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Decision Tree Learning
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Decision Trees

• Tree-based classifiers for instances represented as feature-vectors.  
Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category.

• Can represent arbitrary conjunction and disjunction. Can represent any 
classification function over discrete feature vectors.

• Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).
– red circle → pos

– red circle → A

blue → B;  red square → B

green → C;   red triangle → C

color

red blue
green

shape

circle square triangle

neg pos

pos neg neg

color

red blue
green

shape

circle square triangle

B C

A B C
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Properties of Decision Tree Learning

• Continuous (real-valued) features can be handled by 
allowing nodes to split a real valued feature into two 
ranges based on a threshold (e.g. length < 3 and length 3)

• Classification trees have discrete class labels at the leaves, 
regression trees allow real-valued outputs at the leaves.

• Algorithms for finding consistent trees are efficient for 
processing large amounts of training data for data mining 
tasks.

• Methods developed for handling noisy training data (both 
class and feature noise).

• Methods developed for handling missing feature values.
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Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: <big, blue, circle>: 

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: 
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shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: <big, blue, circle>: 

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: 

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

pos
<small, red, square>: 

neg pos

<big, blue, circle>: 
neg neg
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Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree

If all examples are in one category, return a leaf node with that category label.

Else if the set of features is empty, return a leaf node with the category label that

is the most common in examples.

Else pick a feature F and create a node R for it

For each possible value vi of F:

Let examplesi be the subset of examples that have value vi for F

Add an out-going edge E to node R labeled with the value vi.

If examplesi is empty

then attach a leaf node to edge E labeled with the category that

is the most common in examples.

else call DTree(examplesi , features – {F}) and attach the resulting

tree as the subtree under edge E.

Return the subtree rooted at R.
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Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, 
per Occam’s razor.

• Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem.

• Top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest.
– General lesson in ML:  “Greed is good.”

• Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” 
to being leaf nodes.

• There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).
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Entropy

• Entropy (disorder, impurity) of a set of examples, S, relative to a binary 

classification is:

where p1 is the fraction of positive examples in S and p0 is the fraction 

of negatives.

• If all examples are in one category, entropy is zero (we define 

0 log(0)=0)

• If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.

• Entropy can be viewed as the number of bits required on average to 

encode the class of an example in S where data compression (e.g. 

Huffman coding) is used to give shorter codes to more likely cases.

• For multi-class problems with c categories, entropy generalizes to:
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Entropy Plot for Binary Classification
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Information Gain

• The information gain of a feature F is the expected reduction in 

entropy resulting from splitting on this feature.

where Sv is the subset of S having value v for feature F.

• Entropy of each resulting subset weighted by its relative size.

• Example:

– <big, red, circle>: +          <small, red, circle>: +

– <small, red, square>: <big, blue, circle>: 

)()(),(
)(

v
FValuesv

v SEntropy
S
SSEntropyFSGain

2+, 2 : E=1

size

big          small

1+,1 1+,1

E=1        E=1

Gain=1 (0.5 1 + 0.5 1) = 0

2+, 2 : E=1

color

red          blue

2+,1 0+,1

E=0.918   E=0

Gain=1 (0.75 0.918 +

0.25 0) = 0.311

2+, 2 : E=1

shape

circle      square

2+,1 0+,1

E=0.918   E=0

Gain=1 (0.75 0.918 +

0.25 0) = 0.311
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Hypothesis Space Search

• Performs batch learning that processes all training 
instances at once rather than incremental learning
that updates a hypothesis after each example.

• Performs hill-climbing (greedy search) that may 
only find a locally-optimal solution. Guaranteed to 
find a tree consistent with any conflict-free 
training set (i.e. identical feature vectors always 
assigned the same class), but not necessarily the 
simplest tree.

• Finds a single discrete hypothesis, so there is no 
way to provide confidences or create useful 
queries.
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Bias in Decision-Tree Induction

• Information-gain gives a bias for trees with 

minimal depth.

• Implements a search (preference) bias 

instead of a language (restriction) bias.



13

History of Decision-Tree Research

• Hunt and colleagues use exhaustive search decision-tree 
methods (CLS) to model human concept learning in the 
1960’s.

• In the late 70’s, Quinlan developed ID3 with the 
information gain heuristic to learn expert systems from 
examples.

• Simulataneously, Breiman and Friedman and colleagues 
develop CART (Classification and Regression Trees), 
similar to ID3.

• In the 1980’s a variety of improvements are introduced to 
handle noise, continuous features, missing features, and 
improved splitting criteria. Various expert-system 
development tools results.

• Quinlan’s updated decision-tree package (C4.5) released in 
1993.

• Weka includes Java version of C4.5 called J48.
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Overfitting Prevention (Pruning) Methods

• Two basic approaches for decision trees
– Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 
reliable decisions.

– Postpruning: Grow the full tree, then remove subtrees that do not 
have sufficient evidence.

• Label leaf resulting from pruning with the majority class of 
the remaining data, or a class probability distribution. 

• Method for determining which subtrees to prune:
– Cross-validation: Reserve some training data as a hold-out set 

(validation set, tuning set) to evaluate utility of subtrees.

– Statistical test: Use a statistical test on the training data to 
determine if any observed regularity can be dismisses as likely due 
to random chance.

– Minimum description length (MDL): Determine if the additional 
complexity of the hypothesis is less complex than just explicitly 
remembering any exceptions resulting from pruning.
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Reduced Error Pruning

• A post-pruning, cross-validation approach.

Partition training data in “grow” and “validation” sets.

Build a complete tree from the “grow” data.

Until accuracy on validation set decreases do:

For each non-leaf node, n, in the tree do:

Temporarily prune the subtree below n and replace it with a

leaf labeled with the current majority class at that node.

Measure and record the accuracy of the pruned tree on the validation set.

Permanently prune the node that results in the greatest increase in accuracy on

the validation set.


