Mining in geographic data

Original slides:Raymond J. Mooney University of Texas at Austin

What is Learning?

- Herbert Simon: "Learning is any process by which a system improves performance from experience."
- What is the task?
 - Classification
 - Problem solving / planning / control

Classification

- Assign object/event to one of a given finite set of categories.
 - Medical diagnosis
 - Credit card applications or transactions
 - Fraud detection in e-commerce
 - Worm detection in network packets
 - Spam filtering in email
 - Recommended articles in a newspaper
 - Recommended books, movies, music, or jokes
 - Financial investments
 - DNA sequences
 - Spoken words
 - Handwritten letters
 - Astronomical images

Measuring Performance

- Classification Accuracy
- Solution correctness
- Solution quality (length, efficiency)
- Speed of performance

Why Study Machine Learning? Engineering Better Computing Systems

- Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills or knowledge tuned to a specific task (*knowledge engineering bottleneck*).
- Develop systems that can automatically adapt and customize themselves to individual users.
 - Personalized news or mail filter
 - Personalized tutoring
- Discover new knowledge from large databases (*data mining*).
 - Market basket analysis (e.g. diapers and beer)
 - Medical text mining (e.g. migraines to calcium channel blockers to magnesium)

Why Study Machine Learning? The Time is Ripe

- Many basic effective and efficient algorithms available.
- Large amounts of on-line data available.
- Large amounts of computational resources available.

Related Disciplines

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

Defining the Learning Task

Improve on task, T, with respect to

performance metric, P, based on experience, E.

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Designing a Learning System

- Choose the training experience
- Choose exactly what is too be learned, i.e. the *target function*.
- Choose how to represent the target function.
- Choose a learning algorithm to infer the target function from the experience.

Training vs. Test Distribution

• Generally assume that the training and test examples are independently drawn from the same overall distribution of data.

- IID: Independently and identically distributed

Choosing a Target Function

- What function is to be learned and how will it be used by the performance system?
- For checkers, assume we are given a function for generating the legal moves for a given board position and want to decide the best move.
 - Could learn a function:
 - ChooseMove(board, legal-moves) \rightarrow best-move
 - Or could learn an *evaluation function*, $V(\text{board}) \rightarrow \mathbb{R}$, that gives each board position a score for how favorable it is. V can be used to pick a move by applying each legal move, scoring the resulting board position, and choosing the move that results in the highest scoring board position.

Ideal Definition of *V*(*b*)

- If *b* is a final winning board, then V(b) = 100
- If *b* is a final losing board, then V(b) = -100
- If *b* is a final draw board, then V(b) = 0
- Otherwise, then V(b) = V(b), where *b* is the highest scoring final board position that is achieved starting from *b* and playing optimally until the end of the game (assuming the opponent plays optimally as well).
 - Can be computed using complete mini-max search of the finite game tree.

Approximating V(b)

- Computing *V*(*b*) is intractable since it involves searching the complete exponential game tree.
- Therefore, this definition is said to be *non-operational*.
- An *operational* definition can be computed in reasonable (polynomial) time.
- Need to learn an operational *approximation* to the ideal evaluation function.

Representing the Target Function

- Target function can be represented in many ways: lookup table, symbolic rules, numerical function, neural network.
- There is a trade-off between the expressiveness of a representation and the ease of learning.
- The more expressive a representation, the better it will be at approximating an arbitrary function; however, the more examples will be needed to learn an accurate function.

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation of Learning Systems

- Experimental
 - Conduct controlled cross-validation experiments to compare various methods on a variety of benchmark datasets.
 - Gather data on their performance, e.g. test accuracy, training-time, testing-time.
 - Analyze differences for statistical significance.
- Theoretical
 - Analyze algorithms mathematically and prove theorems about their:
 - Computational complexity
 - Ability to fit training data
 - Sample complexity (number of training examples needed to learn an accurate function)

History of Machine Learning

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium
- 1960s:
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

History of Machine Learning (cont.)

- 1980s:
 - Advanced decision tree and rule learning
 - Explanation-based Learning (EBL)
 - Learning and planning and problem solving
 - Utility problem
 - Analogy
 - Cognitive architectures
 - Resurgence of neural networks (connectionism, backpropagation)
 - Valiant's PAC Learning Theory
 - Focus on experimental methodology
- 1990s
 - Data mining
 - Adaptive software agents and web applications
 - Text learning
 - Reinforcement learning (RL)
 - Inductive Logic Programming (ILP)
 - Ensembles: Bagging, Boosting, and Stacking
 - Bayes Net learning

History of Machine Learning (cont.)

- 2000s
 - Support vector machines
 - Kernel methods
 - Graphical models
 - Statistical relational learning
 - Transfer learning
 - Sequence labeling
 - Collective classification and structured outputs
 - Computer Systems Applications
 - Compilers
 - Debugging
 - Graphics
 - Security (intrusion, virus, and worm detection)
 - Email management
 - Personalized assistants that learn
 - Learning in robotics and vision