Aplikovaná RTG difraktometrie

Aplikace RTG práškové difrakce na vybrané skupiny minerálů

Skupina granátu

Obecný vzorec granátu lze psát: $X_3^{2+} Y_2^{3+} (ZO_4)_3$

Ve struktuře granátu připadá na základní buňku osm vzorcových jednotek (Z=8). Pozice X má **osmičetnou koordinaci** a je zpravidla obsazována kationy Fe⁺², Mg⁺², Ca⁺², Mn⁺². Pozice Y má **šestičetnou** (oktaedrickou) **koordinaci** a vstupují

do ní kationy AI^{+3} , Fe^{+3} , Cr^{+3} .

Pozice Z má **čtyřčetnou** (tetraedrickou) **koordinaci** a kation Si⁺⁴ tvoří společně s kyslíky základ nesosilikátové struktury.

Prostorová grupa je la3d.

Uspořádání atomů v základní buňce je poměrně těsné, což se odráží v řadě fyzikálních vlastností jako je hustota, indexy lomu a tvrdost.

Struktura skupiny granátů

Tetraedry SiO₄ jsou vrcholy propojeny s **oktaedry YO**₆ v osních směrech (x, y, z) a vytváří tak souvislou trojrozměrnou kostru. Kationy X vstupují do koordinačních **polyedrů XO**₈, které lze přirovnat k deformovanému hexaedru. Tato strukturní pozice má prostorovou polymerizaci, kdy každý polyedr XO₈ sdílí 4 hrany se sousedními polyedry XO₈, 4 hrany s oktaedry YO₆ a 2 hrany s tetraedry SiO₄.

Propojení izolovaných tetraedrů SiO_4 a oktaedrů YO_6 , které vytvářejí kostru pro deformované polyedry XO_8 .

Struktura skupiny granátů

Stupeň deformace tetraedrů SiO₄ ve struktuře granátů závisí na velikosti kationtu v deformované kubické pozici XO₈, která s tetraedry sdílí dvě hrany. Poměrně rigidní tetraedrické pozice regulují velikost X pozice svojí rotací a podobně fungují rovněž YO₆ oktaedry.

Za vyšších teplot je regulace velikostí polyedrů řízena stejným mechanismem.

Přírodní granáty se obecně dělí na dvě skupiny:

Pyralspity

pyrop $Mg_3Al_2(SiO_4)_3$ 11,46 Å almandin $Fe_3Al_2(SiO_4)_3$ 11,53 Å spessartin $Mn_3Al_2(SiO_4)_3$ 11,62 Å

Ugrandity

uvarovit Ca₃ Cr₂(SiO₄)₃ 12,02 Å grossular Ca₃Al₂(SiO₄)₃ 11,85 Å andradit Ca₃Fe₂(SiO₄)₃ 12,05 Å

Struktura skupiny granátů

Je prokázána lineární korelace mezi velikostí iontových poloměrů kationtů X, Y a rozměrem základní buňky. Relativní velikosti kationtů ovlivňují **izomorfní mísitelnost** jednotlivých koncových členů, obecně jsou granáty mísitelné ve skupinách pyralspitu a ugranditu, mezi oběma skupinami je izomorfie omezená.

Zvláštní pozornost zaslouží tzv. **hydrogranáty**. Ve struktuře může být omezené množství kyslíků v tetraedrech SiO₄ nahrazeno skupinou OH za vzniku např. hydrogrosuláru. Tyto granáty pak ztrácejí řadu svých typických fyzikálních vlastností.

Do granátů mohou vstupovat i některé "netradiční" prvky a to Ti⁴⁺, který obsazuje pozice YO₆ nebo Na⁺, který často nahrazuje Ca v pozicích XO₈.

Stanovení chemismu z RTG difraktogramu

V práci Chmielová M., Martinec P., Weiss Z., (1997) se autoři pokusili najít vhodnou spojitost mezi chemickým složením granátů a jejich strukturními charakteristikami v práškovém difrakčním záznamu.

Za tímto účelem byly na základě zpřesněných struktur modelovány programem DIFK difrakční práškové záznamy koncových členů **almandinu**, **pyropu** a **grosuláru**, dále 27 binárních pevných roztoků s různým poměrem uvedených komponent a 36 ternárních pevných roztoků s různými poměry koncových členů.

Pro další výpočty jsou důležité oblasti difrakčního záznamu **35 - 41°** 2 Θ a **53 - 62°** 2 Θ (pro CuK α záření).

Stanovení chemismu z RTG difraktogramu

Ze získaných dat byly sestaveny dva diagramy pro granáty složené z koncových členů almandin, pyrop a grosulár. Pro stanovení chemického složení granátů vynášíme do grafu polohy a intenzity vybraných difrakčních maxim.

V prvním diagramu vynášíme hodnotu I_{332} / I_{420} vůči hodnotě difrakčního úhlu Θ_{332} . Intenzity musí být integrální, hodnota Θ pro CuK α .

Stanovení chemismu z RTG difraktogramu

V druhém diagramu vynášíme I_{642} / I_{332} vůči hodnotě difrakčního úhlu Θ_{444} . Intenzity musí být integrální, hodnota Θ pro CuK α .

Slídy patří mezi fylosilikáty, které ve své základní buňce obsahují dvě tetraedrické vrstvy, mezi které je vložena vrstva oktaedrická. Tyto vrstevní **komplexy t-o-t** jsou vzájemně odděleny rovinou mezivrstevních kationtů. **Mezivrstevní kation** je zpravidla v 12-četné koordinaci a průměrný náboj by neměl být nižší než 0,6 na vzorcovou jednotku.

Obecný vzorec je zpravidla uváděn ve formě:

 $\mathbf{I} \mathbf{M_{2-3}} \square_{1-0} \mathbf{T_4} \mathbf{O_{10}} \mathbf{A_2}$

I je mezivrstevní kation, zpravidla K, Na, Ca

M jsou kationy oktaedrické vrstvy, zpravidla Li, Fe, Mg, Al, Ti

□ je vakance v oktaedrické vrstvě

T je kation v tetraedrické vrstvě, zpravidla Si, Al

A je pozice obsazované nejčastěji OH, Cl a F.

V závislosti na typu mezivrstevního kationu můžeme slídy rozdělit na:

- Pravé slídy více jak 50% mezivrstevních kationů je monovalentních
- Křehké slídy více jak 50% mezivrstevních kationů je divalentních
- Mezivrstevně deficitní slídy obsahují méně než 0,85 a více než 0,6 pozitivního náboje na vzorcovou jednotku

Z hlediska obsazování pozic v oktaedrické vrstvě můžeme slídy rozdělit:
Dioktaedrické – obsahují méně než 2,5 oktaedrického kationu na vzorcovou jednotku
Trioktaedrické – obsahují více než 2,5 oktaedrického kationu na vzorcovou jednotku

Chemické složení 2M₁ muskovitu ve vztahu k mřížkovým parametrům studovali Guidotti Ch. V., Sassi F.P., Blencoe J.G. (1989) a dospěli k následujícím závěrům.

Nejvýznamnější substituce ve složení muskovitu vyvřelých a metamorfovaných hornin jsou:

- □ Na ⇔ K (paragonit muskovit)
- $\Box (Mg,Fe^{+2})^{VI} + Si^{IV} \Leftrightarrow Al^{VI} + Al^{IV}$
- $\Box \quad (Fe^{+3})^{VI} \Leftrightarrow Al^{VI}$

Každá z těchto substitucí je schopna měnit mřížkové parametry přírodních muskovitů. První substituce má vliv na parametr *c*, další dvě ovlivňují především rozměry *a* a *b*.

Mřížkové parametry a, b jsou ovlivněny mírou nahrazení Al^{VI} ionty Mg, Fe⁺² a Fe⁺³.

Substituce Mg, Fe^{+2} a Fe^{+3} za Al v oktaedrických pozicích spolu s nahrazování K⁺ v dvanáctičetné koordinaci má vliv na mřížkový parametr *b*. Důvodem je větší poloměr iontů Mg⁺² a Fe⁺² vzhledem k iontu Al⁺³.

Záměna Al⁺³ za Si⁺⁴ v tetraedrických pozicích má na mřížkový parametr b jen minimální vliv.

Vztah mezi velikostí parametru *b* a obsahem $\sum(Mg+Fe_T)$ je lineární: $b = 8,9931 + 0,044\sum(Mg+Fe_T)$ r = 0,914, n = 88S přibývajícím zastoupením uvedených iontů se zvětšuje parametr *b*. Rozměr parametru *b* ideálního muskovitu je 8,993 Å.

Diagram závislosti parametru *b* na \sum (Mg+Fe_T) pro muskovity s Na / (Na + K) \leq 0,15.

Podobná, ale s opačným znaménkem, je závislost *b* na \sum Al, protože odráží nahrazení Al ionty Mg a Fe. Tento vztah je výhodnější snižuje se analytická chyba (neanalyzuje se Fe celkové). Rovnice regrese je:

b = 9,149 - 0,0258∑Al

r = -0,921, n = 88.

Ideální muskovit se $\Sigma Al = 6 \text{ má } b = 8,994 \text{ Å}.$

Obrázek: Parametr *b* versus Σ Al pro muskovity s Na / (Na + K) \leq 0,15

Ze znalosti chemického složení a strukturních parametrů byly odvozeny další závislosti:

Regresní rovnice závislosti b ku Si:

b = 8,5966 + 0,06668i r = 0,872, n = 88.

Regresní rovnice závislosti a ku $\sum(Mg+Fe_T)$: $a = 5,1831 + 0,027\sum(Mg+Fe_T)$ r = 0,907, n = 88. (Muskovity s nízkým obsahem Na mají a = 5,183 Å.)

Regresní rovnice závislosti *a* ku Σ Al: **a** = 5,2781 - 0,0157 Σ Al r = -0,907, n = 88.

Regresní rovnice závislosti a ku Si: a = 4,9312 + 0,0422Si

r = 0,845, n = 88.

Z regresních rovnic vyplývá následující:

- o zvýšením obsahu Σ (Mg+Fe_T)o 0,1 hm.%, vzroste parametr *b* o 0,0044 Å (0,049%), zatímco rozměr *a* vzroste o 0,0027 Å (0,052%)
- o vzroste-li Σ Al o 0,1 hm.%, **poklesne** parametr *b* o 0,0026 Å (0,029%) a **klesne** parametr *a* o 0,0016 Å (0,031%)
- vzroste-li obsah Si o 0,1 hm.%, vzroste parametr b o 0,0067 Å (0,074%) a parametr a vzroste o 0,0042 Å (0,081%)

Substituce $(Mg,Fe^{+2})^{VI} + Si^{IV} \Leftrightarrow Al^{VI} + Al^{IV}$ je **funkcí tlaku**, takže měření parametru *b* lze užít jako monitor tlaku. Měření parametru b prostřednictvím linie (060) metodou Sassiho a Scolari slouží jako rychlá procedura k získání informací o relativním tlaku metamorfovaných hornin.

Identifikace minerálů ve skupině kalcitu a dolomitu není vždy zcela jednoznačnou záležitostí, zvláště při komplikovaném izomorfním zastupování několika koncových členů. Práce Weiss, Chmielová (1981) přesně definuje vztah mezi vzhledem difrakčního záznamu a složením konkrétního karbonátu pomocí modelovaných difrakčních spekter.

Pro řadu kalcitu bylo použito výchozí krystalové struktury kalcitu, popsané v grupě R-3c se dvěma vzorcovými jednotkami $CaCO_3$ na základní buňku. Frakční atomové souřadnice v symetricky nezávislé části jsou v tabulce. Parametr u závisí na vazebné délce C - O, resp. na mřížkovém parametru a_0 tak, že platí:

vazebná délka C - O = $a_0 \cdot u$

Hodnota u je 0,2571 (Cessin et al., 1965).

atom	Wyckoffovo označení	Х	у	Z
6 C	a	0	0	0,25
6 Ca	b	0	0	0
18 O	с	u	0	0,25

Fe- magnezit (Mg - siderit)

Vypočtená difrakční spektra (CuK α) záření pro a) Fe₃₀Mg₇₀ b) Fe₅₀Mg₅₀ c) Fe₇₀Mg₃₀

Ca-siderit (Fe-kalcit)

Vypočtená RTG difrakční spektra (CuK α) pro a) Fe₃₀Ca₇₀ b) Fe₅₀Ca₅₀ c) Fe₇₀Ca₃₀

18

Za účelem stanovení závislosti semikvantitativního zastoupení fází na intenzitě difrakce 104, byly modelovány i dvojfázové směsi Fe-sideritu (Mg-magnezitu) se sideritem. Vypočtená intenzita difrakcí 104 ve směsi sideritu a Mg-sideritu pro objemová zastoupení: a) 70% siderit, 30% Mg-siderit b) 50% siderit, 50% Mg-siderit c) 30% siderit, 70% Mg-siderit. Vypočtená intenzita difrakcí 104 ve směsi sideritu a Fe-magnezitu pro objemová zastoupení: a) 70% siderit, 30% Fe-magnezit b) 50% siderit, 50% Fe-magnezit c) 30% siderit, 70% Fe-magnezit

Příklad stanovení Mg-složky v sideritu na základě analýzy modelovaných difrakčních záznamů.

Závislost d-hodnoty difrakce 104 na obsahu Mg ve struktuře sideritu (z vypočtených spekter)

Závislost absolutní intenzity difrakce 104 na obsahu Mg ve struktuře sideritu

Krajními členy olivínové řady jsou forsterit (Mg_2SiO_4) a fayalit (Fe_2SiO_4). Jejich mísitelnost je neomezená i za nízkých teplot. Často se pro zobrazení používá ternární diagram s třetím Mn členem tefroitem.

Na strukturu olivínu lze nahlížet jako na vrstvy oktaedrických polyedrů příčně propojených tetraedry SiO_4 , které jsou paralelní s (100). Oktaedrické dutiny se dělí na M1 a M2, kdy pozice M1 je mírně deformovaná, pozice M2 je vcelku pravidelná. Ionty Fe a Mg obsazovány statisticky, u monticellitu (CaMgSiO₄) upřednostňuje iont Ca pozici M2.

Mřížkové parametry obou krajních členů jsou rozdílné a velmi citlivě reagují na chemické složení (množství Fe ve struktuře). Mřížkové parametry pro syntetický

forsterit	a = 4,756	b = 10,195	c = 5,981	
fayalit	a = 4,817	b=10,477	c = 6,105	

Existuje zcela jasná závislost, kdy se zvyšujícím se obsahem Fe rostou všechny mřížkové parametry a objem základní buňky.

Podle Suturina et al. (1971) lze tuto skutečnost vyjádřit pomocí následujících závislostí pro jednotlivé parametry:

 $Fa = 317,965a - 1513,276 \pm 11\%$

 $Fa = 331,353b - 3356,118 \pm 3,4\%$

 $Fa = 819,966c - 4902,415 \pm 4,5\%$

Daleko přesnější výsledek je dosažen při použití závislosti všech tří parametrů zároveň, takže výsledná závislost je:

 $Fa = -3813,808 - 47,799a + 228,233b + 286,890c \pm 2,5\%$

	Smrčí
Spočtené mřížkové parametry	
а	10,2269
b	5,9950
С	4,7642
Saturin (1971) (% Fa)	
Fa(a)	1,57
Fa(b)	32,60
Fa (c)	13,28
Fa(a,b,c)	12,49

Yoder a Sahama (1957) zjistili závislost mezi složením olivínu a polohou difrakční linie 130.

Závislost lze vyjádřit rovnicí: $Fo(obj.\%) = 4233,91 - 1494,59 d_{130}$ (odvozeno z přírodních olivínů) $Fo(obj.\%) = 4476,739 - 1582,278 d_{130}$ (odvozeno ze syntetických olivínů)