

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 6220-6223

Pyrazolo[1,5-*a*]pyrimidines as orally available inhibitors of cyclin-dependent kinase $2^{\cancel{k}}$

Kamil Paruch,^{a,*} Michael P. Dwyer,^{a,*} Carmen Alvarez,^a Courtney Brown,^a Tin-Yau Chan,^a Ronald J. Doll,^a Kerry Keertikar,^a Chad Knutson,^a Brian McKittrick,^a Jocelyn Rivera,^a Randall Rossman,^a Greg Tucker,^a Thierry O. Fischmann,^a Alan Hruza,^a Vincent Madison,^a Amin A. Nomeir,^a Yaolin Wang,^a Emma Lees,^b David Parry,^b Nicole Sgambellone,^b Wolfgang Seghezzi,^b Lesley Schultz,^b Fran Shanahan,^b Derek Wiswell,^b Xiaoying Xu,^a Quiao Zhou,^a Ray A. James,^c Vidyadhar M. Paradkar,^c Haengsoon Park,^c Laura R. Rokosz,^c Tara M. Stauffer^c and Timothy J. Guzi^a

> ^aSchering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA ^bSchering-Plough Biopharma, Palo Alto, CA 94304, USA ^cPharmacopeia, 3000 East Park Boulevard, Cranbury, NJ 08512, USA

> > Received 17 July 2007; revised 31 August 2007; accepted 5 September 2007 Available online 8 September 2007

Abstract—Properly substituted pyrazolo[1,5-a]pyrimidines are potent and selective CDK2 inhibitors. Compound 15j is orally available and showed efficacy in a mouse A2780 xenograft model. © 2007 Elsevier Ltd. All rights reserved.

One of the characteristics of cancer is uncontrolled cell growth and proliferation. Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle¹ and the proper regulation of CDK activity is crucial for the ordered execution of the phases of the cycle. A large number of human neoplasias show overexpression of positive regulators of CDKs and/or decrease in negative regulators.² Abnormal expression of CDK2/cyclin E has been detected in colorectal, ovarian, breast, and prostate cancers.³ CDK inhibitors have been shown to induce apoptosis in different tumor cell lines.⁴ Therefore, CDK inhibitors have the potential to enlarge the group of anticancer agents.

A number of more or less selective CDK inhibitors have been described in the literature⁵; those undergoing clinical trials are flavopiridol (1),⁶ roscovitine (2),⁷ and BMS 387032 (3).⁸ Recently, an article on a series of pyrazolo[1,5-*a*]pyrimidines (4) (with amines linked through NH or O at the 5-position and arylsulfones at the

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.09.017

7-position NH) possessing CDK2 inhibitory activity has been published.⁹ Herein, pyrazolo[1,5-a]pyrimidines with benzylic substituents at the 7-position are described. The selectivity and pharmacokinetic profiles of these compounds are significantly different from those with *N*-aryl substitution at the 7-position.⁹

Keywords: CDK2; Kinase; Inhibitors; Pyrazolo[1,5-a]pyrimidine.

^{*} The coordinates of compound **13** bound to CDK2 have been deposited in the Protein Databank pdb ID 2R3Q.

^{*} Corresponding authors. Tel.: +1 908 740 4378; fax: +1 908 740 7305; e-mail: kamil.paruch@spcorp.com

Scheme 1. Reagents: (a) HCO_2Et , *t*-BuOK, THF; (b) N_2H_4 , AcOH, EtOH; (c) $R^5COCH_2CO_2Me$, PhCH₃; (d) $POCl_3$, *N*,*N*-dimethylaniline; (e) R^7NH_2 , DIPEA, dioxane; (f) Boc₂O, DMAP, CH₂Cl₂; (g) NBS, CH₃CN; (h) $R^3B(OH)_2$, Pd[PPh₃]₄, Na₂CO₃, DME, H₂O or R^3SnBu_3 , Pd[PPh₃]₄, dioxane; (i) TFA, CH₂Cl₂.

Our effort had started by identification of a relatively weak inhibitor **5** (CDK2/cyclinA IC₅₀ = 500 nM). A number of pyrazolo[1,5-*a*]pyrimidines were synthesized from appropriately substituted acetonitriles and β -ketoesters as shown in Scheme 1. Desired substitution at the 3-position was achieved by choosing properly substituted acetonitriles **6** or via Pd-catalyzed coupling of intermediate **10**.

Incorporation of halogens and other small substituents at the 3-position resulted in significant improvement of potency (Table 1). Most active compounds were selective against GSK3 β and MAPK kinases. **12b** exhibited activity in cells (measured by incorporation of radiolabeled thymidine) with IC₅₀ = 350 nM. The X-ray crystal structure of **13** in CDK2 (without cyclin) given in Figure 1 is consistent with the observed SAR-only a relatively small cavity occupied by 3-substituents is available in the vicinity of Phe 80; (**13** CDK2/cyclinA IC₅₀ = 49 nM). Thus, only small non-polar substituents (H, Br, Me, Et, *c*-Pr, and SCH₃) were tolerated; incorporation of large (Ph, Bn) or polar (NO₂, CH₂OH) motifs resulted in a sharp drop of activity.

Exploration of the 5-position led to a variety of inhibitors whose IC₅₀s were below 50 nM (Table 2). A somewhat greater differentiation was noted in the cell-based assay, where the compounds with relatively non-polar substituents showed best potency. Notable exceptions are piperidine-containing compounds 14l and 14m; the presence of the piperidine moiety, however, resulted in somewhat inconsistent SAR across the series. 14g, 14h, 14i, and 14n were prepared from 5,7-dichloro[1,5*a*]pyrimidine by sequential displacements at the 7-position with 3-(aminomethyl)pyridine and at the 5-position with the corresponding nucleophiles followed by bromination with NBS.

A variety of substituents were tolerated at the 7-position (Table 3), which is close to the solvent-exposed part of the enzyme. The best cell activity (measured by radiolabeled thymidine uptake) was noted for the subclass containing pyridines and pyridine-*N*-oxides. In addition, unlike the aniline series,⁹ those compounds exhibited good oral PK profile.

 Table 1. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 12a-12y

Compound	R ³	CDK2/cyclin	GSK3β	MAPK
		A IC ₅₀ (μM)	$IC_{50} \ (\mu M)$	IC ₅₀ (µM)
12a	Н	0.25	_	_
12b	Br	0.011	0.57	0.37
12c	Me	0.072	_	1.40
12d	Et	0.008	2.80	2.00
12e	Pr	0.890	_	
12f	Bu	1.20	_	
12g	Ethynyl	0.048	9.82	7.48
12h	Vinyl	0.090	_	
12i	Propynyl	0.84	_	
12j	<i>c</i> -Pr	0.071	_	
12k	CF ₃	0.095		
12l	CH ₂ CF ₃	0.71	_	
12m	SCH ₃	0.007	1.80	0.90
12n	OCH ₃	1.10	_	
120	CH ₂ OH	2.17		
12p	CH(OH)CF ₃	3.40	_	
12q	<i>i</i> -Pr	0.37		
12r	Ph	>50	_	
12s	CH ₂ Ph	16.0	_	
12t	NO ₂	>50	_	
12u	CH ₂ N(Me) ₂	34.0	_	
12v	COCH ₃	>50		
12w	S(CH ₂) ₂ NHAc	0.002	0.034	12.00
12x	S(CH ₂) ₂ OH	0.030	_	
12y	CH ₂ CN	0.049	1.10	1.33

Figure 1. X-ray of crystal structure of 13 in CDK2.

Compound **15** was profiled further: it was screened against a panel of 50 kinases (e.g. cSRC, JNK1, PDK1, PKB, ROCK-II) without observing any non-CDK cross-reactivity. The compound is moderately protein-bound (mouse: 90%, rat: 85%, monkey: 89%, dog: 93%, human: 95%). **15** was active against a panel of 17 different tumor cell lines in the clonogenicity assay with IC₅₀s in the range of 120–390 nM. The compound is orally available and its PK parameters are summarized in Table 4.

 Table 2. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 14a–14p

Compound	R ⁵	CDK2/cyclin A IC ₅₀ (µM)	$\begin{array}{l} GSK3\beta \\ IC_{50} \ (\mu M) \end{array}$	Thym IC ₅₀ (µM)
14a	Me	0.060	3.53	1.80
14b	Et	0.018	0.92	0.52
14c	<i>i</i> -Pr	0.017	0.42	0.95
14d	CycloPr	0.045	1.13	1.50
14e	CH(CH ₃)OH	0.038	0.50	1.40
14f	CO ₂ Et	0.089	0.79	2.90
14g	NHCH ₃	0.043	4.6	1.20
14h	OCH ₃	0.035	1.41	2.00
14i	SCH ₃	0.038	1.18	0.99
14j	Ph-2-Cl	0.003	0.054	0.50
14k	Cyclohexyl	0.004	0.027	0.20
14l	3-Piperidinyl	0.008	0.18	0.06
14m	4-Piperidinyl	0.016	0.41	0.16
14n	Piperazine	0.210		
140	2-Furyl	0.008	0.31	15.19
14p	2-Thienyl	0.013	0.48	0.75

 Table 3. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 15a-15l

Compound	$d \mathbf{X} \mathbf{R}^7$	CDK2/cyclin A IC ₅₀ (µM)	GSK3β IC ₅₀ (μM)	Thym IC ₅₀ (µM)
15a	НН	0.25		_
15b	Cl Me	0.020	0.247	1.80
15c	Cl Pr	0.163	_	_
15d	Cl c-Pr	0.825	_	
15e	F Ph	0.408	13.31	
15f	Cl Ph-4-SO ₂ CH	3 0.35	0.45	0.90
15g	F Bn	0.300	15.2	
15h	Cl CH ₂ -3Pyr	0.004	0.054	0.50
15i	Cl CH ₂ -3Pyr-O	0.011	0.035	0.17
15j	F CH ₂ -3Pyr-O	0.013	0.13	0.21
15k	H CH ₂ -3Pyr-O	0.034	0.60	0.14
151	H CH(Me)-3Pyr	r 3.000		

Table 4. Pharmacokinetic parameters of 15j

	*	•		
Species	Dose, mpk vehicle	$AUC\;(\mu M\;h)$	$c_{\max} \left(\mu \mathbf{M} \right)$	$t_{\rm max}$ (h)
Rat	10	16.4	2.29	2.0
	0.4% MC			
Mouse	40	17.9	6.81	2.0
	20% HPBCD			
Dog	5	2.44	2.58	
	20% HPBCD			
Monkey	10	43.0	3.2	3.3
-	0.4% HPMC			

Figure 2. Efficacy of 15j in A2780 xenograft model (mouse).

Compound **15** demonstrated efficacy in a staged A2780 tumor xenograft model in the mouse (Fig. 2). The dose of 40 mpk, qd, PO for 10 days caused 96% tumor growth inhibition with observed tumor regression in 9 of 10 animals.

The compound was well tolerated and only a moderate and reversible decrease of white blood cells was observed.

In conclusion, we demonstrated that properly substituted pyrazolo[1,5-*a*]pyrimidines can serve as potent, selective, and efficacious orally available CDK2 inhibitors.

References and notes

- 1. Murray, A. W. Cell 2004, 116, 221.
- 2. Carnero, A. Br. J. Cancer 2002, 87, 129.
- 3. Webster, K. R.; Kimball, D. *Emerging Drugs* 2000, 5, 45.
- Cai, D.; Byth, K. F.; Shapiro, G. I. Cancer Res. 2006, 66, 435.
- Kong, N.; Fotouhi, N.; Wovkulich, P. M.; Roberts, J. Drugs Fut. 2003, 28, 881.
- Bible, K. C.; Lensing, J. L.; Nelson, S. A.; Lee, Y. K.; Reid, J. M.; Ames, M. M.; Isham, C. R.; Piens, J.; Rubin, S. L.; Rubin, J.; Kaufmann, S. H.; Atherton, P. J.; Sloan, J. A.; Daiss, M. K.; Adjei, A. A.; Erlichman, C. *Clin. Cancer Res.* 2005, *11*, 5935.
- McClue, S. J.; Blake, D.; Clarke, R.; Cowan, A.; Cummings, L.; Fischer, P. M.; MacKenzie, M.; Melville, J.; Stewart, K.; Wang, S.; Zhelev, N.; Zheleva, D.; Lane, D. P. *Int. J. Cancer.* 2002, *102*, 463.

- Misra, R. N.; Xiao, H.; Kim, K. S.; Lu, S.; Han, W.-C.; Barbosa, S. A.; Hunt, J. T.; Rawlins, D. B.; Shan, W.; Ahmed, S. Z.; Qian, L.; Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Kellar, K. A.; Mulheron, J. G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S. A.; Sack, J. S.; Tokarski, J. S.; Pavletich, N. P.; Lee, F. Y. F.; Webster, K. R.; Kimball, S. D. J. Med. Chem. 2004, 47, 1719.
- Williamson, D. S.; Parratt, M. J.; Bower, J. F.; Moore, J. D.; Richardson, C. M.; Dokurno, P.; Cansfield, A. D.; Francis, G. L.; Hebdon, R. J.; Howes, R.; Jackson, P. S.; Lockie, A. M.; Murray, J. B.; Nunns, C. L.; Powles, J.; Robertson, A.; Surgenor, A. E.; Torrance, C. J. *Bioorg. Med. Chem. Lett.* 2005, 15, 863.