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1. INTRODUCTION 

In this paper we show that rational choice in a stationary environment can lead to erratic 
behaviour when preferences depend on experience. We mean by erratic behaviour choice 
sequences that do not converge to a long-run stationary value or to any periodic pattern. 

Early investigations of the effects of experience on choice goes back to Pareto (see 
also Benhabib (1979)); some Keynesian theories of the consumption function incorporate 
the effects of experience and habit formation on current levels of consumption (Duesen- 
berry (1949), Modigliani (1949) and Brown (1952)); a general model of experience 
dependent choice was described in Day (1970) and investigated in Day and Kennedy 
(1971) while the specific issue of the existence of stable representable long-run consumer 
demand when tastes vary endogenously has been treated by Gorman (1967), Pollak (1970, 
1976), Weizsaicker (1971), McCarthy (1974) and Hammond (1976). Pollak gave condi- 
tions for the representability of long-run choice when the equations of preference 
dependence are linear and utility additive. Hammond, in a generalization of these 
findings, provides conditions for stable, representable long run choice when preferences 
are acyclic, a condition which in essence assures convergence to a long-run choice. 

Our concern here is with the contrary case when preferences are at least partially 
cyclic. In a stable environment (for example, fixed prices and incomes) acyclic preferences 
rule out feasible alternatives that have been rejected in previous periods. Thus sequences 
of alternating choices (consisting for instance of holidays in the mountains alternating with 
vacations at the sea) are impossible. While habit formation may explain the absence of 
such behaviour, diversity of behaviour and fluctuation in choices are too common to be 
assumed away. The surprising implication of some cyclicity in preferences is the occur- 
rence of erratically fluctuating behaviour, which in our theory emerges endogenously from 
a completely deterministic structure in a stationary environment. This "chaos" contrasts 
with the usual explanations for such phenomena which are couched in terms of exo- 
genously determined random shocks. 

Many of the ideas which we present were already introduced, in heuristic form, in 
Georgescu-Roegen's (1950) analysis of consumer choice under endogenously changing 
preferences. (See also Georgescu-Roegen (1971, pp. 126-127).) He clearly realized the 
erratic nature of dynamic choice behaviour which led him to conclude the following: 

"Does the preceding analysis justify the negation of the constancy of economic laws? 
The right answer seems to be that, on the contrary, it eliminates the variability of 
consumer's behaviour as an eventual argument against such a constancy. However, 
the micro-approach is deprived to a large extent of any quantitative predictability 
over finite (i.e. important) changes." 
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Erratic behaviour of the type under investigation here was first shown to exist for 
equations of hydrodynamic flow applied to modelling turbulence in fluids or weather 
phenomenon by Lorenz (1963, 1964). Applications in biological population theory 
followed in the work of May (1975), May and Oster (1976) and Guckenheimer, Oster and 
Ipaktchi (1977) (to mention a few authors). A formal theory and existence conditions for 
the discrete case has been set forth by Li and Yorke (1975) whose results were generalized 
by Diamond (1976). Chaos in the sense of Lorenz and Li and Yorke has its continuous 
time counterpart in the phenomenon of "strange attractors" first discussed by Ruelle and 
Takens (1971). A highly readable survey will be found in Yorke and Yorke (1980). 

In Section 2 of this paper we review the "chaos" theorems of Li and Yorke and 
Diamond and present a generalization suitable for application to the set-valued choice 
functions that arise in general economic theory. We then give, in Section 3, two examples 
of unique choice in R2 based on experience dependent utility to which the basic Li-Yorke 
theorem applies. This is followed in Section 4 by a general definition and analysis of 
tricyclic preferences in RD and by the extension to dynamic, set-valued choice functions in 
Section 5. The paper concludes with remarks concerning interpretation. 

From the point of view of empirical application the examples of Section 3 are highly 
suggestive. They show that erratic sequences of rational choices do not arise when income 
is low but can when wealth gets sufficiently high. Thus the "poor" might exhibit quite 
stable responses to price and income changes while the "rich" may be quite unstable 
appearing arbitrary or whimsical. 

2. ERRATIC BEHAVIOUR OR "CHAOS" 

The investigation of behaviour when preferences de-pend on experience boils down to the 
study of solutions of the dynamic choice functions. We will show that when preferences 
possess a special type of cyclic structure there exist periodic choice sequences (cycles) of 
every order and also choice sequences that are erratic in the well-defined sense that they 
are not stationary, periodic or asymptotically stationary or periodic. Before proceeding 
with the analysis we review some basic concepts, definitions and theorems. 

The iterated map Ck(.; a, s) is defined recursively by Ck+l(.; a, s), a, s]= 
CCk(. ; a, s); a, s], k = 0, 1, 2,. .. where Co( ; a, s) = I (the identity map) and where 
C ( *; a, s) = C( *; a, s). A point x E X(s) is called k-periodic if Ck(X; a, s) = x and if 
Cj(x ; a, s) $ x for 0 < 1 < k. A set A E X(s) is called k-periodic if each of its elements are 
k-periodic. We note that if x is k-periodic then each of the points xi = Cj(x), i = 1, . . . , k 
are distinct k-periodic points with xj = Ck(xj). If x is a k -periodic point then the sequence 
{x(t)} such that x(t) =X(t mod k) where x(0) = x is called a k-periodic choice sequence. 

Let {x (t)} be a choice sequence. Then, of course, x (t) = Ct(x ; a, s) where x (0) = x. A 
solution {x (t)} is quasi k-periodic (asymptotically k-periodic) if there exists a k-periodic 
solution {Xk (t)} with x (0) $ Xk (0) such that 

lim supt .o, IXk(t)-X(t)I = 0 (1) 

A solution {x (t)} is aperiodic if it is neither periodic or quasi-periodic of any period k. 
A solution x (t) will be called erratic or chaotic if it is aperiodic and remains in a bounded 
set, say S. 

Erratic or chaotic solutions in the sense of Lorenz, Li and Yorke are highly unstable. 
Indeed, any two chaotic trajectories wander close to each other and, no matter how close 
such trajectories come to each other they wander apart. These facts are formalized in the 
expressions 

lim inf X(t) - y (t)| = 0, (2) 
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where x (t) and y (t) are any two chaotic trajectories in S. In addition chaotic trajectories in 
S wander away from periodic cycles of any period so that the equality in (2) is changed to 
an inequality. 

The existence of erratic or chaotic trajectories depends on an "over-shoot" or 
nonlinearity condition. This was established by Li and Yorke in a theorem which we 
present here without proof. 

Theorem 1 (Li and Yorke). Let J be an interval in DR and consider the difference 
equation 

Xt+ i -f(xt) 4 

in which f is a continuous mapping of J - J. Suppose there exists a point x E J such that 

f3(x)c-' x < f(x) < f (X). 

Then 

A. For every k = 1, 2, 3,. .. there is a k-periodic solution of (4) in J; and 
B. There is an uncountable setS EJ, which contains no periodic points, such that for every 

initial condition in S the solution of (4) is erratic, i.e. is aperiodic, and remains in S. 

It should be noted that a sufficient condition for erratic behaviour is the existence of a 
3-period cycle, that is, a point x satisfying x = f3(x). 

In the next section of this paper we present examples to which this theorem applies. 
The extensions of the Li-Yorke theorem to Rn was accomplished by Phil Diamond 

(1976). In exploiting the proof of Li-Yorke, but extending it to the more general setting, 
Diamond lost the constructive quality of the sufficient conditions in the simpler setting. 
We show in Section 4 that it can nonetheless be applied to establish the existence of erratic 
economic behaviour. 

Let f be a mapping from a subset A of Rn to R n. A subset P of A is k-periodic if 
fk(p)= p and fi(P)ryfl(P) = 0 for 1 _i <j<k. Then we have 

Theorem 2 (Diamond). Let A be a set in Rn and suppose f: A -e Rn is continuous. 
Assume that there is a non-empty compact set X in A satisfying 

(Cl) Xuf(X)Cf2(X)CA 

(C2) X r f(X)= 0. 

Then: 

(T1) For every k = 1, 2, 3,. . . there is a k-periodic set in A, 
(T2) There is an uncountable set S in A which contains no periodic set and for which 

(i) f(S) c S 
(ii) for distinct points p, q E S 

lim sup k, X lf (p) _fk(q)l > 0 

(iii) for every p in S and periodic set P in A, then for all q in P 

lim supk, lfk (p) _fk(q)l >0. 

Diamond's simple extension of the Li-Yorke theorem brings out very nicely the fact 
that the proof of chaos rests exclusively on the combinatorial and topological character of 
the sequence of maps ft, f2 . No properties of RDn other than its metrical nature are 
exploited. For this reason it is possible to state a chaos theorem for set-valued maps. This 
enables us to extend the results on erratic economic behaviour to dynamic, set-valued 
choice functions. We state the theorem which we use in Section 5 here. For completeness 
the proof is stated in the Appendix. 
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Theorem 3. Let F be an upper-semicontinuous, compact, set-valued map (cor- 
respondence) from a metric space V -+ 9 (V) with metric d. Assume there exists a set X c V 
such that 

(Cl) XuF(X)cF2(X)c V 
(C2) XrF(X)=0. 

Then 

A. For all k = 1, 2, 3,. .. there exists a k-periodic set, say Xk c Vsuch thatFk(Xk) = Xk; 
B. There exists an uncountable setS c V which contains no periodic set, such thatF(S) c S 

and such that 
(i) for all x, y E S, x ? y, and F(x) rF(y) = 0, there exist trajectories x,+i E F(x,), xO= 

x, and Yt+1 e F(yt), yo = y such that 

lim SUpt >X d(xt, Yt) >0. 

(ii) for all x E S for any k-periodic set P in X, for all y E P 

lim supt d(xt, Yt) >0. 

3. ERRATIC DEMAND WHEN TASTES ARE ENDOGENOUS: 
TWO EXAMPLES 

In order to illustrate the existence of erratic sequences of rational choices, consider the 
familiar utility function 

u(x, y; a) =x y, (5) 

in which x and y are amounts of two goods consumed within a given period and a is a utility 
weight with 0 < a < 1. Maximizing utility subject to the usual budget constraint 

px +qy =m (6) 

yields the demand equations 

x=a-, y=(1-a)-. (7) 
p q 

The dependence of these functions upon experience is obtained by supposing that the 
parameter of the utility function representing preferences depends endogenously on past 
choices. Consider the case in which this dependence is upon the immediate past according 
to a function 

at+, = g(xt, yt; a). (8) 

The demand functions now become 

m m 
xt+= - g(xt, yt; a), Yt+1 =- (1- g(xt, yt; a)), (9) 

p q 

or, using the budget restriction to eliminate Yt, we obtain a first-order difference equation 
in Xt, 

m 

p 

where s:= (m, p.) 
If this dynamic choice function is nonlinear enough so that a sufficient "overshoot" 

can occur then chaotic sequences of consumption pairs (Xt, Yt) will exist. To illustrate this 
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fact we consider a specific form for (8). Thus, suppose the function g is defined by 

at+= axtyt. (1 1) 

This represents an ex post weight assigned to experienced consumption in which a is an 
"experience dependence" parameter. The function implies that the greater this ex post 
weight is, the more preferences will shift in favour of the good x. 

Imagine, for example that we interpret x as leisure and y as consumption of a good 
obtained by work. Income, or m, would be the total available time to be allocated between 
leisure and work. Equation (11) now states that the higher the level of satisfaction 
obtained in one period the greater the weight placed on leisure in future choices. (One 
might call this complacency!). 

Substituting (11) into (7) and exploiting the budget constraint (6) we get the short run 
(dynamic) demand function 

xt1= aYmxt(m -x) (12) 

which is analogous to the form originally investigated by Lorenz in a quite different 
context. A stationary (long-run) demand exists for x = (am2- 1)/am which is positive for 
am 2> 1. The maximum consumption of good x (e.g. leisure) occurs when past experience 
is xt = x* = m/2. In this case xt+1 = (am3)/4. If this is to satisfy the budget constraint then 
amm2- 4. Consequently, we need only consider a system with income endowment m and 
experience dependence parameter a such that 

1 <am2'4. 
2 2. When am is close to 1, the stationary state is stable. As am increases past 3 cycles 

emerge. At some combination am2 such that 

(am2)2(r - am2) <8<4am 2 

a three period cycle occurs with period 3 points, aMm2(4 - am2)/16, m/2 and m2/4. Let us 
call this point c, the chaos point. Hence, by Theorem 1, for c < am2 - 4, there exists an 
uncountable number of initial conditions in the interval [0, m] which lead to erratic 
solutions. The value of c is approximately 3 * 57. There are also periodic solutions of every 
order. 

Equation (11) is not the only specification of experience dependent preferences that 
will generate chaotic behaviour. Many other functions will do. Another example is 
provided by a (1-t+, = xtea(1 xt) (13) 

In this specification xt may be interpreted as a stimulating factor: "the more leisure one 
experiences the more one tends to prefer it". The term ea(1 xt) may be interpreted as a 
depressing factor: "the more leisure one has experienced the less attractive it appears". 
The weight on leisure that determines preferences for the imminent period is then the 
product of those two contending factors. 

Using this definition for g( ) we get 

xt+l = mxte-(1xt) (14) 

A detailed analysis of this equation for m = 1 has been carried out by May and Oster 
(1976) who find that chaos emerges when a is approximately 2'6924. 

An interesting relationship occurs between m and a in these two examples. The 
smaller the experience dependence parameter a the greater the income endowment m 
must be to generate chaos. The two models then characterize experience dependent 
demand as converging to a stable long run pattern for relatively low incomes, but exhibit 
increasing instability and eventually become completely erratic as income grows 
(reflecting the whimsical, seemingly arbitrary behaviour of the complacent, or the very 
rich!). 



464 REVIEW OF ECONOMIC STUDIES 

4. TRICYCLIC PREFERENCES 

With these examples before us we now turn to the phenomenon of partial tricyclicity 
of preferences. In this section we confine attention to uniquely determined choice in RD. 
In Section 5 we show that similar results follow when rational choice is non-unique and 
choice functions are set-valued. 

Suppose preferences in a choice space X c R are represented by a utility function 
(p(xt+1; xt, a), continuous in (xt+i; xt), strictly quasiconcave in xt+i, and locally non- 
satiable, where xt is the immediately past choice which has been experienced and "a " is a 
parameter (or vector of parameters) upon which preferences depend. Let X(s) be a 
compact, convex choice set or feasible region that depends on a parameter or vector of 
parameters s representing an environmental situation. For example, represent prices by p 
and income by m and define the choice set by the usual budget constraint: 

X(s) :={xlpx'm, x-0}, 

where s:= (p, m). 
Given our assumptions there exists a unique optimal choice xt+l that solves 

T(x, a, s) = maxxex(s)cp(x Xt, af) (15) 

so that 

{xt+i}=X(s)n{xjop(x; Xt, a) n(xt, a, s)}. (16) 

In Section 5 below we consider the case in which <p may be locally satiable or is not strictly 
quasi-concave so that choice need not be unique. At this point, because we temporarily 
assumed the strict quasi-concavity and non-satiability of the utility function, {xt+1} in (16) 
is a singleton and we obtain the dynamic choice function, 

Xt+1 = C(xt; a, s) (17) 

where C is a single-valued function, continuous in xt. Our problem is to determine 
characteristics of the preferences representable by <p that will imply that this choice 
function will satisfy the sufficient conditions for the existence of chaotic choice sequences. 

Before proceeding we note that a "long-run" or stationary choice x satisfies x = 

C(a; a, s) while a long-run or stationary choice function is a continuous single valued 
functionD(a, s)suchthatD(a, s)= C[Da, s); a, s]. Suchafunctionexistsbyvirtueofthe 
continuity of C and the compactness and convexity of X(s). In the endogenous taste 
literature the representability and stability of such long-run choice functions is examined. 
Hammond (1976) shows that the answers hinge on the acyclicity of preferences; a 
requirement that prevents the selection of a feasible choice at a given time that was 
previously feasible but rejected. This condition precludes oscillations in behaviour within 
a stationary environment and is equivalent to strong habit formation. Individuals will 
converge to a stationary mode of behaviour and will reveal consistent preferences in a 
sequence of choices. 

While consistent choices are often observed and while habit is no doubt a powerful 
stabilizing force in human behaviour it cannot be denied that individuals, in the pursuit of 
novelty and variety, choose life styles in which activities may be pursued from time to time 
while others are favoured in-between-times so to speak. Such complex patterns cannot 
reveal consistency within a stable environment but they can nonetheless be perfectly 
rational. 

Consider the following extreme yet quite common example. An individual, having 
read a book (such as Shogun) decides in a later period of leisure not to read the book again 
but to watch the story enacted on T.V. on the basis of which experience the person is 
"motivated" to read the book a second time. Or consider the family that alternates ski 
holidays with vacations at a favourite beach resort. Such consumers, having experienced a 
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given consumption bundle, explicitly shift their preferences away from it at given income 
and price levels but may well shift back in its favour after experiencing alternative 
activities. 

We now provide a formal definiition of experience dependent preferences of this 
type. Let the upper contour sets of (., x, a) when experience is x and optimal utility is 
a,r(x; a, s) be denoted by 

?(x; a, s):={yfp(y, x)-ir(x, a, s)} (18) 

and define 

(D(A; a, s) = Ux.A 'D(x; a, s). (19) 

Definition 1. The preferences represented by <p(., x, ax) are partially tricyclic on 
X(s) if there is some set A c X(s) such that 

(a) A r)i(A; a, s)= 0, and 
(b) Au (A;a,s)c OW(C(A;a,,s)rX(s);a,s). 

Partially tricyclic preferences are illustrated in Figure 1. It is seen that they imply an 
oscillation in choice. 

t2 ?(A) 

C(x) CCX)Xa 

c3X c,S) a?11 

C (A) C 
n(XMa, s) 

- ~~~~X(s) 

(a) A Period 3 Cycle in Choice (b) Illustration of Definition 

FIGURE 1 

Consider the allocation of an individual's time between tennis, reading, and a 
composite activity which we call sleep, over a three day weekend. Let the individual 
always sleep eight hours. If he plays tennis between 10 to 14 hours the first day, let him 
play tennis between 4 to 9 hours the second day depending on his choice the first day, and 
having done so the second day, let his choice for tennis vary between 4 to 14 hours for the 
third day depending on his choice for the second day. Then his choice function will be 
partially tricyclical. This is illustrated in Figure 2. 

It should be emphasized that the conditions of partial tricyclicity in Definition 1 has to 
hold for some but not every subset A of X(s) for a given s. Furthermore, our results will 
require partial tricyclicity for some s, not over the whole range of s. When X(s) is "small" 
(for example when income is low) preferences may be acyclic, but when X(s) is "large" (for 
example when income is large) tricyclicity may emerge. Indeed, this latter possibility was 
precisely the character of the examples of Section 3. 
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FIGURE 2 

It is immediately apparent that the tricyclicity of preferences imply that the dynamic 
choice function has a similar tricyclic character. For completeness, we note this fact in the 
following lemma. 

Lemma. Suppose that preferences are tricyclic on a compact, convex choice setX(s) in 
the sense of Definition 1. Then the choice function C(y; a, s) is tricyclic in the same sense, 
that is, there exists a set A c X(s) such that 

(a) ArC(A; a,s)=0, 
(b) AuC(A;a,s)cC2(A;a,s). 

Proof. Let A be the set satisfying Definition 1 which exists by hypothesis. Then (a) 
follows from the facts that A r X(s) = A and D(A; a, s) r X(s) = C(A; a, s). To prove (b) 
note that 4(DD(A; a, s) X(s); a, s) -X(s)= D(C(A; a, s); a, s) -X(s)= C2(A; a, s). 
Also, (A;a,s)uArAX(s)=C(A;a,s)uA. Using (b) of Definition 1, the result 
follows. 11 

The existence of erratic sequences of experience dependent choices now follows immedi- 
ately from Diamond's theorem. We state our finding as: 

Proposition 1. Let preferences be partially tricyclic on a choice set X(s)cR n as in 
Definition 1. Then for the dynamic choice function (15) 

(a) there exist periodic choice sequences of every period k = 1, 2, 3,... ; and 
(b) there exists an uncountable set S c X(s) such that for every initial condition in S the 

choice sequence remains in S and is aperiodic, i.e. is erratic. 

The relationship between partially tricyclic choice functions as defined in the Lemma 
and the conditions for erratic behaviour originally stated by Li and Yorke (Theorem 1 in 
Section 2) can be seen in Figure 3. Here 

X3 = C3(X0) < XO < XI = C(XO) < X2 < C2(XO) 
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C(X) 

FIGURE 3 
Relationship between Theorem 1 and Theorem 2 for the conditions of partial tricyclicity 

are the points of the Proposition. We assume that C( ) is quasi-concave. The set 
A [?,x) is the set reqird in Theorem 2. Evidently, [x?0, xl] u [xl1, x2] c C2 (A) where 

X3 <XO < 
- 

< X4 adC()= [X-3, X4]. 

Remark. An example, in the spirit of those in the previous section but in two 
dimensions, can easily be generated. Let utility be given by C C,3C' subject to the budget 
constraint C + C2+ C3= 1 where prices and income are taken as unity. First order 
conditions yield X = C2/ C, = /a, y = C3/ C, = 7/a. Letting a,+, = 4x2y t2(1_-Xt)(l -Yt), 
fl+1 = xty t (1-Yt), yt+l = xtyt (1 - xt) we obtain the two difference equations: 

xt = 4xt_1( - Xt-1), 

yt = 4xt_1(1- yt-1), 

for 0 '-- x _-- 1, 0 _ y _ y1. Conditions for Theorem 2 are satisfied by the set S= 
{(x, y):0 18 ' -x _ ::0-58, 0 ' -y _ :1}. See P. Diamond (1976). 

5. DYNAMIC SET-VALUED CHOICE FUNCTIONS 
Rational choice does not determine behaviour when, for example, preferences are 
represented by a continuous utility function that is merely quasi-concave or that is locally 
satiable. In this case the set of optimizers is not (in general) unique so that some selection 
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criterion other than rational choice must be invoked. Random selection for example could 
determine behaviour which would then have an erratic appearance. We can show that 
there is room for erratic behaviour even for completely non-stochastic, deterministic 
selection criteria such as that of "conservative selection" (Day and Kennedy (1971)) which 
minimizes the distance to the previous choice. 

Under the more general conditions now assumed equation (16) must be rewritten as 
an inclusion, 

Xt+ 1 E C (xt; a, s) X (s) r- I<p(x; x, a) >--r(xt, a, s)l. (20) 

The dynamic choice mapping C(xt; a, s) is now a correspondence from X(s) -* Y [X(s)]. 
Suppose p (x, y, a) is quasi-concave for each y E X(s) and continuous with respect to both 
x and y. Suppose also that X(s) is compact and convex as before. Then C(xt; a, x) is 
upper semicontinuous with compact convex images. 

Because the Definition and Lemma still apply, neither having exploited strict quasi- 
concavity of p, we have: 

Proposition 2. Let preferences be represented by a utility function p (x, y; a) continu - 
ous in x and y and quasi-concave in x for each y. Suppose further these preferences are 
tricyclic in the sense of Definition 1. Then for the dynamic choice correspondence (20) 

(a) there exist periodic choice sequences for every period k = 1, 2, 3, . . .; 
(b) there exists an uncountable set S c X(s) such that choice sequences with initial 

conditions in this set are erratic and remain in S. 

Proof. By the maximum theorem C( ) is upper semicontinuous and by the Lemma 
tricyclic. Hence by Theorem 3 the result holds. (For the proof of Theorem 3 see the 
Appendix). || 

6. REMARKS 
1. Could an individual, by observing how his preferences have varied in the past, 

discover the deterministic mechanism generating his choice sequence? For choice 
sequences that have a very large period or that are totally aperiodic this seems very 
unlikely. The dynamics within the aperiodic sets may be indistinguishable from a 
stochastic process, sometimes even from a simple Bernoulli process (see Lorenz (1963), 
May and Oster (1976), and Guckenheimer, Oster and Ipaktchi (1977)). It seems quite 
likely then that the individual would accept the forces governing his choices over time as 
being subject to unpredictable shocks. He may on the other hand, attempt a statistical 
description of the dynamics by partitioning his choice set and observing the density of his 
choices to obtain information on the underlying mechanism. However, such procedures 
require a large number of observations, especially if the dimension of the system is large. If 
time is limited and experimentation is costly the individual is likely to resort to myopic 
choice which, if he discounts the future heavily enough, would appear to be inter- 
temporally optimal anyway. 

2. For a discussion of the statistical characterization of the chaotic dynamics of some 
deterministic systems from experimental data see the article by Guckenheimer, Oster and 
Ipaktchi (1977) and its references. 

3. Aperiodic behaviour seems to be a ubiquitous feature of non-linear difference 
equations. (See Lorentz (1964) and Li and Yorke (1975).) Such aperiodic behaviour is 
robust (structurally stable) to small perturbations in the functional form of the difference 
equations. (See Guckenheimer, Oster and Ipaktchi (1977), Kloeden (1976), Butler and 
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Pianigiani (1978).) Furthermore, such behaviour is not limited to-difference equations. A 
number of studies have exhibited aperiodic behaviour in continuous systems of order 3 or 
more (see Ruelle and Takens (1971) and Lorentz (1963)). 

4. The results for nondetermined choice presented in the last section can easily be 
extended to the case in which the choice set depends on experience also. This would yield 
the existence of erratic behaviour for a quite general class of recursive decision systems of 
the type investigated by Day and Kennedy (1971). One would therefore expect the 
possibility of erratic behaviour for a wide variety of dynamic economic models involving 
rational decision-making with feedback. 

APPENDIX 

Proof of Theorem 3 for set-valued dynamical systems 

We follow Diamond in using two lemmas that derive from the finite intersection property 
of compact sets. The first follows Diamond (p. 954) with slight modification. 

Lemma Al. Let Xt, t = O, 1, 2,... be a decreasing sequence of nonempty compact 
subsets of Xin the sense thatX,+, c F(X,), allt. Then there exists a nonempty compactsubset 
Q c Xo such that for all x E Q, there exists a trajectory {Xt}J E $(x) = subset of trajectories 
starting at x such that Xt E Xt. 

Proof. Let G:= FIX, be the restriction of F to Xt. Then the assumption that 
C F(X,) implies that X, 1 is contained in the domain of G6 1. As X, is compact G 01 is 

upper semi-continuous (because it has a closed graph). Consequently, Q = 

Go1 * G1 ... 'G1 (Xt+,) is compact, nonempty, contained in Xo and forms a decreasing 
sequence of sets. Hence Q :=Vnt Q:otcX. o 

Lemma A2. Suppose W c Xis a compact, nonempty set such that W c G( W) where 
G: X -*P (X) is an upper semi-continuous correspondence with compact images. Then there 
exists a compact nonempty subset T c X such that T = G(T). 

Proof. See Berge (1963, p. 113). || 

The importance of Lemma 1 lies in its implication that trajectories of a discrete 
dynamical system can be "filtered" to choose those that lie in a prescribed sequence of 
sets. That of Lemma 2 is used to establish periodic sets which are invariant with respect to 
the iterated mappings Fk. 

We proceed now to the proof: 

Proof of Theorem 3. The proof presented by Li and Yorke is based on the sequences 
{Xt} constructed according to the rules, (i) Xt is either X or F(X), and (ii) any X in the 
sequence is followed by two successive sets F(X). Since X u F(X) c F2(X) such 
sequences satisfy the requirement that Xt+1 c F(Xt). In Part A we show that a countable 
number of sequences of periodic sets can be constructed in the present more general 
setting; in Part B we show that an uncountable number of aperiodic sets can be constructed 
that satisfy the rules. 



470 REVIEW OF ECONOMIC STUDIES 

Part A. By hypothesis there exists a set X such that X r F(X) = 0 and X u F(X) c 
F2(X). Let k be a positive integer and define a sequence 

XO = F(X) 

X1 = F(X) c F2(X) = F(Xo) 

Xk-2 = F(X) c F2(X) = F(Xk_l) 

Xk- = X C F 2(X) = F(Xk-2) 

Xk = F(X) c F(Xk-l) 

Xn+k=Xn, n=0, 1,2 ... 

Let Gt:== Fix, be the restriction of F to X, as described in Lemma 1. By construction 
Go1 Gll.., Gk -1 (Xk) maps F(X) into F(X). Since F(X) is compact the 
Go Gk1 is upper semi-continuous there exists (by Lemma A2) a set Tk in X such 
that Go1 ... G* 1 * (Tk) = Tk. But this is equivalent to F k(Tk) = Tk. 

We must now guarantee that Tk is not invariant for some iterate less than k. Suppose 
the contrary. Then for some 1, F'(Tk) = TkC QcX0. Let l=k-l-m for m= 
0,..., k-2. Now F(k l Fm? (Tk) = FmF (Tk) = Fm (Tk) c Fm (Q) c Xm = F(X). 

Hence Fk l(Tk) C F(X) when m < k - 2. But Fk l(Tk)C Fk (Q) C Xk-l = X. But as 
X rn F(X) = 0, this is a contradiction. Hence Tk is k-periodic. 

Part B. Let r E (0, 1) and consider sequences {Xr} such that when n is large and there 
exist approximately nr elements Xt =X before elements Xn2 in the sequence. Such a 
sequence cannot contain any k-period sets because in that case there would be at least 
n2/k elements X in the sequence before Xn2 contradicting our assumptions. By Lemma 
Al for each r there exists an xr such that there exists a trajectory {Xtj}t?o satisfying 
x r+1 eF(xtr) and x reXt for all t. Let S: {Xr}r. This set is uncountable because the map 
r -e {Xr} is one-one. Suppose r $ s E (0, 1) and consider the distinct sequences {Xr}, {X, }. 
There exist infinite subsequences {Xr}, {X' } such that Xr O X, (either X' =X while 
Xtp = F(X) or vice versa). Let 80 = inf,X,,YeF(x) d(x, y), 8o > 0 because X nF(X) = 0. 
Hence, there exist trajectories {x }, {y ts} such that d(x, y s) > 0 for an infinite subsequence. 
Thus limt-.,, sup d (xr, y s) > 0. The remainder of the proof follows analogously. 

First version received June 1979; final version accepted November 1980 (Eds.). 
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