
SEPARATION METHODS B

analytical separation

analytical separation methods

: SEC, GPC, HCD and FFF

: GC

: CZE, MEKC, CIEF, ITP, CEC, ACE, NCE and CE-on-chip

separation methods B – **syllabus**

separation of macromolecules (SM)

- : definition of macromolecule and its description
- : separation using molecular sieves (SEC)
- : separation by field-flow (FFF)

gas chromatography

- : description of GC as continuous extraction
- : special practical aspects of GC
 - :: injection, detection

electromigration methods (EMM)

- : separation by different migration in electromagnetic field
- : capillary and slab techniques
- : combination with chromatography

separation methods – **overview**

separation	method 1) – two phases	method 2) – one phase	
principle		transport	concentration
		barrier	difference
volatility	distillation		
solubility	zone refining		crystalisation
distribution	extraction, distributive		
constant	chromatography (LL, GL)		
exchange	ion exchange and affinity		
equilibrium	chromatography		
surface activity	adsorption chromatography		foam
	(LS, GS)		fractionation
geometry of		molecular	
molecules		sieve	
electromigration			electrophoresis

separation of macromolecules

SM history

1556

Agricola: separation of gold using gravity in a flow of water

1870

Lord Rayleigh: basic theory on light scattering on small particles

1940

Debye and Zimm; theory on light scattering on large particles

1955

Lindquist and Storgards : gel filtration on starch ("molecular sieving")

1959

Porath and **Flodin**: gel filtration *on cross-linked dextrans* (Sephadex) (*GPC*)

1961

Hjertén: use of synthetic gels as stationary phases: polyacrylamide

1962

Pedersen: protein separation on small glass spheres (*HDC*)

1964

Hjertén: use of natural gels as stationary phases: agarose

1966

Giddings: description of FFF method principles

1969

DiMarzio and **Guttman**: theory of steric exclusion for SEC

1970

first commercial instrument using light scattering for mol. mass characterisation

1974

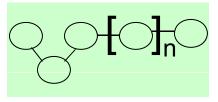
Small: first HDC experiments on non-porous sorbent

1978

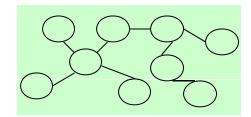
Noel: particle separation in empty capillary (capillary HDC)

theoretical base of SM

what is that macromolecule?


molecule of $M_W > 10000$

synthetic polymers
monomer, oligomer (10 – 100), polymer


homopolymers (PE, PP, PS, PTFE...): one repeated unit (monomer)

$$nM \to [M]_n$$

linear

branched

heteropolymers

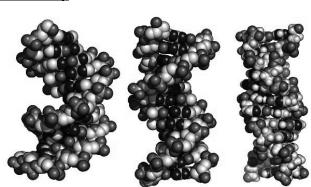
: more of different units

$$nX + mY \to X_n Y_m$$

biological polymers

 $M_W \approx 10\ 000 - 1\ 000\ 000$

: <u>proteins</u> peptidic bond, 21 natural amino acids (Se-Met) complicated **complexes of different** units, e.g. haem + globin


: glycana (polysaccharides, oligosaccharides) (starch, glycogen, chitin, cellulose, dextrans, pullulans)

: nucleic acids (polynucleotides, oligonucleotides)

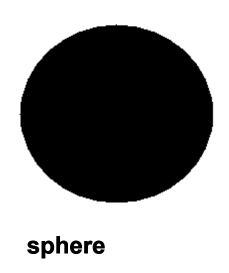
nucleotide = phosphate + nucleoside nucleoside = saccharide + base

DNA – saccharide – deoxyribose

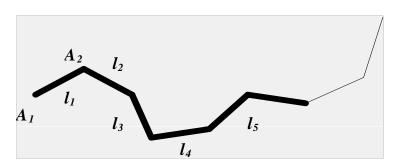
RNA - saccharide - ribose

surface forces (surface charge, ionic strength of surround)

primary ⇒ secondary, tertiary, ternary structure – native form


description of macromolecule

macroscopic forms


random coil

size of macromolecule

flexible molecule

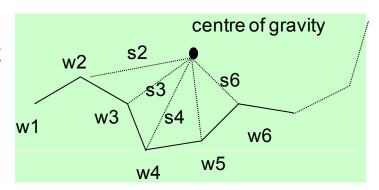
contour length (L)

$$L = n * l$$

n – number of bonds

I – monomer length

end-to-end vector length $(\vec{r},)$


$$\vec{r} = \sum_{i} \vec{l}_{i}$$

mean square end-to-end distance (r²)

$$\boxed{\left\langle r^2 \right\rangle = \sum_{i} \sum_{j} \left\langle \vec{r}_i \cdot \vec{r}_j \right\rangle}$$

<u>radius of gyration</u> (s²)

important quantity for **light scattering** measurement

$$\left| \left\langle s^2 \right\rangle = \frac{s_i^2}{n} \right|$$

s – distance of unit from centre of gravity

$$\left\langle s^2 \right\rangle = \frac{\left\langle r^2 \right\rangle}{6}$$

if monomer units are identical

relative molecular mass

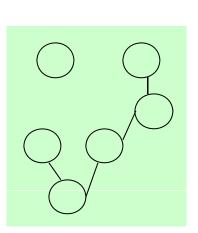
SM separates mostly according to size = f (molecular mass, cross section, etc)

$$M_r = m * \frac{1}{12} m(^{12}C)$$
 SI definition

for macromolecules:

mix of molecules of different molecular mass, differing in number of units = distribution

$$\boxed{\frac{1}{M_n} = \frac{\sum N_i M_i}{\sum N_i}} \quad \text{number average } M_r$$
: measured by osmometry


$$\Rightarrow \boxed{P = \frac{M_{w}}{M_{n}} \ge 1} \quad \text{polydispersity} \\ \sim \text{distribution}$$

$$\frac{\sum_{i} N_{i} M_{i}^{2}}{\sum_{i} N_{i} M_{i}}$$
 weight average M_r : measured by light scattering

$$\overline{M_z} = \frac{\sum N_i M_i^{3}}{\sum N_i M_i}$$
 z-average M_r : measured by sedimentation analysis

example

what will be the number average, weight average molecular mass and polydispersity of polymer sample?

$$\boxed{\frac{\overline{M}_{w}}{\sum N_{i}M_{i}^{2}}}$$

average mass

$$\overline{M_w} = \frac{1*1^2 + 1*5^2}{1*1 + 1*5} = 4.33$$

average number of units

$$\overline{M_n} = \frac{\sum N_i M_i}{\sum N_i}$$

$$\overline{M_n} = \frac{1*1+1*5}{1+1} = 3$$

$$P = \frac{M_w}{M_n} \ge 1$$

$$P = \frac{4.33}{3} = 1.44$$

basic modes of macromolecule separation

size exclusion chromatography (SEC)

- : gel filtration chromatography (GFC)
- : gel permeation chromatography (GPC)
- : gel filtration (GF)

hydrodynamic chromatography (HC)

flow-field fractionation (FFF)

- : sedimentation (SFFF)
- : thermal (TFFF)
- : electric (EFFF)
- : gravity (FFFF)

membrane separation

- : ultrafiltration (hydrostatic pressure)
- : reversed osmosis (hydrostatic pressure)
- : dialysis (concentration gradient)
- : electrodialysis (gradient of electric potentials)

separation in force-field

- : ultracentrifugation (density gradient)
- : mass spectrometry (electromagnetic field, TOF without field)

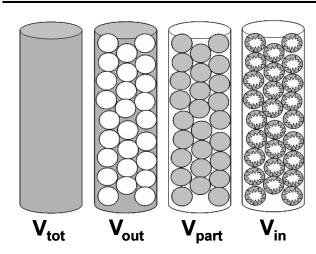
SEC, size exclusion chromatography

gel permeation chromatography (GPC) gel filtration chromatography (GFC)

principle: analyte is distributed between MF outside of particles and inside of particles

: sieving effect, steric exclusion

: diffusion

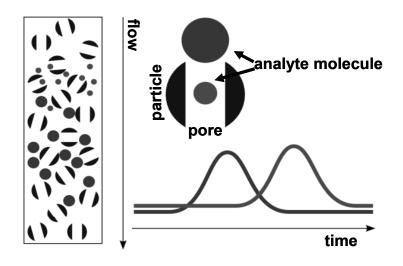

: pressure of carrier liquid – motion of liquid and its flow profile

$$V_R = V_{out} + K_D' * V_{in}$$

 V_R – retention volume K_D – distribution constant

tot – total volume
 out – MF outside of particles
 in – MF inside of particles
 part – volume of particle material

$$\left|V_{tot}=V_{out}+V_{in}+V_{part}
ight|$$



$$\left|V_R = V_{out} + K'_{AV} * (V_{tot} - V_{out})
ight|$$
 where $\left|(V_{tot} - V_{out}) = V_{in} + V_{part}
ight|$

$$(V_{tot} - V_{out}) = V_{in} + V_{part}$$

 K'_{AV} – elution constant

$$K'_{AV}/K'_{D} = const.$$

thermodynamic interpretation

$$\Delta G = \Delta H - T\Delta S = -RT \ln(K) \Rightarrow K = e^{-\frac{\Delta H - T\Delta S}{RT}} \approx e^{\frac{\Delta S}{R}} < 1$$

 $\Delta H \sim 0 \Rightarrow$ process is entropically controlled

$$K_D' = \frac{c_{in}(A)}{c_{out}(A)}$$

 c_{in} – analyte concentration inside of particles c_{out} – analyte concentration outside of particles

$$V_R = k_1 * \log M_W + k_2$$

$$k_1, k_2 - \text{numeric constants}$$

$$V_R = V_{out} + \int_R^{r_{\text{max}}} K_D'(R, r) * \phi(r) dr$$

 φ – total pore volume with diameter r to r+dr

R – diameter of retained particle



separation is given by ratio of diameter of pore and analyte

sieve model is in many aspects *not exact*:

: flow of liquid out an in pores is different ($F_{out} >> F_{in}$)

: other interactions: adsorption, L-L distribution, electrostatic repulsion ($\Rightarrow K'_D > 1$)

gel LC SEC

gel LC

$$K_D = \frac{c_{qS}(A)}{c_M(A)}$$

mechanical separation of **A** molecules in particles/pores of gel based on their different size

not classic LC, no chemical affinity

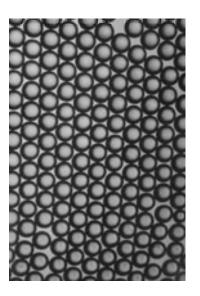
qS – quazi SF, M – MF

use of SEC

group separation

: separation of low and high molecular groups (desalting, extraction agent removal, reaction termination between low molecular mass ligand and biopolymer)

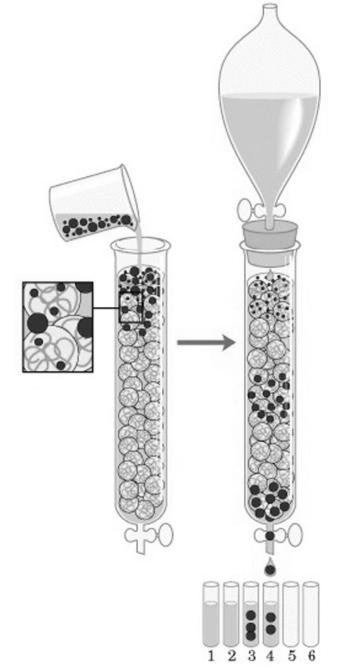
fractionation / purification


: separation of components with significant M_r difference

determination of M_r

- : comparison with standards (in line increasing M_W)
- : polymer polydispersity and distribution

analysis of ligand-biopolymer binding


: emerging complex has higher M_r than components (complex insulin-antibody by diabetics)

concentrating samples of biopolymers

: dry molecular sieves remove solvent – "dry up" and concentrate sample

column filling

: pre-filled columns

: own filling – SF swelling (uniform, without bubbles)

sample introduction

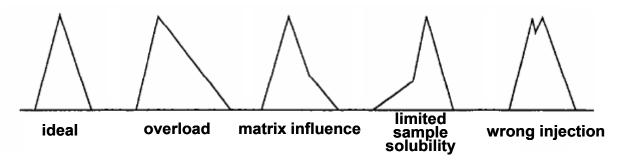
: injecting 1 – 5 % of column volume

: either on column top or through injection adaptor

elution MF not directly influences separation

: solvent viscosity and elution MF ratio < 2

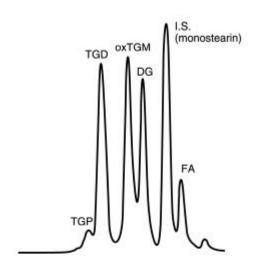
: water – uncharged compounds separation, or buffers *pH* and *I* keeps ion interactions minimal

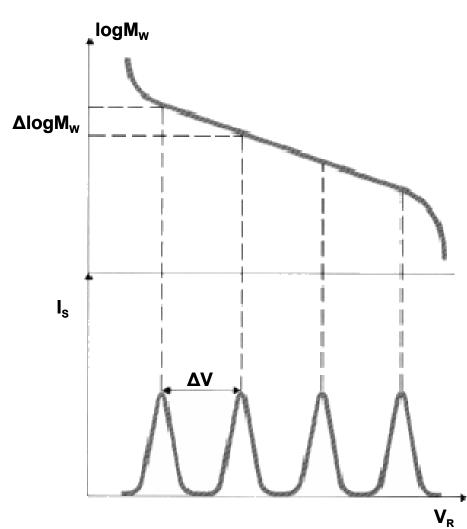

guarding SF

0.02 % sodium azide

0.05 % trichlorobutanol (Chloreton)

0.005 % ethylmercurythiosalicylate (Mertiolate)


0.002 % chlorhexidine



calibration

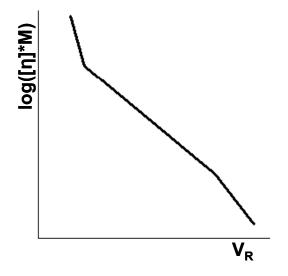
set of standards

4-5 defined native proteins with increasing M_{W}

absolute calibration

basic parameter defining selectivity – hydrodynamic volume

formula for limiting viscosity number of polymer [n] derived from Einstein's equation


$$\boxed{ \left[\eta \right] = \lim_{\rho \to 0} \frac{\eta / \eta^* - 1}{\rho} = \frac{k * V_R}{M} } \Rightarrow \boxed{ \boxed{ \left[\eta \right] * M = k * V_R } }$$
 independent on macromolecule structure

$$\Rightarrow \boxed{[\eta]*M = k*V_R}$$

$$\left| \underbrace{\left[\eta \right] = KM^{\alpha}} \right| \Rightarrow$$
Mark-Houwink's equation

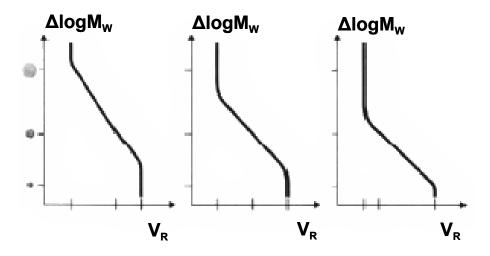
$$\boxed{[\eta] = KM^{\alpha}} \Rightarrow \boxed{[\eta](A) * M(A) = [\eta](S) * M(S) = f(V_R)}$$

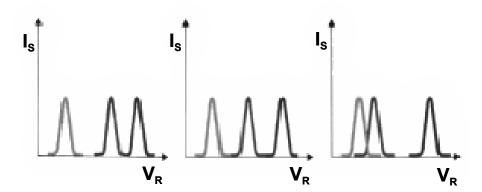
A - analyte, S - standard

$$K_A M_A^{\alpha_A+1} = K_S M_S^{\alpha_S+1}$$

$$M_A = \left(\frac{K_S M_S^{\alpha_S + 1}}{K_A}\right)^{\frac{1}{\alpha_A + 1}}$$

$$\log([\eta] * M) = f(V_R)$$


[η] – by viscosimetry


selectivity

in relation to pore size distribution

increasing pore size distribution

separation column

: classical tubular columns material – mostly soft gels

: **inert** gel matrix (towards analyte and elution solutions)

: long-term **chemical stability** (at different pH and temperature)

: mechanical stability (resistance towards high pressure)

: **small** amount of **ionised** groups

: suitable **particle size** (5 – 250 μm) small particles – high resolution, low rate large particles – fast separation, low resolution

<u>fractionation range (FR)</u>
M_r range, in which the compounds are separated

elimination limit (EL)
upper limit of fractionation range

column fillings

agarose

large pores, acidic character *elution*: polar and non-polar solvents

FR > 200 000 Sepharose

mixed SF: agarose-acrylamide chemical very resistant

 $FR = 1000 - 23\ 000\ 000$ Bio-Gel A, Ultrogel

dextran

strong adsorption effects *elution*: polar and non-polar solvents

FR < 10 000 *Sephadex* polyacrylamide

low amount of polar groups; low resolution *elution*: polar and mild non-polar solvents

FR = 1000 - 3000000Sephacryl, Bio-Gel P

styrene-DVB

strong hydrophobic interactions *elution*: non-polar solvents

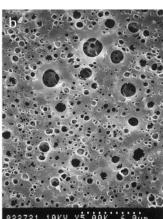
FR = 400 - 14000Bio-Beads, Styragel

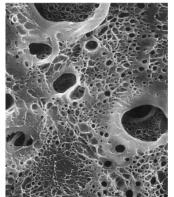
methacrylate

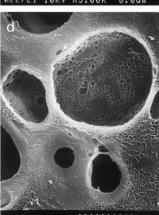
<u>hydroxymethylmetacrylate + ethylendimethylmethacrylate</u> *elution*: polar and non-polar solvents

Spheron

glycomethacrylate


elution: polar and non-polar solvents


Separon


vinylacetate

Merckogel OP-PVA

a22719 10KV X5∵0åk∵6∵åüm

silica

strong hydrophilic interactions, mildly acidic *elution*: polar solvents

Bio-Glass, Porasil, Spherosil

detectors

: detection of separated compounds

: determining molecular mass and polydispersity

absorption photometric detector

: polymers mostly do not contain own chromophores \Rightarrow indirect detection

refractometric detector : universal

fluorimetric (fluorescence) detector

: own fluorophores (within proteins Trp, Tyr, Phe), or derivatisation

viscosimetric detector

$$M_v \in (M_n, M_w), M_v \approx M_w$$

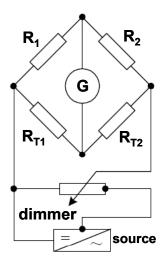
$$\left| [\eta] = KM^{\alpha} = \lim_{\rho \to 0} \frac{\eta / \eta^* - 1}{\rho} \right|$$

Mark-Houwink's equation

[η] – limiting viscosity number [m³/kg]

η* – solvent viscosity

K, α – Mark-Houwink's constants (for globular macromolecules α = 0)


osmometric detector

vapour pressure osmometry (VPO)

: uses Raoult's law

: fast, low sample consumption, temperature interval 25 – 130 °C

: $M_r = 40 - 35\,000$, no volatile compounds

T = *const*., saturated vapours of solvent

- 1) R_{T1} and R_{T2} droplet of solvent, $\Delta T_{1,2}$ = 0, U = 0
- 2) R_{T1} droplet of solvent, R_{T2} droplet of sample (solvent + analyte)

adding droplet of sample \downarrow solvent vapour tension \Rightarrow condensation of solvent vapours into the droplet \Rightarrow release of condensation heat \Rightarrow \uparrow temperature of sample droplet, thus also of thermistor, also of solution tension pressure \Rightarrow Wheatstone bridge unweighing

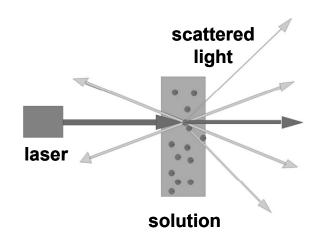
solvent vapour condensation stops when sample vapour pressure is in equilibrium with pure solvent vapour pressure due to higher temperature

measured voltage, proportional to the difference of temperatures of both thermistors, is proportional to molar concentration of compound in sample

thermal losses \Rightarrow calibration on standard of known M_r value

light scattering detector

static light scattering


scattering of light beam on particles of suspension or colloid solution

interaction of light beam electric vector with electron shell ⇒ periodic oscillations

intensity, polarisation and angular distribution of scattered light
depends on size and shape of scattering particles

dynamic light scattering

studies time fluctuations of scattered light on moving particles : information on diffusion coefficient

light scattering on small particles

macromolecules particle diameter (d) < λ /20 (Rayleigh scattering)

$$\alpha = \frac{c(\partial n/\partial c)_{\mu} * \overline{n}_0}{2\pi * N}$$

$$\frac{\mathbf{N} - \text{number of particles; scattering centres}}{\mathbf{n_0} - \text{refractive index of solvent}}$$

$$(\partial n/\partial c)_{\mu} - \text{particle refractive index changes}$$

c – concentration

 $(\partial n/\partial c)_{u}$ – particle refractive index changes at constant μ

⇒ particles – secondary source of scattered light of the same wavelength

$$\frac{i_s}{I_0} = \frac{8\pi^2 * V * \alpha^2}{\lambda_0^4 * r^2} * N * (1 + \cos^2 \theta)$$

intensity ratio of scattered (i_s) and original light I₀ (non-polarised)

V – unit volume

 λ_0 – wavelength

r – distance from particle

0 – angle measured from main light beam

number of scattering centres N in case of identical macromolecules (monodisperse sample)

$$N = \frac{c * N_A}{M}$$

 $N = \frac{c * N_A}{M}$ $N_A - Avogadro's number <math>M - M$

$$\Rightarrow \frac{i_{s}}{I_{0}} = \frac{2\pi^{2} * n_{0}^{2} * (\partial n / \partial c)^{2} * V * c * M}{\lambda_{0}^{4} * r^{2} * N_{A}} * (1 + \cos^{2} \theta)$$

$$R_{\theta} = \frac{i_s * r^2}{I_0 * V * (1 + \cos^2 \theta)}$$

Rayleigh's radius

$$R_{\theta} = \frac{i_{s} * r^{2}}{I_{0} * V * (1 + \cos^{2} \theta)} + K = \frac{2\pi^{2} * \overline{n_{0}}^{2} * (\partial n / \partial c)^{2}}{\lambda_{0}^{4} * N_{A}}$$

summing constants into one, K

$$\Rightarrow \frac{K * c}{R_{\theta}} = \frac{1}{M}$$

in polydisperse sample, M is substituted

$$M_{w} = \frac{\sum c_{i} * M_{i}}{\sum c_{i}}$$

inter-molecular interactions and non-zero concentrations taken in account (Debye):

$$\frac{K * c}{R_{\theta}} = \frac{1}{M} + 2A_2 * c + 3A_3 * c^2 + \dots$$

 A_2 , A_3 ... – virial coefficients; mostly A_3 and higher are omitted

 A_2 – phys.-chem. measure of thermodynamic solvent quality for given macromolecules good solvent $A_2 > 0$: macromolecule expands

bad solvent $A_2 < 0$: macromolecule shrinks

 θ -solvent $A_2 = 0$: macromolecule preserves its volume

light scattering on large particles

macromolecules particle diameter (d) > λ /20 (Debye scattering)

- : large particles \Rightarrow phase shift of light scattering from different parts of molecules
- : phase difference is dependent on angle θ ; for $\theta = 0$ is the difference 0
- : **beam interference** \Rightarrow angular distribution of scattered light intensity P(θ)

$$P(\theta) = \frac{I_s}{I_{s(\theta=0)}} \implies P(\theta) = 1 - \frac{16\pi^2 \langle s^2 \rangle}{3\lambda_0^2} * \sin^2\left(\frac{\theta}{2}\right)$$
 Zimm's equation

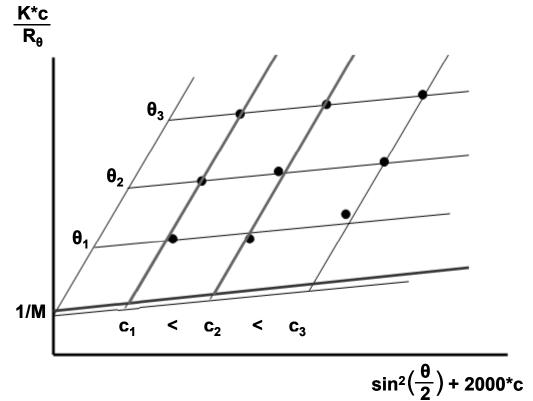
use of $P(\theta)$ parameter to express scattering

$$\frac{K*c}{R_{\theta}} = \left[\frac{1}{P(\theta)}\right]*\left[\frac{1}{M} + 2A_2*c\right] \implies \text{if (1-x)}-1 \approx (1+x)$$

$$\Rightarrow \left[\frac{K*c}{R_{\theta}} = \left[1 + \frac{16\pi^{2}\langle s^{2}\rangle}{3\lambda_{0}^{2}} * \sin^{2}\left(\frac{\theta}{2}\right)\right] * \left[\frac{1}{M} + 2A_{2}*c\right]$$

experimental bases for calculation of gyration radius

multiple angle laser light scattering


(MALLS)

Zimm's graph

M_w – double extrapolation to **y**-axis

$$\frac{K*c}{R_{\theta}} = f(\sin^2\frac{\theta}{2} + K_S*c)$$

K_s – arbitrary constant;graphically separates diagram lines

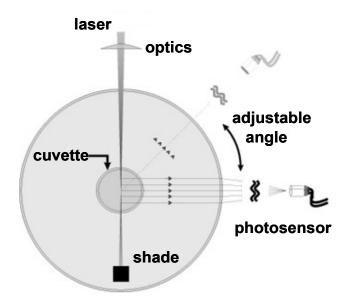
different concentrations \mathbf{c} of sample $laser - \lambda_0$ source of $\mathbf{I_0}$ intensity

refractometer (also as concentration detector) – $\overline{\mathbf{n}_0}$ and $(\partial \mathbf{n}/\partial \mathbf{c})_{\mu}$ (see constant **K**) \mathbf{i}_s – scattered light intensity in different angles $\boldsymbol{\theta}$ in known distance \mathbf{r} from cuvette

 $\theta \rightarrow 0$ (c = const.) blue lines, from blue slope we extract gyration radius $\langle s^2 \rangle$

 $c \rightarrow 0$, slope ~ A_2 , interception $1/M_W$ red line

low angle laser light scattering


(LALLS)

at small angles θ (< 7 °) $\sin^2(\theta/2) \sim 0 \Rightarrow P(\theta) \rightarrow 1$

then
$$\frac{K*c}{R_{\theta}} = \frac{1}{M} + 2A_2c$$

for $M_W > 10^7$ or within associated systems this approximation fails

instrumentation

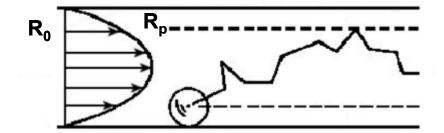
advantage:

: absolute technique, no calibration needed M_W , A_2 for $\langle \mathbf{s^2} \rangle$ – standards necessary

: fast

: connectible with separation technique (GPC, FFF)

disadvantages:

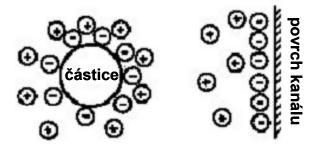

: dust – demanding high solution purity

HC, hydrodynamic chromatography

principle: combination of *steric exclusion* with *surface* (colloid) *interaction* sample-filling, eventually *solute retardation behind streamlines of laminar flow with profile* (**wall effect**)

non-porous material

sample moves with MF flow →


gravity centre of large macromolecule cannot reach the channel wall $(R_p) \Rightarrow$ cannot move in slower flow near to it (wall effect; given by laminar flow profile R_0)

⇒ heavier (larger) molecules run through channel faster than smaller ones

other influences:

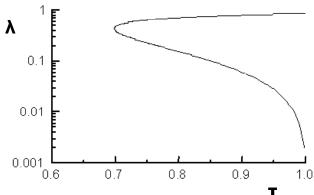
: electric double-layer

: van der Wals interactions

⇒ sample moves in channel *hydrodynamically* or *electrically*

separation description

$$\tau_i = \frac{t_i}{t_M} = \frac{1}{1 + B\lambda_i - C\lambda_i^2}$$


T – polymer retention factor

 $\mathbf{t_i}$ a $\mathbf{t_M}$ – retention time of polymer and unretained component

 λ – ratio between macromolecule radius and flow channel half-height

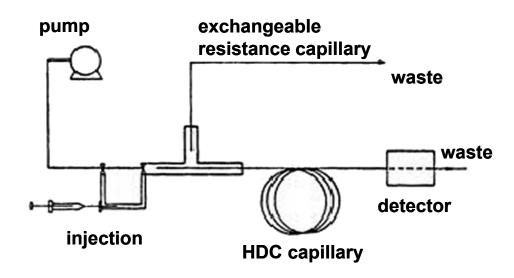
B and C – constants dependent on channel symmetry, C also on retention model

calibration

 $\lambda = f(\tau)$ and thus on M_W in case of tubular micro-capillary use and C \rightarrow 2.3

porous material

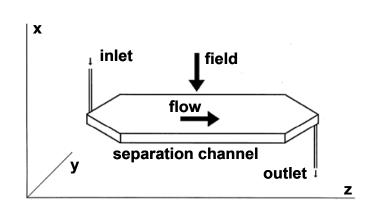
pores of filling: 50 – 50 000 nm

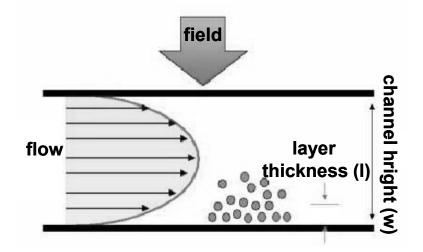

sample: larger molecules

capillary fractionation

(CHDF, capillary hydrodynamic fractionation)

other influences in account:


- : colloidal forces
- : non-linear inertial forces depending of flow-rate gradient and position (*lift forces*; *tubular pinch effect*)



FFF, flow-field fractionation

principle:

physical field inflicts some property of analyte and creates concentration gradient $\partial c/\partial x$ \Rightarrow concentration profile c(x) across channel is **specific** for given analyte

$$J = W * c - D * \nabla c$$

J – flow of analyte

W - transport rate of analyte

$$W = v + U$$
 v – portion given by liquid flow **U** – portion given by field

c – concentration of analyte

D – diffusion coefficient (2nd Fick's law)

c is not constant in axis of field application (x)

$$J_{x} = W_{x} * c(x) - D * \frac{\partial c}{\partial x}$$

$$\left|\lambda = l/w\right|$$

$$v_x = 0 \Longrightarrow W_x = U_x = -ax^n$$

$$c(x) = c_0 * e^{\int_0^x \left(\frac{U_x}{D}\right) dx}$$

 \mathbf{n} – either 0 or 1

0 – constant flow

1 – depends on position in channel

brownian elution mode

$$n = 0$$

$$n = 0$$
 $U_x * t \approx \sqrt{2D * t}$: analyte properties (field-analyte interaction)

parameters influencing separation:

(field-analyte interaction parameter, diffusion coefficient)

: strength of applied field

$$c(x) = c_0 * e^{-\frac{|U_x|}{D} * x}$$

$$c(x) = c_0 * e^{-\frac{|U_x|}{D} * x}$$

$$R = \frac{6k * T}{F * w}$$

retention ratio is function of λ

field-analyte interaction parameter

: effective mass **m**_{ef}

$$|m=V_{part}*(\rho_{part}-\rho_{liq})|$$

k – Boltzmann constant

T – absolute temperature

 $\mathbf{F} = \mathbf{g}^* \mathbf{m}_{ef}$; \mathbf{g} – gravity acceleration

w - height of separation channel

steric elution mode

$$n = 0$$

$$U_x *t >> \sqrt{2D*t}$$

particles create a layer near to channel wall concentration of analyte extra muris = 0

$$R = \frac{6r_p}{w} \qquad \mathbf{r_p} - \text{particle radius}$$

focustion elution mode

$$\overline{n=1}$$

$$n=1$$
 $U_x = -a(x-s)$

particles create a layer near to channel wall concentration of analyte extra muris = 0

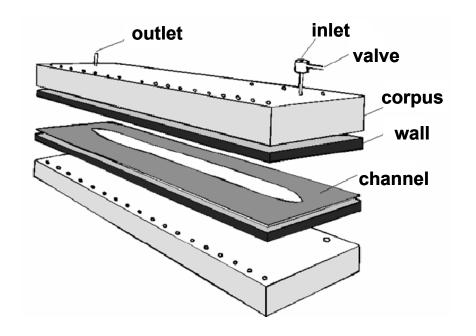
$$c(x) = c_0 * e^{-\frac{a}{2D}*(x-s)}$$

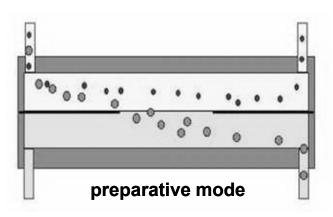
s - position, where resulting force inflicting analyte is = 0; position of zone centre from channel wall

$$R = \frac{6s}{w}$$

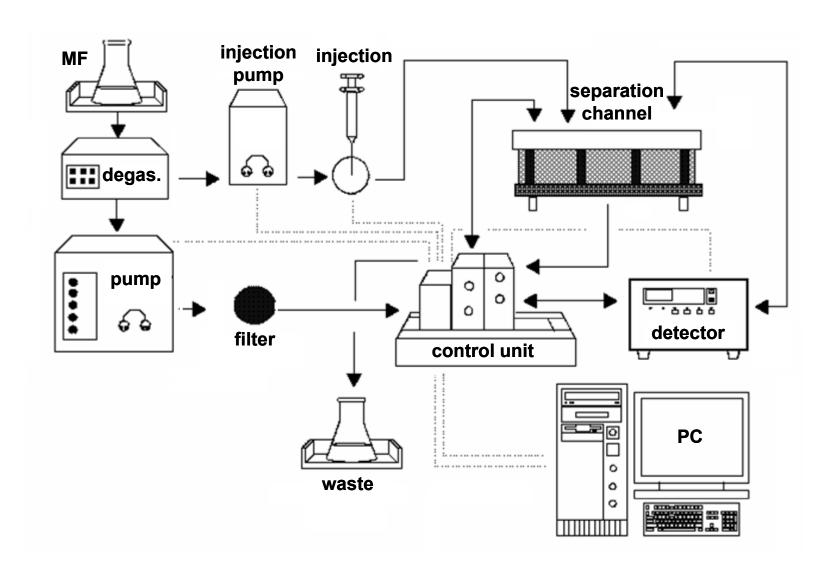
importance of **hydrodynamic force**: its influencing: liquid flow profile channel profile

use of FFF


: no SF (one-phase chromatography) \Rightarrow no interactions with active surface


: MF is carrier liquid, influences separation indirectly only

: variables influencing separation may be changed continuously in wide range


separation of macromolecules and particles 10³ – 10¹⁵ Da

proceeding FFF

instrumentation

<u>pumps</u>

- : wide range of adjustable flow-rates
- : no need for high pressure, but for pulseless flow !!!
- : with constant pressure and flow (reciprocal, peristaltic)

injection device

similar to LC

- : septum
- : multi-way valve
- : linear injectors (infusion)

detectors

similar to SEC

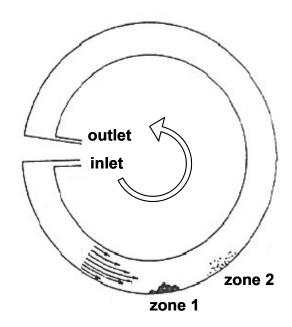
- : refractometer
- : photometer absorption, fluorescence, optical rotation, scattering
- : other viscosimeter, densitometer, osmometer...

SdFFF, sedimentation flow-field fractionation

: the oldest technique

: effective force = natural gravity or centrifugal force

: rotation 20000 r.p.m. (injection in steady state)


$$\lambda = 6RT/\pi * d_p^3 * G * w * \Delta q$$

 \mathbf{G} – gravity (g) or centrifugal acceleration $\mathbf{\Delta q}$ – density difference between particles and solvent $\mathbf{d_p}$ – particle diameter

GFFF: > 1 μm

SdFFF (G = $10^5 * g$) : 10^6 Da or > 10 nm

DNA, proteoglycans, river water colloids, viruses and silicagel SF for HPLC

ThFFF, thermal flow-field fractionation

separation channel – two metallic (cupric) blocks

the upper one is electrically heated, the lower one is water cooled

⇒ gradient 20 – 1000 °C/cm

: distance teflon foil: 50 – 250 µm

temperature gradient causes slower flow at colder wall (non-isoviscose liquid)

$$\lambda = \left(w * \frac{\alpha}{T} * \frac{\partial T}{\partial x} \right)^{-1}$$

 D_T = thermal diffusion coefficient α – thermal diffusion factor = D_T *T / D

TFFF: to describe thermal diffusion

EFFF, electric flow-field fractionation

walls – semipermeable cellulose membranes

high voltage gradient; low absolute voltage – low current ⇒ low heating

$$\left| \lambda = D / \mu_e * E * w \right|$$

μ_e – electrophoretic mobilityE – electric field intensity

EFFF: proteins with different isoelectric point

FFFF, flow-field flow fractionation

external field – solvent flow orthogonal to flow of basic media

tube of semipermeable material ⇒ solvent intrusion, not of analyte

$$\lambda = RT * V_0 / 3\pi * N * \eta * V_c * w^2 * d$$

V₀ – channel volume

 η – viscosity

 V_c – volumetric orthogonal flow

d – effective Stokes diameter

FFFF: > 1 nm

gas chromatography

GC history

1941

Synge and **Martin**: theoretic base for GC:

"...very refined separations of volatile substances should be possible in a column in which permanent gas is made to flow over gel impregnated with a non-volatile solvent."

1952

James and Martin: practical introduction of GC; separation of volatile fatty a.

1963

GC-MS – first hyphenated technique

1980

capillary columns in GC – distinctive separation improvement

theoretical base of GC

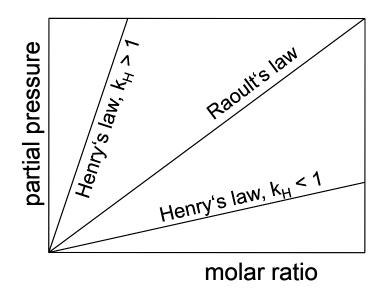
in principal the same as for LC separation difference: gas is compressible (liquid not)

equilibrium on column

$$A(g) + SF(s) \leftrightarrow A-SF(s)$$

$$K_D = \frac{c_S(A) * \gamma_S(A)}{c_M(A) * \gamma_M(A)}$$

$$c_S(A) = \frac{K_D}{R^*T} * p(A)$$


Raoult's law

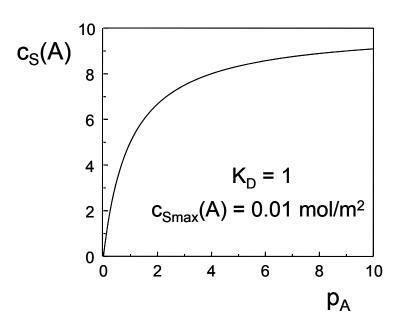
$$p(A) = p^0(A) * x(A)$$

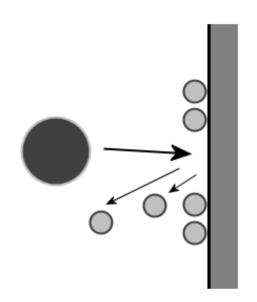
x(A) – molar ratio of **A** in mixture $p^0(A)$ – pressure of saturated vapours of **A**

Henry isotherm

$$c_S(A) = k_H * p(A)$$

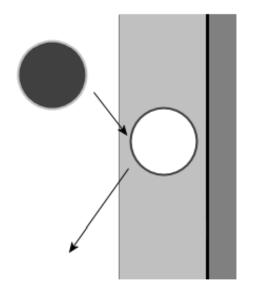
low concentrations of A, non-ideal solution k_H – Henry's constant p(A) – partial pressure of A over mixture


relation between Raoult's and Henry's laws


Langmuir isotherm

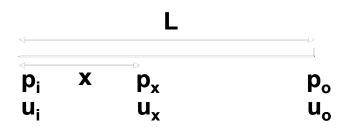
$$c_S(A) = c_{S \max}(A) * \frac{K_D * p(A)}{1 + K_D * p(A)}$$

c_{Smax} – maximal bound concentration


graphical presentation of Langmuir isotherm

adsorption GC GSC

distribution GC GLC


distribution chromatography (GLC)

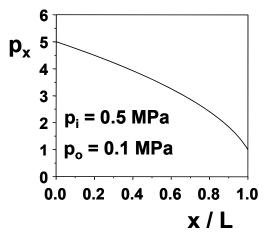
vapour tension of analyte (A) over liquid phase adsorption chromatography (GSC)

different adsorption of molecule **A** onto SF surface with active centres

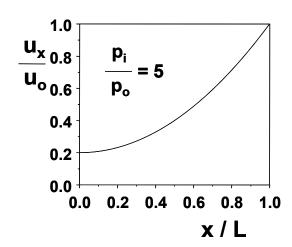
$$K_R = \frac{c_S(A)}{c_M(A)}$$

linear flow rate of carrier gas (MF)

L – column length


p – gas pressure

u – linear flow rate


indices: **i** – on inlet

 \mathbf{x} – in point \mathbf{x} of length

o – on outlet

pressure gradient profile on column

value profile of linear flow rate

average linear MF flow rate

$$\overline{u} = \frac{B_0 * (p_i - p_o)}{\eta * \varepsilon * L}$$
 (p_i-p_o) – pressure gradient [Pa]
$$\eta - \text{dynamic viscosity [Pa.s]}$$

$$\varepsilon - \text{sorbent inner porosity}$$

B₀ – specific permeability of column [m²]

L – column length [m]

compressibility factor

$$\left| \overline{u} = j * u_o \right|$$

$$j = \frac{3}{2} * \frac{\left(\frac{p_i}{p_o}\right)^2 - 1}{\left(\frac{p_i}{p_o}\right)^3 - 1}$$

retention quantities

retention volume / time of *i*-th analyte void volume / time of column

reduced retention volume / time

 $V_{R,i}$ [ml], $t_{R,i}$ [min]

$$V_{R,i} = F_M * t_{R,i}$$

$$\mathbf{V_m}$$
 [ml], $\mathbf{t_m}$ [min] $V_m = F_M * t_m = V_M$

 $\mathbf{V'}_{\mathbf{R},\mathbf{i}}$ [ml], $\mathbf{t'}_{\mathbf{R},\mathbf{i}}$ [min] $t'_{R,i} = t_{R,i} - t_m$

$$t'_{R,i} = t_{R,i} - t_m$$

$$\left|V_{R,i}' = F_{M} * t_{R,i}'\right| \left|V_{R,i}' = V_{R,i} - V_{m}'\right|$$

$$V'_{R,i} = V_{R,i} - V_m$$

net retention volume

 V_N [min]

V'_{R,i} corrected to carrier gas compressibility

 $|V_N = F_M * t'_{R,i} * j = V'_{R,i} * j|$

specific volume

 V_h [ml/g] or V_p [ml/m²]

V_N related to 1 g or 1 m² SF and to 0 °C

$$\frac{V_p = \frac{273.15 * V_N}{S * T_k}}$$

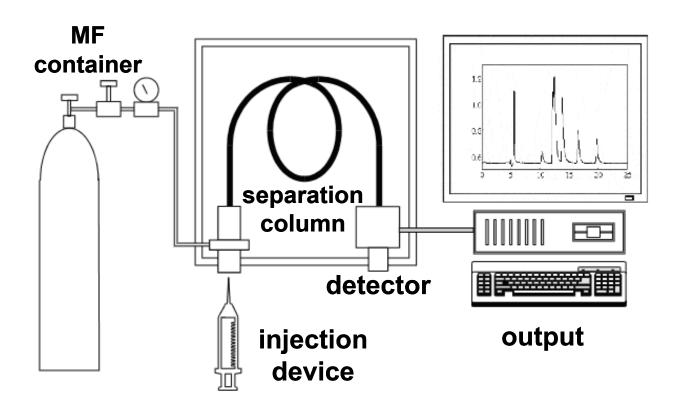
$$V_h = \frac{273.15 * V_N}{w_L * T_k}$$

temperature influence

$$T_k > T_{boil} \land T_{inj} \ge T_k \land T_d > T_k$$

T_{ini} – injection head temperature

 T_k – column thermostat temperature


T_d – detector temperature

- ↑ T_k leads to faster analysis
- T_k demands TMF pressure on column inlet for keeping u through column

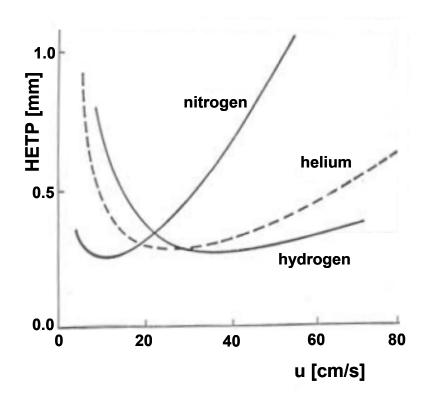
isothermic analysis: $T_k = const.$

analysis with temperature gradient: $T_{k2} - T_{k1} > 0$

GC arrangement

MF delivery

gas : 0.5 ml/min – 400 ml/min (HP-GC 1200 ml/min)


: pressure containers : pressure up to 400 kPa (HP-GC 1 MPa)

: compressor : pressure and flow control

: electrolyser : thermostating

carrier gas advanced flow control (AFC)

carrier gas advanced pressure control (APC)

carrier gas

N₂ (nitrogen)

- + cheap, safe
- low thermal conductivity

H₂ (hydrogen)

- + high thermal conductivity, low viscosity
- high diffusivity, explosive

He (helium)

- + combines advantages of N₂ and H₂
- expensive

Ar (argon)

especially for ECD

must be chemically inert – always necessary to remove humidity and O₂

purity – pre-set guard column with molecular sieve

injection device

loading of **A** onto column : more difficult than by LC

tubular columns: 1 – 20 μl capillary columns: ~ 1 nl

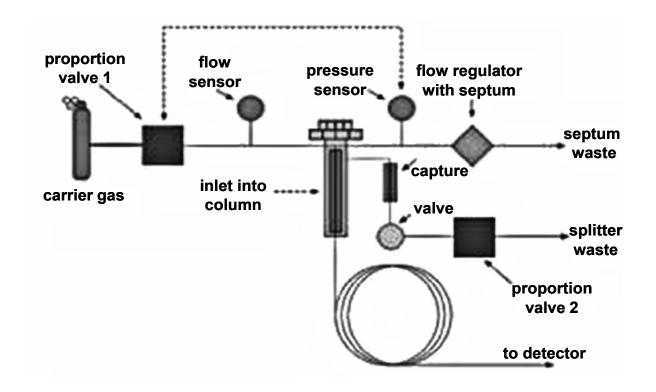
inject small volume and quickly

: slowly and large volume (overload) ⇒ broad zones and resolution loss

sample evaporation

necessity to transform liquid and solid samples into gaseous state

heated space on the beginning of the column


volatility increment

chemical derivatisation: silylation (N,O-bis(trimetkylsilyl)acetamide)

2 ROH +
$$O-Si$$
 $O-Si$ $O-Si$

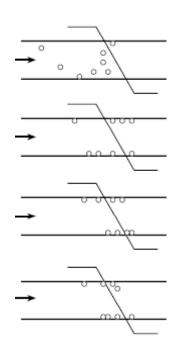
silanisation (dimethylchlorsilane) and acetylation (acetanhydride)

splitless injection

: with closed valve pressurise using proportion valve 1: flow sensor = 5 ml/min, pressure sensor = 70 kPa

: septum flow set to 2 ml/min ⇒ slow flow of 3 ml/min onto column

: sample introduced into injector and is carried onto column

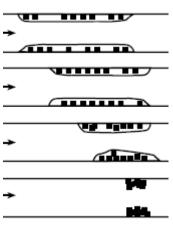

: after certain time without splitting (10 – 40 s /optimum 20 s/, *splitless time*), which happens after injection, the valve is open and rest of the sample is washed out

it demands sample reconcentration

: prevents zone broadening

cold trapping

- : first few centimetres of column has negative temperature gradient (~ 250 °C /injection/ >> 40 °C capture region; *ca* < 150 °C than T_{boil})
- ⇒ mobility of components with high T_{boil} is zero
- ⇒ their reconcentration



solvent effect

- : first few centimetres of column has negative temperature gradient (~ 250 °C /injection/ >> capture region is $\it ca$ 20 °C bellow solvent $\it T_{boil}$)
- \Rightarrow sample components with low T_{boil} condensate with solvent

from the created thin film, the solvent is slowly evaporating

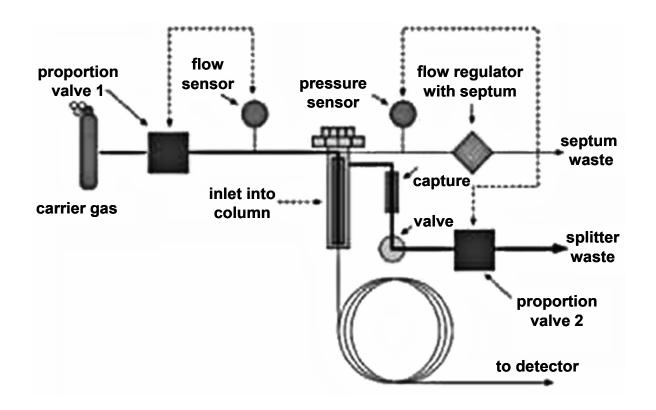
 \Rightarrow reconcentration of components with low T_{boil}

split injection

splitter allows: easy injection of small volume

: is related to sharp zone entering onto column and column capacity

$$S = \frac{F_M}{F_S + F_M}$$


 $S = \frac{F_M}{F_S + F_M}$ S – degree of sample splitting, F_M – column flow rate, F_S – splitter flow rate (proportion valve 2) (proportion valve 2)

disadvantages:

: unsuitable for trace analysis

: depends of splitter geometry

today the most used way of injection

: pressurise using proportion valve 1: flow sensor = 103 ml/min, pressure sensor = 70 kPa

: septum flow set to 2 ml/min ⇒ slow flow of 3 ml/min onto column

: pressure sensor sets proportion valve 2 to 100 ml/min ⇒ onto column 1 ml/min ⇒ through inlet MF flow quickly, 101 ml/min

: sample introduced into injector and according to split equation, part goes onto column, part out to waste

on-column injection

- : injects precise amount
- : suitable for analytes with high T_{boil} no evaporation during injection

instrumentally demanding – restrict pressure losses within injection

overloads column with liquid (1 µl for 50 cm of column) ⇒ peak broadening : solution as within splitless injection

- : gas entrance to column is sealed
- : with closed valve pressurise using proportion valve 1: flow sensor = 7 ml/min, pressure sensor = 70 kPa,
- : septum flow set to 2 ml/min
- : sample introduced into injector and carried onto column by flow rate 5 ml/min
- : after certain time without splitting (*splitless time*), which happens after injection, the valve is open and rest of the sample is washed out

separation column

tubular

: analytical

: preparative

length: 0.5 – 10.0 m

diameter: 1 – 6 mm

length: 2 - 6 m

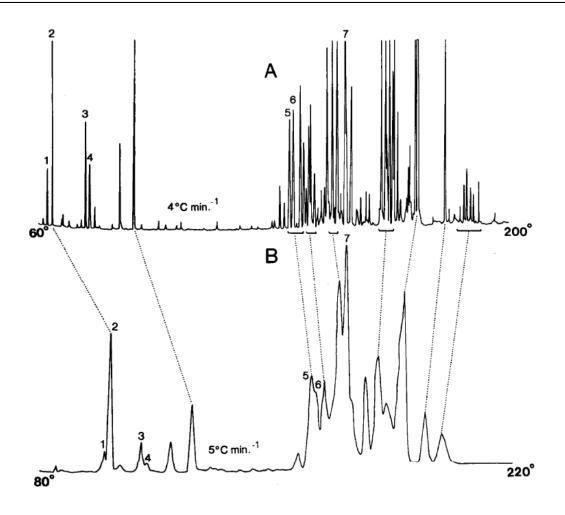
diameter: > 6 mm

capillary

: open

: filled

length: 10 - 100 m


diameter: 0.1 – 0.5 mm

length: 0.5 – 50.0 m

diameter: 0.3 – 1.0 mm

separation efficiency comparison of different column types

GC separation of calamus oil components

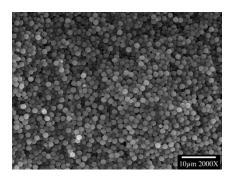
A – 50 m capillary column

B - 4 m tubular column

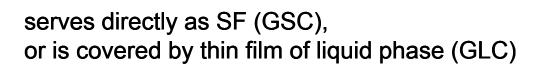
column filling

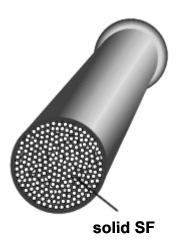
tubular columns

cover: glass, steel, copper, polymers


carriers


modified infusorial earth active centres (silanols and siloxanes) \Rightarrow tailing of more polar components suppression – *silylation*


adsorbents


: *unspecific* (active carbon)

: specific (silicagel, alumina, molecular sieves etc.)

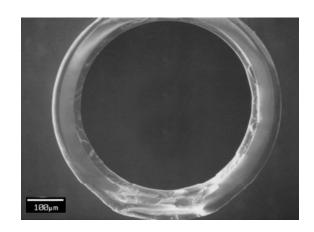
non-polar

: methylated polysiloxane, squalene

mildly polar

: phenylated polysiloxane

$$-HO \leftarrow \begin{bmatrix} H & H \\ | & | \\ C & C & O \\ | & | & \end{bmatrix} H$$

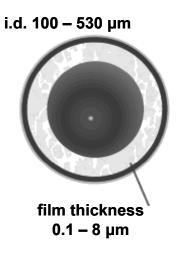

strongly polar

: polysiloxane with CH₂-CH₂-CN, -CH=CH-CN, Carbowax 20M (based on PEG)

capillary columns

silica

surface enlargement by etching polyimide cover ⇒ increase of mechanical stability

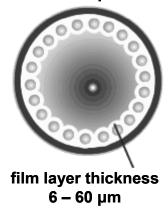


SF universal non-polar silicon phases or immobilised Carbowax

wall-coated open tubular columns

(WCOT)

liquid SF directly on the capillary wall

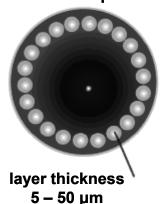


fused silica open tubular

(FSOT)

thin wall with outer polyimide cover (mechanical stability)

i.d. 320 - 530 µm



support-coated open tubular columns

(SCOT)

carrier is on capillary wall, SF is on it

i.d. 320 - 530 µm

porous-layer open tubular columns

(PLOT)

layer of solid active sorbent on an inner capillary wall

column thermostat

importance of temperature of GC

: evaporation of liquid or solid sample

: kinetic aspects of separation

kept with precision of 0.1 °C; thermostat range (T_{lab} + 4 °C) – 450 °C

optimal loading temperatures – T_{boil} of component with highest value + 30 – 50 °C

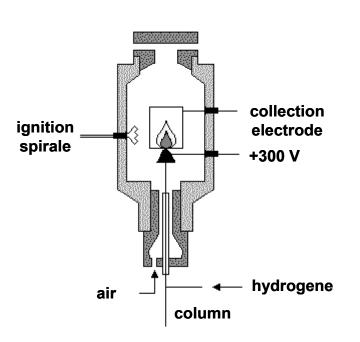
optimal column temperature ~ T_{boil} of analyte column temperature ≥ T_{boil} ⇒ t_R = 2 – 30 min

minimal temperature ⇒ better resolution, but higher t_R

wide range of T_{boil} of separated components \Rightarrow

⇒ temperature programme / column gradient (Δ temperature during experiment) temperature may be increased gradually or in steps

detectors


detected compound is volatile, in gaseous state

concentration dependent detector (CDD)

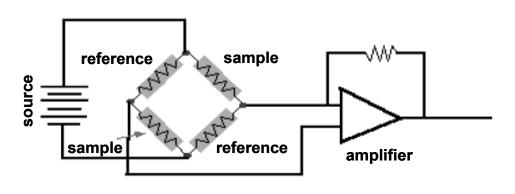
: non-destructive, dilution with carrier gas decreases sensitivity

mass dependent detector (MDD)

: destructive, carrier gas interferes not, depends on introduction rate into detector

flame ionisation detector

FID


MDD

signal: current created by pyrolysis of carbon sample

: **noise** 10⁻¹³

: **dyn. range** 10⁷

: sensitivity 10⁻¹⁰ g/ml

thermal conductivity detector

TCD catharometer

: noise 10⁻⁵

: dyn. range 10⁶

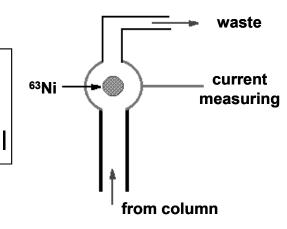
: sensitivity 10⁻⁹ g/ml

CDD

signal: sample molecules change (decrease) thermal conductivity of carrier gas

: carrier gas must have high thermal conductivity (He, H₂...)

: temperature dependent, universal


electron capture detector

ECD

: **noise** 10⁻¹²

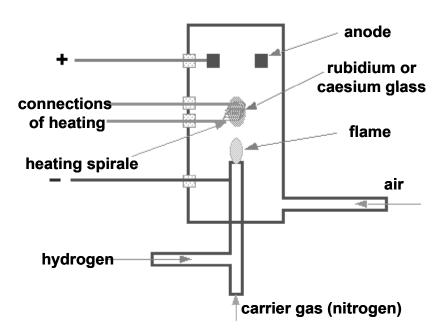
: dyn. range 10⁵

: sensitivity 10⁻¹⁴ g/ml

CDD

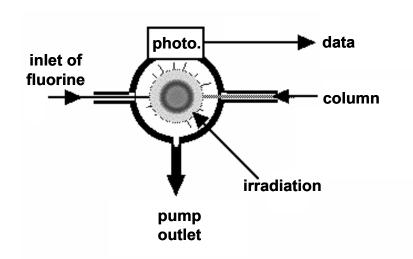
signal: analyte molecules decrease current generated by β-emitter

: halides, nitrites, cyano-compounds, peroxides, anhydrides, organometals


nitrogen phosphorus detector

NPD – thermoionisation detector

: **noise** 10⁻¹²


: dyn. range 10⁶

: sensitivity 10⁻¹¹ g/ml

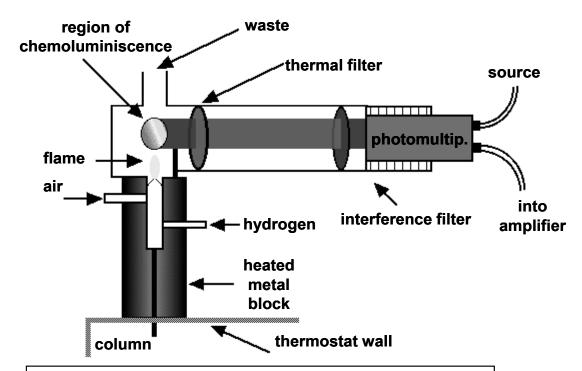
MDD

signal: Rb/Ce glass thermoionisation electron emission enhanced by N or P presence

chemoluminiscence detector

: noise 10⁻¹³

: dyn. range 10⁴


: sensitivity 10⁻¹² g/ml

CDD

signal: reaction of F (strong oxidant) with analyte

flame photometric detector

FPD

: noise 10⁻¹²

: **dyn. range** 10⁷

: sensitivity 10⁻¹¹ g/ml

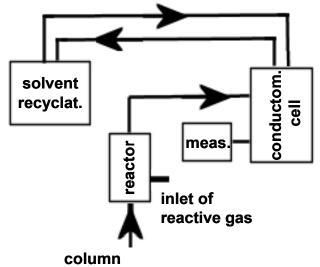
MDD

signal: chemoluminiscence

: selective S (394 nm), P (526 nm)

electrolytic conductivity detector

ELCD


: noise 10⁻¹³

: dyn. range 10⁶

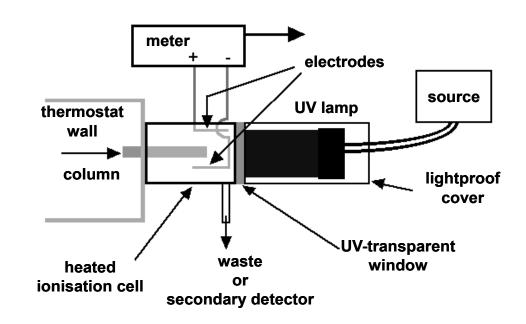
: sensitivity 10⁻¹² g/ml

MDD

signal: appearance of special products their conductivity measurement after mixing with solvent

photoionisation detector

PID


: noise 10⁻¹³

: **dyn. range** 10⁷

: sensitivity 10⁻¹² g/ml

CDD

signal: UV-irradiation ionisation

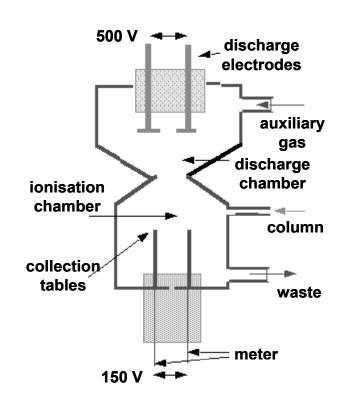
atomic emission microwave microwave

atomic emission detector

AED

: noise 10⁻¹⁴

: dyn. range 10⁴


: sensitivity 10⁻¹² g/ml

MDD

signal: microwave induced plasma

: selective according to chosen emission wavelength

: very expensive

helium ionisation detector

HID

: **noise** 10⁻¹⁴

: dyn. range 10⁶

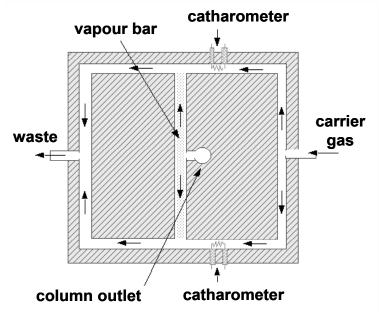
: sensitivity 10⁻¹³ g/ml

MDD

signal: auxiliary gas is ionised first (He, Ar), its ions then secondary ionise sample molecules

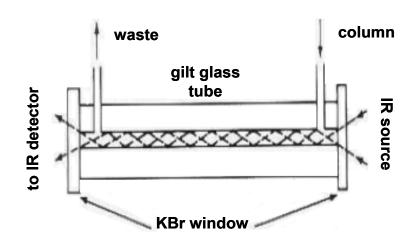
gas density balance

: **noise** 10⁻⁸


: dyn. range 10³

: sensitivity 10⁻⁷ g/ml

GDB


MDD

signal: pressure difference between upper and lower passage of gas in presence of eluent vapours

infrared detector

IRD

: **noise** 10⁻¹²

: dyn. range 10⁵

: sensitivity 10⁻¹¹ g/ml

CDD

signal: IR absorbance

mass spectrometric detector

MS

: **noise** 10⁻¹⁴

: dyn. range 10³

: sensitivity 10⁻¹⁶ g/ml

CDD

signal: ion count

universal

ionisation:

: electron impact (EI)

: chemical i. (CI)

analysers:

: quadrupole (Q, Qq)

: ion trap (IT)

: magnetic sector

: time-of-flight (TOF)

definition of chromatographic system in GC

MF

carrier gas type

flow / pressure (ml.min⁻¹ / kPa)

injection (X μl) injection type (event. splitting rate)

SF

stationary phase type

length, inner diameter, manufacturer, SF type, film thickness 25m x 0.32 ID J&W DB-5 DF – 1.0

temperature gradient profile initial temperature and its period, temperature increase; inlet temperature

(e.g. 130 °C 1 min, 130 - 250 °C at 5 °C/min, 250 °C 5 min; 250 °C)

detector

basic characteristic according to type

analytical information in chromatogram

qualitative information

retention time ≈ retention factor, distribution constant : compound identification (*standard method*)

spectroscopic detectors: UV-Vis spectra

MS spectra (ESI / APCI; Qq / IT / o-TOF)

NMR spectra (¹H, ¹³C)

retention time formulation

specific retention volume (V_p)

$$V_p = \frac{273.15 * V_N}{S * T_k}$$

relative retention time (r_{A,B})

: comparison with internal standard

$$r_{A,B} = \frac{t_R'(A)}{t_R'(B)}$$

Kovats retention indices (r_{A,B})

: linear dependence pf retention time logarithm of homologues on carbon number

quantitative information

peak area ≈ amount, concentration of compound

internal normalisation method

: all components are eluted (solvent does not count)

: all they have same/similar response factor

$$c_{\%} = A_{\%,j} = \frac{100 * A_{j}}{A_{tot}}$$

external standard method (absolute calibration; calibration curve)

: always same measurement conditions, same injection volumes

: indispensable matrix influence

$$\frac{c_{unknown}}{A_{known}} * c_{known}$$

internal standard method

 $c_{unknown} = \frac{A_{IS1}}{A_{IS2}} \frac{A_{unknown}}{A_{known}} * c_{known}$

: need not to know injection volume

: standard must be chemically similar to analyte

standard addition method

: presumes calibration curve linearity

$$c_{1} = \frac{V_{S}}{V_{1}} * \frac{c_{S}}{\frac{A_{2}}{A_{1}} * \frac{(V_{1} + V_{S})}{V_{1}} - 1}$$

A₁ – analyte peak area, unknown concentration c₁

A₂ – analyte peak area of unknown concentration c₁ after addition of standard of known concentration c_s

 V_1 – sample volume, V_s – standard solution volume

electromigration methods

driving force – electric field

: charged particle motion in electric field

: extraction L-S

: <u>electrolyte</u> (liquid able to conduct current)

: <u>separation channel wall</u> (carries charge)

: stationary phase (SF, solid matter, micelles)

mobility of ions is influenced by charge, molecule size and surrounding ions

basic electromigration techniques

: column arrangement (in tube, in capillary)

: <u>slab arrangement</u> (in gel)

EMM history

1808-93

first experiments in U-tubes – F. von Reuss (1808), G. Wiedeman (1856), H. Buff (1858), O. Lodge (1886), W. Whetham (1893)

1897

Kohlrausch – basic equation for ion migration in electrolyte solution

30. léta

Tiselius – gel elfo with glucose as medium

1937

Tiselius – first fully functional electrophoresis instrument, **1948** Nobel price

1955

Smithies – use of starch gels for elfo

1958

Hjertén – ZE in rotating tubes 1 – 3 mm

1959

Raymond and Winstraub – acrylamide gels, setting up gel porosity & stability

1965

Tiselius – ZE in 3 mm tubes

1967

Hjertén – elfo in tube, i.d. 1 – 3 mm, with inner coating against EOF

1969

Vesterberg and **Svensson** – IEF of proteins in ampholytes

1970

Laemmli – denaturing separation in gel, SDS and concentration gel use **Everaerts** – ITP on own instrument

1974

Pretorius – EOF as a MF driving force through sorbent

1974 –79

Virtanen, and Mikkers et al. – glass and teflon capillaries, i.d. 200 µm

1975

O'Farrell – 2D GE, presetting IEF in gel to SDS elfo

1981

Jorgenson and Lucas – borosilicate glass capillary, i.d. 75 µm

1983

Hjertén – CGE for biological samples

1984

Terabe – micellar electrokinetic chromatography

1985

Hjertén – CIEF for biological sample

1987

Karger and Cohen – high efficiency CGE for NA Knox and Grant – CEC in 50 µm capillaries with ODS

1988

Beckmann Instruments – first commercial instrument

theoretical base of EMM

motion of free charged particle in electric field

: charge and field orientation decided on direction and velocity

v – ion motion velocity

I – length of voltage gradient

influencing the motion by **ionic atmosphere** ⇒

⇒ decrease of velocity with increase of electrolyte concentration

 μ_0 ionic (net) mobility – μ at zero ionic strength 10^{-9} m² V⁻¹ s⁻¹ = 1 tiselius (Ti), sign implies ion polarity (anion has negative μ)

temperature influence: $f T \Rightarrow f \mu_0$; with 1 °C about 2 %

$$\mu_T = \mu_{T_0} * \left[1 + 0.02 * \left(T - T_0\right)\right]$$
 T – working temperature **T₀** – standard, tabulated temperature

ion mobility **estimation**

in a case, when value is not known (tabulated)

Stokes mobility; **a** – acceleration of spherical charged particle motion

$$\frac{a=0}{|F_E|} \left[\frac{F_E}{F_F} = \frac{q^*E}{6\pi^*\eta^*r^*v} = \frac{q}{6\pi^*\eta^*r^*\mu} \right] \Rightarrow \mu = \frac{q}{6\pi^*\eta^*r}$$

q – charge

 η – solution viscosity

r – ion radius

v – ion motion velocity

relation of ion mobility and diffusion coefficient

$$\mu = \frac{z * F}{R * T} * D$$
 F – Faraday constant R – gas constant T – temperature

z – relative charge

D – diffusion coefficient

ion mobility estimation for small molecules Jokl equation

$$|\mu_0| = |z| * \frac{a}{\sqrt{M}} - b$$

M – molecular mass

a, b – empiric constants

 $a \sim 485 \times 10^{-9} \text{ m}^{-2} \text{ V}^{-1} \text{ s}^{-1}$

 $b \sim 9.6 \times 10^{-9} \text{ m}^{-2} \text{ V}^{-1} \text{ s}^{-1}$

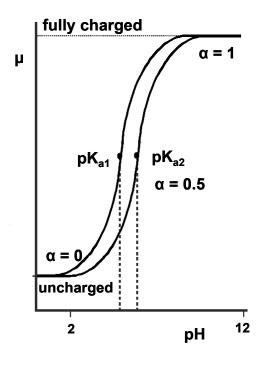
estimation error is ca 10 %

actual ion mobility Onsager equation

$$|\mu| = |\mu_0| * (0.23 * |\mu_0 * z_+ * z_-| + 31.3 \cdot 10^{-9} * |z_{+/-}|) * \frac{\sqrt{I}}{1 + \sqrt{I}}$$

z₊, **z**₋ – relative ion and counter-ion charge

I – ionic strength


effective mobility

mobility of weak bases, acids or zwitterions resulting mobility of all ion forms

$$\frac{-}{\mu} = \sum_{i=1}^{n} \mu_i * x_i$$

$$\mathbf{\mu_i} - \text{mobility of one ion form}$$

$$\mathbf{x_i} - \text{its molar ratio}$$

free mobility

mobility extrapolated to zero gel concentration

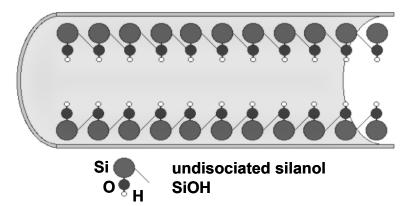
migration time

entry useful for mobility calculation

$$\mu = \frac{l_{tot} * l_{eff}}{U} * (\frac{1}{t_m} - \frac{1}{t_0})$$

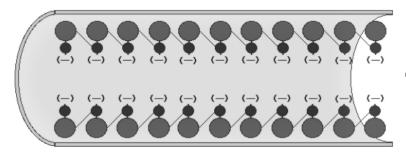
$$\mathbf{t_m} - \text{migration channel total length}$$

$$\mathbf{t_m} - \text{migration time}$$

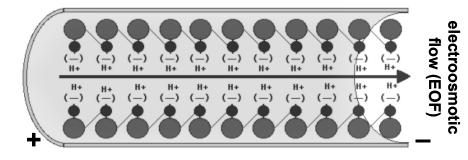

$$\mathbf{t_0} - \text{migration of neutral particle (EOF)}$$

$$\mu_{tot} = \mu_{eff} + \mu_{EOF} = \frac{l_{eff}}{t_m * E} = \frac{l_{eff} * l_{tot}}{t_m * U}$$

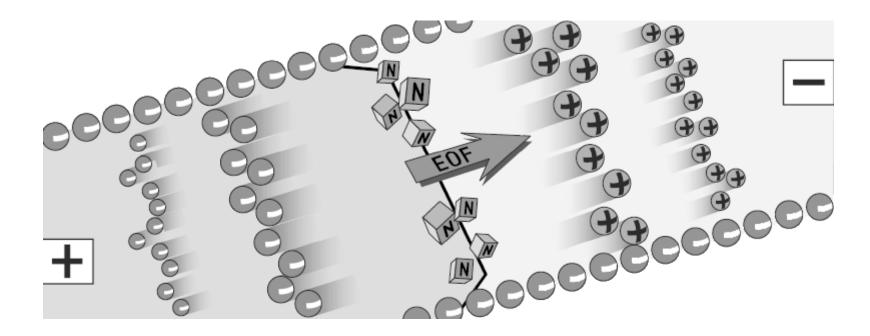
electroosmotic flow


(EOF)

wall is charged **negatively** – until said others



capillary = *endo-osmotic pump*


capillary made of fused silica with exposed hydroxyl groups

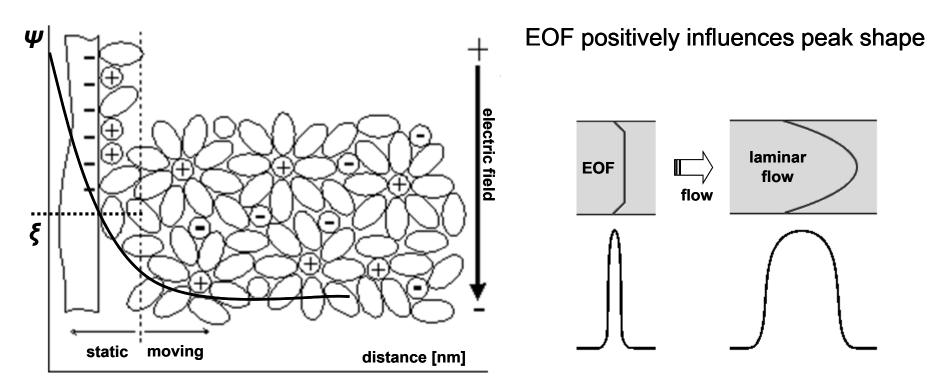
dissociation of hydroxylgroups leaves a negative charge on the inner wall

switching voltage on, liquid starts to move to cathode – it is mobilised by endoosmotic flow!

: **cations** migrate towards cathode and carry solvent molecules in the same direction – **electroosmotic flow**

: **neutral molecules** are moving in the same direction as electroosmotic flow with negligible mutual separation

: **anions** are slowed on their way towards anode, electroosmotic flow is stronger than their electrophoretic mobility \Rightarrow **they proceed towards cathode too**


EOF = 0 \Rightarrow no mass flow, only ion exchange

$$v_{EOF} = \left(\frac{\varepsilon^* \xi}{\eta}\right)^* E \implies \mu_{EOF} = \frac{\varepsilon^* \xi}{\eta}$$

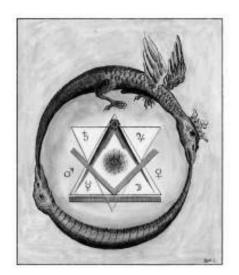
ε – dielectric constant

ξ – zeta potential (electrostatic), appears as a consequence of charge on capillary wall

 η – viscosity

influencing the EOF

high EOF – electrolyte carries cationic analytes out before reaching separation **low EOF** – adsorption of cationic analytes


some EMM modes demand EOF suppression (IEF, ITF, GE)

what influences EOF?

: surface wall charge

: electrolyte viscosity

: electric field intensity

influence of voltage

: change of EOF is directly proportional

: low voltage \Rightarrow low efficiency of separation and resolution

: high voltage ⇒ high Joule heat

influence of ionic strength or background electrolyte concentration

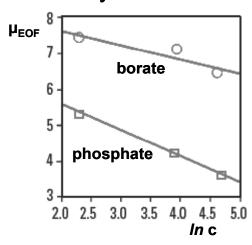
: increasing value lowers **ξ**-potential and thus EOF

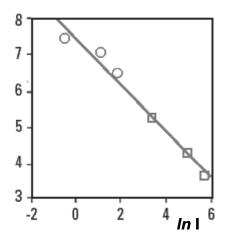
:: high values increase current and thus Joule heat

:: high values may cause analyte salting-out and adsorption to wall

:: low values supports adsorption to wall and limits sample concentration

:: changes peak shape, if electrolyte conductivity differs much from analyte


influence of organic solvent addition


: decreases **ξ**-potential and viscosity

:: may change selectivity, gathered only empirically

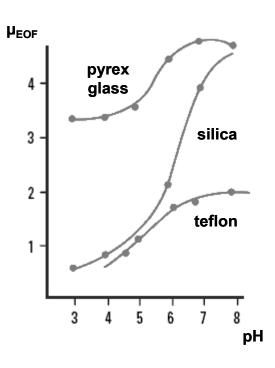
influence of tensides

: changes **ξ**-potential, may change wall polarity; anionic tenside increases EOF, cationic decreases (*if wall if negatively charged*)

influence of background electrolyte pH

: directly proportional EOF change; low pH \Rightarrow low EOF, high pH \Rightarrow high EOF

:: may change charge or structure of analyte


influence of temperature

: changes viscosity, higher temperature ⇒ higher EOF

:: thermolability of some samples

influence of covalent wall surface modification

: changes **ξ**-potential and wall charge polarity

pH influence on EOF

influence of neutral hydrophilic polymers

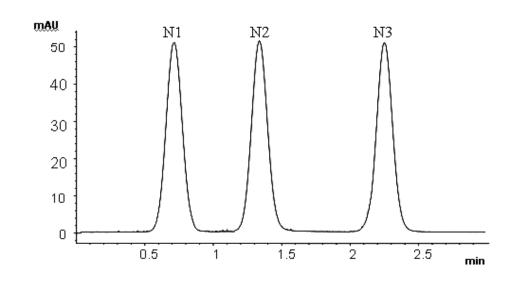
: changes **ξ**-potential (decrease) and viscosity (increase), decrease EOF by charge shielding

EOF measuring

B.A. Williams, G. Vigh, *Anal. Chem.*, 68, (1996) 1174-1180

N1 detector inlet outlet **N1** N1 ₁ N2 N1 N2 N1 N2 + **N3** N1 N2

: first EOF marker injection


: shifting the marker zone to detector by pressure

: second EOF marker injection

: shifting both marker zones to detector

: voltage application – electrophoretic mobilisation

: third EOF marker injection and consequent application of pressure – shifting all marker zones to detector

$$\left| l_{EOF} = (t_3 - 2 * t_2 + t_1) * \frac{l_{eff}}{t_3 + t_{inj} / 2} \right| \quad \mu = \frac{l_{EOF} * l_{tot}}{U * (t_m - t_{ru} / 2 - t_{rd} / 2)}$$

$$\mu = \frac{l_{EOF} * l_{tot}}{U * (t_m - t_{ru} / 2 - t_{rd} / 2)}$$

I_{EOF} – length, which marker travels during electrophoresis

 t_1 , t_2 , t_3 – migration times of zone N_1 , N_2 , N_3

t_{ini} – time period of marker injection by pressure

l_{eff} – effective capillary length

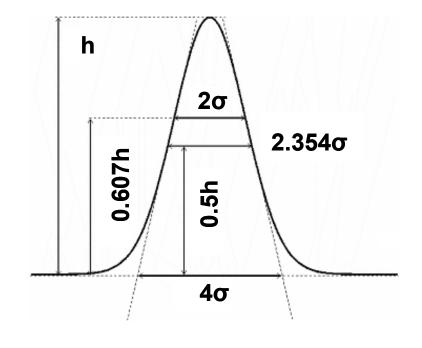
I_{tot} – total capillary length

U – applied voltage

t_m – time period of electrophoretic shifting

t_{ru} and t_{rd} – time periods, for which the voltage (inc-/dec-)reases linearly to given value

common EOF calculation


$$\mu_{tot} = \mu_{eff} + \mu_{EOF} = \frac{l_{eff}}{t_m * E} = \frac{l_{eff} * l_{tot}}{t_m * U}$$

description of separation

maximum function $I_{sign} = f(t)$ electrophoretic peak (Gaussian peak)

width of zone A in separation channel

- a) peak width at baseline
- $w = 4\sigma$
- b) peak width in half of peak height
- c) peak width between inflex points

$$w_{1/2} = 2,354\sigma$$

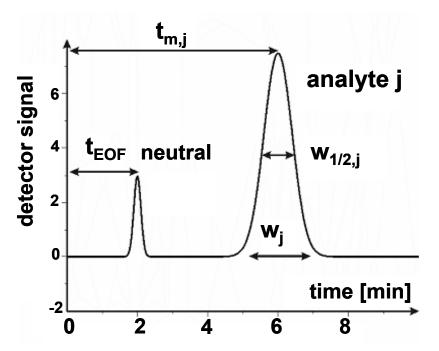
$$w_i = 2\sigma$$

 σ^2 – dispersion; defines zones broadening

peak width is given in temporal units

peak area

$$A = 1,064 * h * w_{1/2}$$


could be neglected and rectangle may be used

A = (h * w) / 2

separation efficiency

zones of **A broaden** during separation and **become asymmetric**

(electrodispersion)

number of theoretical plates

$$n = \left(\frac{t_{m,j}}{\sigma}\right)^2 = 16 \cdot \left(\frac{t_{m,j}}{w_j}\right)^2 = 5,545 \cdot \left(\frac{t_{m,j}}{w_{1/2,j}}\right)^2$$

height equivalent of theoretical plate

(comparison of separation channels of different length)

$$H = \frac{\sigma^2}{L} = \frac{L}{n}$$

number of theoretical plates

$$n = \left(\frac{l_{eff}}{\sigma}\right)^2$$

under ideal conditions (short injection length, no sorption, ...) the only influencing is *diffusion* (zone broadening)

$$\sigma^{2} = 2D * t = \frac{2D * l_{eff} * l_{tot}}{\mu_{eff} * U} \implies n = \frac{\mu_{eff} * U * l_{eff}}{2D * l_{tot}} = \frac{\mu_{eff} * E * l_{eff}}{2D}$$

principal difference from **n** in LC

factors influencing efficiency

$$\sigma^{2} = \sigma_{dif}^{2} + \sigma_{el.disp}^{2} + \sigma_{inj}^{2} + \sigma_{heat}^{2} + \sigma_{sorp}^{2} + \sigma_{det}^{2} + \dots$$

diffusion influence

$$\sigma_{dif}^2 = 2 * D * t$$

 $\sigma_{dif}^2 = 2*D*t$ **D** – diffusion coefficient **t** – time

basic factor analytes with low D create sharp zones

detection cell length influence

should be smaller than length / width of analyte zone ⇒ better peak depicture

sorption influence

sorption causes peak tailing

$$\sigma_{ads}^{2} = \frac{k' * v_{EOF} * l_{eff}}{(1+k')^{2}} * \left(\frac{r^{2} * k'}{4D} + \frac{2}{K_{d}}\right)$$

$$k' = \frac{t_{m,ret} - t_{m,unret}}{t_{m,unret}}$$

k' - capacity factor

K_d – first order dissociation constant

t_{m,ret} – retained analyte migration time
 t_{m,unret} – unretained analyte migration time

sorption could be prevented by capillary inner coating

: serves to change also other system properties (reverts EOF...)

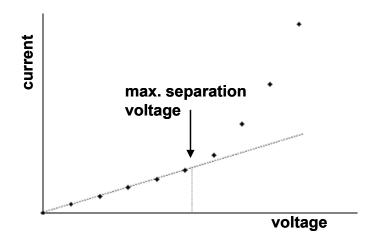
injection length influence

: injection length must be shorter than diffusion controlled zone width

: low sensitivity demands often longer injections

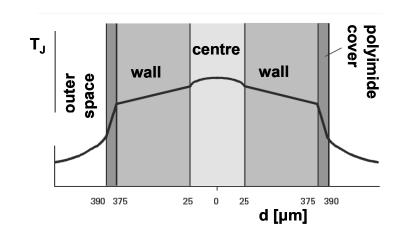
$$\sigma_{inj}^2 = \frac{t_{inj}^2}{12}$$

t_{ini} – injection pulse length


Joule heat influence

leads to temperature gradient and laminar flow

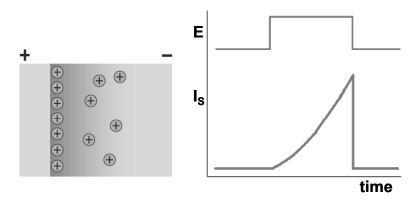
$$\Delta T_{J} = \frac{Q * r_{1}^{2}}{2} \left[\frac{1}{\kappa_{sil}} * \ln \left(\frac{r_{o.d.sil}}{r_{i.d.sil}} \right) + \frac{1}{\kappa_{polyim}} * \ln \left(\frac{r_{o.d.polyim}}{r_{o.d.sil}} \right) + \frac{1}{r_{o.d.polyim}} * \frac{1}{h} \right]$$


Q – output

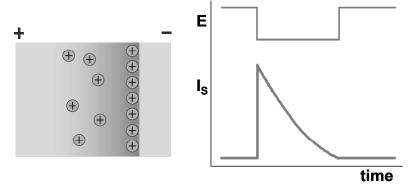
r - radius

K – thermal conductivity

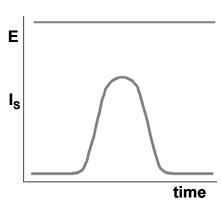
h – heat transfer rate off capillary


decreasing voltage: decreasing generated heat, low sensitivity and resolution lowering capillary i. d.: current decrease with i. d. square, low sensitivity, adsorption! decreasing BGE concentration: decreasing current, increasing adsorption thermostating: draining heat

electromigration dispersion influence


influences peak shape

difference between conductivity of sample and electrolyte leads to

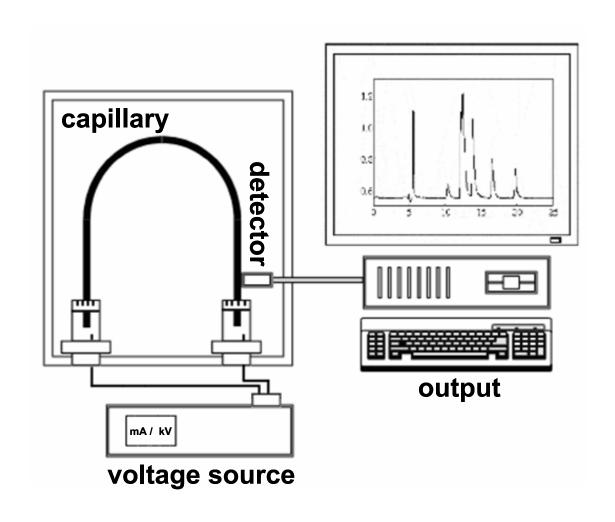

- 1) peak tailing
- 2) focusation (low sample conductivity), broadening (high sample conductivity)
- 3) ITF effect (peak fronting) because of certain ion surplus (e.g. Cl-)

 $\mu_{s} > \mu_{BGE} \Rightarrow$ front gets broad and tail focuses

 $\mu_{\text{S}} < \mu_{\text{BGE}} \Rightarrow$ front focuses and tail gets broad

 $\mu_{S} = \mu_{BGE} \Rightarrow \text{sharp zone}$

resolution

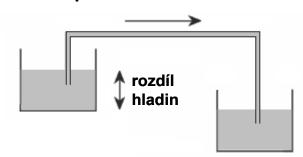

$$R_{i,j} = \frac{2 \cdot (t_{m,i} - t_{m,j})}{w_i + w_j} = \frac{2 \cdot \Delta t_m}{w_i + w_j}$$

$$R_{i,j} = \frac{\sqrt{n}}{4} * \frac{\Delta \mu}{\overline{\mu}} \qquad \frac{\Delta \mu - \text{difference, } (\mu_2 - \mu_1)}{\overline{\mu} - \text{median, } (\mu_2 + \mu_1) / 2}$$

$$\Delta\mu$$
 – difference, (μ_2 - μ_1)
 $\overline{\mu}$ – median, (μ_2 + μ_1) / 2

$$R_{i,j} = \frac{1}{\sqrt{32}} * \Delta \mu * \sqrt{\frac{U}{D*(\overline{\mu} + \mu_{EOF})}}$$

EMM arrangement



instrumentation

injection device

hydrostatic

siphon effect

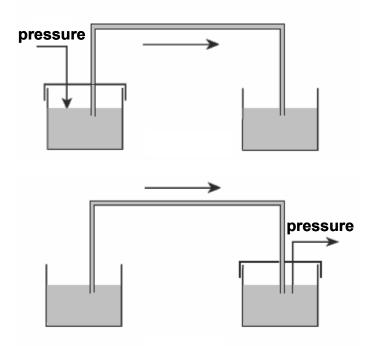
typical volumes: 10 - 100 nl (capillary $\sim 1 - 2 \mu$ l)

normal – longer part before detector
reverse (short-end) – the other end

hydrodynamic

$$V_{inj} = \frac{\Delta P * d^4 * \pi * t_{inj}}{128 * \eta * l_{tot}}$$

injected volume V_{inj}


ΔP – pressure difference

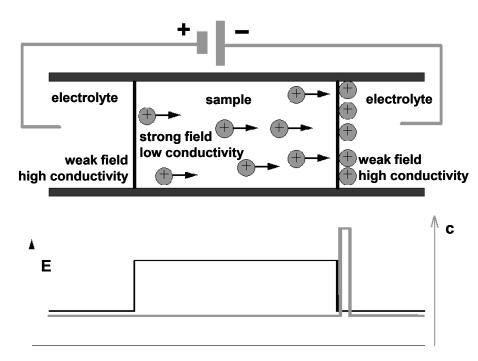
d – capillary i. d.

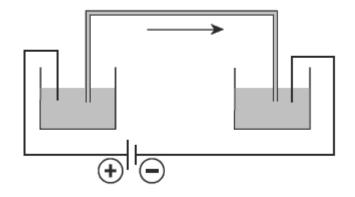
t_{ini} – time length of injection

I_{tot} – total capillary length

 η – background electrolyte viscosity

electrokinetic


for CGE the only possible


: non-quantitative – more mobile ions go easier

stacking effect

sample conductivity < electrolyte conductivity

- ⇒ sample ions carry the current
- ⇒ stacking/concentration on inter-phase sample-electrolyte

$V_{inj} = \pi * r^2 * l_{eff} * \frac{t_{inj} * U_{inj}}{t_{EOF} * U_{sep}}$

injected volume V_{inj}

 \mathbf{U}_{inj} – injection voltage

U_{sep} – separation voltage

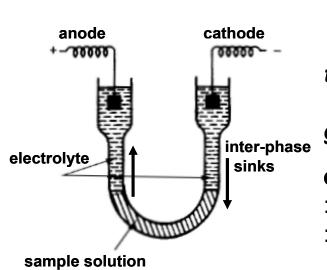
r – capillary i. d.

I_{eff} – capillary effective length

t_{ini} – injection time length

t_{EOF} – EOF marker migration time

voltage source


typical range: 0 – 30 kV; recommended gradient 400 V/cm 0 – 300 mA

too high voltage decreases analysis time, lead to discharges (ca 20 – 25 kV)

ZE – constant voltage, ITF – constant current one electrode always grounded – that one closer to detector

separation channel

tube

the oldest (proposed 1892, done 1930)

glass U-tube

electrophoresis in free solution

- : separation detection by moving inter-phase observation
- : coloured solution and clean electrolyte solution

capillary

fused silica

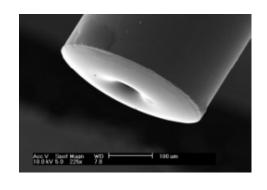
i. d. $10 - 200 \mu m$

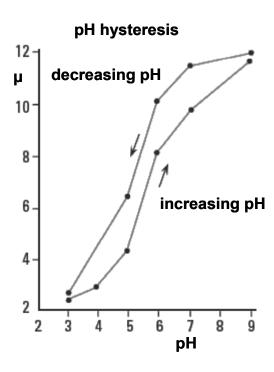
o. d. $350 - 400 \mu m$

length 10 (CGE) – 100 cm; 50 – 75 cm most common

outer coating – polyimide (mechanical properties)

conditioning:


establishing the properties of capillary inner surface


surface cleaning: 1 M NaOH, 0.1 M HCl, BGE other: strong acids, organics (DMSO), detergents

<u>teflon</u>

reproducible EOF worse heat conductivity

other materials based on SiO₂ – glass (Pyrex)

inner coating

covalent coating

suppressing EOF, in range pH 4 - 5 relatively low (\sim 0), pH 6 - 7 slowly increases at high pH is almost about 4/5 lower than in un-coated silica capillary

Si-O-Si-R

polyacrylamide-, arylpentafluoro-, 3-glycidoxypropyltrimethoxy-siloxan protein or amino acid, sulphonic acids, maltose, PEG, polyvinylpyrrolidon

: relatively easy preparation

: limited long-term stability

Si-C

polyacrylamide using Grignard reaction

: stabile between pH 2 – 10

: difficult to prepare

SF from GC and LC

C2-18, PEG, phenylmethylsilicon

: easy to hydrolyse

: increased adsorption

<u>adsorbates</u>

cellulose, polyethylene glycol, polyvinyl alcohol, polyethylene imine

- : only short-term stability in acidic range pH 2 4 (PEG, PVA)
- : stabile in neutral pH (PEI)
- : relatively hydrophobic
- : reverts EOF (PEI)

dynamic coating

part of BGE, stems in the praxis of adsorbates use

pH extremes

reduction of coulombic interactions

- : pH range 2 12
- : EOF elimination at low pH, EOF high at high pH
- : unsuitable for proteins denaturation
- : decreasing the charge differences decreases separation efficiency

<u>high BGE concentration</u> (ionic strength)

reduction of coulombic interactions

: decrease of EOF often limited by Joule heat

hydrophilic polymers

alkylcellulose, polyvinyl alcohol, dextrans, polyacrylamide shield wall charge of capillary and decreases EOF

: increases viscosity

: in high concentration = entangled gel electrophoresis (CEGE)

tensides

anionic: sodium dodecylsulphate (SDS),

cationic: cetyltrimethylammonium bromide (CTAB)

non-ionic: Brij-35, BRIS

zwitterionic: 3-[(-cholamidopropyl)dimethylammonio]-1-propansulphate (CHAPS)

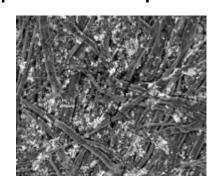
deactivate capillary surface by hydrophobic or ionic interactions

: wide possibility of compounds, easy use

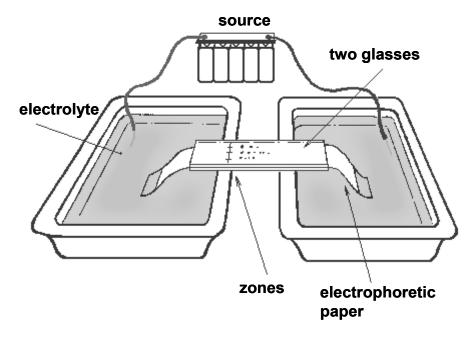
: decrease or revert EOF

: may irreversibly denaturise protein

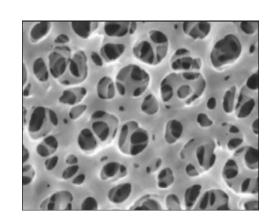
: suitable in combination with RP-LC surfaces

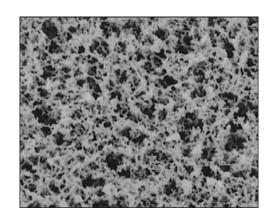

quaternary amines

decrease or revert EOF

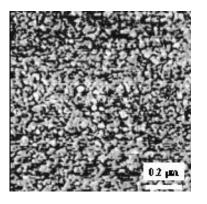

: work also as ion pairing agents (MEKC)

paper / membrane


100 % cotton / **cellulose** 0.17 – 0.30 mm thick pore size 2.5 μm

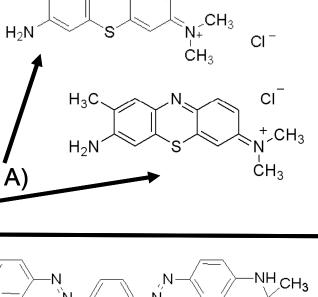


acetate cellulose pore size 0.2 µm



nitrocellulose

pore size 0.2 µm



visualisation

bromophenol blue / dimethylthionine (azure A)

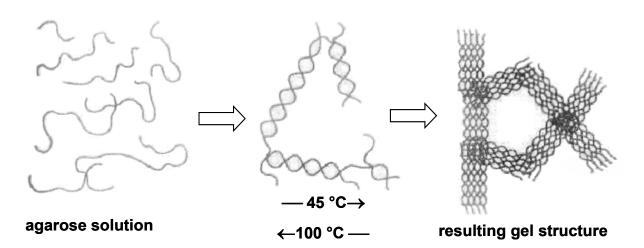
toluidine blue alcian blue sudan black

naphthalene black

$$R = CH_2 - S$$

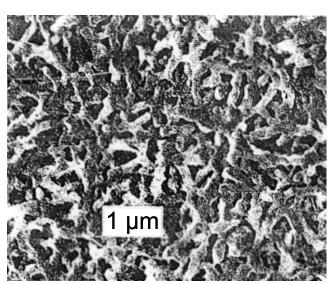
$$R = CH_3$$

$$CH_3$$


agarose gel

gel

: non-toxic, cheap, no additional components for polymerisation

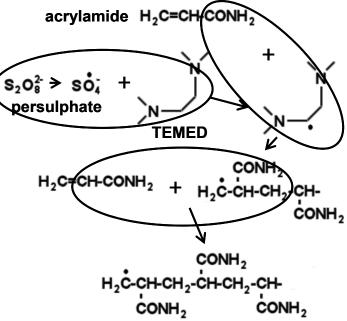

: fragile

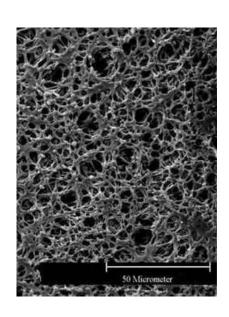
0.8% large molecules1 - 2% common separation4% small molecules% w/v

D-galactose

3,6-anhydro-L-galactose

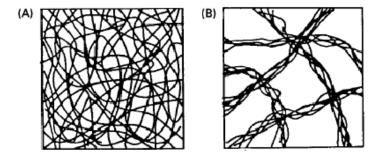
polyacrylamide gel


: toxic (bis-acrylamide), inert


: fragile, reinforcement by RhinoHideTM or DurAcrylTM

acrylamide

methylenebis-acrylamide

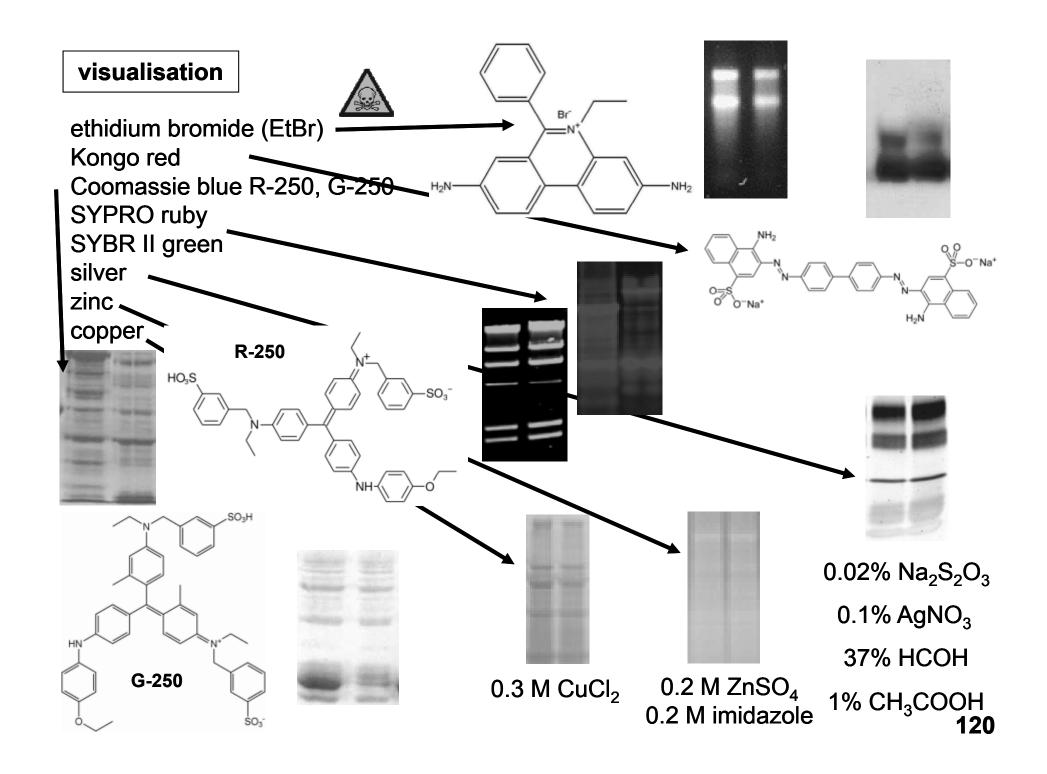

gel density

(cross-linking percentage; acrylamide and bis-acrylamide ratio)

↓ % cross-linking⇒ easier motion of very large molecules

12% – common for 15 kDa – 60 kDa **8%** – molecules 30 kDa – 120 kDa **25%** – < 15 kDa;

special protocol according to Schägger-von Jagow



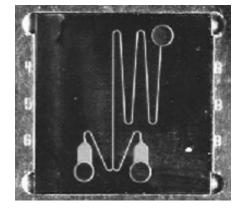
12%-gelviscosity ~100 m² s⁻¹
cavity diameter (12%) ~ 4.4 nm

: isocratic (continuous) (8 – 15 %)

: discontinuous gel (4% concentration and 12 % separation)

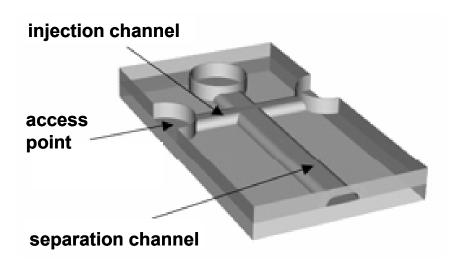
: gradient gel (Schäger-von Jagow)

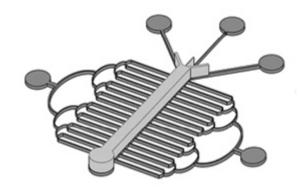
chip (CE-on-chip)


simpler arrangement than LC-on-chip

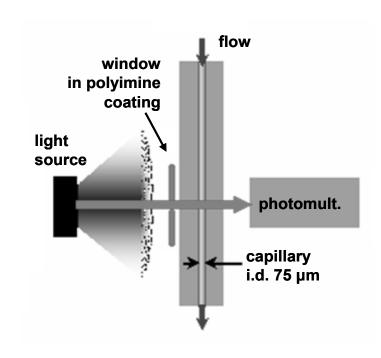
: easy application of driving force

: simple separation channel


: suitable detection



electrochemical detection



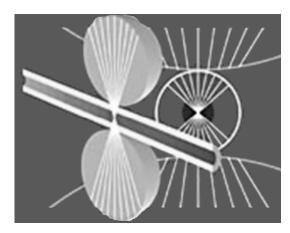
lab-on-chip LC + CE

absorption photometric detector

detectors

diode array detector

absorbance

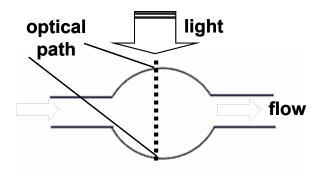

: sensitivity 10⁻⁷ g/ml

indirect detection

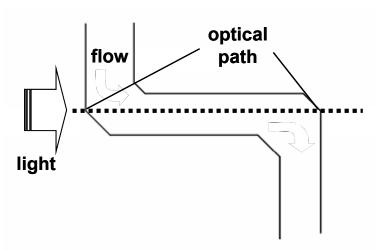
: sensitivity 10⁻⁵ g/ml

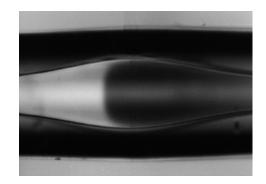
problems : beam focusation

: optical path length

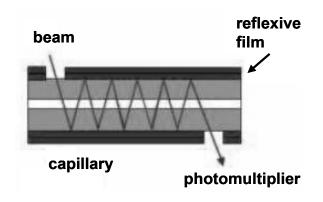


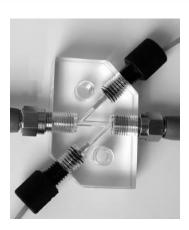
focusing optics – two spherical lenses

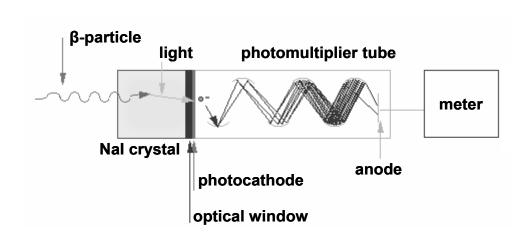



prolongation of optical path

bubble cell







reflexive inner coating

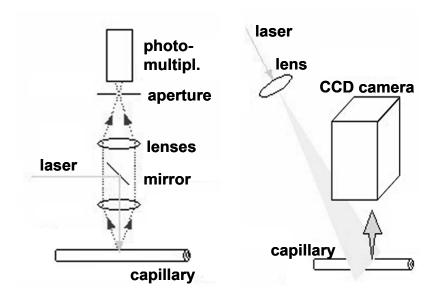
radioactive (scintillation) detector

scintillation

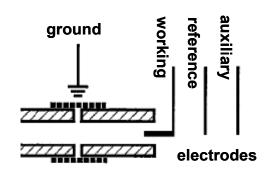
: sensitivity 10⁻¹¹ g/ml

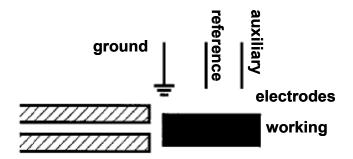
fluorescence detector

laser induced fluorescence


(LIF)

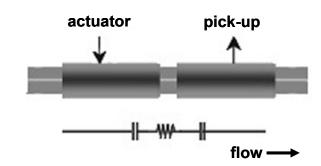
fluorescence


: sensitivity 10⁻⁹ g/ml


<u>LIF</u>

: sensitivity 10⁻¹¹ g/ml

amperometric detector



amperometry
: sensitivity 10-8 g/ml

conductivity detector

conductivity
: sensitivity 10-6 g/ml

electrodes

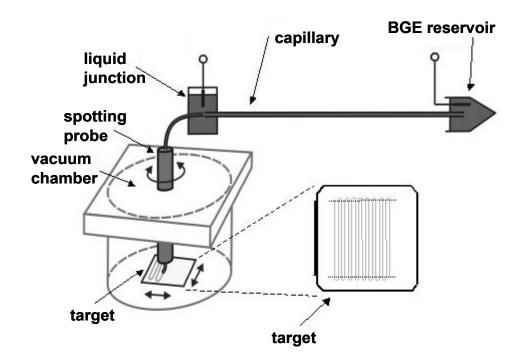
: two metallic electrodes around capillary

: when applying AC voltage on an actuator, the current flows through wall, in-between electrodes towards the pick-up electrode

: signal is then amplified

mass spectrometry

matrix assisted laser desorption / ionisation


MALDI

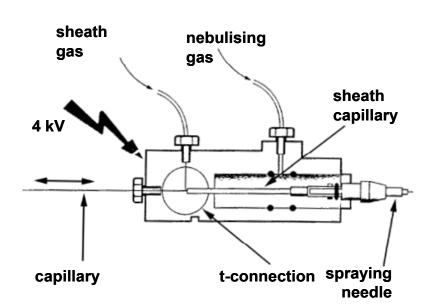
discrete points (fractions)

mixing with matrix

: before outlet

: after outlet

continuous trace


mixing with matrix

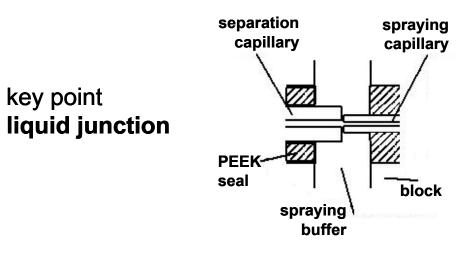
: in liquid junction

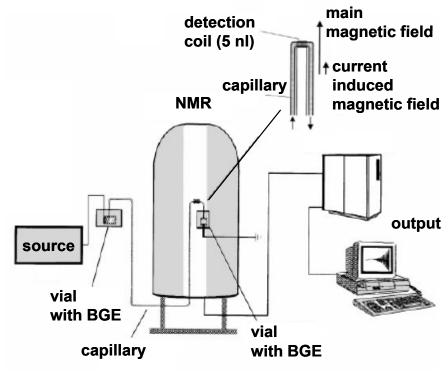
: pre-spotted matrix trace

ion count

: sensitivity 10⁻⁸ g/ml

nuclear magnetic resonance


may use bubble cell


¹H and ¹³C - NMR

NMR: sensitivity 10-6 g/ml

electrospray ionisation

ESI

preparation

small volumes (nl) \Rightarrow elution into **collection vials** (10 – 15 μ l)

peak detection ⇒ volume calculation / distance from capillary end

pressure elution: (CZE, ITP; MEKC, IEF; CGE – no)

: pressure application (5 kPa) during pre-calculated time period

electrokinetic elution: (CZE, ITP, CGE, MEKC; IEF – no)

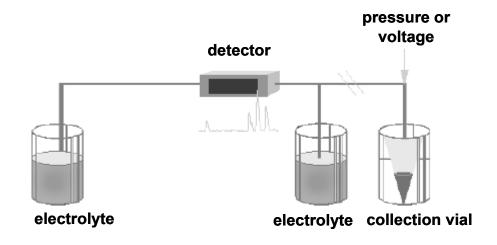
: voltage application during pre-calculated time period

: collection vial must contain BGE or other electrolyte

elution in IEF mode:

: it is necessary to consider that $\mu = 0$

collection electrolytes:


CZE 2% acetic acid

ITP 2% acetic acid

CGE BGE

MEKC BGE

IEF ampholyte

definition of electrophoretic system

BGE

composition: buffer concentration, pH, additives

injection: type, its characteristics (time, pressure, voltage)

mode

separation channel type

capillary

length, i. d., material, manufacturer 30 cm x 50 µm i. d., fused silica, J&W Scientific

conditioning - coating, rinsing

<u>slab</u>

size (height x length x thickness), material 6.5 x 10 cm x 1 mm, polyacrylamide

continuous, discontinuous, gradient; leading colour

applied voltage, current or output

application time period

detector

basic characteristic according to type

analytical information from electrophoretogram

electropherogram, electrophoregram, electrophoreogram

migration time normalisation:

wrong reproducibility; adsorption or EOF changes

: on one marker (either EOF or very fast)

: on two markers inclosing separated components

first: carries no charge, moves with EOF

second: highest mobility

peak area normalisation:

peak area is function of migration velocity (migration time)

$$A_N = A*(l_{\it eff}/t_{\it m}) \Longrightarrow A/t_{\it m}$$

only within EOF changes;

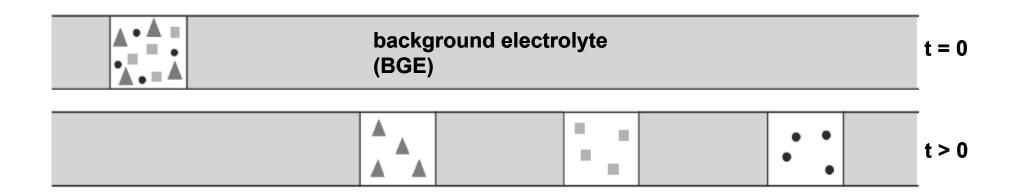
within *ionic strength* or *injection length changes* – no correction effect

$$A_{N2} = A_N/A_{N,IS}$$
 within pressure injection

correction of *injection length* change within pressure injection

IS – internal standard; might be a peak in mixture

basic modes of electromigration methods


```
electrophoresis (ZE)
isoelectric focusation (IEF)
isotachophoresis (ITF)
electrochromatography (EC)
micellar electrokinetic chromatography (MEKC)
affinity electrophoresis (ACE)
non-aqueous electrophoresis (NCE)
```

CZE, capillary zone electrophoresis

electrophoresis – greek ήλεκτρον (amber) and φορέω (I carry)

one background electrolyte (BGE)

⇒ constant electric field intensity in whole separation channel

$$\alpha = \frac{\overline{\mu}_A - \overline{\mu}_B}{\overline{\mu}_B}$$

selectivity of separation, analytes A and B

choice of background electrolyte

- : sufficient buffering capacity in chosen pH range
- : low background signal in detector
- : low mobility (large, low charged molecules) ⇒ low Joule heat

additives

tensides

all types

changes EOF; give charge to non-polar molecules changes CZE into MEKC (if the critical micellar concentration is exceeded)

zwitterions

CHAPS (3-[(-cholamidopropyl)dimethylammonio]-1-propansulphate)

increases ionic strength without increase in conductivity (heat) influences selectivity

chiral selectors

cyclodextrins, crown-ethers ...

similar to chiral additives in MF within LC

metal ions

K⁺, Na⁺, Cu²⁺, Li⁺ ...

influence selectivity in MEKC and GE

chaotropic agents

solubilise NA and proteins; influence selectivity in MEKC

linear hydrophilic polymers

methylcellulose, polyacrylamide, polyethylene glycol, polyvinyl alcohol ...

decrease EOF; decrease analyte adsorption in low concentrations, ZE ⇒ GE

organic agents

methanol, acetonitrile ...


generally decrease EOF; influence selectivity in MEKC and chiral separations

complexing buffers

borate ...

allow separation of saccharides and catechols

CGE, capillary gel electrophoresis

<u>classical</u> – cross-linked gel in capillary

relatively fast, reproducible and quantitative

compared to *slab gel electrophoresis*: on-line detection in UV-VIS without visualisation **disadvantages**: capillary filling (homogeneous polymerisation, bubbles...) commercially filled capillaries – high price

<u>chemical gels</u>: polyacrylamides – porous structure with strong covalent bonds

physical gels: agarose – weak intermolecular bonds of different molecule parts

<u>entangled gel</u> – linear gel as part of BGE entangling medium (e.g. polymerous net) is present in background electrolyte similar to physical gels – characteristic intermolecular interactions rapid increase in viscosity (= $f(M_W)$) at liminal concentration values

mostly used polymers

: linear polyacrylamide

: N-substituted acrylamides

N-acryloyl aminopropanol (AAP)

N-acryloyl aminobutanol (AAB)

N-acryloyl aminoethoxyetanol (AAEE)


: polyethylene glycol (PEG)

: polyethylene oxide (PEO)

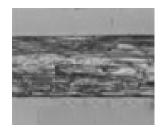
: polyethylene alcohol (PEA)

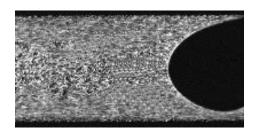
: polyvinyl alcohol (PVA)

: cellulose derivatives

methylcellulose (MC)

hydroxyethylcellulose (HEC)


hydroxypropylcellulose (HPC)


hydroxypropylmethylcellulose (HPMC)

: galactomannan (GalMan)

: glucomannan (GluMan)

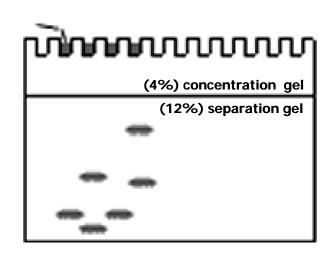
capillary filling

bubbles: monomer solution looses volume when polymerising

⇒ isotachophoretic polymerisation

capillary and anodic space: acrylamide, bisacrylamide, triethanol amine (catalyser) cathodic space: ammonium persulphate (initiator)

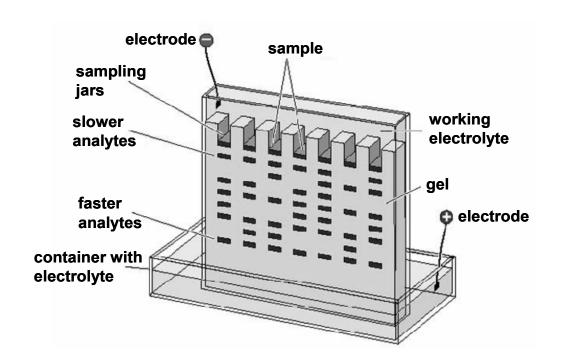
when the source is switched on, the initiator enters the system ITF interface chloride / persulphate keeps initiator zone sharp ⇒ supervised polymerisation

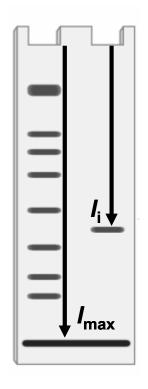

such a voltage that initiator flow ~ rate of polymerisation (ca 2 - 4 V/m)

GE, slab-gel electrophoresis

<u>denaturing</u> (SDS, *Lämmli*) – separation according to M_w <u>non-denaturing</u> (native) – separation according to pl, shape and M_w

one dimensional gel electrophoresis (1D-GE)


- : slab gel polymerises between glass plates, separated by spacers
- : loading jars are created by special spacer *comb*



basic procedure

- 1. sampling buffer is added to sample
- 2. sample is loaded into jars
- 3. gel is put in-between buffers and voltage is applied
- 4. gel is washed and stained

$$R_f = \frac{l_i}{l_{\max}}$$

retention factor

two dimensional gel electrophoresis (2D-GE)

two dimensions:

- 1. IEF
- 2. SDS-GE

1. isoelectric focusation (IEF)

immobilised pH-gradient in gel strip

IEF strip on SDS gel sample 2nd dimension SDS-GE decreasing M_w decreasing pl 1st dimension **IEF** decreasing pl

2. denaturing gel elfo (SDS-GE)

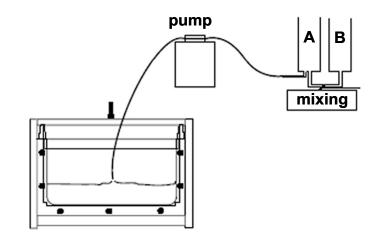
SDS is not in gel since polymerisation (as with 1D)

micelles would be created

necessary to cool more than

as cross-linking agent piperazine diacrylyl (PDA), diallyltartarate diamide (DATD), bisacrylyl cystamine (BAC)

in 2D density gradient (9 – 16 %) is used

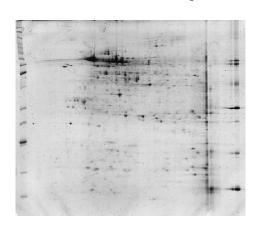

in connected containers are mixed

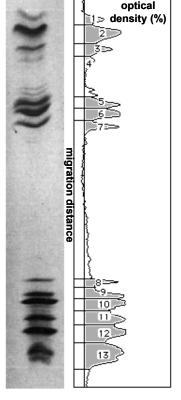
- A) solution without cross-linker
- B) solution with max cross-linker concentration

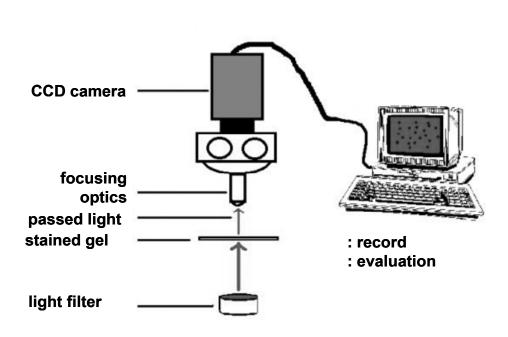
: at outflow, increasing cross-linker gradient is formed

gradient profile is given by the shape of containers

new – non-linear pH gradients in IEF




after staining


: densitometry

:: UV-Vis

:: fluorimetry

: prior to analysis, sample is denatured

(+ EtSH, 95 °C, 5 min)

:: breaking of di-sulphidic bonds

:: turn into random coil conformation

: leading colour: bromphenole blue

non-denaturing (native) GE


: separation of acidic and basic proteins - separately:

: leading colour: bromphenole blue for acidic methylene blue for basic

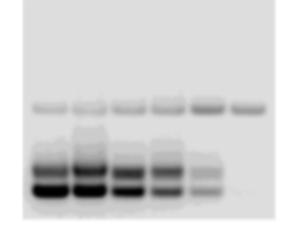
blue native PAGE (BN-PAGE) - CBB R-250 (~ 1 g to 1 g of protein)

clean native PAGE (CN-PAGE) – n-dodecyl-β-maltoside and digitonin

denaturing GE

unit charge

polyacrylamidove gel electrophoresis - PAGE


: for separation of proteins in native and denaturing mode; 1D and 2D

agarose gel electrophoresis – AGE

: for nucleic acids separation 0.8% 50 - x1000 kbp only one mode (1D) 1 - 2% 20 - 50 kbp NAs already have unit charge 4% < 20 kbp

leading colours:

xylene and bromophenol blue, cresol red, orange G

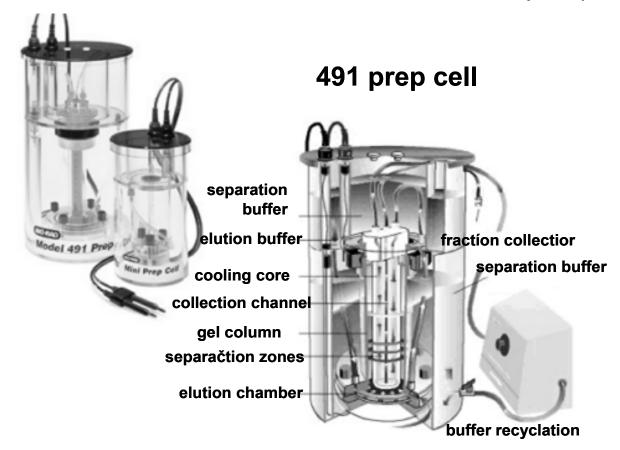
separation conditions:

TRIS-acetate EDTA (TAE): low voltage, large molecules (50 – x000 kbp)

TRIS-borate EDTA (TBE): 20 – 50 kbp

sodium borate (SB): high voltage (35 V/cm), small molecules < 5 kbp

column continuative elution gel electrophoresis

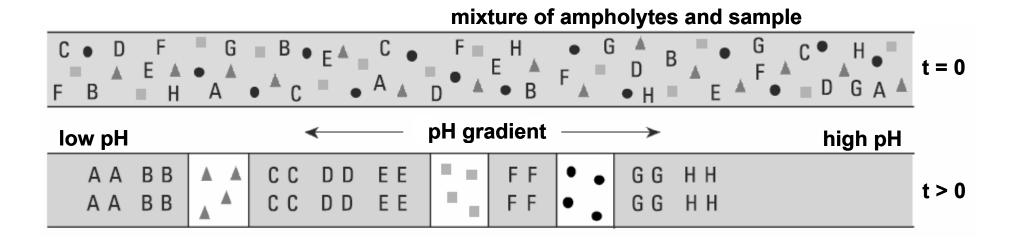

(CEGE)

: new technique similar to **slab GE** – primarily preparative

:: mostly SDS-PAGE

:: native isoelectrofocusation QPNC-PAGE (quantitative preparative native continuous)

: suitable for on-line connection with detection techniques (MS)



CIEF, capillary isoelectrofocusation

isoelectrofocusation – greek ίσος (same), ήλεκτρον (amber) and latin focus

solution contains **ampholytes** during separation, the **pH gradient** is established

pH = pI, analyte is not moving

zones are sharp, self-focusation effect

$$w_A = \sqrt{D / \left(\left(\frac{\partial \mu}{\partial pH} \right) * \left(\frac{\partial pH}{\partial x} \right) \right)} \quad \text{w}_A - \text{zone width}$$

$$\mathbf{x} - \text{length coordinate}$$

resolution in IEF

$$\Delta pI = \sqrt{\left(\frac{\partial pH}{\partial x}\right) / E * \left(-\frac{\partial \mu}{\partial pH}\right)}$$

E – electric field intensity [V/cm] $\partial pH / \partial x - pH$ gradient ∂μ / ∂pH – mobility slope at given pl

CITF, capillary isotachoforesis

isotachophoresis – greek ίσος (same), ταχύς (speed) and φορέω (I carry)

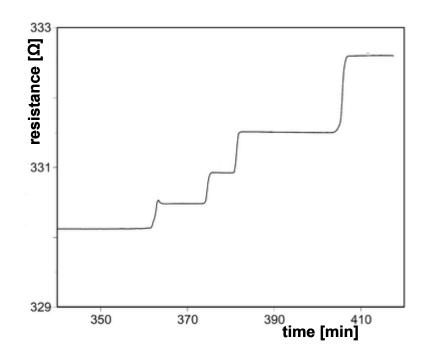
two **electrolytes**

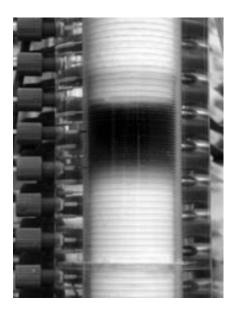
- : leading leading ion has absolutely highest mobility in system
- : terminal (trailing) terminal ion has absolutely lowest mobility in system
- ⇒ electric field intensity increases from leading to terminal ion

component concentration in zone is according to Kohlrausch ω -function analytical concentration of compound A, c_A :

$$c_{A} = c_{L} * \frac{\mu_{A}}{\mu_{A} - \mu_{CI}} * \frac{\mu_{L} - \mu_{CI}}{\mu_{L}}$$

for strong univalent electrolytes

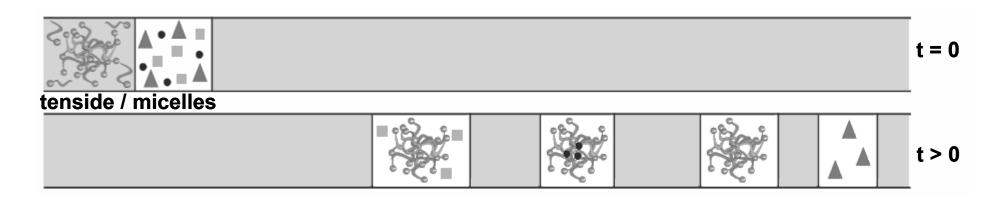

CI – analyte counter-ion


self-focusing effect

zones are **sharp** and **do not broaden** \Rightarrow concentrating minor components in few orders

if ion L because of diffusion goes to zone X, because of ↑ E also increases its migration velocity and it goes back to zone L

if ion X because of diffusion goes to zone L, because of ↓ E also decreases its migration velocity and it goes back to zone X


isotachophoretogram typical detection – resistance; others methods – conductivity, thermometry, UV-Vis 149

MEKC, micellar electrokinetic chromatography

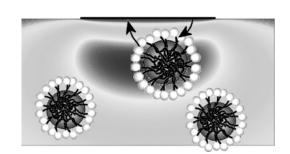
one electrolyte containing ionogenic tenside over critical micellar concentration ⇒ micelles are created

analyte is separated between micelles and electrolyte acc. distribution coefficient (K) MEKC may be seen as ZE of two entities – analyte and micelles with it

analyte does not enters micelles \Rightarrow K = 0, analyte enters completely \Rightarrow K = ∞

$$k' = \frac{t_m - t_M}{t_M \left(1 - \left(t_m / t_{mc}\right)\right)} = K * \left(V_{SF} / V_{MF}\right)$$

$$\mathbf{t_m} - \text{retention time}$$


$$\mathbf{t_m} - \text{retention time}$$

$$\mathbf{t_m} - \text{retention time}$$

k' – capacity factor

t_{mc} – retention time of micelles

commonly used tensides

anionogenic: sodium dodecylsulphate ...

cationogenic: cetyltrimethylammonium bromide, septonex ...

to *decrease migration velocity* of micelles **non-ionogenic tenside** (Triton X-100) is added micelles may be substituted with *microemulsion* or *polyions*

addition of organic phase: solvatation changes, micellar structures, smoother setting – mixture of tensides

resolution in MEKC

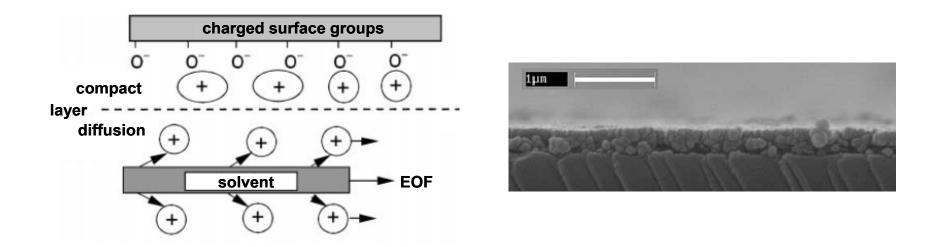
$$R = \left(\frac{\sqrt{N}}{4}\right) * \left(\frac{\alpha - 1}{\alpha}\right) * \left(\frac{k_{2}'}{k_{2}' + 1}\right) * \left(\frac{1 - (t_{M}/t_{m})}{(1 - (t_{M}/t_{m})) * k_{1}'}\right)$$

efficiency selectivity

retardation

α – selectivity

N – number of theor. plates


disadvantage: difficult reproducibility

TLE, thin layer electrochromatography

paper electrophoresis, slab electrochromatography

charged (mostly negative) SF; often silicagel, cellulose and its derivatives

analyte is separated between SF and electrolyte acc. distribution coefficient (K)

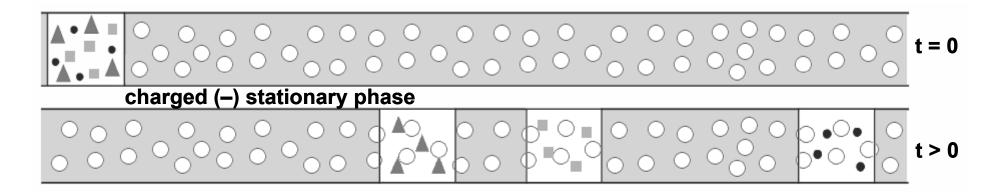
fast: applied voltage is driving force; comparing to TLC where it is capillary elevation

: fast also comparing to capillary variant (up to three orders of magnitude)

: voltage 160 V/cm ⇒ migration velocity 100 µm.s⁻¹

CEC, capillary electrochromatography

charged (mostly negative) **SF**; porous particles of o.d. 1.5 – 5.0 μm column: either *broader* (320 μm) or *narrower* capillary (50, 75 or 100 μm)

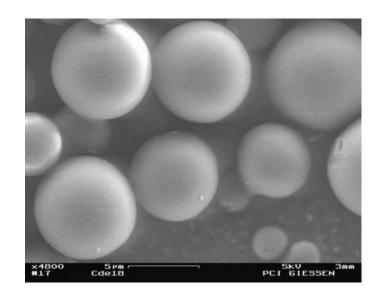

analyte is separated between SF and electrolyte acc. distribution coefficient (K)

: applied voltage is separation driving force \Rightarrow flow of the liquid is not laminar

: EOF is created on the surface of SF rather than on a wall of separation channel

low currents: max 10 μA

Joule heat 0.1 W.cm⁻² (1500x more heat than within pressure heating by HPLC)



SF

: C18 bound on silicagel (reverse CEC)

: β-CD bound on silicagel (chiral CEC)

: SCX cation exchanger (-CH₂CH₂CH₂SO₃H)

testing mixture

thiourea GR 57888X, GR 57994X OH OH

Ph O Ph

fluticason proprionate, des-6-α-fluoro-fluticason proprionate

: thiourea indicates EOF

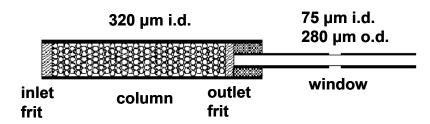
: components 2 and 3 determine hydrophobicity

: components 4 and 5 determine resolution

advantages

: higher efficiency than HPLC up to 300 000 plates / m (i.e. 3 – 4x)

: may use very small particles no high back pressure



: low sample and MF consumption

: isocratic and gradient elution

: may use MS detection

: same instrumentation as for CZE, CEC or CLC

electric field

column

frit

EOF

window

frit

disadvantages

: column filled capillaries with frits; fragility

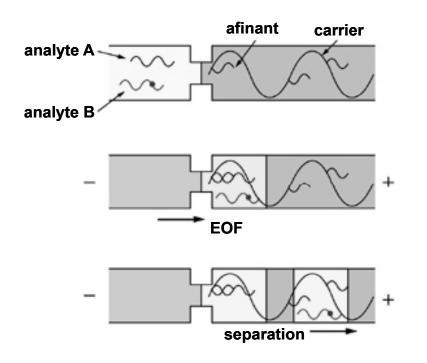
: bubbles (EOF differences, Joule heat)

: electrokinetic injection (internal standard)

: lower sensitivity

AE, affinity electrophoresis

uses combination of separation in filed and affinity separation

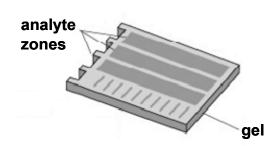

affinity separation – specific interaction of analyte and ligand

enzyme : coenzyme, substrate, inhibitor

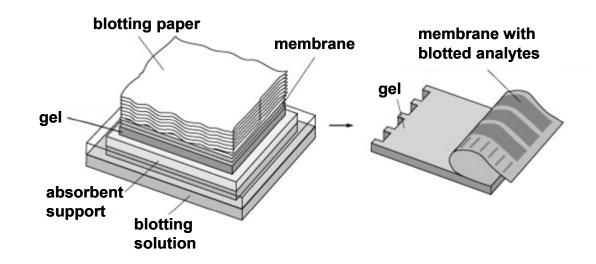
nucleic acid : complementary chain, histone

antigen : antibody

receptor : signal molecule

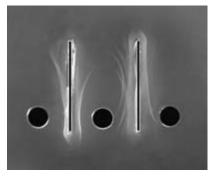

in capillary and in gel

: <u>separation</u> highly selective

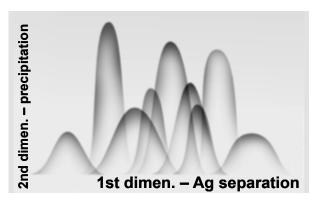

: <u>purification</u> shot-gun

: interaction study compatibility association constants

blotting



Southern blot – DNA **Northern blot** – RNA **Western blot** – proteins



immunoelectrophoresis

interaction antigen (Ag) + antibody (Ab)

1D gel immunophoresis

2D gelová immunophoresis

NAE, non-aqueous electrophoresis

separation in non-aqueous solvents

1978 – non-aqueous TLE

1984 – non-aqueous CE (NACE)

advantages:

- : elimination of *levelling effect of solvent* ⇒ higher selectivity of separation
- : low current
- : separation of hydrophobic (water-insoluble) analytes

solvent choice:

- : volatility
- : ability to solve BGE and analyte
- : viscosity
- : dielectric constant
- : transparency in UV

solvents:

water content max 1 %

amphiprotic

: **neutral** (+;+): MeOH, glycerol, phenol, *tert*-butylalcohol

: protogenic (+;-): sulphonic a., formic a., acetic a.

: protophilic (-;+): liquid ammonium, formamide, N-methylformamide

: dipol. protophilic (-;+): DMSO, dimethylformamide, THF, 1,4-dioxan, pyridine

aprotic

: dipol. protophilic (-;-): AcN, acetone, nitrobenzene, sulpholane, PC

: inert (–;–): alif. hydrocarb., benzene, 1,2-dichloret., tetrachlorom.

relatively basic or acidic (*;*)

background electrolytes:

: ammonium acetate, sometimes with addition of acetic a. or sodium acetate

: quaternary ammonium salts

: Tris, magnesium acetate, citric a., formic a., trifluoroacetic a. ...

additives: polyalcohols and surfactants ⇒ decreasing EOF