LLl

L

Learning and understanding
thermodynamics: a struggle against
obviousness

Dmitri V. Malakhov

Department of Materials Science
and Engineering


http://www.mcmaster.ca/home.cfm

Outline

Decarburization: let us warm up

Maximal temperature of adiabatic
combustion: do we calculate it correctly?

Influence of pressure on the molar Gibbs
energies: what does P do to G(x)?

A choice of a reference frame In the
compound energy formalism: is it unique?

An advice: stay alert, be critical
MSE: we are waiting for you



Combustion: a source of heat
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Decarburization




What causes the misfortune?

& < 12%" or, equivalently, a2 < a2
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Austenitization: interior and near-surface
region behave differently
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How can decarburization be suppressed
or eliminated?

 Kinetics (induction heating: seconds
Instead of minutes)

 Chemistry (heating in vacuum: an absence
of mediators such as H,0O, CO,, H,)

e Thermodynamics



Can the adversity be avoided?

gas steel

He < Hc

»yga{ L , air : fuel ratio, furnace design, }

nothing can be done nothing can be done

— <«

nothing can be done

1 [ T composition]

. v
nothing can be done



Terminology (fuel-dependent)

CH +20 +8N —>CO + 2H O+8N

fuel a|r flue gas
| | ° [ ] ] [ 4] : [ 4] V I
rich mixtures 10 employed “lean mixtures" __air
excess of fuel | raflo excess of air Vfuel)
high carbon activity . . . ! .. 1~ high oxygen activity

low oxygen activity ratio low carbon activity



Can decarburization be defeated by
changing the air:fuel ratio?

steel S S S
: At %™, T =900C
_ B § e

Temperature, C

Thermodynamic verdict: no way!
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Another reason prohibiting low ratios
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Temperature of adiabatic reaction
between hydrogen and oxygen

Take 0.5 mole of O,(g) and 1 moles of H,(g) at
25°C and P =1 atm. By definition, H° = 0.

Make 1 mole of H,O(g) at 25°C and put A{H®,qg
released into a heat reservolr.

Maintain P = 1 atm and use all energy stored In
the reservoir for heating 1 mole of gaseous
H,0.

Ask yourself a question: do | know how to

calculate T,,,,?
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Of course you know, but just in case...

Tmax
J C: (z-) dr = A, H ;98 Kelly's expression
p . 3
298 _ energy in reservoir Ce (T) —a+DbT + C +dT2
. v p 2
heating from 298 K T

to unknown T,.,

| Non-linear equation__|
Boring, but simple

|

max

T
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T, = 4620°C: an erroneous result
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What happens at this temperature?

Output from POLY-3, equilibrium = 1, label AO , database: SSUB3

Conditions:
N(H2)=1, N(02)=0.5, T=4893.29, P=1E5
DEGREES OF FREEDOM O

Temperature  4893.29 K ( 4620.14 C), Pressure 1.000000E+05
Number of moles of components 1.50000E+00, Mass in grams 1.80148E+01
Total Gibbs energy -1.87698E+06, Enthalpy 9.34464E+05, Volume 1.18691E+00

Component Moles M-Fraction Activity Potential Ref.stat
H2 1.0000E+00 6.6667E-01 1.7999E-12 -1.1003E+06 SER

02 5.0000E-01 3.3333E-01 2.6171E-17 -1.5534E+06 SER

GAS Status ENTERED Driving force 0.0000E+00

Moles 1.5000E+00, Mass 1.8015E+01, Volume fraction 1.0000E+00 Mole fractions:
H2 6.66667E-01 02 3.33333E-01

Constitution:
H 6.47172E-01 H101 1.20372E-02 H102 8.06924E-07
o) 3.24793E-01 02 2_.81954E-03 03 5_47919E-09

H2 1.28658E-02 H201 3.11755E-04 H202 1.44469E-09
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A dramatic difference

Output from POLY-3, equilibrium = 1, label AO , database: SSUB3
Conditions:

P=1E5, N(H2)=1, N(02)=0.5, H=0

DEGREES OF FREEDOM O

Temperature 3077.91 K ( 2804.76 C), Pressure 1.000000E+05
Number of moles of components 1.50000E+00, Mass in grams 1.80148E+01
Total Gibbs energy -1.01149E+06, Enthalpy 4.40821E-10, Volume 3.10200E-01

Component Moles M-Fraction Activity Potential Ref.stat
H2 1.0000E+00 6.6667E-01 1.2037E-10 -5.8452E+05 SER

02 5.0000E-01 3.3333E-01 3.2235E-15 -8.5394E+05 SER

GAS Status ENTERED Driving force 0.0000E+00

Moles 1.5000E+00, Mass 1.8015E+01, Volume fraction 1.0000E+00 Mole fractions:
H2 6.66667E-01 02 3.33333E-01

Constitution:

H201 5.85041E-01 H 7.70546E-02 H102 4.50911E-05
H2 1.48661E-01 02 5.06614E-02 H202 2.49697E-06
H101 1.05477E-01 O 3.30571E-02 03 1.90507E-08

T =4620°C— T =2805C

-

e 4
only H,O is considered all species are considered
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activity with respect to graphite

rbon

Cal

A less obvious fault IN our calculations
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Who said that 2:1 was the best ratio?
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20, + 8N, + nCH,
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Fuel & oxidizer? Yes, but ratio as well!
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| taught many thermodynamics-related
courses

.
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Shewmon “Transformations in metals”

,lSqubility of fine 8 spheres in «
/

!
)

0 Npg 1

figure 4-10. Free-energy diagram and phase diagram indicating change in solubility
of 8, and eutectoid temperature when 8 is present as fine spheres (labeled 8’).
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Porter, Easterling “Phase
transformations in metals and alloys”

(b)

Xg—>

Fig. 5.20 The Gibbs-Thomson effect. (a) Free energy curves at T,. (b) Corres-
ponding phase diagram.
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Hillert “Applications of Gibbs energy-
composition diagrams”

when a pressure is applied to one of
the phases in a two-phase
equilibrium.
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Rationale

(@j Y
8P T alwaysTositive

U

If P increases, then G moves upward
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Liquid/BCC equilibrium in the Fe—LlI

system
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T =1000 K, reference states are pure
liguid Fe and pure liguid LI
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T =1000 K, reference states are pure
BCC Fe and pure BCC Lli
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T = 1000 K, “standard element
SEeferences” (SGTE)
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Not G per se, but AG!

)

(OA,G

. OP

V

-

always positive

T

= AV
?
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Let us make a phase y from pure

components

(1-x)A* +xB’

-~
‘ mechanical mixture

A%G =(1-X)A, G + XA, G

l

(1-x)A" + xB’

A*G =RT[(1-x)In(1-x)+xInx]

= A"G



Reference states are pure liquid
components

AG" =(1-x)A,G " +xA,Gg 7t + AGh + A%GE
T T ;tfv(P) ﬁf—if(P)

AG* =(1-x)A,G-" + XA,Gg - + AG* + A¥G*
#f(P) =f(P)

((MGLJ B
[aAGaj B (aA GOL—)aj [aA GOL—m]
T aP T

-x)(vE -vE) e x(vg ) <O V="

usually negative usually negative

Why “usually”? Because there are rare exceptions such as H,O, Bi, Sb, cast iron

32



What does this mean?!

©®

AG" does not change its position

AG*® shifts downward by [(1— x)(VAL —V,f‘)+ x(VBL —VB“)] x P

The solid phase a is stabilized by pressure applied

33



Now reference states are pure solid
components

AG" =(1-x)A,G“7" + XA, Gt + A“G" + A¥G"

#f(P) #f(P)

AG* =(1-Xx)A,Gp*"" + XA, Gp? " + A“G* + A%G*

=0 =0 #f(P) #1(P)

L Oa—L Oa—L
0AGH) _ (1[G L [5G
oP ) P ) P ) V, =

= (L=x)(Va =V )+ x(Vg =Vg ) >0

usually positive usually positive



What's going on?!
A
e
&

AG* does not change its position

AG" shifts upward by [(1— x)(VAL —V,j‘)+ x(VBL —VBO‘)] x P

The liguid phase is destabilized by pressure applied
35



Reference states are pure liquid
components

AG" does not change its position,
AG* shifts downward by AG*® does not change its position,

AG" shifts upward by
1-x)(VE=Ve)+ x(VE-ve)[x P
[( X)( A A)+X( B B)}X ] |:(1—X)<VA|\__V:)+X(VBL_VBa)]XP

-~
our result

T |

In terms of relative positions, these 3 situations are identical

\4

AG“ shifts upward by | (1—x)V, +xVg' [x P

AG" shifts upward by | (1—x)V,x + XV [x P

36



Reference states are pure solid
components

AG® does not change its position, ) _ B
AG" shifts upward by AG" does not change its position,

AG* shifts downward by
1-x)(Vy =V2 Vo =V [xP
[( X)( A A)+X( B B)]x J [(1_X)<VAL _V:)JFX(VBL _VBa)]Xp

-
our result

T T

In terms of relative positions, these 3 situations are identical

\4

AG“ shifts upward by | (1—x)V, +xVg' [x P

AG" shifts upward by | (1—x)V,x + XV [x P
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Shewmon “Transformations in metals

4-6 Consider a system in which four phases exist with a G(/Vg) diagram as shown in
Fig. 4-13. Show the phase diagram that results if the free energy of the «, 8, and %
phases decreases relative to that of the liquid as the temperature is decreased. Do
this by first showing the G(/Vg) diagram for several lower temperatures.

G

A B
figure 4-13
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Home task: not G, but AG!
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Retrograde solubility
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Making an excusable mistake

Steel contains 0.4 wt.% of C

i

A. =12.011g/mole
A.. =55.847 g/mole

i

X ~ 0.0183

l

|:eO.9817 CO.0183

l

S = _R(0.98171n0.9817 + 0.01831n0.0183) ~ 0.761—

K'xmole

-
a wrong result
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o-Fe (ferrite) and o-Fe

@® metal-Atom
O atom in octahedral interstice

@® metal-Atom
O atom in tetrahedral interstice
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v-Fe (austenite)

@ metal atom
O atom in octahedral interstice

av/3/4

@ metal atom
O atom in tetrahedral interstice
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Correcting the mistake

BCC:(Fe),(C,, Va,), FCC:(Fe),(C,, Va,),
- 3(1—{1) _3-3y . 1—£ 1-y
° T 1+3(1-y) 4-3y © o 1+(l-y) 2-y
Xc = 3.0183 Xe = 3.0183
(Fe), (Co.oiz Ya0_9938 ) (Fe), (Co.oi Ya0_9813)
S mixingote g

st oo 5 oTommrar
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Sublattice model (CEF)

(A’B)a(C’D)c’&a_FS:l' For the sake >(A,B)(C,D)

beneficial of simplicity

(As,B,)(C...D,)

(Na;_y, K;)(Clg_z, Br;)

o  \o J
Vo V

(Srj*, Baz*,La>, , _,Va’ ) (Tif_*y Va’ ) oy

. J . J/

\f_ '
A-cite B-cite

(1-y)A+yB+(1-z)C+zD—(A,,.B,)(C,,.D,)
45



Another way to synthesize the phase
(1-y)A+yB+(1-z)C+1zD

> aAC + BAD + yBC + 5BD

\ 4
>(A.,.B,)(C.,.D,)

46




Playing field

(A.B),(C.D),

)

Compounds

a.k.a.

end-members AdCe —: @

F1g. 1. Representation of composition in a

quaternary system where the components
mix with each other, two and two.
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Hillert’'s suggestion was based on a
powerful KISS principle

aAC+ BAD +yBC+6BD — (A, ,,B,)(C,,.D,)

(1-y)(1-z)AC+(1-y)zAD
+y(1-2z)BC+yzBD — (Al_y, By)(Cl—z’ D.)

A (1I-y)(1-z)+(1-y)z

48



Reference surface, not reference line or
plane or hyperplane

Fig. 2. Suggested surface of reference for

the free energy in a quaternary system

where the components mix with each other
two and two.
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What's about unigueness?

aAC+ BAD +yBC+5BD — (A, ,,B,)(C,,.D,)

( 1(1 100
A a+p=1-y 200 0 1 1
S Ao 101
C +y=1-1
“rr 1-3=(0 1 -1 0)
D ft+o=1 (0 1 -1 0)+2=(0 1 0 1)
rank =3
4-3=1

Hillert's choice was the simplest and most convenient one
50



Tikhonov regularization

{x1+x2 =1
X, + X, =1

1 1) (%) (1 1
1 1)\x,) 1 |Ax-b|" > min  x=(ATA)" A

But what if A is ill-conditioned or singular?

2 2 .
|Ax=b[f +|Tx[ 5> minT= o x I
regularization  identity
parameter matrix

x(a)=(ATA+T'T) Ab

51



Solution

How does it work?

X + X, =1 . BN
{X1+X2:1 x(a)=(ATA+I'T) Ab

0.5

What is so special

0.44 about X, =X, = 0.5?
0.3- X+ X, = 1
IX +X, =1
0.2 , , _
arge « \X1 + X2 —> MIn
distorted

019 small «
undistorted
system

system

OO T T I T I
1E-4 1E-3 0.01 0.1 1 10 100

Regularization parameter «
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Let us choose a particular solution
possessing the minimal norm

aAC+ BAD +yBC+5BD — (A, ,,B,)(C,,.D,)

a+f=1-y

y+o=Yy

a+y=1-12

L+o=1

a’ + B+ v +0° > min
a=20,$20,720,020

53
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An interesting “side effect”
aAC+ BAD +yBC+5BD — (A, ,.B,)(C,,.D,)

A Z

AD BD

a#0,#0,y#0,0#0
AC, AD, BC, BD are all needed

AC BC



Are all end-members always needed?
Az

AD BD

Is BD needed?

y

>

AC BC
aAC+ BAD +yBC+5BD —(A,_,.B,)(C,,.D,)

-y* =y

S7



Only three compounds are required

aAC+ BAD +yBC — (A, B, )(C,,.D,)

-

a+p=1-y
y=Y

oA % >

(1-y-z)AC+zAD+YyBC—(A,,.B,)(C,,.D,)

58



Non-negativity condition
(1-y-z)AC+zAD+YyBC—(A,,,B,)(C,,.D,)

l1-y-z>20=>y+z<1

A Z
AD BD

y+z<1

V<

AC BC



Another particular solution
aAC+ BAD +yBC+5BD — (A, ,,B,)(C,,.D,)

a+p=1-y

yro=y

a+y=1-12

p+0=1

o’ + B2+ y° +6° = min
a2>0,£20,720,620

9

(a+p=1-y
y+o=y

a+y=1-12

L+o=1

min(«, B, y,8)— min

@>0,820,7>0,5>0
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