Chapter 2

Designing Experiments for High-Throughput
Protein Expression

Stephen P. Chambers and Susanne E. Swalley

Summary

The advent of high-throughput protein production and the vast amount of data it is capable of generat-
ing has created both new opportunities and problems. Automation and miniaturization allow experimen-
tation to be performed more efficiently, justifying the cost involved in establishing a high-throughput
platform. These changes have also magnified the need for effective statistical methods to identify trends
and relationships in the data. The application of quantitative management tools to this process provides
the means of ensuring maximum efficiency and productivity.
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2.1. Introduction

The amount of protein, particularly when recombinant, is more
often described in qualitative than quantitative terms. Frequently,
proteins are visualized on a gel to characterize amount and purity.
The once-mandatory protein purification tables, describing protein
production efficiencies, are now rarely found in publications.
Protein yields are frequently described subjectively as estimates
or percentages. This over-reliance on qualitative measurement
reflects the difficulties encountered in accurately determin-
ing amounts of protein. The problem is only aggravated when
working in a high-throughput protein production environment.
This bottleneck in generating quantitative data has now effec-
tively been removed with the development of the LabChip®90
protein assay system capable of analyzing >288 samples (three
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2.1.1. Design of
Experiments

2.1.2. Optimization of
Protein Production

96-well plates) per chip priming (I). When integrated into a
high-throughput protein production platform, a vast amount of
data can be generated, thereby, requiring effective quantitative
and statistical methods to identify trends and relationships. In
this chapter, we attempt to illustrate some of the advantages in
using experimental design and show how, when combined with
high-throughput expression, it can be used to optimize protein
production. We encourage readers who are interested in this area
to consult further references for a more detailed introduction to
statistical analysis in experimentation (2).

Statistical design of experiments (DOE), or simply experimen-
tal design, is a proven technique used extensively today in many
industrial-manufacturing processes. Considering that this method
was originally conceived to identify genetic variation in crops, it
has not, until recently, been widely taken up by life scientists.
As more research disciplines are using automation and microflu-
idics to obtain faster results, an increasing number of scientists are
now recognizing the assistance that experimental design can pro-
vide. Consequently, this technique is finding increasing accept-
ance in many areas beyond its origins in genetics.

Among the advantages that DOE can provide is the increased
amount of information per experiment compared to an ad hoc
approach. The second benefit occurs in providing an organized
approach toward analysis and interpretation of results, thus facilitat-
ing communication. Another advantage is the ability to identify inter-
actions among factors, leading to more reliable prediction of response
in areas not directly covered by experimentation. The fourth benefit
is in the assessment of information reliability in light of experimental
and analytical variation. The uptake of this mathematical technique
has been greatly aided by the availability of DOE software packages,
like JMP (see Note 1), making it accessible to the nonstatistician.

Optimization of protein production using a conventional one-
factor-at-a-time approach is a very labor-intensive endeavor, due
to the large number of potential factors and their interactions
that can affect expression. Interactions make it difficult to opti-
mize factors independently, increasing the number of experiments
required to cover the variable space to identify the maximum
response. Through DOE techniques the total number of experi-
ments can be reduced, by evaluating the more relevant interac-
tions among variables, and through the use of partial factorial
experimental models. Even then, however, the throughput of tra-
ditional protein expression is insufficient to perform the required
number of experiments in a reasonable period of time and at a
viable cost. Only now through the recent development of high-
throughput protein expression platforms is it possible to take full
advantage of DOE optimization of protein production.
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2.2. Methods

2.2.1. Experimental
Design

Good experimentation requires the establishment of a precise
goal and objective; an ill-defined experiment will often produce
ambiguous results and fail to reach any conclusion. The simplest
experimental design is one where screening is used to identify
key factors affecting a measurable response (see Note 2). In
our case the response to be maximized is soluble protein pro-
duction. Utilizing the high-throughput platform described in
Chapter 10 enables the analysis of soluble protein produced in
E. coli and insect cells. Analysis of this quantitative response allows
the experimenter to identify and optimize conditions critical to
production of soluble protein.

In order to express a protein, many factors need to be exam-
ined experimentally, as it is difficult to know a prior: what will
succeed. Performing one-factor-at-a-time experiments (Fig. 2.1a),
especially when there are many potential important factors, raises
the risk of locating a local maximum, thereby missing the actual
best condition.

Also, experiments are best executed in an iterative manner
so that information learned in one experiment can be applied
to the next. Typically a sequence of experiments is used to meet
a defined objective. The experiments include screening designs
based on a fractional factorial (Fig. 2.1b) to identify signifi-

Fig. 2.1. Experimental design. (a) One factor at a time; (b) fractional factorial; (c) full factorial; (d) response surface model:
Box-Behnken design for three factors.
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2.2.2. Factors
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2.2.2.1. Construct

2.2.2.2. Expression
System and Vector

2.2.2.3. Cell Line

cant factors, a full factorial (Fig. 2.1c) to identify interactions
or response surface design (Fig. 2.1d) to fully characterize or
model the effects, followed up with confirmation runs to verify
the results (see Note 3).

A factor is any variable associated with the product or process
under experimental control. There are two different types of
variables used in DOE: categorical and continuous. A categori-
cal variable is a factor having only a discrete number of settings
that have no intrinsic order, while a continuous variable can be
assigned a numeric value. A number of factors affect recom-
binant protein expression including, but not limited to, con-
struct length, vector, cell line, temperature, time, media, inducer
concentration, and additives. The range of values used should
be based on either literature precedent or previous experience
expressing proteins (see Note 4). We will briefly discuss these
factors and the approach we take to each expression system.

Once a target protein of interest is chosen, the first step is to
design a number of constructs of varying length, as practi-
cal experience has shown that the exact construct limits can
be critical to success. Alignments with homologous proteins
that have been previously expressed can help limit the number
of constructs, but it is unwise to choose only one. Limited
proteolysis (3) or H/D exchange (4) of full-length protein
can also be used to identify small, stable domains capable of
being overexpressed and successfully used in structural stud-
ies downstream. Additional diversity can also be introduced
into the experiment by exploring mutants and homologs of
the target protein.

The most commonly used source of recombinant expression is
E. coli, but there are many other prokaryotic and cukaryotic
systems available. We routinely use both E. co/i and insect cells,
having streamlined the process with a vector that can transform
bacteria for direct expression using a bacteriophage T7 promoter
and make baculovirus for insect cell expression using the poly-
hedrin promoter (5). Typically, we produce a hexa-histidine
(Hisx6)-tagged protein, but have explored other fusions options
including glutathione-S-transferase (GST) and maltose-binding
protein (MBP) where the literature suggests some advantage.
The proliferation of commercially available vectors, especially
those that facilitate rapid cloning like the Gateway™ destination
expression vectors, has only added to the number of strategies
that can be readily pursued.

For bacterial expression, choice of cell line can greatly affect the
amounts of protein produced. There are a number of E. cols
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strains with genotypes engineered specifically to meet the needs
of expressing recombinant proteins. While there is a wide vari-
ety of choice, the popularity of commercially available compe-
tent cells has reduced the number of cell lines more often used
to just a few. Some of the most frequently used are derivatives
of the BL21(DE3) cell line (6), containing coresident plasmids
to address specific protein expression issues, including toxicity,
codon bias, and folding. For insect cell expression the choice of
cell lines is smaller with Sf9, Sf21, and High-5 being the most
commonly used. Despite the limited choice we have found, as
in E. coli, proteins will have a distinct preference and it is worth-
while examining expression in as many cell lines as possible.

Temperature and time are frequently critical factors, especially
since these two variables often interact. In bacteria, there are some
proteins that benefit greatly from a slower, longer induction,

- which generally requires low temperature (7). At high tempera-

tures, bacterial cells will reach a maximum density and eventually
run out of nutrients, at which point cell death will occur. If the
protein of interest aggregates casily and cannot be overexpressed
in a short time frame, then lowering the temperature is essen-
tial. We have expressed proteins anywhere from 15 to 37°C and
3-24h. Insect cells are less tolerant of temperature variation, so
we only examine expression at a single temperature (27°C). In
both' E. coli and insect cells the time of induction or infection,
triggering the onset of expression, can also play a role in protein
productivity. Induction of expression early or late in growth phase
and its intensity directed either by IPTG (8) or multiplicity of
infection (9) have been shown to influence protein levels.

Specific media and additives have been shown to have an effect
on expression (10). We routinely use rich media (se¢ Note 5) and
serum-free media for bacterial and insect cell expression, respec-
tively. The composition of the media, and whether or not it con-
tains serum, can also have an effect on expression, though we do
not vary this factor normally in our basic screens.

The inclusion of cofactors (11) and inhibitors (12) into the
expression medium has also been shown to affect levels of recom-
binant protein expression. Additionally, the coexpression of part-
ner proteins and chaperones can have a positive effect on the
expression and solubility of certain proteins (13).

We have chosen one protein from our production portfolio to
illustrate the various designs used in optimization. This process
was applied to a fairly typical protein expression experiment: the
expression of soluble HCV NS3 protease domains (NS3-prt) in
E. coli. The objective was to identify the significant factors and
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2.2.4. Fractional
Factorial Design

interactions involved in maximizing soluble expression. Having
this goal clearly established, the experimental design can then be
chosen. Our choice of design for this problem was a full facto-
rial. This selection was based on our previous experience pro-
ducing this poorly expressed protease and the identification of a
small number of factors, including genotype, capable of influenc-
ing its soluble production. The soluble expression of six differ-
ent NS3-prt genotypes in total was examined using four factors:
three continuous (temperature, time, IPTG concentration) and
one categorical (cell line). Both nominal and discrete variables
were examined at two levels, high (+) and low (-), resulting in
a 2¢ full factorial design. A total of 16 conditions per construct
were examined with each condition being tested in triplicate.
A full factorial experiment containing all possible combinations
of factors represents not only the most conservative approach,
but also the most costly in terms of experimental resources. As
mentioned before, the availability of DOE software with custom
design capability greatly facilitates this process for the nonstatisti-
cian. The JMP DOE software will determine how large a sample
size is needed to identify a significant effect (se¢ Note 6), guard
against uncontrolled (or unknown) variables during execution of
the experiment through randomization (see Note 7), and intro-
duce blocking (se¢ Note 8) when appropriate.

The amount of protein expressed (the response) quantified
by the Caliper LabChip 90 system was transferred into DOE
analysis software (see Note 9). The expression data when shown
graphically (Fig. 2.2) readily illustrate that the categorical factor
BL21(DE3) pLysS has a negative effect on the levels of solu-
ble protein expression. Subsequent multiple regression analysis
(see Note 10) of the data generated by the most constructs in
BL21(DE3) identified the significant factors conducive to solu-
ble expression, lower temperature (22°C), and shorter induction
period (3h), while IPTG concentration was not significant over
the range examined (see Note 11). Relationships between fac-
tors are readily exposed in an interaction plot, with nonparal-
lel lines produced by the interactive plot of NS3-prt (1b) L13K
expression demonstrating that the effect of temperature is highly
dependent on time (Fig. 2.3a). The level of expression over the
time of induction, which had previously appeared to have little
significant effect on the level of soluble expression of NS3-prt
(1b) L13K, diverges widely at higher values of temperature. The
interaction of time with temperature tended to mask the effect of
time as a main effect.

Unlike the example we have just used, experiments are often ini-
tiated knowing very little about what factors influence the expres-
sion of a particular protein. In such situations the preference
would be to examine as many factors as possible. A large screen-
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Fig. 2.2. Full factorial screening for effects on the soluble HCV NS3-prt expression in E. coli. Levels of expression are
illustrated in a 3D Bar Chart and a Heat Map. Using a previously described high-throughput protein expression platform,
gach data point was obtained using the HT Protein Express 200 Chip run on the Caliper labchip 90 and measured
in triplicate (See Color Plate 7).

2.2.5. Response
Surface Designs

ing approach is best accommodated using a fractional factorial
experimental design, whereby the number of potential variables is
reduced to a few effective ones. In this model, a partial combina-
tion of factors is capable of exploring the maximum number of
variables, while requiring less experimentation, albeit at the cost
of losing some information about possible interactions. Another
consequence of using certain fractional factorial designs, particu-
larly ones with low resolution, is effect aliasing (or confounding).
This is where two or more variables have been changed at the
same time in the same way resulting in their effects being aliased.
This problem can be avoided using a 2-level full factorial or a
higher resolution fractional.

Once a process is close to optimum a response surface design can
be used to fine-tune the conditions. Response surface designs are
used to model the response of a curved surface to a range of con-



26 Chambers and Swalley

>

pg/mi

tinuous variables. The noninclusion of categorical variables is one
limitation to response surface designs, and the reason that they are
used in optimization and not the initial screening. A response sur-
face model (RSM) provides a more complete understanding of the
significant factors involved and is capable of identifying whether a
minimum or maximum response exists within the model. There
are two classical RSM designs, the Box-Behnken design and the
central composite design (CCD). The Box-Behnken design (Fig.
2.1d) requires three factors and employs fewer data points than
the CCD. Another important feature of the Box-Behnken design
is that it has no points at the vertices of the cube as defined by
the ranges of factors. This is sometimes useful when it is desirable
to avoid these values due to engineering constraints. The cost of
this characteristic is the higher uncertainty of predictions near the
vertices compared to the CCD.

In the bacterial expression optimization described here a
3-factor Box-Behnken design was employed using 15 conditions.
The cell line and significant factors identified in the initial screen
were then applied to the customized RSM design. For instance,
a protein with a strong preference for low temperature will be
screened at lower temperatures in the RSM experiment. The
design includes three center points, used to estimate the error
of the process; each condition is run in triplicate to increase the
accuracy. An RSM of NS3-prt (1b) L13K at three temperatures
(21, 29, 37°C), times (3, 10.5, and 18h), and IPTG concen-
trations (0.1, 0.55, and 1.0mM) was produced using JMP soft-
ware. The resultant RSM confirms the previous observation with
expression peaking at high time and low temperature, and tem-
perature being the most significant factor (Fig. 2.3b).

5 —
4 —
3 —
2 —
11—
0

25 30 35 40
Temp (°C)

Fig. 2.3. (a) Interaction plot for temperature and time affects on the soluble expression of HCV NS3-prt (1b) L13K. The
dependence of protein yield (y-axis) on temperature (x-axis) is plotted for two different times. The red line represents the
3-h data, while the purple line represents the 18-h data. (b) Response surface plot demonstrating expression as a func-
tion of time and temperature. The effect of time and temperature on protein yield at an optimal value of IPTG (0.78 mm)
is depicted as a 3D surface using the statistical program JMP. The top surface is colored purple and the bottom is colored
gray. Mapped to the surface in biue is the contour map of the same data (See Color Plate 2).
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The final step in any DOE process is validation. Confirmation
of conclusion(s) drawn by experimentation requires verification.
Since the ultimate goal of the experiments we have described was
to produce the maximum amount of soluble protein from lit-
ers of culture, the results of the optimization require verification
at this greater volume. We have consistently found that optimal
conditions determined by small-scale experimentation demon-
strate excellent scalability in terms of soluble protein production.
If there is any question as to the preferred condition, two condi-
tions are chosen, grown side by side and compared. In the case
of the NS3-prt (1b) L13K, our small-scale optimization results
were confirmed by comparing two conditions head to head on a
one-liter scale, where the optimized condition of 21°C and 18h
resulted in ~3.5 times more protein per liter and 2.5 times more
protein per gram of cell paste when compared with production
at the same temperature at 3h. Once a process is validated, the
experimenter can then reproducibly obtain the protein of inter-
est, confident that the best yield is being obtained.

Finally, it is important to remember that DOE is merely a
statistical tool, a means to an end. It does not guarantee success;
it merely provides a framework for unraveling complex relation-
ships between a response and multiple factors. Nor does it replace
technical expertise or creativity in experimental work. When used
correctly, DOE can be used to empower the role of investigator
in the face of increasing automation.

2.3. Notes

1. Our preferred statistical program for use in experimental
design is JMP 7.0 (SAS Institute Inc., Cary, NC, USA), but
there are many other software packages are available. The
following software contains DOE modules: Minitab (Min-
itab Inc, PA, USA), ECHIP (ECHIP Inc, DE, USA), and
Stat-Ease (Stat-Ease Inc, MN, USA).

2. A single experiment can be defined as an experimental run.
A design utilizes multiple runs directed toward meeting a
single experimental objective.

3. One criticism of DOE is the potentially large number of runs
at the onset of any investigation. Therefore many DOE texts
recommend marshalling effort and not expending greater
than 25% of resources on the initial screen, using the remain-
der for subsequent designs and the all-important validation
step.
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4.

The change is response between two levels is termed the
factor main effect. Since random error can easily obscure the
main effect, if the levels are set too close together, the main
effect can be estimated most precisely from extreme level
settings of the factor.

We typically use brain heart infusion media (BHI) for
E. coli growth, but have also explored other options, includ-
ing autoinduction media formulated to support periods of cell
growth leading to high densities at which point spontaneous
induction of protein expression occurs from /ac promoters,
climinating the need to monitor cell growth or induce with the
addition of IPTG. For these reasons autoinduction medium,
under its brand name Overnight Express™(Novagen, Madi-
son, WI, USA), has been promoted as being ideally suited to
high-throughput protein expression.

In order to design a meaningful experiment, an estimate of
the response variable is required. Variability is expressed in
terms of standard deviation, which is assumed to be constant
over the range of response values encountered during exper-
imentation. The spread of this variability will determine the
size of the experiment and the number of runs required in
the design.

Replication is used to dampen any uncontrolled variation
(noise) that might occur, so that the variability associ-
ated with the phenomenon can be estimated. Replication
requires more than simply resampling or taking additional
measurements; the entire process must be repeated from
start to finish. Where several samples are submitted from a
given experiment, the response is generated as an average.
The order in which the experiments are performed should
also be randomized to avoid influences by uncontrolled vari-
ables such as material transfers, weighing error, and instru-
ment readings. These changes, which often are time related,
can significantly influence the response. If run order is not
randomized, the analysis may indicate factor effects that are
really due to uncontrolled variables that just so happen to
change at the same time.

Blocking screens out noise caused by unknown sources of
variation, such as raw materials, machine, or operator dif-
ferences. By dividing experimental runs into homogeneous
blocks and then arithmetically removing the differences, one
increases the sensitivity of the DOE analysis. It is important
not to block variables of potential interest.

Import raw expression data into JMP and convert to mg
of protein per liter of culture. Multiply data by 0.033 and
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0.024 for bacterial and insect cell expression, respectively
(see Chapter 10 for volumes of culture used).

In our example, we fitted the data using a multiple regres-
sion model since we were using only continuous predictors
(time, temperature, and IPTG concentration) to explain a
single continuous response (expression level). If one were
using only categorical variables, one would fit an analysis
of variance (ANOVA) model. In the case where both cat-
egorical and continuous predictors are used to fit a model
for continuous response, it is called analysis of covariance

(ANCOVA).

Look for significant factors and interactions by examining
the p-values for each. The JMP program considers p-value
<0.05 to be significant, but this is a matter of choice. Due to
the variability in cell growth, we often use p-values of <0.01

as a cut-off, though one can choose to be more stringent.
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Plate 1, Fig. 2.2. Full factorial screening for effects on the soluble HCV NS3-prt expression in E. coli. Levels of expression
are illustrated in a 3D Bar Chart and a Heat Map. Using a previously described high-throughput protein expression plat-
form, each data point was obtained using the HT Protein Express 200 Chip run on the Caliper labchip 90 and measured
in triplicate (see p. no. 25)
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Plate 2, Fig. 2.3. (a) Interaction plot for temperature and time affects on the soluble
expression of HCV NS3-prt (1b) L13K. The dependence of protein yield (y-axis) on tem-
perature (x-axis) is plotted for two different times. The red line represents the 3-h data,
while the purple line represents the 18-h data. (b) Response surface plot demonstrating
expression as a function of time and temperature. The effect of time and temperature on
protein yield at an optimal value of IPTG (0.78 mm) is depicted as a 3D surface using the
statistical program JMP. The top surface is colored purple and the bottom is colored gray.
Mapped to the surface in blue is the contour map of the same data (see p. no. 26)
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Plate 3, Fig. 10.3. Virtual gel image and electropherogram of protein generated by
Caliper labchip 90. Protein was expressed in insect cells, grown in a deep well block,
then purified and analyzed. The purified protein is readily identified on the gel and elec-
tropherogram, as is the lower marker (LM), an internal reference, and the system peak
(SP) (see p. no. 152)



