F4110 Kvantová fyzika atomárních soustav letní semestr 2009 - 2010

XI. Inversní linie čpavku: Sláva a pád

KOTLÁŘSKÁ 5. KVĚTNA 2010

Úvodem

- inversní linie čpavku jako případ spontánního narušení symetrie
- kvantově chemický výklad tvaru molekuly čpavku
- symetrie čtyřatomových molekul
- normální kmity čpavku a dublety
- vysvětlení dubletu tunelováním napříč barierou
- explicitní výpočet pro modely dvou typů
- čpavkové hodiny
- dvouhladinový maser

Pyramidální molekula: případ spontánního narušení symetrie

U adiabatická potenciální energie

U adiabatická potenciální energie

U adiabatická potenciální energie

stabilní rovnováha nedegenerovaný základní stav

metastabilní rovnováha degenerovaný základní stav

Rovnovážná struktura molekul AB3

Rovnovážná struktura molekul AB₃

Rovnovážná struktura molekul AB₃

Od planární k pyramidální molekule: snížení bodové symetrie

NH₃ : grupa symetrie pyramidy

INTERMEZZO Fyzikální příčiny spontánního narušení symetrie

Východiskem je periodický systém

		(6s, 4f, 5d) (7s, 5f, 6d)	
		(6p) (7p)	
	(4s, 3d) (5s, 4d)	∕55 Cs — 87 Fr	S
	<u>(4p)</u> <u>(5p)</u>	∕56 Ba — 88 Ra	s ²
	/19 K - 37 Rb	∕57 La — 89 Ac	s ² d
	20 Ca — 38 Sr	¹) — ²)	$s^2 d f^k/s^2 f^{k+1}$
	21 Sc 39 Y	- 71 Lu — 103 Lr	$s^2 d(f^{14})$
(2s) (3s)	22 Ti — 40 Zr —	- 72 Hf —— 104 Ku	$s^2 d^2$
(2p) <u>(3p)</u>	23 V — 41 Nb*)	- 73 Ta	s ² d ³ , *) s d ⁴
<u>3 Li 11 Na</u>	24 Cr — 42 Mo —	– 74 W*)	$s d^5, *) s^2 d^4$
(1s) 4 Be— 12 Mg	25 Mn — 43 Tc*) —	- 75 Re	s ² d ⁵ , *) s d ⁶
1 H 5 B - 13 Al	26 Fe — 44 Ru*)—	- 76 Os	$s^2 d^6$, *) s d ⁷
2 He 6 C - 14 Si	27 Co — 45 Rh*)—	– 77 Ir	s ² d ⁷ , *) s d ⁸
7 N — 15 P,	28 Ni — 46 Pd*)—	– 78 Pt**)	s ² d ⁸ , *) d ¹⁰ , **) s d ⁹
8 O — 16 S, \ \ \	29 Cu — 47 Ag —	– 79 Au	s d ¹⁰
9 F — 17 Cl	30 Zn — 48 Cd —	– 80 Hg	$s^{2}(d^{10})$
10 Ne-18 Ar	31·Ga — 49 In —	– 81 Tl	s ² p
	32 Ge — 50 Sn —	– 82 Pb	s ² p ²
	33 As — 51 Sb —	– 83 Bi	s ² p ³
	34 Se — 52 Te —	– 84 Po	$s^2 p^4$
	35 Br — 53 I —	– 85 At	s ² p ⁵
	36 Kr — 54 Xe —	– 86 Rn	s ² p ⁶
59 50 60 61 60	10 11 15 16	67 68 60 70 x	
1) 58 59 60 61 62	63 64 65 66	67 68 69 70	$6s^2 4f^{*+1}$, *) $6s^2 5d 4f^{*}$
Ce Pr Nd Pm Sm	Eu Gd*) Tb Dy	Ho Er Tm Yb,	
2) 90 91 92 93 94	95 96 97 98	99 100 101 102	$7s^2 6d 5f^*$, *) $7s^2 5f^{*+1}$
Th*) Pa U Np Pu	Am Cm Bk Cf	Es Fm Md No	
k = 1 2 3 4 5	6 7 8 9	10 11 12 13	

Elektronové konfigurace centrálního atomu

	(6s,	4f, 5d) (7s, 5f, 6d)	
		(6p) (7p)	
	(4s, 3d) (5s, 4d) 55	Cs — 87 Fr s	
	<u>(4p)</u> <u>(5p)</u> 56	$Ba - 88 Ra s^2$	
	19 K — 37 Rb 57	La — 89 Ac $s^2 d$	
	$20 \text{ Ca} - 38 \text{ Sr}^{-1}$	$ ^{2}$) $s^{2} d f^{k}/s^{2}$	f^{k+1}
	$21 \text{ Sc} - 39 \text{ Y}^2 - 71$	Lu — 103 Lr $s^2 d(f^{14})$	
(2s) (3s)	22 Ti — 40 Zr — 72	Hf — 104 Ku $s^2 d^2$	
(2p) <u>(3p)</u>	23 V — 41 Nb*) 73	Ta $s^2 d^3, *) s^3$	d ⁴
hor ^{11 Ná}	24 Cr — 42 Mo — 74	W*) s d ⁵ , *) s ²	d ⁴
(1 12 Mg	25 Mn	Re $s^2 d^5, *) s$	d ⁶
1 H 5 B - 13 Al	26 Fe — 44 Ru*) — 76	Os s ² d ⁶ , *) s	d ⁷
2 He 6 C - 14 Si	27 Co — 45 Rh*) — 77	Ir s ² d ⁷ , *) s	d ⁸
7 N — 15 P	28 Ni — 46 Pd*) 78	Pt**) $s^2 d^8, *$)	
8 O — 16 S	29 Cu — 47 Ag — 79	Au s d ¹⁰	s valenchi el.
9 F — 17 Cl	30 Zn — 48 Cd — 80	Hg $s^{2}(d^{10})$	L
10 Ne 18 Ar	31·Ga 49 In 81	Tl s ² p	Konfig. s ² p'
	32 Ge — 50 Sn — 82	Pb \dots $s^2 p^2$	
	33 As 51 Sb 83	Bi \dots $s^2 p^3$	
	34 Se - 52 Te - 84	Po \dots $s^2 p^4$	
	35 Br - 53 I - 85	At \ldots $s^2 p^5$	
	36 Kr - 54 Xe - 86	$Rn \dots s^2 p^6$	
		(0. 70	
1) 58 59 60 61 62	63 64 65 66 67	$68 69 70 \ 6s^2 4f^{k+1}$	(*) 6s ² 5d 4f [*]
Ce Pr Nd Pm Sm	Eu Gd*) Tb Dy Ho	Er Tm Yb	
, 90 91 92 93 94	95 96 97 98 99	100 101 102	*) 7e ² 5f ^{k+1}
Th*) Pa U Nn Pu	Am Cm Bk Cf Es	Fm Md No	, , , , , , , , , , , , , , , , , , , ,
k=1 2 2 4	6 7 8 0 10	11 12 13	
2 3 4 3	0 1 0 3 10		

Elektronové konfigurace centrálního atomu

Starobylá úprava periodické tabulky

Gru	pp	e 0	a ¹ b	a II b	a III b	a IV b	a V b	a VI b	a VII	VIII	0
Höc	fver	e Wasser- bindung	MH	MH ₂	MH ₃	MH4	MH ₃	MH ₂	MH		1_
Hö stof	chst fver	e Sauer- bindung	M ₂ O	MO	M ₂ O ₃	MO2	M ₂ O ₅	MO ₃	M ₂ O ₇	wechselnd	1
Vo Peri	r- ode		1 H 1,0080						1 H 1.0081		2 He
Parin	ji	2 He 4,003	3 Li 6,940	4 Be 9,02	5 B 10,82	6 C 12,010	7 N 14,008	8 O 16,0000	9 F 19,00		10Ne 20,183
ne	2	10 Ne 20,183	11 Na 22,997	12 Mg 24,32	13 Al 26,97	14 Si 28,06	15 P 30,98	16 S 32,06	17 Cl 35,457	1 - martin	18 Ar
	3	18 Ar 39,944	19 K 39,096 29 Cu 63,57	20 Ca 40,08 30 Zn 65,38	21 Sc 45,10 31 Ga 69,72	22 Ti 47,90 32 Ge 72,60	23 V 50,95 33 As 74,91	24 Cr 52,01 34 Se 78,96	25 Mn 54,93 35 Br 79 916	26 Fe 27 Co 28 Ni 55,85 58,94 58,69	36Kr
	4	36 Kr 83,7	37 Rb 85,48 47 Ag 107,880	38 Sr 87,63 48 Cd 112,41	39 Y 88,92 49 In 114,76	40 Zr 91,22 50 Sn 118,70	41 Nb 92,91 51 Sb 121,76	42 Mo 95,95 52 Te 127,61	43 — 53 J 126 92	44 Ru 45 Rh 46 Pd 101,7 102,91 106,7	54 X
	5	54 X 131,3	55 Cs 132,91 79 Au 197,2	56 Ba 137,36 80 Hg 200,61	57/71 ΣLa ¹) 81 T] 204,39	72 Hf 178,6 82 Pb 207,21	73 Ta 180,88 83 Bi 209,00	74 W 183,92 84 Po	75 Re 186,31 85 —	76 Os 77 Ir 78 Pt 190,2 193,1 195,23	86Rn
Aller All	6 1) 2	86 Rn 222 Σ La =	87— Lanthanid	88 Ra 226,05	89 Ac	90 Th 232,12	91 Pa 231	92 U 238,07		-	222
57 bis 71 Ce Pr Nd 61 Sm Eu Gd 140,13 140,92 144 27 150 48 150 0											
			·	Tb Dy 59,2 162,40	Ho 3 164,94 1	Er Tm 67.2 169.4	Yb (p			

Starobylá úprava periodické tabulky

Gr	upp	e 0	a b	a II b	a III b	a IV b	a V b	a VI b	a VII a b	VIII	0
Hö sto	offver	e Wasser- rbindung	MH	MH ₂	MH ₃	MH4	MH ₃	MH ₂	MH		1-
02	xic	ly	M ₂ O	MO	M ₂ O ₃	MO ₂	M ₂ O ₅	MO ₃	M ₂ O ₇	wechselnd	1_
Per	or- iode	A	1 H 1,0080	1. 1.					1 H 1.0081		2 H
Perio		2 He 4,003	3 Li 6,940	4 Be 9,02	5 B 10,82	6 C 12,010	7 N 14,008	8 O 16,0000	9 F 19,00		10N
den	8 2	10 Ne 20,183	11 Na 22,997	12 Mg 24,32	13 Al 26,97	14 Si 28,06	15 P 30,98	16 S 32,06	17 Cl 35,457		18A
grol	3	18 Ar 39,944	19 K 39,096 29 Cu 63,57	20 Ca 40,08 30 Zn 65,38	21 Sc 45,10 31 Ga 69,72	22 Ti 47,90 32 Ge 72,60	23 V 50,95 33 As 74,91	24 Cr 52,01 34 Se 78,96	25 Mn 54,93 35 Br 79,916	26 Fe 27 Co 28 Ni 55,85 58,94 58,69	36K
3e Period	4	36 Kr 83,7	37 Rb 85,48 47 Ag 107,880	38 Sr 87,63 48 Cd 112,41	89 Y 88,92 49 In 114,76	40 Zr 91,22 50 Sn 118,70	41 Nb 92,91 51 Sb 121,76	42 Mo 95,95 52 Te 127,61	43 — 53 J 126.92	44 Ru 45 Rh 46 Pd 101,7 102,91 106,7	54 X
en	5	54 X 131,3	55 Cs 132,91 79 Au 197,2	56 Ba 137,36 80 Hg 200,61	57/71 ΣLa ¹) 81 T] 204,39	72 Hf 178,6 82 Pb 207,21	73 Ta 180,88 83 Bi 209,00	74 W 183,92 84 Po	75 Re 186,31 85 —	76 Os 77 Ir 78 Pt 190,2 193,1 195,23	86Rn
	6 1) 2	$\begin{array}{l} 86 \ \mathrm{Rn} \\ 222 \\ \Sigma \ \mathrm{La} = \end{array}$	87 — Lanthanid	88 Ra 226,05	89 Ac	90 Th 232,12	91 Pa 231	92 U 238,07			
		57 bis	5 71	Ce Pr 140,13 140,9 Tb Dy 59,2 162,40	Nd 2 144,27 Ho 6 164.94 1	61 Sm - 150,43 Er Tm	13 Eu () 152,0 156 Yb ()	a 8,92 id 3,9 p			

Starobylá úprava periodické tabulky

Gr	upp	e 0	a I b	a II b	a III b	a ^{IV} b	a V b	a VI b	a VII a b	VIII	0
hy	dr	idy	MH	MH ₂	MH ₃	MH4	MH ₃	MH2	MH		1-
0	xic	dy	M ₂ O	MO	M ₂ O ₃	MO ₂	M ₂ O ₅	MO ₃	M ₂ O ₇	wechselnd	1-
Per	or- tiode		1 H 1,0080	1.				1.1.1.1.1.	1 H 1,0081		2 He 4.003
Period		2 He 4,003	3 Li 6,940	4 Be 9,02	5 B 10,82	6 C 12,010	7 N 14,008	8 O 16,0000	9 F 19,00		10Ne 20,183
len	5 2	10 Ne 20,183	11 Na 22,997	12 Mg 24,32	13 Al 26,97	14 Si 28,06	15 P 30,98	16 S 32,06	17 Cl 35,457		18 Ar 39,944
groi	3	18 Ar 39,944	19 K 39,096 29 Cu 63,57	20 Ca 40,08 30 Zn 65,38	21 Sc 45,10 31 Ga 69,72	22 Ti 47,90 32 Ge 72,60	23 V 50,95 33 As 74,91	24 Cr 52,01 34 Se 78,96	25 Mn 54,93 35 Br 79,916	26 Fe 27 Co 28 Ni 55,85 58,94 58,69	36Kr
e Period	4	36 Kr 83,7	37 Rb 85,48 47 Ag 107,880	38 Sr 87,63 48 Cd 112,41	39 Y 88,92 49 In 114,76	40 Zr 91,22 50 Sn 118,70	41 Nb 92,91 51 Sb 121,76	42 Mo 95,95 52 Te 127,61	43 — 53 J 126 92	44 Ru 45 Rh 46 Pd 101,7 102,91 106,7	54 X
en	5	54 X 131,3	55 Cs 132,91 79 Au 197,2	56 Ba 137,36 80 Hg 200,61	57/71 $\Sigma La^1)$ 81 T] 204,39	72 Hf 178,6 82 Pb 207,21	73 Ta 180,88 83 Bi 209,00	74 W 183,92 84 Po	75 Re 186,31 85 —	76 Os 77 Ir 78 Pt 190,2 193,1 195,23	86Rn
	6 1)	$\frac{86 \text{ Rn}}{222}$ $\Sigma \text{ La} = 1$	87— Lanthanid	88 Ra 226,05	89 Ac	90 Th 232,12	91 Pa 231	92 U 238,07			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										

Souvislost s elektronovou strukturou

		Р	eriodiscl	hes Syst	em der I	Elemente	
e 0	a b	a II b	a III a b	a IV b	a V b	a VI	a VII b
e Wasse rbindun	er- MH	MH ₂	MH ₃	MH4	MH ₃	MH ₂	MH
e Saue bindun	g M ₂ O	MO	M ₂ O ₃	MO ₂	M ₂ O ₅	MO ₃	M ₂ O ₇
	1 H 1,0080	C. C. S.		L. C.		12 - 2 - 2	1 H
2 He 4,00	e 3 Li 3 6,940	4 Be 9,02	5 B 10,82	6 C 12.010	7 N 14.008	80	9 F
10 N 20,18	e 11 Na 3 22,997	12 Mg 24,32	13 Al 26,97	14 Si 28,06	15 P 30,98	16 S 32,06	17 Cl 35,457
configurace	s ¹	s ²	s ² p ¹	s ² p ²	s ² p ³	s ² p ⁴	s²p ⁵
ybridizace	S	sp	sp ²	sp ³	sp ³	sp ³	s, p ³
olné el. páry	7				1	2	3

Levá polovina periody

sp

Pravá polovina periody

Komplex NH₃ BF₃

Pyramidální molekula: geometrická struktura

Výška pyramidy

ité
NH ₃
PH,
AsH ₃
PF ₃
PCl ₃
PBr ₃
PI_3
AsCl3
SbCl ₃
BiCl ₃

A B B B B	N-H P-H As-H P-F P-Cl P-Br P-I As-Cl Sb-Cl Bi-Cl	1,014 1,41 1,52 1,546 2,04 2,18 2,49 2,17 2,32 2,48	HNH 106°47' HPH 93° HAsH 92° FPF 104° CIPCI 99,9° BrPBr 101,5° IPI 102° ClAsCl 103° ClSbCl 99° ClBiCl 100°

'n 'n h =3 2 V 2

molekula	h/Å
NH ₃	0.38
PH ₃	0.77
AsH ₃	0.85

Skutečný tvar molekuly NH₃

Pyramidální molekula: normální kmity Vibrace pyramidálních molekul v harmonickém přiblížení

- 4 atomy ... 12 stupňů volnosti
- 3 translace, 3 tuhé rotace ...
- 6 normálních kmitů

symetrie molekuly je C_{3v} ... tvar normálních kmitů

Experimentálně určené kmity

kmit	vlnočet/cm ⁻¹	vlnová délka/ <i>µ</i> m
v_1	950	10.5
v ₂	1627.5	6.1
V ₃	3336.0	3.0
ν ₄	3414.0	2.9

Pyramidální molekula: tunelování

Role tunelování v IR spektroskopii amoniaku

KVALITATIVNÍ ÚVAHA

V klasické fysice jsou při energiích

E <

obě jámy odděleny. Kvantově však může např. stav $|D\rangle$ pronikat do horní jámy. Není tedy stacionární

MOŽNÉ PŘÍSTUPY

- ab initio výpočet zahrnující jádra i adiabaticky se měnící elektronové rozdělení
- <u>modelové výpočty</u>: **#** symetrie A_1 , **#** jednorozměrná úloha, **#** reduk. hmotnost zhruba odp. jednomu N a třem H v protipohybu, **#** modelová konstrukce U(x) známe frekvence vibrací a vzdálenost minim 2h, **#** z rozštěpení dubletu fitujeme barieru

• <u>abstraktní přístup</u>: dynamiku systému zkoumáme jako dynamiku dvou navzájem propojených stavů.

Role tunelování v IR spektroskopii amoniaku

KVALITATIVNÍ ÚVAHA

V klasické fysice jsou při energiích

E <

obě jámy odděleny. Kvantově však může např. stav $|_D \rangle$ pronikat do horní jámy. Není tedy stacionární

MOŽNÉ PŘÍSTUPY

<u>ab initio výpočet</u> zahrnující jádra i a

to dnes NE

• <u>modelové výpočty</u>: # symetrie A_1 , # jednorozměrná úloha, # reduk. hmotnost zhruba odp. jednomu N a třem H v protipohybu, # modelová konstrukce U(x) – známe frekvence vibrací a vzdálenost minim 2h, # z rozštěpení dubletu fitujeme barieru **NYNÍ PROVEDEME**

 <u>abstraktní přístup</u>: dynamiku systému zkoumáme jako dynamiku dvou navzájem propojených stavů. Příklad modelového výpočtu

Implementace modelového postupu podle E. Merzbachera

$$V_0 = \sum_{2} \sum_{\nu} \sum_{\nu$$

Modelové potenciály pro amoniak a arsan

Příklad modelového výpočtu

Implementace modelového postupu podle E. Merzbachera

• redukovaná hmotnost

$$m = \frac{1}{3m_{\rm H} + \frac{1}{x}} = \frac{1}{2}$$

• modelová potenciální energie
 $U(x) = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

všechno je tu známo, bariera je zcela určena. Její výška se rovná

$$V_0 = \sum_{2} = 2$$

• na každé polopřímce x < p > přechází Schrödingerova rovnici na posunutý lineární oscilátor:

$$-\frac{\hbar}{2m} + \frac{1}{2m} \cdot - \frac{1}{2m} = \frac{1}{2m} > \frac{1}{2m}$$

• na hranici obou poloos se provede sešití dílčích řešení.

Řešení a výsledky modelového výpočtu

Použití speciálních funkcí

Pro obecnou hodnotu energie je SR pro lineární oscilátor řešena tzv. *funkcemi* parabolického cylindru

Partikulární řešení se správnou asymptotikou při $\boldsymbol{\xi} \to \infty\,$ je

$$D_{--2}$$

Všechno se najde v příručkách, jako je Abramowicz&Stegun, nebo v Mathematica, ...

HANDBOOK OF MATHEMATICAL FUNCTIONS. with Formulas, Graphs, and Mathematical Tables Edited by Milton Abramowitz and Irene A. Stegun

Powers and roots $n^k \bullet$ Common logarithms \bullet Circular sines and cosines for radian arguments \bullet Exponential Integrals $E_n(x)$

Řešení a výsledky modelového výpočtu

Použití speciálních funkcí

Pro obecnou hodnotu energie je SR pro lineární oscilátor řešena tzv. *funkcemi* parabolického cylindru

Partikulární řešení se správnou asymptotikou při $\boldsymbol{\xi} \to \infty$ je

$$D_{--2}$$
 (\mathcal{F} \Box $-$ + ,

Všechno se najde v příručkách, jako je Abramowicz&Stegun, nebo v Mathematica, ...

Použití symetrie

systém je symetrický vůči počátku, řešení jsou tedy buď lichá, nebo sudá.

• Sešití při x = 0

$$\psi_{-} \overset{\varepsilon}{} = - = = + = + = - = = + + -$$

$$\psi_{-} \overset{\varepsilon}{} < = - + + = + - + -$$

$$h = \frac{\hbar}{\sqrt{2m\omega_{0}}} \cdot \frac{\hbar}{\sqrt{2\omega_{0}}} \cdot \frac{$$

Hladiny energie v závislosti na h

Vlnové funkce v závislosti na h

Vlnové funkce v závislosti na h

HLADINY PRO REALISTIČTĚJŠÍ POTENCIÁL

- anharmonicita pro vysoké energie
- asymetrie jámy pro nízké energie
- snížení bariery proti prostému průsečíku
- dva režimy: nad barierou a pod barierou (naše)
- degenerované hladiny se rozštěpí
- málo pro základní stav, více pro excitované stavy
- jeden stav je vždy sudý, jeden lichý
- pro optické přechody jsou výběrová pravidla změna kvantového čísla jedné jámy o 1 v dubletech přechod sudý ↔ lichý

HLADINY PRO REALISTIČTĚJŠÍ POTENCIÁL

- anharmonicita pro vysoké energie
- asymetrie jámy pro nízké energie
- snížení bariery proti prostému průsečíku
- dva režimy: nad barierou a pod barierou (naše)
- degenerované hladiny se rozštěpí
- málo pro základní stav, více pro excitované stavy
- jeden stav je vždy sudý, jeden lichý
- pro optické přechody jsou výběrová pravidla změna kvantového čísla jedné jámy o 1 v dubletech přechod sudý ↔ lichý

PŘECHODY V AMONIAKU

IR přechody, dublet pochází od rozštěpení horní hladiny zhruba 36 inversních centimetrů kolem 950 cm⁻¹

HLADINY PRO REALISTIČTĚJŠÍ POTENCIÁL

- anharmonicita pro vysoké energie
- asymetrie jámy pro nízké energie
- snížení bariery proti prostému průsečíku
- dva režimy: nad barierou a pod barierou (naše)
- degenerované hladiny se rozštěpí
- málo pro základní stav, více pro excitované stavy
- jeden stav je vždy sudý, jeden lichý
- pro optické přechody jsou výběrová pravidla změna kvantového čísla jedné jámy o 1 v dubletech přechod sudý ↔ lichý

PŘECHODY V AMONIAKU

IR přechody, dublet pochází od rozštěpení horní hladiny zhruba 36 inversních centimetrů kolem 950 cm⁻¹

mikrovlnný přechod 23800 MHz, tj. 0.79 cm⁻¹ Ten je odpovědný za inversní čáru atd. $\lambda =$

HLADINY PRO REALISTIČTĚJŠÍ POTENCIÁL

- anharmonicita pro vysoké energie
- asymetrie jámy pro nízké energie
- snížení bariery proti prostému průsečíku
- dva režimy: nad barierou a pod barierou (naše)
- degenerované hladiny se rozštěpí
- málo pro základní stav, více pro excitované stavy
- jeden stav je vždy sudý, jeden lichý
- pro optické přechody jsou výběrová pravidla změna kvantového čísla jedné jámy o 1 v dubletech přechod sudý ↔ lichý

Role tunelování v IR spektroskopii amoniaku

<u>abstraktní přístup</u>: dynamiku systému zkoumáme jako dynamiku dvou navzájem propojených stavů.
 NYNÍ PROVEDEME

Schrödingerova rovnice

$$i\hbar \frac{\partial}{\partial t} |\Psi_{t} = \hat{H} |\Psi_{t}, |\Psi_{t} = \Psi_{t} \rangle$$

Dvoustavový systém (zvolený model)

 $1 = \frac{1}{1 - \nu} + \frac{1}{1 - \mu}$ Systém vázaných rovnic pro koeficienty ekvivalentní se SR

$$i\hbar \frac{\partial}{\partial} = \frac{1}{DD} \frac{1}{D} + \frac{1}{DH} \frac{1}{H} + \frac{1}{DD} = \frac{1}{DD} \frac{1}{D} + \frac{1}{DH} + \frac{1}{D} + \frac{$$

ve shodě s modelovým výpočtem podle Merbachera

Časově závislé řešení řešení začínající zdola

$$c_D(0) = , , =$$

 $c_S(0) = , , =$

$$|\Psi'| = \frac{1}{2} - \frac{\hbar}{2} + \frac{\hbar}{2} + \frac{\hbar}{2}$$

$$|c_{H}|^{2} = \frac{1}{2} - \frac{\hbar}{2} + \frac{\hbar}{2}$$

Časově závislé řešení řešení začínající zdola

frekvence oscilací odpovídá rozštěpení hladin

Čpavkové hodiny: první "atomové hodiny"

Oficiální zdůvodnění pro stavbu čpavkových hodin v NBS

The Bureau atomic clock program sought to provide a spectroscopic standard capable of being used as a new atomic standard of time and frequency to replace the mean solar day and so change the arbitrary units of time to atomic ones. With such a clock, new precise values might be found for the velocity of light; new measurements of the rotation of the earth would provide a new tool for geophysicists; and new measurements of the mean sidereal year might test whether Newtonian and atomic time are the same, yielding important results for relativity theory and cosmology.

Program atomových hodin NBS usiloval o získání spektroskopického standardu který by mohl být využit jako nový atomový standard času a frekvence, nahražující střední sluneční den a tak zaměňující libovolné jednotky času atomovými. S takovými hodinami by mohly být stanoveny nové přesné hodnoty rychlosti světla; nová měření rotace Země by nabídly nový nástroj pro geofysiku; nová měření středního siderického roku by mohla ověřit rovnost newtonovského a atomového času s významnými dúsledky pro teorii relativity a kosmologii.

Čpavkové hodiny

Figure 1: The World's first atomic clock; the ammonia absorption cell atomic clock at the National Bureau of Standards (now the National Institute of Standards and Technology) first operated in August 1948. Dr. Harold Lyons, inventor, is at the right; Dr. Edward U. Condon, Director of NBS, is at the left. The ammonia absorption cell is the coil of waveguide surrounding the clock face.

Trochu divná historie

Stabilisace parami amoniaku byla známa pro klystrony už za války a možná i dřív.

Po válce se rozpoutala soutěž o "atomový" časový standard.

NBS (nyní NIST) se rozhodl pro rychlou akci a použít amoniaku k řízení křemenných hodin, ač se vědělo, že perspektivní jsou spíš elektronové přechody v parách alkalických kovů.

Sám přechod měl šířku čáry jen 1kHz, to bylo slibné. Problém ale nastal s Dopplerovým rozšířením a také s tlakovou závislostí šířky čáry. Nikdy nebyla přesnost lepší než 10⁻⁸ a proto nebyla předstižena časomíra odvozená od tropického roku, ačkoli denní cyklus Slunce byl zhruba srovnatelný.

Další vývoj (v NBS – NIST)

Další vývoj (v NBS – NIST)

Srovnatelné, nebo lepší výsledky

PTB Braunschweig, Německo

Laboratoire Primaire du Temps et des Frequences (LPTF)

Objev maseru
PREHISTORIE: POJEM STIMULOVANÉ EMISE

• Začalo to *Einsteinem*. Ten zavedl (1916) představu stimulované emise. Na systém dopadá elektromagnetické záření. To s určitou pravděpodobností ovlivní každý atom:

Vedle toho tu byla spontánní emise:

excitovaný atomární systém není stabilní, ani když by byl plně isolovaný od světa. Spontánně se vyzáří foton a systém se deexcituje. Tomu odpovídá "přirozená šířka linie".

> Fysikální příčina: vše pronikající elektromagnetické vakuum a jeho kvantové fluktuace

POJEM STIMULOVANÉ EMISE

Celkově máme tři souběžné procesy

• Bilanční rovnice:

ZESÍLENÍ SVĚTLA VLIVEM STIMULOVANÉ EMISE

• Brzo vznikla myšlenka, že v plynu, kde převáží excitované molekuly, může dojít k zesílení světla stimulovanou emisí:

 N_{h} -

ROVNOVÁŽNÝ STAV: ZESLABENÍ

 $N_b = a \cdot b - a < b - b - a$

obyčejný Boltzmannův faktor absorpční ztráty převládají

NEROVNOVÁŽNÝ STAV: ZESÍLENÍ

inversní populace hladin "záporná teplota" převládá stimulovaná emise

ZESÍLENÍ SVĚTLA VLIVEM STIMULOVANÉ EMISE

• Brzo vznikla myšlenka, že v plynu, kde převáží excitované molekuly, může dojít k zesílení světla stimulovanou emisí:

 N_{b} -

ROVNOVÁŽNÝ STAV: ZESLABENÍ

 $N_b = \frac{1}{a} \cdot \frac{1}{b} - \frac{1}{a} < \frac{1}{b}$

obyčejný Boltzmannův faktor absorpční ztráty převládají

> "obyčejná" situace sama se udržuje

NEROVNOVÁŽNÝ STAV: ZESÍLENÍ

inversní populace hladin "záporná teplota" převládá stimulovaná emise

> inversní populaci nutno obnovovat

Jak toho ale dosáhnout? První, spíše demonstrační realisace vznikla v laboratoři C.H. Townese (*Columbia U.*).

Myšlenka v r. 1951, realisace v r. 1954.

- Také zde vycházeli z válečných poznatků (CHT byl radarový specialista)
- Záření uzavřít do kvalitního resonátoru, jen slabý přebytek výkonu vyvádět
- Hlavní problém: stálá obnova inversní populace

... průtokovým uspořádáním

Kde inversní populaci získat

... separátorem

FIG. 6.7. Level separation of ammonia molecular beam in electric quadrupolar field [according to J. P. Gordon, H. J. Zeiger, and C. H. Townes, *Phys. Rev.* 95, 282 (1954)].

ZDROJ

dával směs excitovaných a deexcitovaných molekul, zhruba se stejnou vahou

Townes a Gordon se svým maserem

Vznik slova "Maser": až ve druhém sdělení

PHYSICAL REVIEW

VOLUME 99, NUMBER 4

AUGUST 15, 1955

The Maser—New Type of Microwave Amplifier, Frequency Standard, and Spectrometer*†

J. P. GORDON,[‡] H. J. ZEIGER,[§] AND C. H. TOWNES Columbia University, New York, New York (Received May 4, 1955)

Co pozorovali

zesílení mikrovlnného signálu – původní plán

 při průtoku amoniaku nad kritickou hodnotu systém fungoval jako generátor záření (autoři říkají oscilátor), tj. zářil i bez pomocné stimulace vnějším polem

 vyzařovaná čára byla velmi ostrá … šířka 2kHz při 23.8 GHz vlastně tedy koherentní záření

s tím souvisel i mimořádně malý šum

Co pozorovali

zesílení mikrovlnného signálu – původní plán

 při průtoku amoniaku nad kritickou hodnotu systém fungoval jako generátor záření (autoři říkají oscilátor), tj. zářil i bez pomocné stimulace vnějším polem

 vyzařovaná čára byla velmi ostrá … šířka 2kHz při 23.8 GHz vlastně tedy koherentní záření

• s tím souvisel i mimořádně malý šum

základní charakteristiky maserů a laserů

Další vývoj

I zde první, a to naprosto úspěšný pokus, ale pokračování bylo jen krátké

Problém: jde o dvouhladinový systém, obnova inversní populace obtížná

Již 1956 Nico Bloembergen (NP 1982) přichází s <u>tříhladinovým</u> systémem, kde kontinuální provoz je mnohem snazší

Fig. 2. Energy levels of Cr²⁺ in ruby with a particular crystalline orientation in a magnetic field of 3900 oersteds. For a three-level maser, 23.1 kMc (23.110³MC) is the frequency of the pumping field and 9.4 kMc is the frequency of amplification or oscillation.

a odtud pokračuje další vývoj, zejména směrem k laserům

The end