Fluorine Chemistry

From theory to application

Lecturer: assist. prof. dr. Matjaž Kristl matjaz.kristl@uni-mb.si

University of Maribor, Slovenia

Faculty of Chemistry and Chemical Engineering

Department of Inorganic Chemistry

Literature

- F. Lazarini, J. Brenčič, Splošna in anorganska kemija, DZS Ljubljana 1984 (pp. 280 – 301)
- D. F. Shriver, P. W. Atkins, Inorganic Chemistry, Oxford university press 1999 (pp. 407 427)
- Web sources

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive...?"

copyright Nick Kim http://strangematter.sci.waikato.ac.nz/

General elemental properties

- Atomic number: 9
- Atomic weight: 18,998
- Electron configuration: 1s²2s²2p_x²2p_y²2p_z¹
- Electronegativity (Allred Rochow scale): 4,10
- Ionic radius F⁻: 1,36 Å
- Covalent radius F: 0,71 Å
- Melting point: -219,6 °C
- Boiling point: -187,5 °C

Electronegativity

- Dimensionless quantity!
- Ability of an atom to attract electrons towards itself in a covalent bond

Н				Charles Cons		
						7 5 7 7 7
2,20						ing the parties of
Li	Be	В	С	N	0	F
0,98	1,57	2,04	2,55	3,04	3,44	3,98
0,94	1,46	2,01	2,63	2,33	3,17	3,31
0,97	1,47	2,01	2,50	3,07	3,50	4,10
Na	Mg	Al	Si	. P	S	CI
0,93	1,31	1,61	1,90	2,19	2,58	3,16
0,93	1,32	1,81	2,44	1,81	2,41	3,00
1,01	1,23	1,42	1,74	2,06	2,44	2,83
K	Ca	Ga	Ge	As	Se	Br
0,82	1,00	1,81	2,09	2,18	2,55	2,96
0,80	SHOWN NO	1,95		1,75	2,23	2,76
0,91	1,04	1,82	2,02	2,20	2,48	2,74
Rb	Sr	In	Sn	Sb	Te	J
0,82	0,95	1,78	1,96	2,05		2,66
		1,80	-	1,65	2,10	2,56
0,89	0,99	1,49	1,72	1,82	2,01	2,21
Cs	Ва	TI	Pb	Bi		
0,79	0,89	2,04	2,33	2,02		
-	-		_	-		
0,86	0,97	1,44	1,55	1,67		
+ 1	+2	+ 3	+4	-3	-2	-1

Occurence and production

- 0,066 wt. % in nature
- Due to high reactivity, it can not be found in elementary state

Most common minerals:

- fluorite, CaF₂
- apatite, Ca₅F(PO₄)₃
- cryolite, Na₃AlF₆

Cryolite, Na3AlF6

- First described: 1799 from a deposit in Ivigtut, West Greenland.
- Historically: ore of aluminium
- Today: electrolytic processing of bauxite, Al₂O₃ (lowers the melting point from > 2000 °C to < 1000 °C

History

- 1530: 'fluorspar' (mainly CaF₂) first described
- * 1670: glass is etched when exposed to fluorspar treated with acid
- * 1700s: hydrofluoric acid is easily obtained by treating fluorite with concentrated sulfuric acid
- 1800s: many unsucessfull attempts to produce elemental fluorine from H, very dangerous - killing or blinding several scientists - "fluorine martyrs"

 Moissan method (1886): isolation possible only by electrolysis, there is no stronger oxidizing agent:

$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2 HF$$
 $HF + KF \rightarrow KHF_2$
 $KHF_2 \rightarrow 2 KF + H_2 + F_2$

High temperature electrolysis at 240°C (steel anode) or low temperature electrolysis at 90°C (Ni / C anode)

Ferdinand Frederic Henri Moissan, 1852 - 1907 (Np 1906)

Electrolytic cell:

Low conductivity of HF!

Melting temperatures:

KF.HF: 217 °C

KF-2HF: 72 °C

KF-3HF: 66 °C

- HF: very pure, no traces of water!
- separatingH₂ / F₂ !!

F₂ production plant (England):

Isolating F₂ by chemical reaction:

 Karl O. Christe, University of South California, LA (1986):

$$K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_4$$

 $2MnF_4 \rightarrow 2MnF_3 + F_2$

F₂ molecule, chemical properties of fluorine

- Bond length: 1,44 Å
- Short bond: strong repulsion
 of nonbonding electron
 pairs → weak bond →
 highly reactive element!
- reacts with all elements
 other than He, Ne in Ar
- reactions are strongly exothermic

Some examples of reactions of elemental fluorine:

$$2H_2O + 2F_2 \rightarrow O_2 + 4HF$$
 (explosive!)

- Similar strongly exothermic reactions with all hydrogen containing compounds, e. g. H₂S, NH₃, H₂O
- > Reacts with H₂ in dark at -200°C
- ➤ By fluorinating, many elements form compounds with the highest possible oxidation state (e. g. PF₅, SF₆, IF₇)
- With metals, the reactions are often moderate, at room T and normal pressure pasivisation of metals
- Dry F at room T does not react with glass!

Most important fluorine compounds

HF: synthesis from elements theoretically possible, but inconvinient, expensive, dangerous!

Industrial methods:

$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$$

$$2Ca_5F(PO_4)_3 + 7H_2SO_4 \rightarrow 3Ca(H_2PO_4) + 7CaSO_4 + 2HF$$

 Anomalous high boiling point (HF +19°C; HCl -85°C, HBr -67°C, HI -35°C) – try to explain why!

Most important properties of HF

- ➤ High dipole moment, good solvent, many physical properties similar to water → miscible in all proportions
- > Protolitic equilibrium:

HF + HF
$$\leftrightarrow$$
 H₂F⁺ + F⁻ (K = 1·10⁻¹⁰)

> HNO₃ reacts as a base (!) in liquid HF:

$$HNO_3 + HF \rightarrow H_2NO_3^+ + F^-$$

Very few compouds react as acids in HF:

$$SbF_5 + 2HF \rightarrow H_2F^+ + SbF_6^-$$

Aqueous solution (hydrofluoric acid) is a weak acid:

HF +
$$H_2O \rightarrow H_3O^+ + F^- (K = 7,2 \cdot 10^{-4})$$

Reaction with glass:

$$SiO_2(s) + 4 HF(aq) \rightarrow SiF_4(g) + 2 H_2O(l)$$

 $SiO_2(s) + 6 HF(aq) \rightarrow H_2[SiF_6](aq) + 2 H_2O(l)$

- Working with HF using glassware is impossible!
- Use: etching of glass

Oxocompounds of fluorine

$$2F_2 + 2NaOH \rightarrow 2NaF + OF_2 + H_2O$$

Colourless gas, very toxic, stable, does not react with water

O₂F₂: prepared by subjecting a 1:1 mixture of gaseous fluorine and oxygen at low pressure to an electric discharge (Otto Ruff, 1933)

Unstable, strong oxidizing and fluorinating agent

Industrial use of fluorine a) enrichment of uranium

- Natural uranium: 99.2% U-238, 0.8% U-235
- Problem: only ²³⁵U is fissionable by thermal neutrons
- Low enriched uranium (reactor grade): min. 3-4%
 U-235
- Highly enriched uranium (weapons grade) min. 80 90% U-235

Isotope separation: difficult, energy intensive (235U is only 1.26% lighter than 238U)

UF₆ (hex)

$$U_3O_8 + HNO_3 \rightarrow UO_2(NO_3)_2$$

 $UO_2(NO_3)_2 + NH_3 \rightarrow (NH_4)_2U_2O_7$
 $(NH_4)_2U_2O_7 + H_2 \rightarrow UO_2$
 $UO_2 + 4HF \rightarrow UF_4 + 2H_2O$
 $UF_4 + F_2 \rightarrow UF_6$ (g)

- Separation by gasseous diffusion: forcing UF₆ through semi-permeable membranes (obsolete, energy – consuming, separation factor per stage 1,005)
- Separation by or gas centrifuges: centrifugal force presses U-238 toward the outside of the cylinder (less energy consuming, separation factor per stage 1,3)
- 560000 tonnes of depleted UF₆ only in the USA!

Industrial use of fluorine b) Fluorochlorohydrocarbons

Freones (CFCs): trade name for a group of chlorofluorocarbon and hydrochlorofluorocarbon compounds:

CCl₃F (freon 11)

CCl₂F₂ (freon 12)

C₂Cl₃F₃ (freon 113)

2 isomeres: CCl₃-CF₃, CCl₂F-CCIF₂

Great properties: odorless, colorless, nonflammable, noncorrosive - ideal for use in air conditioning, refrigeration and fire-fighting systems.

- Developed in 1930 (Migdley, Kettering) as an alternative to the toxic gases that were previously used as refrigerants: NH₃, SO₂, CH₃Cl
- WW2: use as automatic fire extinguishers in aircraft
- 1960s: CBrF₃ (halon 1301)
 CF₂ClBr (halon 1211)
- among the most effective fire-fighting materials discovered!
- By the late 1960s: standard in applications where water and dry-powder extinguishers posed a threat of damage to the protected property, including computer rooms, telecommunications switches, laboratories, museums and art collections

 1974: first warnings of damage to stratospheric ozone (Molina, Rowland)

Late 1980s, early 1990s: conventions for outphasing freones and (partially) halones from production (exception: Civilian and military aircraft!)

Possible replacements: hydrofluorocarbons, HFCs

1,1,1,2-tetrafluoroethane, CF₃-CH₂F: refrigerant for domestic and car air conditioners, no ozone depleting properties (!), possible greenhoue effects

Industrial use of fluorine c) polytetrafluoroethylene (*TEFLON*)

 $(C_2F_4)_n: \left\{ \begin{pmatrix} F & F \\ C & C \end{pmatrix} \right\}_n$

- Discovery: 1938, by accident when trying to synthesize C₂F₄
- Use: cooking pans, textile fibers, chemical industry (resistant to F₂!), bearings, gaskets, medical implats, electronical devices

Health implications of fluorine

- trace element (5g / 70 kg), in the form of F-
- very nonuniform distribution throughout the body, most in bones and teeth
- reduces tooth decay → water fluoridation (0.5 1 mg / L), controversial

Elemental F_2 is highly toxic, $LD_{50} = 185 \text{ ppm (!!!)}$

 Harmfull to lungs, skin and especially eyes – even 25 ppm cause strong eye irritarion.

Storing: iron, Ni – Cu alloy (monel), PTFE

Fluorine chemistry research in Slovenia:

IJS Ljubljana, departement K1, prof. dr. Boris Žemva:

- Synthesis and characterization of new coordination compounds with fluorine ligands, e. g.: XeF₂, XeF₄, KrF₂, AsF₃, HF etc.
- Synthesis and characterization of ternary fluorides
- Use of photochemical reactions and elemental fluorine for the synthesis of new fluorine compounds of transition metals in high oxidation states

Research of fluoride compounds at FKKT Maribor

- Syntheses and characterization of hydroxylammonium fluorometallates, (NH₃OH)_xMF_y
- 1990 2009: 12 scientific articles with JCR + 1 submitted (B. Volavšek, M. Drofenik, M. Kristl, I. Ban, B. Dojer), 2 + 1 PhD theses, 3 MSc
- M = Ti, Zr, Hf, Al, Ga,
 In, Si, Ge, Cr,
 V, Co*, Cu*, Fe**
- Structure of
 NH₄(NH₃OH)₂[OF₅V]:

Fluorine compounds of noble gases

Bartlett, 1962: 'PtOF₄' =
$$O_2^+$$
(PtF₆)

- first compound, in which oygen was oxidized!
- > E_i (O) = 1177 kJ/mol, E_i (Xe) = 1170 kJ/mol

$$Xe + PtF_6 \rightarrow Xe(PtF_6)$$

Hoppe, 1962: Xe + $F_2 \rightarrow XeF_2$ (1 atm, 400°C)

- strong oxidizing and fluorinating agent (XeF+ is formed)
- reacts with water in alkaline solutions:

$$2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$$

XeF₄ (1962):

$$Xe + 2F_2 \rightarrow XeF_4$$
 (6 atm, 400°C, $Xe : F_2 = 1 : 5$)

- solid compound, square planar geometry
- reacts with water:

$$3XeF_4 + 6H_2O \rightarrow Xe + 2 XeO_3 + 12 HF$$

XeF₆ (Slivnik et al., 1963):

$$Xe + 3F_2 \rightarrow XeF_6$$
 (60 atm, 400°C, $Xe : F_2 = 1 : 20$)

- solid compound, octahedral geometry
- reacts with water:

$$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$$

 $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$

- Recently also compounds with Xe -N and Xe - C bonds have been discovered, e. g. Xe(CF₃)₂ and XeFN(SO₂F)₂
- Xe forms coordination compounds with unusually high coordination numbers:

$$XeF_6 + CsF \rightarrow CsXeF_7$$

 $2CsXeF_7 \rightarrow XeF_6 + Cs_2XeF_8$

Kr reacts with F in an electric field at -196°C: Kr + F₂ → KrF₂
 (solid compound, stable only below -80°C, extremely strong oxidizing agent: Au → AuF₅)

