The Dalton (Da) is equal

to 1 atomic mass unit
(approximately the mass of
a hydrogen atom, but more
exactly 1/12 of the mass of
the >C isotope of carbon
(1.66 X 107 g)); see
Chapter 3, Appendix 3.1.

The prefixes of units are
described in more detail

in Chapter 3, section 3.3.

k (note small k) is an
abbreviation for kilo, i.e.
‘1000 times’; thus 1 kilogram
(kg) = 1000 grams (g).

The key mathematical

tools

Aim of this chapter

The aim of this chapter is to explain the basic concepts involved in tackling
quantitative problems. Much of it is probably already familiar to you, but it is
worthwhile to go through it again to consolidate your understanding of the topics.
If you wish to go into more depth, the book by Cornish-Bowden (1999) should
be consulted. ' ,

pisl Estimation of the results of calculations

KEY CONCEPTS
= Breaking down calculations involving multiplication and/or division
into a series of simple steps

= Making estimates as a check on the results obtained using a calculator

Whenever you face a numerical problem, do you automatically reach for the
electronic calculator? Although these wonderful devices are almost universally
used for performing calculations, it is a very good idea to develop the habit of
trying to estimate the result of a calculation in advance. This gives you a check that
you have actually used the calculator correctly.

For example, you might wish to relate the number of amino acids in the
polypeptide chain of a protein to its molecular mass. In practice, it has been found
that on average each amino acid contributes about 110 Da (Daltons) to the mass of
the protein. Thus, if the number of amino acids in the chain were (for example)
260, then the molecular mass would be 260 x 110 Da. Rather than using the cal-
culator, we can easily estimate the result. To a first approximation we merely
multiply by 100 to give 26 000 Da, or 26 kDa (kiloDaltons). We can then add 10%
of this value, to give 26 + 2.6 kDa, i.e. 28.6 kDa.

We might wish to proceed in the reverse direction, for example if a protein is of
molecular mass 40 kDa, how many amino acids are in the chain? Division of the
mass (in Da) by 100 gives 40 000/100 =400 amino acids; we could then take 10% of
this value (40) away to give 360 amino acids (a more accurate answer is 364 amino
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acids). The importance of being able to relate the molecular mass and the number
of amino acids in a protein is explained in Chapter 3, section 3.1.

As a further example of this type of approach it is worth noting that the average
contribution of each nucleotide to the mass of a nucleic acid is 330 Da (0.33 kDa).
It should thus be relatively easy to see that the mass in kDa can be obtained by
dividing the number of bases by 3 (i.e. a synthetic oligonucleotide 80 bases in
length has a mass of about 27 kDa).

The genome of the bacterium Escherichia coliis a circular DNA molecule with
3.4 million base pairs. What is the molecular mass of this DNA?

- STRATEGY
This is a relatively simple application of the rule stated above and can be solved
without use of a calculator.
SOLUTION , :
The number of bases is 6.8 x 105; division of this by 3 gives the mass in kDa. The mass is
therefore about 2.3 x 10° kDa; this could also be expressed as 2.3 x 10° MDa or 2.3 GDa.

The molar concentration of a solution can be obtained by dividing the concentration
of the solute expressed in terms of mg mL™" (equivalent to g L) by the molecular
mass in Da (see Chapter 3, section 3.4.1). Estimate the molarity of a 3.5 mg mL™!
solution of bovine serum albumin, whose molecular mass is 66 000 Da (66 kDa).
STRATEGY
This is an example of estimating the result of a division by a large number; again it
is good practice to do this without a calculator.
SOLUTION
The molarity = 3.5/66 000 M (M is the abbreviation for molar). Multiply the top

~ and bottom of this division sum by 10 to bring the denominator to a small
number (in the region of 1). Hence the molarity = 3.5 X 107%/0.66 M. Since 0.66
goes into 3.5 about five times, the molarity can be estimated as about 5x 10° M
(50 uM). A more accurate answer is 5.3 X 10°M (53 uM).

A rather different sort of problem would involve an estimation of the number of
heart beats in a human lifetime. You would have to make some assumptions about
atypical lifespan (say 80 years) and heart rate (say 70 beats per min).

This would give the number of beats in a lifetime as:

Number of minutes in a lifespan = 80 X 365 X 24 X 60

Hence, number of beats = 80 X 365 X 24 X 60 X 70

We can estimate this by taking out the powers of 10 from each term to leave
small numbers that can be easily multiplied together:

Number of beats =8 X 3.65 X 2.4 X 6 X 7 X 10°

45

The definition of a molar
(abbreviated M) solution

is given in Chapter 3,

section 3.4.1. A 1 M solution
contains 1 mole (abbreviated
mol; equal to the gram
formula weight) of the solute
in 1 litre (L) of solution.

When multiplying numbers
with powers of 10, add

the powers together, e.g.

(2% 10%) x (3x10°) =6 1072,
i.e. 6 X 10%. When dividing,
the powers are subtracted,
e.g. (8x10%)/(4x10")
=2lplie 2 X105

In this estimation, we have
taken 1 power of 10 from 80,
2 from 365, 1 from 24, 1
from 60, and 1 from 70,
making 6 powers of 10
overall.
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"\’

InST 2.1 and ST 2.2,
remember each amino acid
contributes about 110 Da to
the mass. Assume 100 Da
and then make the small
(10%) adjustment.

In ST 2.3, remember each
base contributes about

0.33 kDa, i.e. three bases
contribute 1 kDa. The DNA
consists of two strands (base
pairs), so we multiply our
answer for each strand by

2 to obtain the overall
molecular mass.

ST 2.4 is a good example of
the manipulation of powers
of 10.

Now we estimate the multiples in pairs (i.e. 8 x 3.65 is about 30; 2.4 X 6 is about 15):

Number of beats = 30 x 15 x 7 x 10°
=30 x 100 x 10°
=3 X 10°(i.e. three thousand million or three billion)

If the calculation involved a division, we would go through the same procedure
separately for the numerator and the denominator before estimating the final
result of the division.

Note the convenient way of representing very large or very small numbers is by
use of powers of 10. For example, it is much easier to write that 1 nanometre (nm)
=107 metre (m), rather than 0.000000001 m, or that the speed of light is 2.997 x
10° m s7* rather than 299 700 000 m s'.

In the heartbeat example, if we were to feed the values into a calculator, we would
obtain the result that there were 2.94336 x 10° heartbeats in a lifespan. However, to
state this as the answer would in this case give a completely false impression of the
accuracy of the estimate. The assumptions of a lifespan of 80 years and a heart rate
of 70 beats per minute are likely to be at best only reasonable approximations, and
hence we should be wary about stating anything other than that there are likely to
be about 3 thousand million or 3 billion heart beats in a human lifespan.

Check that you have mastered the key concepts at the start of the
section by attempting the following questions without using a calculator
then use the calculator to check your answers. ‘

ST 2.1 The molecular mass of the trypsin inhibitor protein from soya bean is
21 kDa. How many amino acids does it contain?

ST 2.2 The protein hormone insulin contains 51 amino acids. Estimate its
molecular mass. '

ST 2.3 Human mitochondrial DNA confainé about 16 000 base pairs. Estimate its

molecular mass.

ST 2.4 The human body is estimated to contain 2.5 X 10* red blood cells,

each of which contains 2.8 X 10° molecules of haemoglobin. Each molecule of
haemoglobin has four binding sites for oxygen. How many molecules of oxygen
can be bound by the haemoglobin in the body? If 1 mole of oxygen contains
6.02 X 10** molecules, how many moles of oxygen does this correspond to?

Answers ’

ST 2.1 The number of amino acids is estimated as 190 amino acids.
ST 2.2 The molecular mass is estimated as 5600 Da or 5.6 kDa.

ST 2.3 The molecular mass is estimated as 11 000 kDa or 11 MDa.

ST 2.4 The number of molecules is estimated as 3 x 10°% the number of moles is
estimated as 0.05. '




2.2 SIGNIFICANT FIGURES

w8 Significant figures

KEY CONCEPTS

= Expressing the value of a quantity to the stated number of significant
figures

= Understanding the degree of precision appropriate for the
experimental approaches employed

The number of significant figures in the quoted value of a quantity is the number
of figures ignoring leading or trailing zeroes, ignoring the position of the decimal
point; it provides a measure of the confidence with which that value is known.
Thus, if the molecular mass of a protein is quoted as 30 kDa (i.e. 30 000 Da), this
represents only 1 significant figure; we would be confident that the mass were
between 25 and 35 kDa. A different technique might yield the answer to 2 signific-
ant figures, e.g. 34 kDa. The technique of mass spectrometry might give an answer
0f 34.503 kDa; this would represent 5 significant figures. When values are rounded
off, 0-4 are rounded down, 5-9 are rounded up. Thus, to 1 significant figure,
34 would be expressed as 30; 35 would be expressed as 40.

It is extremely important to quote the results of calculations to the appropriate
number of significant figures. For example, the molecular mass of a protein can
be determined by SDS-PAGE (see Chapter 8, section 8.2.1), in which the mobility
of the protein on electrophoresis is compared with standard proteins of known
molecular mass. If the mobility is measured to 2 significant figures (e.g. the
distance travelled by a band on a gel was 5.2 cm), then the molecular mass should
not be quoted to more than 2 significant figures, e.g. 35 kDa, even if the calculator
display gives an answer of 34.631782 kDa.

It is very tempting to think that because a calculator gives, for example, 8 places
of decimals it must somehow be accurate and authoritative. This is not the case! Of
course, it is good practice to carry as much precision as possible forwards during
calculations, so long as proper rounding off is performed at the end.

 Check that you have mastered the key concepts at the start of this
section by attempting the following question. ,

ST2.5 A calculator gives the result of a calculation as 4623.708. Express this result
to 1,2, 3, and 4 significant figures.

Answer
ST 2.5 The results are 5000, 4600, 4620, and 4624, respectively.

Try to develop the skill of
quoting the results to the
appropriate number of
significant figures. This
shows that you have
understood the basis of the
calculation or measurement.
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P8 Logarithms
KEY CONCEPTS

® Understanding what is meant by the logarithm of a number
® Deriving the values of log x, In x, 10%, e* for a given value of x

® Understanding the importance of logarithms in analysing biological
systems

The logarithm (abbreviated log) of a number # is the power to which the reference
base number (usually 10) must be raised to give n.
Thus, 10° =100, so log 100 =2; similarly log 100 000 = 5.
The log does not have to be an integer, thus 10>7%* = 580, so log 580 = 2.7634.
From the rules regarding powers during multiplication and division:

10°x10°= 10", s0 log(a x b) =log a + logb
10¢/10°=10"*, so log(a/b) =log a — log b

e i a*=axa,solog (a*)=loga+loga=2 log a; in general log (a”) = nlog a

18th-century Swiss
mathematician who made An alternative reference base number for logarithms is the Euler number, e
major contributions to many y 8

areas of mathematics, even (equal t0 2.71828 . . . ). Logarithms to base e are known as natural logarithms and

after he became totally blind. generally denoted by In (though you will see log, used in some books).
Natural logarithms (to base

&) arice in fhe bitach of Now In 10=2.303, so in general In x = 2.303 log x.

mathematics known as If you enter various numbers into your calculator and use the log and In keys
ﬂsﬁfhﬁfﬁﬁsjg‘? /fz‘om you should be able to get a feel for the behaviour of logarithms. You will discover
x=etox=1equals 1). the following key properties of logarithms.

[]m KEY PROPERTIES OF LOGARITHMS

= Thelog of 1= 0 (this is because 10°=1)

= Thelog of a number between 0 and 1 is negative (an example of this is pH,
see section 2.3.1)

= Thelog of a number greater than 1 is positive
= Negative numbers do not have logarithms; if you try to find the log of —4 for

example, you will get an error message.

You should also learn to use the anti-logarithm or inverse logarithm keys (10* and
e for logarithms to base 10 and e, respectively). If you know the logarithm of a
number, you can use these keys to evaluate the number. For example, if x = 4.702,
10*=50 350.1, and e*=110.17.



Because logarithms are expressions of the power to which a number is raised, we
can use the log x and 10~ functions on the calculator to work out squares, square
roots, cubes, and cube roots, etc. of numbers. For example, if we wished to work
out the cube root of 983, we take the log of 983 (2.9926), divide this by 3 (0.9975),
and then take 10* of this number (9.943). To work out 7.52 cubed (7.52%), take the
log of 7.52, multiply it by 3, and then take 10% of the result (to give 425.26). We can
also use this approach to deal with non-integral powers of numbers. For example,
7.520% can be shown to be equal to 1.759. The self-test question ST 2.8 at the end
of this section provides an application of this type of calculation.

The use of logarithms makes it possible to compress what can be a huge numer-
ical range. Some applications of logarithms in biology are described in sections
2.3.1-2.3.6.

2.3.1 Acid-base behaviour and the pH scale

Acidity is quantitatively defined by the concentration of protons (H* ions) present
in a solution. The [H*] varies enormously in living systems. Thus, after a meal, the
[H*] in the stomach is typically about 0.03 M (30 mM), whereas in the duodenum
itis around 0.00000001 M (1 x10~* M or 10 nM). Inside the lysosome (a subcellular
organelle concerned with degradation of macromolecules), the [H*] is usually
0.00003 M (3 x 10> M or 30 uM).

In order to handle this huge range of numbers, the pH scale is used as a measure
of acidity. pH is defined by eqn. 2.1:

pH=-log [H'] 2.1

Thus, in the stomach the pH =—log (0.03) =—(-1.52) =1.52
In the duodenum, the pH =—log (1 X 10*) =—(= 8)=38
In the lysosome, the pH = —log (3x107°) = —(—4.52) =4.52

As we shall see in Chapter 3, section 3.7, an analogous system is used to denote
the strengths of acids, employing the term pK, (equal to —log K, where K, is the
dissociation constant of the acid).

Another illustration of logarithmic scales to show a very large range of concen-
trations is the formation plot, used to depict the binding of a drug to a receptor, for
example (see Chapter 4, section 4.3.1).

2.3.2 Variation of reaction rates with temperature
The rates of reactions increase dramatically with temperature as a greater pro-

portion of the reactants possess the energy necessary to surmount the activation
energy barrier for reaction to occur. The equation derived by Arrhenius (eqn. 2.2;

2.3 LOGARITHMS

The stomach contains

a very strong solution of
hydrochloric acid (HCI).
This would degrade the
stomach wall if it was not
protected by a layer of
mucus. Ulcers arise if this
mucus layer is damaged,
e.g. by aspirin or other
drugs, excessive alcohol,
smoking, etc.
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- Svante Arrhenius was a
Swedish physical chemist
who made important
contributions in the 19th and
20th centuries to the theory
of reaction rates and to
understanding the behaviour
of ionic solutions.

The rapid growth in the
number of bacteria makes
it very important to try

to achieve 100% killing to
combat disease. That is why
it is advisable to complete

a prescribed course of
antibiotics, for example.

'/ WORKED EXAMPLE

2. THE KEY MATHEMATICAL TOOLS

see Chapter 4, section 4.2.3) to describe the variation of the rate constant of the
reaction (k) with absolute temperature (T') is:

where A is the pre-exponential factor, E, is the activation energy for the reaction,
and R is the gas constant (8.31 ] K-! mol™).

We shall see in section 2.5.2 how eqn. 2.2 can be transformed to plot data
conveniently.

2.3.3 First-order processes and bacterial growth

The decay of radioactive isotopes or the decrease in the concentration of drugs in
the blood plasma normally follow first-order kinetics, according to eqn. 2.3:

where [A], and [A], are the concentrations at time ¢ and at zero time, respectively,
and k is the rate constant for the reaction. We shall see in section 2.5.2 how eqn. 2.3
can be transformed to plot data conveniently.

Bacteria with a plentiful supply of nutrients will grow in an exponential (or
logarithmic) fashion; thus if, say, the generation time (the time for cell growth and
division to provide to daughter cells) were 30 min, and we start with 100 cells in
a culture, then after 30 min there will be 200 cells, after 60 min, 400 cells, and after
10 h, 1.0486 X 108 (i.e. 2° X 100) cells. At this rate, after 20 h there would be no less
than 1.0995 x 10* (i.e. 2*°x 100) cells! Of course, the culture will eventually run out
of nutrients and the numbers will level off. The period of rapid growth is known as
the log phase. A plot of the log of the number of cells against time in this phase can
be used to determine the generation time (¢,,,) of the bacterial culture; the slope of
this plot is equal to (log 2)/¢,,,, i.e. 0.301/¢,,.

 STRATEGY -
~ The two data points can be used to calc

) : | - the Vslgperof the plot of log (numb'errof '
ttime. Thiscanbeused to calculatety,.

1. Thus, 0.301/1,,,



2.3.4 Molecular mass calibration graphs

Molecular masses of proteins are often estimated by the techniques of gel
filtration and SDS-PAGE (see Chapter 8, sections 8.2.1 and 8.2.3). The former
method is usually carried out under conditions where a protein retains the
three-dimensional structure required for activity (i.e. native conditions) and
therefore can be used to estimate the mass of the intact protein. The latter is
performed under denaturing conditions and almost invariably will yield the
mass of the constituent polypeptide chains of the protein. In both cases, the
behaviour of protein being analysed is compared with those of standard proteins
of known molecular mass, and calibration graphs are constructed. These are log
molecular mass vs. elution volume (gel filtration) and log molecular mass vs.
mobility (SDS-PAGE).

2.3.5 Spectrophotometry

As we shall see in Chapter 3, section 3.6, in many cases measurement of the
absorption of light by a solution provides a convenient way of determining its
concentration. The quantity measured is known as the absorbance (A), which is
defined by the equation A =log (I,/I) where I, and I, are the intensities of incident
and transmitted light. The logarithmic nature of this relationship has important
practical consequences for the accurate determination of concentrations (see
Chapter 3, section 3.6).

2.3.6 Energy changes and equilibrium constants of reactions

The standard free energy change in a reaction (AG®) is related to the equilibrium
constant for the reaction (K,,) by eqn. 2.4:

where R is the gas constant (8.31J K™ mol™) and T is the absolute temperature.

The nature of this equation means that the value of K, will change logarith-
mically with changes in AG® at 310 K (37°C) each change of about 5.9 kJ mol™!
will lead to a 10-fold change in the value of K., This point is discussed further
in Chapter 4, section 4.1.

2.3 LOGARITHMS 51

SDS-PAGEis an
abbreviation for sodium
dodecylsulphate-
polyacrylamide gel
electrophoresis. Itis a
technique that measures the
mobility of a protein in an
electric field in the presence
of SDS which is a detergent.
It can be used to give a good
estimate of the molecular
mass of a protein as well as
the degree of purity of a
protein preparation.

The free energy change ofa
reaction under standard state
conditions (AG) is discussed "
further in Chapter 4,

section 4.1. The Greek letter

A (capital delta) is used to

mean ‘the change of ; G is

the symbol for free energy
(denoted as G in honour of
Josiah Willard Gibbs, an
American 19th-century

physical chemist. The
superscript zero indicates

that the change in free

energy is under standard

state conditions (see

chapter 4, section 4.1).




52 2. THE KEY MATHEMATICAL TOOLS

Check that you have mastered the key concepts at the start of this
section by attempting the following questions.

Use a calculator to perform the following calculations.

ST 2.6 Find the values of log x and In x for the following values of x: 0.018, 0.632,
1.589,29.97, 8713

ST 2.7 Iflog x and In x have the values —3.72, —1.59, 0.033, 1.15, 4.858, what are

the values of x?
ST 2.8 provides an ST 2.8 The resting heart rate (H in beats min ) for mammals has been found
application of the use of to vary with body mass ( in kg) according to an empirical relationship
logarithms to evaluate H=202/(m°*). Use this equation to estimate the heart rate for the following
powers of numbers. Using dnils bk 6 v hite rhi 2500 ke). 1i 20ke) h
more extreme examples, animals: elep apt (6000 kg), white rhinoceros ( g), lion (220 kg), human
we could estimate that the (75 kg), domestic cat (5 kg), rat (0.5 kg).
heart rate of a blue whale
(100 000 kg) is 11 beats min~' Answers
and that of a small shrew ST 2.6 The values of log x are —1.745, -0.199, 0.201, 1.477, 3.940, respectively;
@003 kg, 1e.8 ) 1s863 the values of In x are —4.017, ~0.459, 0.463, 3.400, 9.073, respectively.
beats min". These values are
in line with measured values ST 2.7 The values of x are: (log x) 1.905 x 104, 0.0257, 1.079, 14 175,
for these parameters. It is 72 111 respectively; the values of x are: (In x) 0.0242, 0.204, 1.034, 3.158,
worth noting that the heart 128.77, respectively.

of a blue whale is the size of a
modest saloon earand the ST 2.8 The heart rates (beats min') are: elephant, 23; rhinoceros, 29; lion, 53;

aorta is large enough for an human, 69; tal, 135121 241
adult human to crawl along!

P8 Reciprocals

KEY CONCEPTS

= Understanding what is meant by the reciprocal of a number
= Using reciprocals to evaluate a number of important parameters such
as Vi Ko, Ky, and E, from appropriate graphs

max?

The reciprocal of a number is 1 divided by that number; thus the reciprocal of 8
is 0.125 and the reciprocal of 0.02 is 50. Use the 1/x button on the calculator to
calculate reciprocals and to explore this function.

Calculations of reciprocals are required in a number of situations, for example:

= In the Lineweaver-Burk plot of enzyme kinetic data and the subsequent
calculations of the parameters K, and Ve (see Chapter 4, section 4.4)

= Calculating the K, or K, from a the slope of an Eadie-Hofstee or a Scatchard
plot, respectively (see Chapter 4, section 4.4)

= Interconverting association and dissociation constants for binding processes
(see Chapter 4, section 4.3.1)

In the Arrhenius plot where the x-axis of the plot is 1/T (T is the absolute
temperature) (see Chapter 4, section 4.2.3).




2.5 TESTING HYPOTHESES

Check that you have mastered the key ’ pts at the start of this

ST2.9 Fromagraph, 1/V,
of V.2

$T2.10 From the same graph, —1/K,, is
value of K,

ST2.11 The value of K, fora bmdmg pmcess is 4. 53 x 10* M. What is the value
of K, given that K, = 1/K,? ,

Answers
§T2.9 ThevalueofV,_, is42.6 },LM min!

ST 2.10 The value of K, is 154 LM; note that the minus signs on each side of the
equation cancel out, so that K, is a positive number.

ST 2.11 The value of K, is 2.208 X 10> M, or 22.08 UM.

Testing hypotheses

KEY CONCEPTS

» Understanding the equation y = mx + ¢ for a straight line graph, and
being able to derive the slope and intercept of this graph

= Rearranging simple equations into the form y=mx+c

Biochemistry and related subjects, e.g. molecular cell biology, aim to provide ex-
planations of the behaviour of biological systems based on physical laws. The aim
isto produce a hypothesis or model that can be tested against experimental data. An
important aspect of the process is to derive an equation and then test the experi-
mental data against this equation, usually by means of an appropriate plot. Once a
model is verified, the equation can be used to predict the outcome of an experiment
under a new set of conditions. If the data do not support the model, it may well be
necessary to change it to accommodate the data. This section will deal with the way
in which we analyse data so as to confirm that they obey proposed models. Section
2.6 will give a brief outline of some important statistical concepts, which allow us
to assign the degree of confidence with which we can make such statements.

2.5.1 Dependent and independent variables

In a graph, the convention is that the x-axis (abscissa) is used to plot the variable
that the experimenter varies (e.g. time, concentration of substrate, etc.). This is the
independent variable.

In ST 2.9-2.11 note that
when taking reciprocals, the
units are also inverted.

In ST 2.9-2.11 note that the
prefix |1 (micro: small Greek

letter mu) means ‘10° times’,

ie 1pg=10"g.

In ST 2.10 note that K, is
effectively a concentration

(see Chapter 4, section 4.3.3),

so it must be a positive
number.
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Guidelines for plotting
graphs are given in
Chapter 11, section 11.2.9.
Most of the points made
also apply to graphs
generated by computers.

Fig. 2.1 Examples of
straight-line graphs through

the origin. (a) Concentration

of product formed against
time in a reaction (straight
line through the origin);

(b) the rate of reaction against
the concentration of enzyme

added, where there is
no significant rate in the

- absence of enzyme. The

equation for the lineis y =
mx, where m is the gradient.

The y-axis (ordinate) is used to plot the quantity that is then observed (e.g. con-
centration of product formed, rate of reaction, etc.). This is the dependent variable.

A very important relationship between y and x is given by the equation of a
straight line (eqn. 2.5):

where m is the slope (gradient) of the line and c is the intercept of the line on the
x-axis.

It is very important when plotting data to make sure that the points on the graph
actually correspond to the numerical values of the data points. This is a particular
problem with certain computer-based graphics programs such as Excel, which will
not automatically plot data points with the correct uniform scale on the x-axis; the
advice is to look carefully at the plot and see whether it corresponds to what you
intend. You should also be able to calculate the value of the slope (change in the
value of y divided by the change in value of x) and express it in the correct units.
Finally, you should be able to look at an equation and recognize what terms could
represent the y-axis and x-axis values, remembering that the slope must be a con-
stant (or a combination of terms that are constant).

Some typical straight line plots which might be obtained are shown in
Figs. 2.1-2.3.

[Product]
Rate

(a) Time (b) [Enzyme]

Fig. 2.2 A straight-line graph
of zero slope. Shortly after the
start of the reaction, the rate
of reaction is constant over
the time period studied. The
equation for thelineisy=c¢,
where c is a constant, equal to
the intercept on the y-axis.

Rate

Time
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Rate

[Enz}ine]

Fig. 2.3 A straight-line graph with a non-zero intercept on the y-axis. The rate of
product formation is plotted against the concentration of enzyme for the case where
there is a significant blank rate in the absence of enzyme. The equation for the line is
y=mx+c, where m is the gradient and ¢ is the intercept on the y-axis.

Fig. 2.1(a), which depicts the concentration of product formed against time in a
reaction, clearly shows a simple straight line relationship, with the equation y = mx
(m = slope). This shows that product is being formed at a constant rate; at zero
time, no product is present. We would normally expect to see a graph of this type
if we plotted the rate of an enzyme-catalysed reaction against the concentration of
enzyme added (Fig. 2.1(b)).

Fig. 2.2, which depicts the rate of product formation of the reaction in Fig. 2.1(a)
against time, is a straight line of zero slope, i.e. the rate of the reaction is constant
over the time period studied. The equation for this line is y = ¢ (i.e. m =0, since
there is no dependence on time).

Fig. 2.3, which depicts the rate of a small number of enzyme-catalysed reactions
against the concentration of enzyme added, shows a straight line relationship.
However, in this case there is still a significant background rate of reaction when
no enzyme is present. The equation is y = mx + ¢, where m is the slope and cis the
intercept on the y-axis. The intercept would correspond to the background (or
blank) rate of reaction.

Fig. 2.4, which depicts the rate of reaction of an enzyme-catalysed reaction
against the concentration of substrate, is clearly not a straight line. The rate
of the reaction shows saturation behaviour with respect to the concentration of

Fig. 2.4 The dependence of
rate on the concentration

of substrate for an enzyme-
catalysed reaction. The line is
a rectangular hyperbola,
described by eqn. 2.6. [Substrate]

Rate

At the instant the reaction
starts, the rate is very low; it
takes a finite period before
the so-called steady-state
rate is achieved. The plot in
Fig. 2.2 assumes that this
‘pre-steady-state’ period is
very short.
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Mathematicians prefer the
use of the term ‘limiting
value’, as it indicates that a
limit is approached at high
concentrations of substrate.
The term ‘maximum value’
should be used when the
value can decline as the
substrate concentration is
increased further. However,
the term V, is very widely
used by biochemists, so will
be kept here.

The Lineweaver-Burk plot

is very commonly used to
analyse enzyme kinetic data,
but it should be remembered
that the reciprocal nature

of the axes makes it subject
to a highly non-uniform
distribution of errors (see
Chapter 4, section 4.4).

substrate, i.e. it tends towards a maximum (more accurately, a limiting) value. The
actual equation (eqn. 2.6) describing this type of curve is known mathematically
as that for a rectangular hyperbola. It is discussed in more detail in Chapter 4,
section 4.3.3.

= VoulS] 26
K, +[8] !

Equation 2.6 can be transformed in a number of ways to give a straight line rela-
tionship that would allow the validity of the equation to be tested. One of the most
commonly used is the Lineweaver-Burk plot. By taking reciprocals of the terms on
both sides of eqn. 2.6, we obtain eqn. 2.7:

1 K, +[S]

2.7

Dividing each term in the numerator of the right hand side of eqn. 2.7 by V,__[$],
we obtain eqn. 2.8:

1k (1 o
v 28 v

Since K,,and V,, (and hencealso K/ Vimax) are constants, it follows that eqn. 2.8
is of the form y = mx +, where yis 1/v, xis 1/[S], m is K./Vwandcis 1/V, .

Aplotof1/vvs.1/[S]isa straight line (Fig. 2.5), known as the Lineweaver—Burk
plot, with the y-axis intercept=1/V,__(see Chapter 4, section 4.4).

Note that some plots you may obtain in the laboratory, e.g. the response of
a dye-binding assay to the amount of protein added (see Chapter 6, section 6.1.1),
do not necessarily conform to any simple theoretical equation and would be
represented by smooth curves. Appropriate values can then be read off the calibra-
tion graphs.

2.8

Fig. 2.5 The Lineweaver-
Burk plot of enzyme kinetic
data, according to eqn. 2.8.
The parameters K, and V,,
can be calculated from the
slope and y-axis intercept of
the straight-line graph.

Slope = K./ Ve

1/v

Intercept=1/V,,,.

1/[S]




5.2 Rearranging equations

: In many cases, it is necessary to rearrange an equation to put it into a form appro-
 priate for plotting and subsequent analysis. In section 2.5.1, we saw how eqn. 2.6

- Thereare other ways in which eqn. 2.6 can be transformed so as to give the equa-
 tion of the form y = mx + ¢ for a straight line. For example, by multlplylng both
sides of eqn. 2.6 by (K, + [S]), we obtain:

'E Dividing each term on both sides by K, we obtain eqn.2.9:

This is of the form y=mx+ ¢, where y is v/[S], xis v, mis—1/K,,,and cis V. /K.
hus, a plot of v/[S] vs. v is a straight line of slope —1/K, and a y-axis intercept of
/K. The intercept on the x-axis (derived by setting v/[S] = 0) is V.. This is
@OWn as the Eadie-Hofstee plot (see Chapter 4, section 4.4).

2.5 TESTING HYPOTHESES

The Eadie-Hofstee plot is
a better way of analysing
enzyme kinetic data than
the Lineweaver—Burk plot
because the distribution
of errors is more uniform

(see Chapter 4, section 4.4).
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v/ WORKED EXAMPLE

The Hanes-Woolf plot is

a better way of analysing
enzyme kinetic data than
the Lineweaver-Burk plot
because the distribution

of errors is more uniform
(see Chapter 4, section 4.4).

Remember that the natural
logarithm of e* = x, and that
the logarithm of the product
of two numbers is sum of the
logarithms of the numbers
(see section 2.3).

Other examples of rearranging equations to produce straight line graphs include:

The Arrhenius equation for variation of reaction rate constant with temperature

The equation is:

where A, E,, and R are constants. (The Arrhenius equation has been mgnﬁongd in
section 2.3.2 and is discussed in more detail in Chapter 4, section 4.2.3.) Taking the
natural logarithms of both sides of eqn. 2.2, we obtain eqn. 2.11:

Thus, a plot of In k vs. 1/T is a straight line of slope —E,/R, from which E, can be
calculated (see Chapter 4, section 4.2.3).
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The equation for a first-order process

Equation 2.3 describes a first-order process (see section 2.4.3 and Chapter 4,
section 4.2.1):

where [A], and k are constants.
Taking the natural logarithms of both sides of eqn. 2.3, we obtain:

A plot of In [A], vs. t is a straight line of slope —k, yielding the rate constant
directly (see Chapter 4, section 4.2.1).

Check that you have mastered the key concepts at the st‘art of thlS

section by attempting the faﬂawmg question.

ST 2.12 The equatlon for the osmotxc pressure (P) exerted bya solutlon of i ~ InST2.12 the equation

protein Whose molecular mass equals M and of concentra is already in the form
, > t - . y=mx+c, wherecisplotted
P/RTC l/M+BC - - - on the x-axis and P/RTc¢
: - : - onthe y-axis. Fora given
whereR, T and B are constan How W@uld you' etermine M from smtable graph?' protein, M (and hence 1/M)
; will be constant.

ST2.12 A plot of P/RT:: vs. crwﬁl h/ vea y—
by takmg the r cxprocal of thlS mtercept '

»271 Some basic statistics

KEY CONCEPTS f  chod

= Defining the mean, median, and mode of a distribution curve

= Defining the mean and standard deviation of a normal distribution
curve

= Testing the difference of two means using the Student’s ¢ function

= Testing for correlation between variables; linear and non-linear In 1942, Lt LM. Chisov, a
regression Soviet pilot survived after
ejecting at over 6500 m from

ey : . 2 = his Ilyushin 4 pl hen hi
[tis important to realize that virtually al} the statements we make in an experimen- me Zﬁlstel?aﬂf dir;eo‘geﬁ_n -
tal science are statistical ones. We may be very confident, for example that falling  Although he sustained
. . . : significant injuries, he was
out of an airplane at an altitude of 6500 m without a parachute will be fatal, orata [~ . " s

more mundane level, that administration of a statin-type drug (such as simvastatin)  monthslater.
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The statin drugs work by
inhibiting a key enzyme
involved in the biosynthesis
of cholesterol. This can lead
to a significant reduction (up
to 50%) in blood cholesterol
levels, and thus reduce the
risk of suffering a heart
attack.

The symbol ¥ is the Greek
capital letter sigma (S).

will lead to the lowering of blood cholesterol levels, but this is not always the case
for every individual. We need some way of estimating the degree of confidence
with which we can make statements; this is the realm of statistics. The coverage of
this topic for the molecular biosciences is much less than would be needed for the
environmental and ecological sciences, principally because in the former we usu-
ally perform experiments in which we vary the important parameters (concentra-
tion, temperature, pH, etc.) in a systematic way to test some accepted theory or
model. In contrast, in the more complex relationships in ecology we may have to
consider the effects of many variables at the same time. This would require a much
more detailed statistical approach to establish significant correlations between
parameters, which could then be investigated in detail to derive the causal mechan-
isms involved (for example, how A influences B, and subsequently C). Statistics is
also useful for establishing the degree of confidence with which we can quote the
value of an experimentally measured or derived parameter such as the amount of
protein in a solution, the rate constant of a reaction, or the Michaelis constant for
the substrate of an enzyme. For many applications of statls’ucsg 1t is common to use
a 95% significance threshold, i.e. that we can be 95% cohfident about a certain out-
come, but in some cases it may be important to be at least 99% confident.

2.6.1 Distributions of variables

The starting point for our discussion is the way that the values of parameters can
be distributed. For example, if we were to measure the speeds at which vehicles
were proceeding along an autobahn in Germany (where there is no official speed
limit in rural areas), we might find that most of the vehicles were at speeds in the
range 90110 kph (roughly 55-70 miles per hour) but there would be some lorries
going slower than this, and some high-performance cars going at speeds of
150 kph or higher. When plotted as a graph with the value of the speed (or rather
the range of speeds, such as between 90 and 92 kph) on the x-axis and the number
of vehicles measured as being within that range on the y-axis, we might obtain a
distribution curve of the type as shown in Fig. 2.6.

There are three important values associated with a distribution curve. The mean,
or more strictly the arithmetic mean, (%) is defined as the average of the values
(%,5%,,%3,X,, etc.) of the parameter plotted on the x-axis. This is defined mathemat-
ically by eqn. 2.13:

Xk .
. XX+ Xu = 2{x) 2135
n n : - .

where 7 is the number of values of the parameter in question (x in this case), and 3,
means ‘the sum of the values’.

The median is defined as the middle value of the parameter, i.e. that value with
as many values above it as below it. If we have an even number of values, the
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German autobahn. The
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Fig.2.6 A skewed T T T T
distribution showing the 70 90 110 130 150
hypothetical distribution Speed (kph)
of vehicle speeds along a
<
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Mean

mode, median, and mean of
the distribution are indicated.

Mediamn — —_ »

median is the numerical average of the middle two values. For example, if
the median of the values 10.2, 10.7, 11.0, 11.1, 11.5, 11.6, 11.9, 12.2 would be the
average of 11.1 and 11.5, i.e. 11.3. The median can be given with its quartiles.
The first quartile value has /4 of the values below it, the third quartile value has /4
of the values above it. The inter-quartile range contains the middle /2 of the values.

The mode is that value which occurs most commonly. The term mode is valuable
in describing a distribution of variables which cannot be ranked (e.g. eye colour)
and distribution which might show two peaks (this would be termed bimodal).

The mean, median, and mode of the distribution of vehicle speeds are indicated
in Fig. 2.6.

2.6.2 The normal distribution

One particularly important type of distribution is known as the normal distribu-
tion in which the values of a continuous variable (i.e. one which can take any value,
rather than just discrete values) are distributed symmetrically around the mean
value. This is shown in Fig. 2.7. This would apply, for example, to physical charac-
teristics such as height or weight, or to examination scores when measured for a
suitably large sample size of the population. However, of more importance in the
present context is that it also describes the distribution of values of experimental
measurements subject to random variations. These would include, for instance,
properties of samples taken from individual organisms that have been chosen to be
well matched, or replicate determinations of some property of a sample from one
particular source. Because of the symmetrical nature of this distribution, the values
of the mean, mode, and median all coincide.

A normal distribution is characterized by the values of the mean and the
standard deviation.

The word ‘normal’ refers
to the mathematical form
of the distribution curve; it
does not mean ‘expected’

or ‘typical’.
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The symbol ¢ is the Greek
small letter sigma (s).

The introduction of the term
n— 1 rather than n into the
expression for the standard
deviation is difficult to
explain in simple terms,

but it gives a better shape to
the distribution curve. For
values of > 20, there is only
asmall (<3%) difference
between the two expressions.

The population mean (u) is defined by eqn. 2.14:

where x,, x,, etc. are the individual values of the property and # is the number of
values in the population.

In practice, we are rarely able to study the entire population so we study the
properties of a sample of the population; the sample mean (%) has already been
defined by eqn. 2.13:

where 7 is the size of the sample. -
The standard deviation (SD, also designated as &) is defined for a population by
eqn. 2.15: :

where x is an individual value of the property, i is the population mean, and # is
the number of values in the population.

For a sample taken from the entire population, the standard deviation (SD) is
defined in an analogous fashion, except that the term 7 — 1 is introduced into the
denominator, as shown in eqn. 2.16:
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The value of the standard deviation relative to that of the mean gives an indica-
tion of how tightly the values are grouped around the mean. In terms of experi-
mentally derived values this would indicate the degree of confidence we had in
stating the value of the given parameter, e.g. molecular mass. (See the discussion
onsignificant figures in section 2.2.) From the mathematical equation for anormal
distribution, it is found that 68.2% of the total area under the curve is within 1 stand-
ard deviation of the mean, 95.4% of the total area is within two standard devia-
tions of the mean and 99.7% within three standard deviations of the mean. (The
areas of a standard normal distribution are given in the table in Appendix 2.1 at the
end of this chapter.) For example, the average height of adult males in the UK is
178 cm with a standard deviation of 5 cm; thus, 95% of the male population
is between 168 and 188 cm in height. There is thus only a 1 in 20 probability
(which we express using the symbol p, i.e. p=0.05) that the height of a male will fall
outside that range. For example, there would be a less than 1 in 500 probability
(p<0.003) that a male is 195 cm tall.

The way in which the sample mean (x) might vary from the (true) population
mean () is described by the term standard error of the mean (SEM) which is
defined by eqn. 2.17.

Clearly, the larger the sample size #, the smaller the value of the SEM.
From the properties of normal distributions:

11+ 1.96 SEM will include 95% of the sample means
11 +2.58 SEM will include 99% of the sample means

 The operation of a pipette was checked by repeatedly dispensing and weighing
 volumes of water. The volume on the pipette was set at 1 mi, and the following
~ volumes (mL) were dispensed in succession: 0.932, 0.927, 0. 948, 0.937, 0.918, 0.929,
0940, and 0.942. What is the mean and standard dev:atlon of these values?

- Comment on the rehablhty of the plpe’tte = - -

TRATE GY ' ‘ ‘ '
- Weuseeqns.2.13 and 3 16 to evaluate the mean and standard demanon, respectlvely ,

 SOLUTION

_ The mean value is 0.934 mL and the standard dev1at10n is 0.0096 mL. From the

 properties of the normal distribution 99.7% of the values would be within the

~ range 0.905 to 0.963 mL, which is significantly different from the nominal value of

© 1,000 mL. Thus, we can conclude that the pipette is precise (i.e. it delivers volumes

~ which are reproducibly close to each other, with a low standard deviation), but itis

_ not accurate (i.e. it is not sufficiently close to the true, or required, value). If the

~ experiment had given a mean of 1.002 mL with a standard dewatlon of 0. 0096 mL,
the pipette would be both precise and accurate. ,

The coefficient of variation
(CV) is often used to
describe the degree of
variability of a population.
It is defined as: CV'=100
(SD/%)%, where % and SD
are the mean and standard
deviation of the population,
respectively.

The words ‘accurate’ and
‘precise’ are often used
interchangeably; it is
important to appreciate their
correct scientific usage, as in
this example.
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The large numbers of
patients required for the
later stages of drug trials is a
major factor in the cost of
developing new drugs. It is
estimated that each new
drug would have cost several
hundred million dollars to
bring to market.

Fig. 2.8 Distribution curves
for the blood pressure data
for two groups of patients.
The mean values for the

two groups are indicated

(%, and %,).

Having looked at the way in which statistics can be used to describe the distri-
butions of variables, we shall now briefly consider two important applications of
statistics in drawing conclusions from such distributions.

2.6.3 Testing the difference between two means

A very common use of statistics is to decide whether a change in a parameter is
significant. For example, does the administration of a certain drug lead to a signi-
ficant reduction in blood pressure, or are any changes observed merely due to
chance? A trial may be set up with matched pairs of patients half of whom are given
the drug and the other half given a dummy ‘placebo’ which is the control. The
blood pressure data are collected and presented in the form of a mean and stand-
ard deviation for each group. In order to be able to draw reliable conclusions, the
sample sizes should be as large as possible; indeed the trials of new drugs usually
involve at least several hundred patients. In each group (drug and placebo) there
will be a range of values of blood pressure, each with its own mean and standard
deviation (Fig. 2.8).

The way we usually proceed is to test the so-called ‘null hypothesis’, that is
that there is no real difference between the mean values for the two groups (i.e. that
the drug does not really cause any effect) and that any difference observed reflects
random variations between individuals. Testing this hypothesis would certainly
be important for the trial of a new drug, since there is an onus on the company to
prove that the new drug is more effective than any existing treatments.

We first calculate the standard error of the difference (SE,) between the two
means, according to eqn. 2.18:

SD? SD2
+
nl n2

,SEd= 2.18

where SD, and SD, are the standard deviations of the two groups (of sizes n, and n,,
respectively).

Group 2 Group 1

Number of patients

Blood pressure

S —>
e
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We then use the ¢ function (more properly known as the Student’s ¢ function) to
assess the significance of the differences. The ¢ function is defined by eqn. 2.19:

(x=pVn ; ‘ . -
SD ,

It shows a distribution around a mean value similar to the normal distribution,  The ¢ function was defined
but is more appropriate for smaller sample sizes. ?IY VilliaGe e 1900
is employers, Guinness
In terms of testing the differences between two means, the appropriate defini-  Breweries, requested him
to publish his work under
a pseudonym, so he chose
the name ‘Student’).

tion of ¢ is given by eqn. 2.20:

el 2.20
SE,

where %, and %, are the two sample means and | | means ‘irrespective of sign’.

The probability (p) that the two sample means are identical can be deduced
from the properties of the ¢ function for the appropriate number of degrees of free-
dom (equal to n, + n, — 2). The values of the ¢ function are given in the table in
Appendix 2.2 at the end of this chapter.

In a small-scale drug trial, the sample mean values of the diastolic blood pressures
of the drug and placebo groups were 122.5 and 110.3 mm, respectively. There were
20 patients in each group. The standard deviations for the two groups were 20.5
and 18.1 mm, respectively. Do the data show (at the 95% confidence level) that the
drug has an effect on the blood pressure?

STRATEGY

We calculate the standard error of the difference (eqn. 2.18), and from that the
value of £ (eqn. 2.20). Reference to the table of t values allows us to reach a
conclusion about the significance of any change.

SOLUTION .

The value of SE, = 6.11 mm. The value of X, — X, = 12.2 mm. Hence t = 1.997.
Reference to the table in Appendix 2.2 shows that ¢ is below the entry value (2.02)
for 95% confidence. Hence, we cannot reject the null hypothesis and must

conclude that the drug has not been shown to have an effect. Since t is quite close to
the entry value, it would probably be worthwhile extending the test to include more
patients; this may well increase the value of ¢ significantly.

2.6.4 The correlation coefficient and linear regression

The term ‘correlation’ refers to how strongly two variables are related. For example,
if we were to plot a scatter diagram showing the shoe sizes of individuals against
their height, we would expect to see a positive relationship between the two (tall
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Fig. 2.9 Scatter diagrams
showing the correlation
between variables x and y.
(a) Correlation coefficient
(r) = +1.0, perfect positive
correlation; (b) r=+0.6,
partial correlation, the
significance depends on
the number of degrees of
freedom, see Appendix 2.2;
(¢) r=0, no correlation;

(d) r=—1.0, perfect negative
correlation.
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r=+1.0
r X
(a) x (b) x
r=0 r=-1.0
| | | |}
B B n
Y| m [ ] [ ] ’
| | [ [ ] ] u
(o) x (d) x

people generally have large feet). We can define the correlation coefficient, r, for
the variables x and y by eqn. 2.21:

)
- JZe-20-))7

where x and j are the means of the values of x and y, respectively, in the data set..

Values of r can range from —1 (perfect negative correlation) to +1 (perfect posi-
tive correlation). Some examples of scatter diagrams and the associated values of r
are shown in Fig. 2.9.

The value of r which indicates a significant correlation between two variables
depends on the number of (x,y) data points we have (strictly speaking on the
degrees of freedom (1), which equals the number of (x,y) data points —2). Values
of r which are used to establish a correlation are listed in the table in Appendix 2.3
at the end of this chapter. For example, we could say (at the 95% confidence level)
that two variables are positively correlated if 7> 0.754 (n=5) or r> 0.576 (n=10).
Drawing this sort of conclusion is important if one is trying to establish a correla-
tion between two variables before trying to propose a mechanism for a causal
relationship.

In the molecular biosciences it is more likely that we are investigating the
validity of a model and are testing experimental data against that model. If we are
testing an equation where we would expect a straight line relationship (see sec-
tion 2.5.2), then we can plot the appropriate parameters on a graph to check that
the equation and hence the model are obeyed. In an ideal world (perfect data),
all the points would fall on the straight line and determination of the slope and
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intercept would be trivial. In practice, due to errors in measurements, it is likely
that the points would be scattered around a straight line. The determination of the
best straight line is known as linear regression and the line produced is known
as the regression line of y on x. The most widely used method to do this is the
least-squares method, in which the sum of the squares of the differences between
the calculated and observed values of y at each value of x is minimized (Fig. 2.10).

The equation for the least-squares fit straight line is y = mx + ¢, where the slope
m is given by eqn. 2.22:

Knowing the values of m, %, and 7, the value of the y-axis intercept c can be
calculated from egn. 2.23:

Once the best straight line has been determined, it can be used to predict
values of y for given values of x. The standard error of the estimate of y (s.) is given
by eqn. 2.24:

where 7 is the number of (x,y) points.
We can then establish a 95% confidence band around the regression line, which
will be marked by two lines (one 1.96 times s, above the line, the other 1.96 times s,

Note in Fig. 2.10 that the
squares of the differences are
used so that deviations below
the line and above the line
both contribute to the total

~ deviation. -
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below the line). Clearly, it is better if one is using this approach within the mea-
sured range of the values of x (interpolation) than outside this range (extrapola-
tion). In the latter case, it would be important to establish (or necessary to assume)
that the model and equation were valid outside the range.

The values of the slope and intercept may then be used to derive parameters
such as the rate constant or activation energy of a reaction, or the number of bind-
ing sites on a protein for a given ligand. It is possible to calculate the standard
errors in the estimates of the slope (s,,) and the y-axis intercept (s.) using eqns: 2.25
and 2.26, respectively.

The rate (v, in units of pM mm“) ofan enzyme catalysed reaction was studied as
function of substrate concentration ([S], in units of uM). The data were analysed
by the Hanes-Woolf plot (eqn. 2. 10) in whlch [S]/ vis plotted agamst {S] The
follemng values were. obtamed

[S]/v 132 18.0 18.2

~ Calculate the correlation coefficient for the plot of [S]/v vs. [S] and use hnear
regression to calculate the best stralght hne '

'STRATEGY
This is an application of eqns 2.21,2.22,and 2.23. It is a good idea to draw up
a table to calculate the various terms reqmred for these equatmns ' ,

SOLUTION

[S]/vis designated as y and [S} as x. The values of j and Xare22.19 and

40, respectively. The values of 2(y—y)? and X(x ~ X)? are 220.03 and 2800,
respectively. The value of ¥,(x — %)(y — §) is 776. From this, using eqn. 2.21,
r=0.9886; this is highly significant correlation (p <0.001 for 5 degrees of freedom,
ie. the number of (x,y) data points (7) —2). The slope () and y-axis intercept () of
the least-squares line are 0.277 and 11.1, respectively. Purﬂmr analysm us;ng eqns
2.25and 2.26 shawsthats,,,—(),()ﬁands -~ 13 -

2.6.5 Non-linear regression

Although linear regression is a very useful method, there are many occasions when
the relationships between variables cannot be expressed in terms of a simple
straight line equation, or where such a relationship could cause problems. (One
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example of the latter is the Lineweaver-Burk rearrangement of the Michaelis-
Menten equation (see section 2.5.1). The reciprocal nature of the parameters
plotted (1/v and 1/[S]) means that there is a highly non-uniform distribution of
errors over the range of values, so that in determining the best straight line by
the least-squares method, the greatest weight is given to the points at high 1/[S],
i.e. low [S], which are associated with the greatest experimental errors).

In cases where a straight line relationship does not hold, it is possible to use
non-linear regression, where the data are fitted to more complex equations, often
involving higher power dependence on x (e.g. x% x*, etc.). Most fitting procedures
involve the use of complex numerical algorithms and are most conveniently
performed by computers. One way of assessing the overall quality of the fit is by
evaluating the normalized root mean square deviation (NRMSD), which is defined
byeqn. 2.27:

NRMSD= | 2o=ta) - - 227
. 2 (Yors)” :

where y,,, and y,, are the observed and calculated (according to the fitting equa-

tion) values of y, at each specified value of x. The NRMSD can take values ranging

from 0 (perfect fit) to 1 (no fit whatsoever); generally, values less than 0.1 are

considered satisfactory.

There are many programs commercially available for the direct fitting of
enzyme kinetic data to theoretical models such as that described by the
Michaelis-Menten equation. The majority of these use the Levenberg-Marquardt
algorithm, which employs an iterative approach to find the values of the para-
meters in the chosen model which give the best fit to the experimental data as
judged by the sum of the squares of the differences being minimized. Initial trial
values of these parameters are either supplied or guessed and these are then
varied in an incremental fashion and the effect on the goodness of fit assessed.
In the Levenberg—Marquardt approach, the sizes of the incremental changes can
be automatically adjusted according to how well the values of the parameters are
converging towards their final values.

In the case of enzyme kinetic data, these direct fitting procedures can be used
to fit the data (v as a function of [S]) directly to the Michaelis—-Menten equation
(see Chapter 4, section 4.4). The program will produce estimates of the parameters
K, and V,,, together with the standard errors of the estimates in these quantities.
Ideally, the errors should be <5% of the values of the parameters. Low values
of these errors give confidence that the equation (and the model on which it is
based) is obeyed, and that the measurements are not subject to excessive random
errors.

As well as the NRMSD, a useful further check on the appropriateness of the
analysis of the data is to look at the so-called pattern of residuals (the differences
between the calculated and observed values of the y parameter at each value of x).
When these differences are plotted against the values of the x parameter, there

A low error value does not,
however, exclude the
possibility of a systematic
error. For example, if a stock
solution of substrate had
been made up at the wrong
concentration, then the value
of K, would be incorrect,
even if there were no errors
in pipetting or measurement
of rates.
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?  SELF TEST

With respect to ST 2.13,

the current guidelines for
blood cholesterol levels

are that they should be kept
below 5.2 mM, although the
distribution between various
lipoprotein complexes is also
important.

should be a random pattern around the line y = 0 (Fig. 2.11(a)). If there is a
systematic pattern of residuals (as, for example in Fig. 2.11(b)), this indicates that
the method of analysis is inappropriate, and should be altered to yield a random
pattern of residuals.
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coefficient () of 0.669. What would you recommend to the investigator who
produced the data?

Answers

ST 2.13 The values are: median, 4.95 mM; mean, 4.84 mM; standard deviation,

0.68 mM; 95% confidence limit for i, 4.37-5.31 mM. -
With respect to ST 2.14, the

ST 2.14 Comparing 30 min and start values, ¢ = 8.68; this gives p < 0.01, i.e. the current guidelines are that
null hypothesis can be rejected with >99% confidence. Comparing 120 min and the fasting blood glucose
start values, £= 1.49; this gives a p value between 0.2 and 0.1 (0.2>p > 0.1); i.e. levels should be in the range
the null hypothesis cannot be rejected with at least 95% confidence. Thus, =2 5 M Shlng ribe
the 30 m hioic nthoantv e Banthe sart vadve butthe 10 ingestion of glucose the level

¢ 30 min value is significantly igher than the start value, but the 120 min % ldbbelow il oM
value is not. after further 90 min, the level
ST 2.15 The value of r is below the value required for 95% confidence of a should have dropped to

i Lt Iwoull oot haeliieh ot theblotto below 7.8 mM. Fasting blood

positive correlation. It would not therefore be appropriate to use the plot to try . o
to obtain reliable values of the kinetic parameters (K., and V,,,) for the enzyme. 7.8 mM, and greater than
It would be sensible to try to improve the experimental technique and to obtain 11.1 mM at the 120 min
more data points. point indicate diabetes.

References for Chapter 2

Cornish-Bowden, A. (1999) Basic Mathematics for Biochemists, 2nd edn. Oxford University
Press, Oxford, 221 pp.




Appendix

Appendix 2.1 Table of areas of a standard normal distribution

The entries in the table show the proportion of the
total area under the curve which lies between x = 0
and the actual value of x. The areas for negative
values of x are obtained by symmetry.

0.0
0.1
0.2
0.3
0.4

0
96
07
0«8 -
09

.0239  .0279 0319 .0359
.0636 .0675 .0714 .0753

L1 3643 3665 3686 .3708 3729 3749 3770 3790 3810 .3830
L2 3849 3869 .3888 .3907 3925 3944 3962 3980 3907 4015
13 4032 4049 4066 .4082 4099 4115 4131 A147 4162 4177
L4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319




3 Appendix 73

v the pmba ilities (pr)
for negative values of t are obtamed by symex
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The value of p shown is the probability that the absolute value of r exceeds the
value shown in the table. Thus, for 8 degrees of freedom, the probability that r
exceeds 0.632 when its true value is 0 (no correlation) is 0.05.

The number of degrees of freedom is the number of (x,y) data points —2.

e e N

Degrees Value of p

of
freedom 0.10 0.05 002 0.01 0.001




