the extinction and colonization
rate parameters of the species. As a first
approximation, it may be considered to measure
the amount of habitat available, but in addition
it takes into account the actual spatial config-
uration of the habitat patch network. Meta-
population capacity increases with increasing
number of habitat patches, with increasing sizes
of habitat patches, and with decreasing inter-
patch distances. A related and widely used
concept in epidemiology is the basic reproduc-
tive ratio R0; which has been called the
‘‘colonization potential’’ in metapopulation the-
ory (Etienne & Heesterbeek, 2000), and is given
by R0 ¼ lM=d: R0 gives the expected number of
colonizations that a single occupied habitat
patch will generate during its lifetime in an
initially empty network, the threshold condition
for persistence being given by R041:

Maximizing the metapopulation capacity lM

is equivalent to maximizing the species abun-
dance (in the sense of a weighted fraction of
occupied patches pn at equilibrium), as the two
quantities are related as pn ¼ 1� d=lM (Hanski
& Ovaskainen, 2000; Ovaskainen et al., 2002).
As will be shown below, maximizing the
metapopulation capacity lM (or equivalently
R0) differs from maximizing the time to extinc-
tion in the sense that the deterministic approach
excludes the possibility of extinction due to
extinction–colonization stochasticity in the
patch occupancy level. The only study that has
so far addressed the SLOSS problem with the
objective of maximizing metapopulation capa-
city concluded that an IN strategy would be
optimal (Etienne & Heesterbeek, 2000). This
conclusion depends strongly on the assumptions
that dispersal is restricted to nearest neighbours,
and that dispersal success decreases exponen-
tially with distance.

The above classification of the objectives
assigned to the SLOSS problem is by no means
exhaustive. For example, a possible objective
could be to maintain genetic variation, both over
the entire species range, and, if inbreeding
depression is important, within local popula-
tions. However, it should be clear already by the
above discussion that the SLOSS debate is far
from being solved, but has rather become
increasingly confused. Table 1 illustrates that
practically any possible combination of reason-
ing and conclusion has been used during the 25
years of the SLOSS debate. It is no wonder that
Soulé & Simberloff (1986) suggested that the
SLOSS issue should be buried as being not
useful in designing nature reserves. Their idea
was that decisions on reserve area should be
based on the minimum area needed to sustain a
viable population, habitat diversity, and auto-
ecological data. Worthen (1996) also emphasized
the need for species- and site-specific informa-
tion, arguing that ‘‘no single index should be
expected to distill the informational content of
an entire community, let alone predict how it will
react to habitat reduction or fragmentation’’.

In spite of the above pessimism, with which I
largely agree, I will use here a single-species
metapopulation model to address the SLOSS
problem. The main reason for this exercise is not
to provide an extra combination of reasoning
and conclusion, but rather to draw attention on
some key factors that are relevant to the SLOSS
framework. My main conclusion is that the
optimal solution to the SLOSS problem is
determined by the patch area scaling factor z;
which integrates the effect of patch area on
metapopulation dynamics. Somewhat less im-
portantly, my ‘‘solution’’ to the SLOSS problem
will be that the IN strategy is optimal for
maximizing the time to extinction, while the SL
strategy is optimal for maximizing the metapo-
pulation capacity.

In the metapopulation context, the SLOSS
problem is basically an attempt to find the
optimal compromise between the advantages of
the SL and SS ends of the continuum. The
advantages of the SL end are found at the local
scale. The survival chance of a local population,
and the number of individuals emigrating out
and immigrating in are typically expected to
increase with increasing patch size. The two
former effects are mostly due to increasing
population size with patch area. The advantages
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of the SS end are due to the fact that ‘‘all eggs
are not in the same basket’’, the extinction risk
being spread among a larger set of patches. This
advantage is especially strong if local dynamics
are assumed to be independent of each other, as
in this case the extinction time grows exponen-
tially with the number of habitat patches
(Andersson & Djehiche, 1998; Ovaskainen,
2001). Although I will follow this assumption,
I note that this is not always the case, as
for instance, regional stochasticity may result
in a spatially correlated extinction risk, which
may greatly increase the risk of metapopu-
lation extinction (Hanski, 1999; Ovaskainen,
2002).

The present work stems from the analysis of
Hanski (1996), who assumed that the extinction
risk E of a local population depends on patch
area A as E ¼ e=Azex ; where e is a parameter and
zex describes how extinction risk depends on
patch area. Hanski (1996) measured the perfor-
mance of a metapopulation by the average
fraction of occupied patches, and used stochastic
simulations to illustrate that the optimal size of
habitat patches increases with increasing scaling
parameter zex: However, it is not only the
extinction risk that scales with patch area, but
also the processes of immigration and emigra-
tion (for empirical examples, see e.g. Moilanen
et al., 1998; Hanski et al., 2000; Ovaskainen,
2002). I will extend the result of Hanski (1996)
by showing that the optimal size of habitat
patches depends on the patch area scaling factor
z ¼ zim þ zem þ zex; where the three terms indi-
cate how the key metapopulation processes,
namely immigration, emigration, and extinction
of local populations, scale with patch area.

I will start by formulating a metapopulation
model (the spatially realistic Levins model),
which I will then use to address the SLOSS
problem. Finally, I will attempt to estimate the
realistic range of the patch area scaling factor z
from the available data.

The Model

I assume that there is a fixed total amount A0

of habitat available, and I attempt to derive a
formula for the optimal number n and area A

of habitat patches, where n ¼ A0=A: I consider
‘‘optimality’’ in two ways: in the sense of
maximal metapopulation capacity and in the
sense of maximal time to metapopulation
extinction.

Although I concentrate on a spatially homo-
geneous case, meaning that all patches are
assumed to be identical and equally connected
to each other, it is instructive to start with a
spatially structured model. The reason for this is
two-fold. First, it is not only the patch sizes that
matter in the SLOSS context, but also the
interpatch distances, and the latter cannot be
addressed without a spatial settings. Second, real
patch networks are not homogeneous, but
typically show great variations in patch size
and connectivity. Although I restrict my analysis
to the homogeneous case, the results may be
generalized to heterogeneous patch networks
(see below).

I will consider the spatially realistic Levins
model (Hanski & Ovaskainen, 2000; Ovaskainen
& Hanski, 2001), where the phrase ‘‘spatially
realistic’’ means that the model accounts for
patch areas and locations, but ignores any
further details of the spatial configuration of
the habitat patch network. The model belongs to
the class of patch occupancy models, in which
patches are classified simply as empty or
occupied. Instead of explicitly modelling local
population dynamics, the extinction and coloni-
zation rates are directly connected to the spatial
structure of the habitat patch network. The
extinction rate Ei of an occupied patch i is
assumed to be Ei ¼ e=A

zex

i ; where e is a species-
specific extinction rate parameter, Ai is the area
of patch i; and zexX0 describes how patch area
affects the risk of extinction. The reasoning
behind this assumption is that the expected
population size is larger in a larger patch, and
that the risk of extinction generally decreases
with population size. The colonization rate Ci of
an empty patch i is given by Ci ¼

P
jai cijoj;

where cij is the contribution that an occupied
patch j makes to the colonization rate of the
empty patch i; and oj ¼ 1 if patch j is occupied
and oj ¼ 0 if it is empty. I assume that cij ¼
cA

zim

i A
zem

j f ðdijÞ; where c is a colonization rate
parameter, and zimX0 and zemX0 describe how
patch area affects immigration and emigration,
respectively. The function f describes the
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dispersal kernel, i.e. the effect of the interpatch
distance dij on migration success. The reasoning
behind the assumptions made on the coloniza-
tion rate are that only occupied patches may
contribute to the colonization of an empty
patch, that large occupied patches are expected
to send more emigrants, and that large empty
patches are expected to attract more immigrants.
Although I assumed above that all the three
scaling factors are positive, it might be possible
that some of them are negative. For example, the
per capita emigration rate may be greatly larger
in small patches, which may lead to zemo0 if the
expected population size grows sufficiently
slowly with patch size. The assumption that the
scaling factors are positive is not needed in the
analysis, and the results to be given thus hold
also for negative scaling factors.

The model may be considered either in a
stochastic or in a deterministic setting. The
stochastic version of the model is defined as a
Markov process determined by the above
extinction and colonization rates, the state space
consisting of all the 2n possible combinations of
empty and occupied patches. The deterministic
model is defined as the mean-field approxima-
tion of the stochastic model, modelling the rate
of change in the probability for patch i being
occupied as

dpi

dt
¼

X
jai

cijpj

 !
ð1� piÞ � Eipi: ð1Þ

As shown by Ovaskainen & Hanski (2001), the
deterministic model predicts that long-term
persistence is possible only if the condition
lM4d is valid. Here lM is the metapopulation
capacity of the landscape, which measures the
capacity of the habitat patch network to support
the persistence of the species. Mathematically,
lM is given by the leading eigenvalue of the n � n
nonnegative matrix M; the elements of which are
defined by mij ¼ A

zexþzim

i A
zem

j f ðdijÞ for iaj and
mii ¼ 0. Here the factor A

zex

i is proportional to
the expected lifetime of the local population in
patch i and A

zim

i A
zem

j f ðdijÞ is proportional to the
rate at which immigrants originating from patch
j succeed to colonize patch i: The threshold
condition for persistence is determined by the
species parameter d; which is defined as the ratio
of the extinction and colonization rate para-
meters, d ¼ e=c:

In the rest of the paper, I will restrict the
analysis to the homogeneous version of the
model. In this case, the extinction rate of an
occupied patch reduces to E ¼ e=Azex and the
colonization rate of an empty patch reduces to
C ¼ ckAzimþzem f ðdÞ; where k is the number of
occupied patches. In the homogeneous model,
all the n patches are assumed to be at the same
distance d from each other. As this assumption
is impossible already from the geometric point
of view, it is important to make the reasoning
behind the assumption precise. As specified
above, I do not assume that dispersal is
restricted to nearest neighbours only, but I
assume that dispersal success reduces gradually
with increasing distance. With this assumption, d
should be interpreted as the effective dispersal
distance between the habitat patches, character-
izing typical migration distances within the patch
network. Etienne & Heesterbeek (2000) assumed
that the fraction of habitat is independent of the
size of habitat patches, meaning that the n
patches are located within a landscape of fixed
size. Restricting dispersal to nearest neighbours,
they argued that the interpatch distance d should
increase with increasing patch area. Contrary to
the study of Etienne & Heesterbeek (2000), I
make here the assumption that the effective
distance d is independent of the number of
habitat patches. Figure 1 demonstrates that, in
the present case, this assumption is roughly
consistent with the assumption that the n patches
are located into a total area of fixed size,
illustrating an important distinction between
gradually decreasing dispersal success in the
present model and the nearest-neighbour dis-
persal in the Etienne & Heesterbeek (2000)
model.

Assuming homogeneity greatly simplifies the
analysis of the model, but also restricts the
applicability of the results. However, as men-
tioned above, the results to be given here
generalize to heterogeneous habitat patch net-
works. The reason for this is that metapopula-
tion dynamics in a heterogeneous patch network
can be approximated by metapopulation dy-
namics in a homogeneous patch network with
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Fig. 1. Dependence of the effective interpatch distance
on the number of habitat patches. An N � N patch
network (with N ¼ 2;y; 8) of n ¼ N2 patches was located
uniformly in the unit square. The metapopulation capacity
of the habitat patch network was calculated with the
spatially realistic Levins model, where the dispersal kernel
was defined as f ðdÞ ¼ e�ad : The dots depict the effective
interpatch distance, defined as the distance which gives the
same metapopulation capacity for a homogeneous model
with equal distances among patches. The parameter a
attains the values a ¼ 1; 2; 4; corresponding to the dots
from top to bottom. The result is independent of the
parameter z:
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appropriately transformed parameter values
(Ovaskainen & Hanski, 2001, 2002; Ovaskainen,
2002).

SLOSS

For a homogeneous habitat patch network,
the metapopulation capacity is given by

lM ¼ ðn � 1ÞAzf ðdÞ; ð2Þ

where the patch area scaling factor z ¼ zim þ
zem þ zex measures how strongly patch area
affects metapopulation dynamics (Ovaskainen
& Hanski, 2001). Approximating n � 1 by n and
substituting n ¼ A0=A in eqn (2), I obtain

lMEAz�1A0 f ðdÞ ¼ n1�zAz
0 f ðdÞ: ð3Þ

Equation (3) suggests that if z41; SL is the
optimal strategy for maximizing lM ; whereas
zo1 would lead to the SS strategy. This is to be
expected, as z41 ðzo1Þ indicates that the
metapopulation capacity of a patch network
grows with patch area faster (slower) than
linearly. Equation (3) depends on the approx-
imation ðn � 1Þ=nE1; which is not expected to
hold for very small n; as illustrated by the fact
that n ¼ 1 leads to lM ¼ 0: Equation (3) thus
actually suggests that for z41 the metapopula-
tion capacity is not maximized by a single patch,
but rather by a small number of habitat patches.
This is also evident in Fig. 2, where the value of
lM attains its maximum either at n ¼ 2 or at
n ¼ 3:

It is worth emphasizing here that the patch
area scaling factor z integrates the effect of patch
area on metapopulation dynamics. It is con-
venient that metapopulation capacity does not
depend separately on the individual components
zim; zem and zex; so that it suffices just to consider
the integrated patch area scaling factor z:

As the time to extinction is exponentially
distributed, we will lose no generality by
attempting to maximize the expected time to
extinction. The expected time to metapopulation
extinction (using the lifetime of a local popula-
tion as a time unit) behaves for lM4d as
(Andersson & Djehiche, 1998; Ovaskainen,
2001)

T ¼

ffiffiffiffiffiffi
2p
n

r
enð #d�1�log #dÞ

1� #d
ð1þ Oð1=nÞÞ; ð4Þ

where #d ¼ d=lM is the scaled species parameter.
As the exponential term dominates already with
small n; I will simplify the analysis by attempting
to maximize

gðn; #dÞ ¼ nð #d� 1� log #dÞ: ð5Þ

If zo1; #d� 1� log #d is maximized as n-N;
and thus the SS strategy is optimal. The
interesting case occurs if z41; as in this case
there is a trade-off between maximizing the
factors n and #d� 1� log #d in eqn (5). For a
given species (i.e. a given species parameter d)
and fixed amount of total habitat, n behaves [by

eqn (3)] as #d
1=ðz�1Þ

: Thus, we should maximize

hð #dÞ ¼ ð #d� 1� log #dÞ #d
1=ðz�1Þ

: Setting h0ð #dÞ ¼ 0; it

turns out that the maximum occurs when ð #d�
1Þz ¼ log #d: This equation cannot be solved

analytically, but #dðzÞE1=z2 gives a reasonable
approximation (Fig. 3). By eqn (3), the optimal
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Fig. 2. Dependence of the SLOSS problem on the parameters z; d and A0: Each panel shows how the metapopulation
capacity (lower figure) and the time to extinction (upper figure) depend on the number of habitat patches. Panel a is a
reference case with parameters z ¼ 1:5; d ¼ 1; A0 ¼ 5 and f ðdÞ ¼ 1: In each of the panels b–d, one of the parameters is
changed while all the other parameters are held fixed. The changed parameters are z ¼ 2:0 (panel b), d ¼ 1:5 (panel c) and
A0 ¼ 4 (panel d). In each panel, the horizontal line corresponds to #d ¼ 1=z2; the vertical line demonstrating that this roughly
coincides with the maximal mean time to extinction.
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size and number of habitat patches are given by

AE
d

#dðzÞA0f ðdÞ

� �1=ðz�1Þ

;

nE
Az

0f ðdÞ #dðzÞ
d

" #1=ðz�1Þ

: ð6Þ

Based on eqn (6), I conclude that for z41:

1. The optimal size of habitat patches in-
creases (and thus their number decreases) with
increasing patch area scaling factor z (Fig. 2,
panels a and b). This is intuitive, as z describes
the strength of area dependence in metapopula-
tion dynamics. However, now the result is not as
extreme as with maximizing the metapopulation
capacity, where z41 led to the SL strategy.
When maximizing the time to metapopulation
extinction, the number of habitat patches should
always be kept reasonably large to gain the
advantages of risk spreading, leading to an IN
strategy. The expected time to metapopulation
extinction is more sensitive to the number of



1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Patch area scaling factor ζ

δ(
ζ)

  

Fig. 3. The exact solution #dðzÞ to the equation ð #d�
1Þz ¼ log #d (solid line) and its approximation #dðzÞE1=z2

(dashed line).

O. OVASKAINEN428
habitat patches if z is large, as demonstrated by
the more narrow peak in the time to extinction
curve shown in Fig. 2(b) as compared to that of
Fig. 2(a).

2. The optimal size of habitat patches in-
creases with increasing d (Fig. 2, panels a and c).
This may be interpreted as follows. Consider two
species, labelled A and B; which are otherwise
identical (same f and z), but species A has a
smaller value of d; either because it is a better
colonizer than B (greater c) or because it persists
better as local populations (smaller e) than
species B: Thus in the same environment, the
abundance of species A is greater than that of
species B: With a given amount of habitat
available, it would be beneficial to divide the
habitat to a larger number of habitat patches for
species A than for species B: This makes sense, as
we note from eqn (4) that as soon as the scaled
species parameter #d is relatively small, the
expected time to extinction starts to grow
exponentially with the number of habitat
patches.

3. The optimal size of habitat patches de-
creases with increasing A0 (Fig. 2, panels a and
d). This may seem counterintuitive, as one might
expect that with a large amount of habitat
available, it would be optimal to have a reason-
able number of large habitat patches. However,
as noted before, eqn (4) predicts exponential
growth in time to extinction with the number of
habitat patches. Although the metapopulation
capacity lM decreases with decreasing A; lM is
still reasonably large for small A if the total
amount of habitat is very large. This implies that
the scaled species parameter #d is reasonably
small, in which case it is the number of habitat
patches that really matters. On the contrary, if
the total amount of habitat is small, persistence
as a true metapopulation is not likely, in which
case it is better to have a few patches that are as
large as possible in order to enhance the survival
of local populations.

Note that the above analysis is based on the
assumption that the metapopulation is above the
deterministic threshold, as eqn (4) is based on
the assumption lM4d: If this is not the case, the
metapopulation is expected to go deterministi-
cally extinct. As an example, assume that a rapid
episode of habitat loss has deteriorated a land-
scape below the extinction threshold. In such a
situation, the time to extinction calculated from
the quasi-stationary distribution is not expected
to be of major importance, as the quasi-
stationary distribution may not be reached at
all before extinction. As occupied patches will go
extinct, but recolonizations are expected to be
rare, it is the initial patch occupancy pattern that
really matters. In such a case, large occupied
patches are of major importance, as these are
expected to delay the inevitable extinction as
much as possible.

The Patch Area Scaling Factor f

As shown by the above analysis, the optimal
solution to the SLOSS problem depends on
several factors, most importantly on the patch
area scaling factor z: A qualitative change occurs
at the critical value z ¼ 1: I will next discuss
factors that affect the value of z; considering
separately the three components zex; zim and zem:

1. Extinction: It is often difficult to state one
clear-cut reason that dominates the extinction
risk, as the risk of extinction is determined
by several mechanisms, such as demographic
stochasticity, environmental stochasticity, cata-
strophic events, predator–prey or host–parasite
interactions, inbreeding depression, ephemeral
nature of the habitat, or human influence of
various types. The variation that is observed in
the value of zex may be explained by differences
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in the relative importance of the underlying
causes that drive populations to extinction.
Indeed, if the extinction risk is determined solely
by demographic stochasticity, the extinction
probability should decrease exponentially with
population size and thus with patch area, if
population density is assumed to be constant
(e.g. Goel & Richter-Dyn, 1974; Lande, 1993). If
the extinction risk originates solely from envir-
onmental stochasticity or by random cata-
strophes, the extinction probability should
decrease as a power of the patch area (Lande,
1993; Foley, 1997). Thus, in sufficiently large
patches, environmental stochasticity and ran-
dom catastrophes pose a greater risk of extinc-
tion than demographic stochasticity, suggesting
that the polynomial form e=Azex used here is
adequate. In small populations, where demo-
graphic stochasticity may be of major impor-
tance, the polynomial scaling of the extinction
risk may be considered to approximate the true
exponential scaling if zex is sufficiently high. In
line with the above reasoning, Hanski (1992,
1998) has suggested that the value of zex may be
used as a measure describing how sensitive the
species is to environmental stochasticity, a small
value of zex indicating that environmental
stochasticity has a large effect on the extinction
risk as compared to the effect of demographic
stochasticity.

As discussed by Hanski (1992), Cook &
Hanski (1995) and Hanski (1998), the parameter
zex is among vertebrates often related to the
body size of the species; for instance, smaller
animals often suffer more from environmental
stochasticity because of their sensitivity to
temporal variation in food availability. Hanski
(1992) reported the values zex ¼ 0:46; 0:91; 2:30
for three species of shrews, Wahlberg et al.
(1996) the values zex ¼ 0:84; 0:95; 0:96; 0:98 for
four species of butterflies, and Moilanen et al.
(1998) the value zex ¼ 1:28 for the American
pika. Cook & Hanski (1995) estimated zex for 49
species of birds, the minimum, median, and
maximum values being 0.05, 0.75 and 2.10,
respectively. However, many of these studies
have ignored the effect of patch area on
immigration rate, in which case the estimates
given above may represent estimates for the sum
zex þ zim; and may thus overestimate zex: Separ-
ating the effects of zex and zim; Ovaskainen
(2002) estimated the value zex ¼ 0:32 for a
species of butterfly.

2. Emigration: The emigration parameter zem

describes how patch area affects the number
of individuals that emigrate from an occupied
habitat patch per unit time. The parameter zem is
influenced by two factors, which are the relation
between population size and patch area, and the
relation between per capita emigration rate and
patch area. Both of these are determined by a
number of factors, but it is reasonable to assume
that the former increases with patch area,
whereas the latter decreases with patch area.
For example, in a study of a butterfly metapo-
pulation, Hill et al. (1996) concluded that the per
capita emigration rate was significantly higher in
small patches, but that in absolute numbers
more emigrants came from the largest patches
where the source population was the largest. In a
study of a field vole archipelago metapopulation,
Crone et al. (2001) concluded that emigration
from tiny, ephemeral skerry populations was
about as important as emigration from more
persistent populations on large islands. The
pattern resulted from less stable vole densities
on smaller islands, combined with increased
emigration before local extinction. Note that
although the per capita emigration rate may
depend on the density of individuals, I assume
here that population density depends on patch
area, and thus the per capita emigration rate is a
function of patch area.

As a theoretical remark, I note that the value
zem ¼ 0:5 would follow by assuming that popu-
lation density is independent of patch size, and
that the probability for an individual to emigrate
is proportional to the ratio of boundary length
and patch area. Moilanen et al. (1998) reported
the value zem ¼ 0:74 for the American pika, and
Ovaskainen (2002) estimated the value zem ¼
0:28 for a species of butterfly.

3. Immigration: Much of the theoretical me-
tapopulation literature assumes that the immi-
gration rate is independent of patch area,
corresponding to zim ¼ 0: However, it is clear
that patch area may have an effect on immigra-
tion rate. Large patches are easier to find, they
are possibly more attractive for migrants, and
the probability of successful colonization per
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attempted colonization may be greater. Assum-
ing that the localization of an empty patch is the
main factor affecting zim; and assuming that
dispersing individuals search for patches along
straight lines at the local scale around a habitat
patch would lead to the scaling zim ¼ 0:5 As
species exhibit a wide variety of dispersal
strategies, including the possibility of detecting
habitat patches from a distance, it is clear that
the scaling factor may vary greatly among
species. Hanski et al. (2000) reported the scaling
0.26 for a species of butterfly, but they con-
sidered only whether the individuals were able to
locate the habitat patch, thus neglecting whether
they attempted colonization or if that attempt
was successful. Ovaskainen (2002) restricted his
analysis to succesful colonizations, and esti-
mated the value zim ¼ 0:44 for another species
of butterfly.

Although current empirical knowledge about
the scaling factors is admittedly very limited, the
reasoning above suggests that in a ‘‘typical’’
metapopulation, the value of z would be in the
range 1:0ozo2:0: In the context of the SLOSS
problem, I thus conclude that in a ‘‘typical’’ case,
SL is the optimal strategy to maximize the
metapopulation capacity of a habitat patch
network, whereas IN maximizes the expected
time to metapopulation extinction.

Discussion

I have addressed the SLOSS problem from the
viewpoint of classical metapopulation dynamics.
Assuming that long-term persistence of the focal
species is based on compensation of local
extinctions by recolonizations, I have shown
that the time to extinction is maximized with the
IN strategy, whereas the metapopulation capa-
city of a patch network is typically maximized
with the SL strategy. The location of the
optimum point along the SL to SS axis is largely
determined by the patch area scaling factor z; the
optimum moving towards the SL end with
increasing z: The patch area scaling factor z
integrates the effects of patch area on metapo-
pulation dynamics, including the processes of
immigration, emigration and local extinction.
Metapopulation capacity lM sets the thresh-
old for persistence as lM4d; where d is a species
parameter. Below the threshold, the species is
expected to go deterministically extinct, meaning
that the drift affecting the patch occupancy state
is negative. The other quantity considered in this
study, time to metapopulation extinction, is a
stochastic quantity, with the mean value not
depending only on the drift term but also on the
variance around the mean. If the number of
habitat patches is large the variance is small and
thus the time to extinction is smaller than in an
otherwise similar situation with a small number
of habitat patches. Thereby, the time to extinc-
tion, unlike metapopulation capacity, accounts
also for the advantages of risk spreading, leading
to a strategy towards the SS end of the SLOSS
continuum.

I have considered a homogeneous metapopu-
lation model, which assumes that all habitat
patches are identical and equally connected.
Most real habitat patch networks are not
homogeneous. The justification for restricting
the present study to the homogeneous case is
that the behaviour of an appropriately weighted
average of the occupancy state in a heterogenous
patch network is often well approximated by a
homogeneous model (Ovaskainen & Hanski,
2001, 2002; Ovaskainen, 2002). Hence, the
present results generalize to heterogeneous patch
networks, where the question is to optimize the
average size (and thus number) of habitat
patches. At the optimum, the scaled species
parameter #d satisfies approximately #dðzÞE1=z2:
Comparing the scaled species parameter (which
can in an equilibrium situation be estimated
from a snapshot of occupancy data; Hanski &
Ovaskainen, 2000) with the patch area scaling
factor gives a rough way of estimating whether
the survival of the species suffers more from the
smallness or from the fewness of the habitat
patches. If #dðzÞo1=z2; the critical factor is the
number of patches, whereas for #dðzÞ41=z2 the
critical factor is the average patch size.

One of the main assumptions of the present
model is that metapopulation processes scale as
a power of patch area. While this is likely to be a
reasonable assumption even for networks with
considerable variation in patch areas (Hanski,
1999), it is clear that the range of patch areas



log Patch area

E
xt

in
ct

io
n 

pr
ob

ab
ili

ty

2 4 6 8 10

0.2

0.4

0.6

0.8

1

A B DC

Fig. 4. A qualitative plot of the local extinction
probability of a hypothetical species over a wide range of
patch areas. The letters A; B; C and D refer to different size
classes, for which the main risks of local extinction are
different.

PERSISTANCE OF SPECIES AND THE SLOSS PROBLEM 431
over which the assumption is valid has a limit.
This is illustrated in Fig. 4, where I show the
probability that a local population of a hypo-
thetical species would go extinct in unit time.
The extinction probability is shown over a wide
range of patch areas as emphasized by the
logarithmic scale in the x-axis. As zex measures
how sensitive the extinction rate is to patch area,
a deep slope in Fig. 4 corresponds to a high
value of zex: The dashed lines classify the patch
sizes to four different classes. In size class A; the
patches are so small that they are unable to
support a local population. In size class B; the
patches are large enough to support a local
population, but the expected population size
is so small that demographic stochasticity is
expected to be one of the main risks of
extinction. In this size class, the extinction
probability is very sensitive to patch area and
consequently zex is large. In size class C; the
patches are so large that the probability of
extinction due to demographic stochasticity is
negligible, and the main cause of extinction is
due to environmental stochasticity. For example,
several consecutive years with adverse environ-
mental conditions may be needed to cause a local
extinction. Patch size has an effect on the
extinction risk, but the effect is much milder
than in size class B; and consequently zex is
lower. In size class D; the habitat patches are
large enough to buffer the species against
environmental stochasticity, and the extinction
risk is now largely determined by catastrophes.
For example, human land use practices may
change in such a way that the species cannot
persist anymore. In this size class, the extinction
probability is almost independent of patch size,
corresponding to a very low value of zex: The
metapopulation approach taken in this paper is
most appropriate for networks with patches
from the intermediate size classes (B and C in
Fig. 4), as in such networks local extinctions and
recolonizations are expected to be a regular part
of regional scale dynamics.

There are several reasons why the conclusions
of the present study should be interpreted with
caution even for species which persist as classical
metapopulations at the spatial scale that is
relevant to the problem setting. Most impor-
tantly, the model assumes that the extinction
rates in the different habitat patches are not
temporally or spatially correlated, which is a
critical assumption for the exponential scaling of
the mean time to extinction with respect to n:
Interpatch correlation in extinction or coloniza-
tion rates could drastically reduce the effective
number of habitat patches (Ovaskainen, 2002).
In such a case the extinction of the metapopula-
tion is most likely to occur when multiple
extinctions happen simultaneously (Harrison &
Quinn, 1989).

Most species are not likely to follow classical
metapopulation dynamics, or at least the spatial
scale over which they do so is limited. Never-
theless, due to habitat loss and fragmentation,
most populations are increasingly patchy at all
spatial scales, and metapopulation dynamics are
likely to play an increasingly important role in
conservation biology (Hanski, 1999). The main
contribution of the present study to the SLOSS
debate is the demonstration that the effects of
patch area on emigration, immigration and
extinction should be considered while assessing
the relative advantages of a large number of
small patches vs. a small number of large
patches.
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