### Fundamentals of modern UV-visible spectroscopy

**Presentation Materials** 



#### The Electromagnetic Spectrum







# Electronic Transitions in Formaldehyde



# Electronic Transitions and Spectra of Atoms





#### Electronic Transitions and UV-visible Spectra in Molecules





Fundamentals of modern UV-visible spectroscopy

#### Derivative Spectra of a Gaussian Absorbance Band

Absorbance: 
$$A = f(\lambda)$$
  
1st Derivative:  $\frac{dA}{d\lambda} = f'(\lambda)$   
2nd Derivative:  $\frac{d^2A}{d\lambda^2} = f''(\lambda)$   
Fundamentals of modern UV-visible spectroscopy

#### **Resolution Enhancement**

 Overlay of 2 Gaussian bands with a NBW of 40 nm separated by 30 nm

 Separated by 4th derivative



#### Transmission and Color



The human eye sees the complementary color to that which is absorbed



## Absorbance and Complementary Colors





Fundamentals of modern UV-visible spectroscopy

#### Transmittance and Concentration The Bouguer-Lambert Law



$$T = I / I_0 = e^{-Const \cdot Pathlength}$$



Fundamentals of modern UV-visible spectroscopy

# Transmittance and Path Length Beer's Law



$$T = I / I_0 = e^{-Const \cdot Concentration}$$



#### The Beer-Bouguer-Lambert Law



$$A = -\log T = -\log(I / I_0) = \log(I_0 / I) = \varepsilon \cdot b \cdot c$$

Fundamentals of modern UV-visible spectroscopy

#### **Two-Component Mixture**



#### **Two-Component Mixture**

Example of a two-component mixture with significant spectral overlap

#### Influence of 10% Random Error

#### Influence on the calculated concentrations

- Little spectral overlap: 10% Error
- Significant spectral overlap: Depends on similarity, can be much higher (e.g. 100%)



#### Absorption Spectra of Hemoglobin Derivatives





# Intensity Spectrum of the Deuterium Arc Lamp

- Good intensity in UV range
- Useful intensity in visible range
- Low noise
- Intensity decreases over lifetime





#### Intensity Spectrum of the Tungsten-Halogen Lamp

- Weak intensity in UV range
- Good intensity in visible range
- Very low noise
- Low drift





### Intensity Spectrum of the Xenon Lamp

- High intensity in UV range
- High intensity in visible range
- Medium noise





#### **Dispersion Devices**

- Non-linear dispersion
- Temperature sensitive

- Linear Dispersion
- Different orders

#### Photomultiplier Tube Detector

- High sensitivity at low light levels
- Cathode material determines spectral sensitivity
- Good signal/noise
- Shock sensitive



#### The Photodiode Detector

- Wide dynamic range
- Very good signal/noise at high light levels
- Solid-state device



# Schematic Diagram of a Photodiode Array

- Same characteristics as photodiodes
- Solid-state device
- Fast read-out cycles





#### **Conventional Spectrophotometer**



Schematic of a conventional single-beam spectrophotometer



#### **Diode-Array Spectrophotometer**

Schematic of a diode-array spectrophotometer



#### Diode-Array Spectrophotometer



### Optical diagram of the HP 8453 diode-array spectrophotometer

#### **Conventional Spectrophotometer**





#### Diode-Array Spectrophotometer



### Optical system of the HP 8450A diode-array spectrophotometer

#### **Conventional Spectrophotometer**

Optical system of a split-beam spectrophotometer



#### **Definition of Resolution**

Spectral resolution is a measure of the ability of an instrument to differentiate between two adjacent wavelengths

#### Instrumental Spectral Bandwidth



The SBW is defined as the width, at half the maximum intensity, of the band of light leaving the monochromator

#### Natural Spectral Bandwidth



The NBW is the width of the sample absorption band at half the absorption maximum

Fundamentals of modern UV-visible spectroscopy

#### Effect of SBW on Band Shape



The SBW/NBW ratio should be 0.1 or better to yield an absorbance measurement with an accuracy of 99.5% or better

#### Effect of Digital Sampling





#### Wavelength Resettability

Influence of wavelength resettability on measurements at the maximum and slope of an absorption band



#### Effect of Stray Light



Effect of various levels of stray light on measured absorbance compared with actual absorbance
### **Theoretical Absorbance Error**





### Effect of Drift

Drift is a potential cause of photometric error and results from variations between the measurement of  $I_0$  and I



# Transmission Characteristics of Cell Materials



# Cell Types I





# Cell Types II



Micro cell (a) for very small volumes and flow-through cell (b) for automated applications



### Effect of Refractive Index



Changes in the refractive index of reference and sample measurement can cause wrong absorbance measurements



## Non-planar Sample Geometry



Some sample can act as an active optical component in the system and deviate or defocus the light beam

## Effect of Integration Time



Averaging of data points reduces noise by the square root of the number of points averaged

## Effect of Wavelength Averaging



- Wavelength averaging reduces also the noise (square root of data points)
- Amplitude of the signal is affected

### Increasing Dynamic Range



Selection of a wavelength in the slope of a absorption band can increase the dynamic range and avoid sample preparation like dilution

## Scattering



Scattering causes an apparent absorbance because less light reaches the detector



### Scatter Spectra



- Rayleigh scattering:
- Tyndall scattering:

Particles small relative to wavelength Particles large relative to wavelength



#### **Isoabsorbance Corrections**



Absorbance at the reference wavelength must be equivalent to the interference at the analytical wavelength

## **Background Modeling**



Background modeling can be done if the interference is due to a physical process

## **Internal Referencing**



Corrects for constant background absorbance over a range



## **Three-Point Correction**



- Uses two reference wavelengths
- Corrects for sloped linear background absorbance



## **Discrimination of Broad Bands**



- Derivatives can eliminate background absorption
- Derivatives discriminate against broad absorbance bands



# Scatter Correction by Derivative Spectroscopy





## Effect of Fluorescence



The emitted light of a fluorescing sample causes an error in the absorbance measurement

# Acceptance Angles and Magnitude of Fluorescence Error



- Forward optics: Absorbance at the excitation wavelengths are too low
- Reversed optics: Absorbance at the emission wavelengths are too low



## Inadequate Calibration

- Theoretically only one standard is required to calibrate
- In practice, deviations from Beer's law can cause wrong results



### **Calibration Data Sets**



- Forward optics: Absorbance at the excitation wavelengths are too low
- Reversed optics: Absorbance at the emission wavelengths are too low

# Wavelength(s) for Best Linearity



- A linear calibration curve is calculated at each wavelength
- The correlation coefficient gives an estimate on the linearity

# Wavelength(s) for Best Accuracy



- The quantification results are calculated at each wavelength
- The calculated concentration are giving an estimate of the accuracy



### Precision of an Analysis



Precision of a method is the degree of agreement among individual test results when the procedure is applied repeatedly to multiple samplings



# Wavelength(s) for Best Sensitivity



- Calculation of relative standard deviation of the measured values at each wavelength
- The wavelength with lowest %RSD likely will yield the best sensitivity

## Wavelength(s) for Best Selectivity



Selectivity is the ability of a method to quantify accurately and specifically the analyte or analytes in the presence of other compounds



# Ideal Absorbance and Wavelength Standards



- An ideal absorbance standard would have a constant absorbance at all wavelengths
- An ideal wavelength standard would have very narrow, well-defined peaks



# Ideal Stray Light Filter



An ideal stray light filter would transmit all wavelengths except the wavelength used to measure the stray light



#### **Holmium Perchlorate Solution**



The most common wavelength accuracy standard is a holmium perchlorate solution



### **Potassium Dichromate Solution**



The photometric accuracy standard required by several pharmacopoeias is a potassium dichromate solution



Fundamentals of modern UV-visible spectroscopy

## Stray Light Standard Solutions



The most common stray light standard and the respectively used wavelengths



# Toluene in Hexane (0.02% v/v)



The resolution is estimated by taking the ratio of the absorbance of the maximum near 269 nm and minimum near 266 nm



## **Confirmation Analysis**



In confirmation analysis, the absorbance at one or more additional wavelengths are used to quantify a sample



### Spectral Similarity



Comparative plots of similar and dissimilar spectra







