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Sample Category Learning Problem

• Instance language: <size, color, shape>

– size {small, medium, large}

– color {red, blue, green}

– shape {square, circle, triangle}

• C = {positive, negative}

• D:
Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Classification (Categorization)

• Given:

– A description of an instance, x X, where X is the instance 

language or instance space.

– A fixed set of categories: C={c1, c2,…cn}

• Determine:

– The category of x: c(x) C, where c(x) is a categorization function 

whose domain is X and whose range is C.

– If c(x) is a binary function C={0,1} ({true,false}, {positive, 

negative}) then it is called a concept.
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Learning for Categorization

• A training example is an instance x X, 

paired with its correct category c(x):         

<x, c(x)> for an unknown categorization 

function, c. 

• Given a set of training examples, D.

• Find a hypothesized categorization function, 

h(x), such that:

)()(: )(, xcxhDxcx
Consistency
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Hypothesis Selection

• Many hypotheses are usually consistent with the 

training data.

– red & circle

– (small & circle) or (large & red) 

– (small & red & circle) or (large & red & circle)

– not [ ( red & triangle) or (blue & circle) ]

– not [ ( small & red & triangle) or (large & blue & circle) ]

• Bias

– Any criteria other than consistency with the training data 

that is used to select a hypothesis.
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Generalization

• Hypotheses must generalize to correctly 

classify instances not in the training data.

• Simply memorizing training examples is a 

consistent hypothesis that does not 

generalize.

• Occam’s razor:

– Finding a simple hypothesis helps ensure 

generalization.
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Hypothesis Space

• Restrict learned functions a priori to a given hypothesis 
space, H, of functions h(x) that can be considered as 
definitions of c(x).

• For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive 
hypotheses represented by a vector of n constraints

<c1, c2, … cn> where each ci is either:
– ?, a wild card indicating no constraint on the ith feature

– A specific value from the domain of the ith feature

– Ø indicating no value is acceptable

• Sample conjunctive hypotheses are
– <big, red, ?>

– <?, ?, ?> (most general hypothesis)

– < Ø, Ø, Ø> (most specific hypothesis)
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Inductive Learning Hypothesis

• Any function that is found to approximate the target 
concept well on a sufficiently large set of training 
examples will also approximate the target function well on 
unobserved examples.

• Assumes that the training and test examples are drawn 
independently from the same underlying distribution.

• This is a fundamentally unprovable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory).
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Evaluation of Classification Learning

• Classification accuracy (% of instances 

classified correctly).

– Measured on an independent test data.

• Training time (efficiency of training 

algorithm).

• Testing time (efficiency of subsequent 

classification).
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Category Learning as Search

• Category learning can be viewed as searching the 
hypothesis space for one (or more) hypotheses that are 
consistent with the training data.

• Consider an instance space consisting of n binary features 
which therefore has 2n instances.

• For conjunctive hypotheses, there are 4 choices for each 
feature: Ø, T, F, ?, so there are 4n syntactically distinct 
hypotheses.

• However, all hypotheses with 1 or more Øs are equivalent, 
so there are 3n+1 semantically distinct hypotheses.

• The target binary categorization function in principle could 
be any of the possible 22^n functions on n input bits.

• Therefore, conjunctive hypotheses are a small subset of the 
space of possible functions, but both are intractably large.

• All reasonable hypothesis spaces are intractably large or 
even infinite.
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Learning by Enumeration

• For any finite or countably infinite hypothesis 
space, one can simply enumerate and test 
hypotheses one at a time until a consistent one is 
found.

For each h in H do:  

If h is consistent with the training data D,

then terminate and return h.

• This algorithm is guaranteed to terminate with a 
consistent hypothesis if one exists; however, it is 
obviously computationally intractable for almost 
any practical problem.
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Efficient Learning

• Is there a way to learn conjunctive concepts 
without enumerating them?

• How do human subjects learn conjunctive 
concepts?

• Is there a way to efficiently find an 
unconstrained boolean function consistent 
with a set of discrete-valued training 
instances?

• If so, is it a useful/practical algorithm?
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Sample Category Learning Problem

• Instance language: <size, color, shape>

– size {small, medium, large}

– color {red, blue, green}

– shape {square, circle, triangle}

• C = {positive, negative}

• D:
Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Sample Generalization Lattice

< Ø, Ø, Ø>

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>  

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr}

Number of hypotheses = 33 + 1 = 28


