Mining in geographic data

Original slides:Raymond J. Mooney
University of Texas at Austin



What 1s Learning?

* Herbert Simon: “Learning 1s any process by
which a system improves performance from
experience.”

 What is the task?

— Classification

— Problem solving / planning / control



Classification

« Assign object/event to one of a given finite set of
categories.
— Medical diagnosis
— Credit card applications or transactions
— Fraud detection in e-commerce
— Worm detection in network packets
— Spam filtering in email
— Recommended articles in a newspaper
— Recommended books, movies, music, or jokes
— Financial investments
— DNA sequences
— Spoken words
— Handwritten letters
— Astronomical images



Measuring Performance

Classification Accuracy

Solution correctness

Solution quality (length, efficiency)
Speed of performance



Why Study Machine Learning?
Engineering Better Computing Systems

* Develop systems that are too difficult/expensive to
construct manually because they require specific detailed
skills or knowledge tuned to a specific task (knowledge
engineering bottleneck).

* Develop systems that can automatically adapt and
customize themselves to individual users.
— Personalized news or mail filter
— Personalized tutoring

* Discover new knowledge from large databases (data
mining).
— Market basket analysis (e.g. diapers and beer)

— Medical text mining (e.g. migraines to calcium channel blockers to
magnesium)



Why Study Machine Learning?
The Time 1s Ripe

* Many basic effective and efficient
algorithms available.
» Large amounts of on-line data available.

« Large amounts of computational resources
available.



Related Disciplines

Artificial Intelligence

Data Mining

Probability and Statistics
Information theory

Numerical optimization
Computational complexity theory
Control theory (adaptive)
Psychology (developmental, cognitive)
Neurobiology

Linguistics

Philosophy



Defining the Learning Task

Improve on task, T, with respect to

performance metric, P, based on experience, E.

: Playing checkers
: Percentage of games won against an arbitrary opponent
: Playing practice games against itself

: Recognizing hand-written words
: Percentage of words correctly classified
: Database of human-labeled images of handwritten words

: Driving on four-lane highways using vision sensors

: Average distance traveled before a human-judged error

: A sequence of images and steering commands recorded while
observing a human driver.

mov—- mov—- @Y

: Categorize email messages as spam or legitimate.
: Percentage of email messages correctly classified.
: Database of emails, some with human-given labels

M o —



Designing a Learning System

Choose the training experience

Choose exactly what is too be learned, 1.e. the
target function.

Choose how to represent the target function.

Choose a learning algorithm to infer the target
function from the experience.

Environment/
Experience

Knowledge



Training vs. Test Distribution

* Generally assume that the training and test
examples are independently drawn from the
same overall distribution of data.

— IID: Independently and i1dentically distributed

10



Choosing a Target Function

 What function 1s to be learned and how will it be
used by the performance system?

* For checkers, assume we are given a function for
generating the legal moves for a given board position
and want to decide the best move.

— Could learn a function:
ChooseMove(board, legal-moves) — best-move

— Or could learn an evaluation function, V(board) — R, that
gives each board position a score for how favorable it 1s. V'
can be used to pick a move by applying each legal move,
scoring the resulting board position, and choosing the
move that results in the highest scoring board position.

11



Ideal Definition of V(b))

If b 1s a final winning board, then V(5) = 100
If b 1s a final losing board, then V(b) =—-100
If b 1s a final draw board, then V(b) =0

Otherwise, then V(b) = V(b ), where b 1s the
highest scoring final board position that 1s achieved
starting from b and playing optimally until the end
of the game (assuming the opponent plays
optimally as well).

— Can be computed using complete mini-max search of the
finite game tree.

12



Approximating V(b)

» Computing V(b) 1s intractable since it
involves searching the complete exponential
game ftree.

e Therefore, this definition 1s said to be non-
operational.

* An operational definition can be computed
in reasonable (polynomial) time.

* Need to learn an operational approximation
to the i1deal evaluation function.

13



Representing the Target Function

» Target function can be represented in many ways:
lookup table, symbolic rules, numerical function,
neural network.

* There 1s a trade-off between the expressiveness of
a representation and the ease of learning.

» The more expressive a representation, the better it
will be at approximating an arbitrary function;
however, the more examples will be needed to
learn an accurate function.

14



Lessons Learned about Learning

* Learning can be viewed as using direct or indirect
experience to approximate a chosen target
function.

* Function approximation can be viewed as a search
through a space of hypotheses (representations of
functions) for one that best fits a set of training
data.

 Different learning methods assume different
hypothesis spaces (representation languages)
and/or employ different search techniques.

15



Various Function Representations

* Numerical functions
— Linear regression
— Neural networks
— Support vector machines
« Symbolic functions
— Decision trees
— Rules in propositional logic
— Rules in first-order predicate logic
 Instance-based functions
— Nearest-neighbor
— Case-based
* Probabilistic Graphical Models
— Naive Bayes
— Bayesian networks
— Hidden-Markov Models (HMMs)
— Probabilistic Context Free Grammars (PCFGs)
— Markov networks

16



Various Search Algorithms

* Gradient descent
— Perceptron
— Backpropagation
e Dynamic Programming
— HMM Learning
— PCFG Learning

e Divide and Conquer
— Decision tree induction
— Rule learning

* Evolutionary Computation
— Genetic Algorithms (GAs)

— Genetic Programming (GP)
— Neuro-evolution

17



Evaluation of Learning Systems

* Experimental

— Conduct controlled cross-validation experiments to
compare various methods on a variety of benchmark
datasets.

— QGather data on their performance, e.g. test accuracy,
training-time, testing-time.
— Analyze differences for statistical significance.

* Theoretical

— Analyze algorithms mathematically and prove theorems
about their:
e Computational complexity
 Ability to fit training data

« Sample complexity (number of training examples needed to
learn an accurate function)

18



History of Machine Learning

1950s

— Samuel’s checker player
— Selfridge’s Pandemonium

1960s:
— Neural networks: Perceptron
— Pattern recognition
— Learning in the limit theory
— Minsky and Papert prove limitations of Perceptron

1970s:
— Symbolic concept induction
— Winston’s arch learner
— Expert systems and the knowledge acquisition bottleneck
— Quinlan’s ID3
— Michalski’s AQ and soybean diagnosis
— Scientific discovery with BACON
— Mathematical discovery with AM

19



History of Machine Learning (cont.)

1980s:

— Advanced decision tree and rule learning

— Explanation-based Learning (EBL)

— Learning and planning and problem solving

— Utility problem

— Analogy

— Cognitive architectures

— Resurgence of neural networks (connectionism, backpropagation)
— Valiant’s PAC Learning Theory

Focus on experimental methodology

1990s
— Data mining
— Adaptive software agents and web applications
— Text learning
— Reinforcement learning (RL)
— Inductive Logic Programming (ILP)
— Ensembles: Bagging, Boosting, and Stacking
— Bayes Net learning

20



History of Machine Learning (cont.)

2000s

— Support vector machines

— Kernel methods

— @Graphical models

— Statistical relational learning

— Transfer learning

— Sequence labeling

— Collective classification and structured outputs

— Computer Systems Applications

« Compilers

* Debugging

* Graphics

* Security (intrusion, virus, and worm detection)
— Email management
— Personalized assistants that learn

— Learning in robotics and vision

21



