Pyrazolo[1,5-a]pyrimidines as orally available inhibitors of cyclin-dependent kinase 2q Kamil Paruch,a,* Michael P. Dwyer,a,* Carmen Alvarez,a Courtney Brown,a Tin-Yau Chan,a Ronald J. Doll,a Kerry Keertikar,a Chad Knutson,a Brian McKittrick,a Jocelyn Rivera,a Randall Rossman,a Greg Tucker,a Thierry O. Fischmann,a Alan Hruza,a Vincent Madison,a Amin A. Nomeir,a Yaolin Wang,a Emma Lees,b David Parry,b Nicole Sgambellone,b Wolfgang Seghezzi,b Lesley Schultz,b Fran Shanahan,b Derek Wiswell,b Xiaoying Xu,a Quiao Zhou,a Ray A. James,c Vidyadhar M. Paradkar,c Haengsoon Park,c Laura R. Rokosz,c Tara M. Staufferc and Timothy J. Guzia a Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA b Schering-Plough Biopharma, Palo Alto, CA 94304, USA c Pharmacopeia, 3000 East Park Boulevard, Cranbury, NJ 08512, USA Received 17 July 2007; revised 31 August 2007; accepted 5 September 2007 Available online 8 September 2007 Abstract--Properly substituted pyrazolo[1,5-a]pyrimidines are potent and selective CDK2 inhibitors. Compound 15j is orally available and showed efficacy in a mouse A2780 xenograft model. Ó 2007 Elsevier Ltd. All rights reserved. One of the characteristics of cancer is uncontrolled cell growth and proliferation. Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle1 and the proper regulation of CDK activity is crucial for the ordered execution of the phases of the cycle. A large number of human neoplasias show overexpression of positive regulators of CDKs and/or decrease in negative regulators.2 Abnormal expression of CDK2/cyclin E has been detected in colorectal, ovarian, breast, and prostate cancers.3 CDK inhibitors havebeenshown toinduceapoptosis in different tumor cell lines.4 Therefore, CDK inhibitors have the potential to enlarge the group of anticancer agents. A number of more or less selective CDK inhibitors have been described in the literature5 ; those undergoing clinical trials are flavopiridol (1),6 roscovitine (2),7 and BMS 387032 (3).8 Recently, an article on a series of pyrazolo[1,5-a]pyrimidines (4) (with amines linked through NH or O at the 5-position and arylsulfones at the 7-position NH) possessing CDK2 inhibitory activity has been published.9 Herein, pyrazolo[1,5-a]pyrimidines with benzylic substituents at the 7-position are described. The selectivity and pharmacokinetic profiles of these compounds are significantly different from those with N-aryl substitution at the 7-position.9 O Cl OOH HO N OH N N N N NH Ph N H HO 1 2 N S H N O NH S N O 3 N N N R3 R5 NHArSO2R 4 N N N NH 5 Cl Cl N 0960-894X/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.09.017 Keywords: CDK2; Kinase; Inhibitors; Pyrazolo[1,5-a]pyrimidine. q The coordinates of compound 13 bound to CDK2 have been deposited in the Protein Databank pdb ID 2R3Q. * Corresponding authors. Tel.: +1 908 740 4378; fax: +1 908 740 7305; e-mail: kamil.paruch@spcorp.com Available online at www.sciencedirect.com Bioorganic & Medicinal Chemistry Letters 17 (2007) 6220­6223 Our effort had started by identification of a relatively weak inhibitor 5 (CDK2/cyclinA IC50 = 500 nM). A number of pyrazolo[1,5-a]pyrimidines were synthesized from appropriately substituted acetonitriles and b-ketoesters as shown in Scheme 1. Desired substitution at the 3-position was achieved by choosing properly substituted acetonitriles 6 or via Pd-catalyzed coupling of intermediate 10. Incorporation of halogens and other small substituents at the 3-position resulted in significant improvement of potency (Table 1). Most active compounds were selective against GSK3b and MAPK kinases. 12b exhibited activity in cells (measured by incorporation of radiolabeled thymidine) with IC50 = 350 nM. The X-ray crystal structure of 13 in CDK2 (without cyclin) given in Figure 1 is consistent with the observed SAR-only a relatively small cavity occupied by 3-substituents is available in the vicinity of Phe 80; (13 CDK2/cyclinA IC50 = 49 nM). Thus, only small non-polar substituents (H, Br, Me, Et, c-Pr, and SCH3) were tolerated; incorporation of large (Ph, Bn) or polar (NO2, CH2OH) motifs resulted in a sharp drop of activity. Exploration of the 5-position led to a variety of inhibitors whose IC50s were below 50 nM (Table 2). A somewhat greater differentiation was noted in the cell-based assay, where the compounds with relatively non-polar substituents showed best potency. Notable exceptions are piperidine-containing compounds 14l and 14m; the presence of the piperidine moiety, however, resulted in somewhat inconsistent SAR across the series. 14g, 14h, 14i, and 14n were prepared from 5,7-dichloro[1,5a]pyrimidine by sequential displacements at the 7-position with 3-(aminomethyl)pyridine and at the 5-position with the corresponding nucleophiles followed by bromination with NBS. A variety of substituents were tolerated at the 7-position (Table 3), which is close to the solvent-exposed part of the enzyme. The best cell activity (measured by radiolabeled thymidine uptake) was noted for the subclass containing pyridines and pyridine-N-oxides. In addition, unlike the aniline series,9 those compounds exhibited good oral PK profile. N N N R5 Cl N N N R5 HN R3 R7 7 c,d 8 H2N HN N R3 R3CH2CN R3 a,b e N N N R5 HN R7 N N N R5 BocN R7 Br f,g h,i 6 9 10 11 Scheme 1. Reagents: (a) HCO2Et, t-BuOK, THF; (b) N2H4, AcOH, EtOH; (c) R5 COCH2CO2Me, PhCH3; (d) POCl3, N,N-dimethylaniline; (e) R7 NH2, DIPEA, dioxane; (f) Boc2O, DMAP, CH2Cl2; (g) NBS, CH3CN; (h) R3 B(OH)2, Pd[PPh3]4, Na2CO3, DME, H2O or R3 SnBu3, Pd[PPh3]4, dioxane; (i) TFA, CH2Cl2. Table 1. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 12a­ 12y N N N NH 13 Br N+ CH3 -O N N N NH 12a-y R3 N Compound R3 CDK2/cyclin A IC50 (lM) GSK3b IC50 (lM) MAPK IC50 (lM) 12a H 0.25 -- -- 12b Br 0.011 0.57 0.37 12c Me 0.072 -- 1.40 12d Et 0.008 2.80 2.00 12e Pr 0.890 -- -- 12f Bu 1.20 -- -- 12g Ethynyl 0.048 9.82 7.48 12h Vinyl 0.090 -- -- 12i Propynyl 0.84 -- -- 12j c-Pr 0.071 -- -- 12k CF3 0.095 -- -- 12l CH2CF3 0.71 -- -- 12m SCH3 0.007 1.80 0.90 12n OCH3 1.10 -- -- 12o CH2OH 2.17 -- -- 12p CH(OH)CF3 3.40 -- -- 12q i-Pr 0.37 -- -- 12r Ph >50 -- -- 12s CH2Ph 16.0 -- -- 12t NO2 >50 -- -- 12u CH2N(Me)2 34.0 -- -- 12v COCH3 >50 -- -- 12w S(CH2)2NHAc 0.002 0.034 12.00 12x S(CH2)2OH 0.030 -- -- 12y CH2CN 0.049 1.10 1.33 Figure 1. X-ray of crystal structure of 13 in CDK2. K. Paruch et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6220­6223 6221 Compound 15j was profiled further: it was screened against a panel of 50 kinases (e.g. cSRC, JNK1, PDK1, PKB, ROCK-II) without observing any nonCDK cross-reactivity. The compound is moderately protein-bound (mouse: 90%, rat: 85%, monkey: 89%, dog: 93%, human: 95%). 15j was active against a panel of 17 different tumor cell lines in the clonogenicity assay with IC50s in the range of 120­390 nM. The compound is orally available and its PK parameters are summarized in Table 4. Compound 15j demonstrated efficacy in a staged A2780 tumor xenograft model in the mouse (Fig. 2). The dose of 40 mpk, qd, PO for 10 days caused 96% tumor growth inhibition with observed tumor regression in 9 of 10 animals. The compound was well tolerated and only a moderate and reversible decrease of white blood cells was observed. In conclusion, we demonstrated that properly substituted pyrazolo[1,5-a]pyrimidines can serve as potent, selective, and efficacious orally available CDK2 inhibitors. References and notes 1. Murray, A. W. Cell 2004, 116, 221. 2. Carnero, A. Br. J. Cancer 2002, 87, 129. 3. Webster, K. R.; Kimball, D. Emerging Drugs 2000, 5, 45. 4. Cai, D.; Byth, K. F.; Shapiro, G. I. Cancer Res. 2006, 66, 435. 5. Kong, N.; Fotouhi, N.; Wovkulich, P. M.; Roberts, J. Drugs Fut. 2003, 28, 881. 6. Bible, K. C.; Lensing, J. L.; Nelson, S. A.; Lee, Y. K.; Reid, J. M.; Ames, M. M.; Isham, C. R.; Piens, J.; Rubin, S. L.; Rubin, J.; Kaufmann, S. H.; Atherton, P. J.; Sloan, J. A.; Daiss, M. K.; Adjei, A. A.; Erlichman, C. Clin. Cancer Res. 2005, 11, 5935. 7. McClue, S. J.; Blake, D.; Clarke, R.; Cowan, A.; Cummings, L.; Fischer, P. M.; MacKenzie, M.; Melville, J.; Stewart, K.; Wang, S.; Zhelev, N.; Zheleva, D.; Lane, D. P. Int. J. Cancer. 2002, 102, 463. Table 2. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 14a­ 14p N N N R5 NH 14a-p Br N Compound R5 CDK2/cyclin A IC50 (lM) GSK3b IC50 (lM) Thym IC50 (lM) 14a Me 0.060 3.53 1.80 14b Et 0.018 0.92 0.52 14c i-Pr 0.017 0.42 0.95 14d CycloPr 0.045 1.13 1.50 14e CH(CH3)OH 0.038 0.50 1.40 14f CO2Et 0.089 0.79 2.90 14g NHCH3 0.043 4.6 1.20 14h OCH3 0.035 1.41 2.00 14i SCH3 0.038 1.18 0.99 14j Ph-2-Cl 0.003 0.054 0.50 14k Cyclohexyl 0.004 0.027 0.20 14l 3-Piperidinyl 0.008 0.18 0.06 14m 4-Piperidinyl 0.016 0.41 0.16 14n Piperazine 0.210 -- -- 14o 2-Furyl 0.008 0.31 15.19 14p 2-Thienyl 0.013 0.48 0.75 Table 3. CDK2 inhibitory activity of pyrazolo[1,5-a]pyrimidines 15a­ 15l N N N HN 15a-l Br R7 X Compound X R7 CDK2/cyclin A IC50 (lM) GSK3b IC50 (lM) Thym IC50 (lM) 15a H H 0.25 -- -- 15b Cl Me 0.020 0.247 1.80 15c Cl Pr 0.163 -- -- 15d Cl c-Pr 0.825 -- -- 15e F Ph 0.408 13.31 15f Cl Ph-4-SO2CH3 0.35 0.45 0.90 15g F Bn 0.300 15.2 -- 15h Cl CH2-3Pyr 0.004 0.054 0.50 15i Cl CH2-3Pyr-O 0.011 0.035 0.17 15j F CH2-3Pyr-O 0.013 0.13 0.21 15k H CH2-3Pyr-O 0.034 0.60 0.14 15l H CH(Me)-3Pyr 3.000 -- -- Table 4. Pharmacokinetic parameters of 15j Species Dose, mpk vehicle AUC (lM h) cmax (lM) tmax (h) Rat 10 16.4 2.29 2.0 0.4% MC Mouse 40 17.9 6.81 2.0 20% HPBCD Dog 5 2.44 2.58 20% HPBCD Monkey 10 43.0 3.2 3.3 0.4% HPMC 0 50 100 150 200 250 300 350 400 450 500 550 8 11 14 18 Days (post inoculation) TumorSize(mm3 ) Control (no dosing) Vehicle 20 mpk 40 mpk 40 mpk(2-5) Figure 2. Efficacy of 15j in A2780 xenograft model (mouse). 6222 K. Paruch et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6220­6223 8. Misra, R. N.; Xiao, H.; Kim, K. S.; Lu, S.; Han, W.-C.; Barbosa, S. A.; Hunt, J. T.; Rawlins, D. B.; Shan, W.; Ahmed, S. Z.; Qian, L.; Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Kellar, K. A.; Mulheron, J. G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S. A.; Sack, J. S.; Tokarski, J. S.; Pavletich, N. P.; Lee, F. Y. F.; Webster, K. R.; Kimball, S. D. J. Med. Chem. 2004, 47, 1719. 9. Williamson, D. S.; Parratt, M. J.; Bower, J. F.; Moore, J. D.; Richardson, C. M.; Dokurno, P.; Cansfield, A. D.; Francis, G. L.; Hebdon, R. J.; Howes, R.; Jackson, P. S.; Lockie, A. M.; Murray, J. B.; Nunns, C. L.; Powles, J.; Robertson, A.; Surgenor, A. E.; Torrance, C. J. Bioorg. Med. Chem. Lett. 2005, 15, 863. K. Paruch et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6220­6223 6223