# Fundamentals of modern UV-visible spectroscopy

**Presentation Materials** 



# The Electromagnetic Spectrum





Fundamentals of modern UV-visible spectroscopy

Figure : 1

# Electronic Transitions in Formaldehyde





# Electronic Transitions and Spectra of Atoms





Fundamentals of modern UV-visible spectroscopy

Figure: 3

# Electronic Transitions and UV-visible Spectra in Molecules





# Derivative Spectra of a Gaussian Absorbance Band

Absorbance: 
$$A = f(\lambda)$$

1st Derivative: 
$$\frac{dA}{d\lambda} = f'(\lambda)$$

2nd Derivative: 
$$\frac{d^2 A}{d\lambda^2} = f''(\lambda)$$





#### **Resolution Enhancement**

• Overlay of 2 Gaussian bands with a NBW of 40 nm separated by 30 nm

• Separated by 4th derivative





# Transmission and Color



The human eye sees the complementary color to that which is absorbed



# Absorbance and Complementary Colors





# Transmittance and Concentration The Bouguer-Lambert Law



$$T = I / I_0 = e^{-Const \cdot Pathlength}$$



# Transmittance and Path Length Beer's Law



$$T = I / I_0 = e^{-Const \cdot Concentration}$$



#### The Beer-Bouguer-Lambert Law



$$A = -\log T = -\log (I / I_0) = \log (I_0 / I) = \varepsilon \cdot b \cdot c$$



Fundamentals of modern UV-visible spectroscopy

Figure : 11

# **Two-Component Mixture**



# Example of a two-component mixture with little spectral overlap



# **Two-Component Mixture**



Example of a two-component mixture with significant spectral overlap



# Influence of 10% Random Error



#### Influence on the calculated concentrations

- Little spectral overlap: 10% Error
- Significant spectral overlap: Depends on similarity, can be much higher (e.g. 100%)



# Absorption Spectra of Hemoglobin Derivatives





# Intensity Spectrum of the Deuterium Arc Lamp

- Good intensity in UV range
- Useful intensity in visible range
- Low noise
- Intensity decreases over lifetime





# Intensity Spectrum of the Tungsten-Halogen Lamp

- Weak intensity in UV range
- Good intensity in visible range
- Very low noise
- Low drift





# Intensity Spectrum of the Xenon Lamp

- High intensity in UV range
- High intensity in visible range
- Medium noise





#### **Dispersion Devices**

- Non-linear dispersion
- Temperature sensitive

• Linear Dispersion

• Different orders







# Photomultiplier Tube Detector

- High sensitivity at low light levels
- Cathode material determines spectral sensitivity
- Good signal/noise
- Shock sensitive





# The Photodiode Detector

- Wide dynamic range
- Very good signal/noise at high light levels
- Solid-state device





# Schematic Diagram of a Photodiode Array

- Same characteristics as photodiodes
- Solid-state device
- Fast read-out cycles





#### **Conventional Spectrophotometer**



Schematic of a conventional single-beam spectrophotometer



# **Diode-Array Spectrophotometer**



Schematic of a diode-array spectrophotometer



# Diode-Array Spectrophotometer



Optical diagram of the HP 8453 diode-array spectrophotometer



# **Conventional Spectrophotometer**



Optical system of a double-beam spectrophotometer



## **Diode-Array Spectrophotometer**



Optical system of the HP 8450A diode-array spectrophotometer



# **Conventional Spectrophotometer**



Optical system of a split-beam spectrophotometer



# **Definition of Resolution**



Spectral resolution is a measure of the ability of an instrument to differentiate between two adjacent wavelengths



 $Fundamentals \ of \ modern \ UV \text{-visible spectroscopy}$ 

# Instrumental Spectral Bandwidth



The SBW is defined as the width, at half the maximum intensity, of the band of light leaving the monochromator



# Natural Spectral Bandwidth



The NBW is the width of the sample absorption band at half the absorption maximum



# Effect of SBW on Band Shape



The SBW/NBW ratio should be 0.1 or better to yield an absorbance measurement with an accuracy of 99.5% or better



# Effect of Digital Sampling



The sampling interval used to digitize the spectrum for computer evaluation and storage also effects resolution



# Wavelength Resettability



Influence of wavelength resettability on measurements at the maximum and slope of an absorption band



## Effect of Stray Light



Effect of various levels of stray light on measured absorbance compared with actual absorbance


## **Theoretical Absorbance Error**



The total error at any absorbance is the sum of the errors due to stray light and noise (photon noise and electronic noise)



### Effect of Drift



Drift is a potential cause of photometric error and results from variations between the measurement of  $I_0$  and I



# Transmission Characteristics of Cell Materials



Note that all materials exhibit at least approximately 10% loss in transmittance at all wavelengths



# Cell Types I



Open-topped rectangular standard cell (a) and apertured cell (b) for limited sample volume



# Cell Types II



Micro cell (a) for very small volumes and flow-through cell (b) for automated applications



 $Fundamentals \ of \ modern \ UV \text{-visible spectroscopy}$ 

# Effect of Refractive Index



Changes in the refractive index of reference and sample measurement can cause wrong absorbance measurements



# Non-planar Sample Geometry



Some sample can act as an active optical component in the system and deviate or defocus the light beam



# Effect of Integration Time



Averaging of data points reduces noise by the square root of the number of points averaged



## Effect of Wavelength Averaging



- Wavelength averaging reduces also the noise (square root of data points)
- Amplitude of the signal is affected



#### Increasing Dynamic Range



Selection of a wavelength in the slope of a absorption band can increase the dynamic range and avoid sample preparation like dilution



#### Scattering



Scattering causes an apparent absorbance because less light reaches the detector



#### Scatter Spectra



Rayleigh scattering: Tyndall scattering:

Particles small relative to wavelength Particles large relative to wavelength



 $Fundamentals \ of \ modern \ UV \text{-visible spectroscopy}$ 

## **Isoabsorbance** Corrections



Absorbance at the reference wavelength must be equivalent to the interference at the analytical wavelength



# **Background Modeling**



Background modeling can be done if the interference is due to a physical process



#### **Internal Referencing**



Corrects for constant background absorbance over a range



## **Three-Point Correction**



- Uses two reference wavelengths
- Corrects for sloped linear background absorbance



 $Fundamentals \ of \ modern \ UV \text{-visible spectroscopy}$ 

### **Discrimination of Broad Bands**



- Derivatives can eliminate background absorption
- Derivatives discriminate against broad absorbance bands



# Scatter Correction by Derivative Spectroscopy



Scatter is discriminated like a broad-band absorbance band



#### **Effect of Fluorescence**



The emitted light of a fluorescing sample causes an error in the absorbance measurement



# Acceptance Angles and Magnitude of Fluorescence Error



- Forward optics: Absorbance at the excitation wavelengths are too low
- Reversed optics: Absorbance at the emission wavelengths are too low



# Inadequate Calibration



- Theoretically only one standard is required to calibrate
- In practice, deviations from Beer's law can cause wrong results



#### **Calibration Data Sets**



- Forward optics: Absorbance at the excitation wavelengths are too low
- Reversed optics: Absorbance at the emission wavelengths are too low



## Wavelength(s) for Best Linearity



- A linear calibration curve is calculated at each wavelength
- The correlation coefficient gives an estimate on the linearity



### Wavelength(s) for Best Accuracy



- The quantification results are calculated at each wavelength
- The calculated concentration are giving an estimate of the accuracy



# Precision of an Analysis



Precision of a method is the degree of agreement among individual test results when the procedure is applied repeatedly to multiple samplings



### Wavelength(s) for Best Sensitivity



- Calculation of relative standard deviation of the measured values at each wavelength
- The wavelength with lowest %RSD likely will yield the best sensitivity



## Wavelength(s) for Best Selectivity



Selectivity is the ability of a method to quantify accurately and specifically the analyte or analytes in the presence of other compounds



# Ideal Absorbance and Wavelength Standards



- An ideal absorbance standard would have a constant absorbance at all wavelengths
- An ideal wavelength standard would have very narrow, well-defined peaks



# Ideal Stray Light Filter



An ideal stray light filter would transmit all wavelengths except the wavelength used to measure the stray light



#### Holmium Perchlorate Solution



The most common wavelength accuracy standard is a holmium perchlorate solution



# **Potassium Dichromate Solution**



The photometric accuracy standard required by several pharmacopoeias is a potassium dichromate solution



### **Stray Light Standard Solutions**



The most common stray light standard and the respectively used wavelengths



# Toluene in Hexane (0.02% v/v)



The resolution is estimated by taking the ratio of the absorbance of the maximum near 269 nm and minimum near 266 nm



# **Confirmation Analysis**



In confirmation analysis, the absorbance at one or more additional wavelengths are used to quantify a sample



#### Spectral Similarity



Comparative plots of similar and dissimilar spectra



## **Precision and Accuracy**







### Hydrolysis of Sultone



Wavelength [nm]

