

Kód předmětu: Bi8980

MASARYKOVA UNIVERZITA

Protein expression and purification

• I. The molecular principles for understanding proteins

Lubomír Janda, Blanka Pekárová and Radka Dopitová

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název prezentace v zápatí

This course aims to develop students' confidence in their ability to understand the way proteins function and the basis of the methods used to distinguish, identify, and characterize them.

•This lecture is intended to provide a concise summary of the principles with which you should be familiar in order to understand the structures and functions of proteins.

Literature: Exploring proteins – Nicholas C. Price and Jacqueline Nairn Basic Methods in Protein Purification and Analysis – Richard J. Simpson, Peter D. Adams and Erica A. Golemis High Throughput Protein Expression and Purification – Sharon A. Doyle Cloning, Gene Expression and Protein Purification – Charles Hardin, Jennifer Edwards et al. Protein Purification, Principles and Practise – Robert K. Scopes

General structure of an amino acid

The zwitterionic form of an amino acid

1.2. The amino acids

- 1.2.1. The variety of amino acids
- **1.2.2. Clasification of the amino acids** in terms of polarity

Non-polar side chain Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, Val

Polar, uncharged side chain Asn, Cys, Gln, Ser, Thr, Tyr

Polar charged side chain Arg, Asp, Glu, His, Lys

NONPO	DLAR, HYDROP	HOBIC	P	CLAR. UNCHARGED	
Alanine Ala A MW = 89	. оос Н ³ ⁵ сн	- CH,	OUPS H-	сн ^{- 000⁻ №Н₃}	Glycine Gly G MW = 75
Valine Val V MW = 117	[.] оос _{Нз} , сн	- сң ^{сн} з	110-CI ₂ -	си< ^{СОО⁻ _{№ На}}	Sərinə Sər S MV = 105
Leucine Leu L MW = 131	оос н ^у сн	- сн ₂ - сң ^{сн} 3	он_сн, сн,,	-сн ^{_соо°}	Threcnine Thr T MVV = 119
lsoleucine Ile I MW = 131	Оос Н ^{3,1} Сн	- сң (^{СН} 3 СН2 - СН3	HS – CH ₂	- сн < СОО ⁻	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	. оос Н ³ ¹ СН	- он ₂	но - 🚫 - сн _о	- c+(^{coo-} ½ H ₃	Tyrosine Tyr Y MVV = 181
Tryptophan Trp VV MVV = 204	н ^э ^у >сн	- 0H2 - 0-	^{№Н} 2 0 С-СН2	- сн <mark>< соо</mark> -	Asparagine Asn N MW = 132
Methionine Met MW = 149	- оос , Сн н ₃₁	- CH ₂ - CH ₂ - S - CH ₃	NH ₂ С-СН ₂ -СН ₂	- сн <mark>соо</mark> т	Giutamine Gin Q MW = 146
Proline Pro P MW = 115	, 000 1 1 1	н ^{∽СН} ² ⊂Н ₂	№Н ₃ - СН ₂ - (СН	POLAR BASIC	Lysine Lys K MVV = 146
Aspartic add Aep D MW = 133	POLAR ACIDIC	- CH₂ - C⊊0	NH, № Н ₂ >С - NH - (СН	Ų₃- сн< <mark>°соо</mark> -	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	^{`00С} }сн _{Н₃у}	- сн ₂ - сн ₂ - с $<_0^0$	С-СН²- НЙ≫ИН	сн <mark>, соо</mark> .	Histidine His H MVV = 155

1.2. The amino acids

1.2.3. General properties of the amino acids

1.2. The amino acids

- **1.2.3.** General properties of the amino acids
- 1.2.3.1. Stereochemistry

The Sequence Rule for Assignment of Configurations to Chiral Centers.

Assign sequence priorities to the four substituents by looking at the atoms attached directly to the chiral center.

1. The higher the atomic number of the immediate substituent atom, the higher the priority.

For example, H- < C- < N- < O- < Cl-.

2. If two substituents have the same immediate substituent atom,

evaluate atoms progressively further away from the chiral center until a difference is found. For example, $CH_3 - \langle C_2H_5 - \langle ClCH_2 - \langle BrCH_2 - \langle CH_3O - \rangle$.

3. If double or triple bonded groups are encountered as substituents, they are treated as an equivalent set of single-bonded atoms.

For example, $C_2H_5 - \langle CH_2 = CH - \langle HC \equiv C - \rangle$

http://www.cem.msu.edu/~reusch/VirtualText/sterism3.htm

1.2. The amino acids

1.2.3. General properties of the amino acids

1.2.3.2. Ionization

pН

6

pK₁

	Valine	• GI
ine Titration Curve	Leucine	Leu
ine maaion cuive	Isoleucine	lle
nK.	Serine	Ser
Ping	Threonine	Thr
	Cysteine	Cys
ÇH3	Methionine	Me
/ H ₂ N-CH-COO ⁻	Aspartic Acid	Asp
pl ch	Glutamic Acid	Glu
H ₃ N-cH-coo ⁻	Asparagine	Asn
	Glutamine	Gln
СН₃	Arginine	Arg
н₃й–сн–соон	Lysine	Lys
	Histidine	His
5 1.0 1.5 2.0	Phenylalanine	Phe
OH ⁻ equi∨alents	Tyrosine	Tyr
	Tryptophan	Trp

Amino Acid	Symbol	рК ₁ (СООН)	pK ₂ (NH2)	pK R Group
Glycine	Gly	2,4	9,8	
, Alanine	, Ala	2,4	9,9	
Valine	Val	2,2	9,7	
Leucine	Leu	2,3	9,7	
Isoleucine	lle	2,3	9,8	
Serine	Ser	2,2	9,2	
Threonine	Thr	2,1	9,1	
Cysteine	Cys	1,9	10,8	8,3
Methionine	Met	2,1	9,3	
Aspartic Acid	Asp	2	9,9	3,9
Glutamic Acid	Glu	2,1	9,5	4,1
Asparagine	Asn	2,1	8,8	
Glutamine	Gln	2,2	9,1	
Arginine	Arg	1,8	9	12,5
Lysine	Lys	2,2	9,2	10,8
Histidine	His	1,8	9,2	6
Phenylalanine	Phe	2,2	9,2	
Tyrosine	Tyr	2,2	9,1	10,1
Tryptophan	Trp	2,4	9,4	
Proline	Pro	2	10,6	

1.2. The amino acids

1.2.3. General properties of the amino acids

Amino acid		Transfer free energy	
		kJ/mol	
Phe	F	15,5	
Met	Μ	14,2	
lle	1	13	
Leu	L	11,7	
Val	V	10,9	
Cys	С	8,4	
Trp	W	7,9	
Ala	А	6,7	
Thr	Т	5	
Gly	G	4,2	
Ser	S	2,5	
Pro	Р	-0,8	
Tyr	Y	-2,9	
His	Н	-12,5	
Gln	Q	-17,1	
Asn	Ν	-20,1	
Glu	E	-34,3	
Lys	К	-36,8	
Asp	D	-38,5	
Arg	R	-51,4	

Kyte and	Rose, et al	Wolfenden	Janin
Doolittle		, et al	(1979)
(1)	(2)	(3)	(4)
lle	Cys	Gly,Leu, Ile	Cys
Val		Val,ala	lle
	Phe,lle		Val
Leu	Val	Phe	Leu,Phe
	Leu, Met, Trp	Cys	Met
Phe		Met	Ala,Gly,Trp
Cys			
Met,Ala	Hiş	Thr,Ser	
	Түг	Тгр,Түг	His,Ser
Glγ	Ala		Thr
Thr,Ser	Glγ		Pro
Тгр, Түг	Thr		Түг
Pro			Aşn
		Asp,Lys,Gin	Asp
His	Ser	Glu,His	Gin,Giu
Asn,Gin	Pro,Arg	Asp	
Asp,Glu	Asn		
Lys	Gin,Asp,Giu		
			Arg
Arg	Lys	Arg	Lys

1.2. The amino acids

1.2.4. Chemical characteristic of the amino acids

1.2.4.1. Aliphatic side chains Ala, Gly, Ile, Leu Val

1.2.4.3. Basic side chains Arg, Lys

1.2.4.5. Hydroxyl side chains Ser, Thr

1.2.4.7. Sulphur-containing side chains

Met, Cys

1.2.4.9. Amid side chains *Histidine*

1.2.4.2. Aromatic side chains Phe, Tyr, Trp

1.2.4.4. Acidic side chains Asp, Glu

1.2.4.6. Amide side chains Asn, Gln

> 1.2.4.8. Proline *Pro*

1.2. The amino acids

1.2.4. Chemical characteristic of the amino acids

Amino Acid	Symbol	One-letter	Mass	pK _a R Group	Frequency of occurence
			wo H ₂ O		%
Alanine	Ala	А	71,08		7,83
Arginine	Arg	R	156,19	12,5	5,35
Asparagine	Asn	Ν	114,1		4,18
Aspartic Acid	Asp	D	115,09	3,9	5,32
Cysteine	Cys	С	103,14	8,3	1,52
Glutamic Acid	Glu	E	128,13	4,1	3,95
Glutamine	Gln	Q	129,12		6,64
Glycine	Gly	G	57,05		6,93
Histidine	His	н	137,14	6	2,29
Isoleucine	lle	I	113,16		5,91
Leucine	Leu	L	113,16		9,64
Lysine	Lys	К	128,17	10,8	5,93
Methionine	Met	М	131,2		2,38
Phenylalanine	Phe	F	147,18		4
Proline	Pro	Р	97,12		4,83
Serine	Ser	S	87,08		6,86
Threonine	Thr	Т	101,11		5,42
Tryptophan	Trp	W	186,21		1,15
Tyrosine	Tyr	Y	163,18	10,1	3,06
Valine	Val	V	99,13		6,71

- **1.3.** The primary structure of proteins
- 1.3.1. The peptide bond

Resonance stabilization of the peptide bond

The cis and trans forms of the peptide bond

1.3. The primary structure of proteins

1.3.2. Information available from the amino acid sequence of a protein

1.3.2.1. Exact molecular mass

1.3.2.2. Isoelectric point

http://www.expasy.ch/tools/pi_tool.html

1.3. The primary structure of proteins

1.3.2. Information available from the amino acid sequence of a protein

1.3.2.3. Absorption coefficient		1.3.2.4. Hydrofobicity
	1.3.2.5. Post-translational mo	odifications
Type of modification	Possible effect on function	
Proteolysis	Removal of targeting sequence	S.
	Generation of several new proc	ducts (hormones).
	Activation of proteins (enzymes	5).
Disulphide bond formation	Stabilization of structure of sec	reted proteins.
Hydroxylation	Formation of hydroxy -Lys or -P of collagen.	ro increases the stability of the triple helix
Glycosylation	Many cell surface proteins are i	involved in cell - cell recognition.
	Attachment of glycosyl-phosph membrane.	atidyinositol groups anchors proteins to
	The polar nature of proteins ca	n be enhanced.
Phosphorylation	Phoshorylation of Ser, Thr, Tyr,	His, Asp side chains can regulate the
	activity of proteins, especially in	n signalling pathways.
N-terminal acylation	Attachment of C ₁₄ (myristoylati	on) or C ₁₆ (palmitoylation) chains will
	enhance the association of the	protein with membranes.

principles for understanding proteins – Lubomír Janda

1.3. The primary structure of proteins

1.3.2. Information available from the amino acid sequence of a protein

1.3.2.6. Structural and functional motifs

•Transmembrane domains		ains	>AHK4/CRE1 Receptor histidine kinase
		anns	MNWALNNHQEEEEEPRRIEISDSESLENLKSSDFYQLGGGGALNSSEKPRKID
			FWRSGLMGFAKMQQQQQLQHSVAVKMNNNNNDLMGNKKGSTFIQEHRALLPK
•Targeting sequences			ALILWIIIVGFISSGIYQWMDDANKIRREEVLVSMCDQRARMLQDQFSVSVNH
			VHALAILVSTFHYHKNPSAIDQETFAEYTARTAFERPLLSGVAYAEKVVNFER
			EMFERQHNWVIKTMDRGEPSPVRDEYAPVIFSQDSVSYLESLDMMSGEEDREN
-S-K-L	peroxisome	es	ILRARETGKAVLTSPFRLLETHHLGVVLTFPVYKSSLPENPTVEERIAATAGY
			LGGAFDVESLVENLLGQLAGNQAIVVHVYDITNASDPLVMYGNQDEEADRSLS
-K-D-E-L	endoplasm	ic	HESKLDFGDPFRKHKMICRYHQKAP <mark>IPLNVLTTVPLFFAIGFLVGYIL</mark> YGAAM
reticulum			HIVKVEDDFHEMQELKVRAEAADVAK

•Metal binding		•Phosphorylati	on sites	
-C-X ₄ -C-X ₂ -C-	Fe binding	-R-X ₁₋₂ -S/T- -R-R-X-S/T-	Protein kinase A	
•Glycosylation sit	ces	 Nitrosylation 		
-N-X-S/T-		-(G,S,T,C,Y,N,Q)-(K,R,H,D,E)-C-(D,E)	
www.expasy.org/prosite				

1.3. The primary structure of proteins

1.3.2. Information available from the amino acid sequence of a protein

1.3.2.7. Sequence relationships between proteins

Orthologous protein	different species, same function
	(beta-glucosidase, Zea mays and Brassica napus)

Paralogous protein	same species, different function
	histidine kinase – ETR1 (ethylene signalling pathway)
	histidine kinase – AHK4 (cytokinin signalling pathway)

Segmented proteins

independent folded and functional unit AHK4 - extracelular CHASE domain - histidine kinase domain

- receiver domain

Please solve a problem.

Question 1: I am an amino acid.

My name in Greek means "sweet".5 points

I belong to the group of amino acids with non-polar side chains. 3 points

I am frequently found in secondary structures called loops. 2 points

I am the smallest amino acid. 1 point

Glycin

Please solve a problem.

Question 2: I am an amino acid.

I belong to the group of five amino acids with aliphatic side chains. My molecular mass is in the middle of this group. 5 points

My structure contains five carbon atoms. 3 points H_2N $H_2CCH(NH_2)CH(CH_3)_2$. 2 points

I am not Gly, Ala, Ile or Leu.

1 point

Valine

Please solve a problem.

Question 3: I am an amino acid.

My name in Greek means "silk".	5 points
I belong to the group of polar, uncharged side chain amino acids. I am not an aromatic amino acid. I contain a hydroxyl group and my MW is less than 100 Da.	3 points
I am very often phosphorylated	2 points
I am related to threonine.	1 points
Serine	

1.4. The secondary structure of proteins

1.4. The secondary structure of proteins

1.4.1. The alpha-helix

1.4. The secondary structure of proteins

1.4.2. The beta-strand

1.4. The secondary structure of proteins

1.4.3. Other structural features in proteins

Structural preferences of the different amino acids

Met, Glu, Leu,Ala	+	alpha - helices
Pro, Gly, Tyr	-	alpha helices
Val, Ile, Phe	+	beta sheets
Pro, Asp	-	beta sheets
Pro, Gly, Asp	+	beta turn
Met, Val, Ile	_	beta turn
, ,		

1.5. The tertiary structure of proteins

1.5.1. General principles

Close packing

Elements of secondary structure

Distribution of side chains

Pairing of polar group

Formation of domains

Average Conformational Parameters of Helical Elements

Conformation	Phi	Psi	Omega	Residues per turn	Translation per residue
Alpha helix	-57	-47	180	3.6	1.5
3-10 helix	-49	-26	180	3.0	2.0
Pi-helix	57	-70	180	4.4	1.15
Polyproline I	-83	+158	0	3.33	1.9
Polyproline II	-78	+149	180	3.0	3.12
Polyproline III	-80	+150	180	3.0	3.1

1.5. The tertiary structure of proteins

- **1.5.2.** Classification of protein structures
- **1.5.3.** Forces involved in stabilizing tertiary structure

SCOP Classification Statistics

SCOP: Structural Classification of Proteins. 1.75 release
 38221 PDB Entries (23 Feb 2009). 110800 Domains. 1 Literature Reference (excluding nucleic acids and theoretical models)

Class	Number of folds	Number of superfamilies	Number of families		9
All alpha proteins	284	507	871		c
All beta proteins	174	354	742	N N N N N	N
Alpha and beta proteins (a/b)	147	244	803	Control of	
Alpha and beta proteins (a+b)	376	552	1055	(a)	(b)
Multi-domain proteins	66	66	89	\mathcal{P}	
Membrane and cell surface proteins	58	110	123		
Small proteins	90	129	219	N	
Total	1195	1962	3902	(c) C	

1.6. The quaternary structure of proteins

1.7. Forces contributing to the structures and interactions of proteins

1.7.1. Ionic (electrostatic) interactions

1.7.2. Hydrogen bonds

acceptor

1.7. Forces contributing to the structures and interactions of proteins

1.7.3. Van der Waals' interactions

Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydroxide (OH–), where electron density is shared unequally between atoms.

1.7.4. Hydrophobic interactions

1.7. Forces contributing to the structures and interactions of proteins

1.7.5. Balance of energy contributions

Balance between an unfavourable enthalpy term but a favourable enthropy.

In proteins, the folded state is in the range 20-60 kJ/mol. Entropy and enthalpy are in the range of several hundred kJ/mol.

GnHCl and urea weaken hydrophobic interaction and promote the unfolding of proteins.

http://fikus.omska.cz/~bojkovsm/termodynamika/vdws.html

1.7.6. The range of energies involved in protein interactions

		-1	
		Typical dissociation	Δ G° (kJ/mol)
	Interaction	constant (Kd) (M)	
	Avidin-biotin	10 ⁻¹⁵	89
_	Protein-protein	10 ⁻¹⁰	59
	Antibody-antigen	10 ⁻⁹	53
>	Receptor-hormon	10 ⁻⁷	42
	Enzyme-substrate	10 ⁻⁵	30

 $-\Delta G^{\circ}=RTInK_{eq}$

Please solve a problem.

Question 1: I am a secondary structure.

LSFAAAMIGLA	5 points
The average length of the structure is 11-12 amino acids.	3 points
In general I need 3.6 amino acids to be in the same position	2 points
This structure is not a beta strand	1 point
alpha-helices	

Please solve a problem.

Question 2: I am a weak forces.

I need to have two atoms – one donor and one acceptor.	5 points
This interaction is found between particular side chain and main chain atoms (N-H or C=O groups of the peptide bond).	3 points
I very often interact with water.	2 points
This interaction is also found between water molecules, where five atoms are arranged in a tetrahedral structure.	1 point

Please solve a problem.

Question 3: I am a 3D structure protein.

According to structural classification of proteins, I belong to the smallest family with a homogenous secondary structure.	5 points
"Greek key" structure represents a typical structure.	3 points
My structure most frequently contains Val, Ile and Phe.	2 points

The words "sheet" and "strand" are used with this Greek character. 1 point

Beta proteins