Wild Type Never-ripe ## **Ethylene biosynthesis** Expression analysis of ACS ## Transcriptional regulation of ACS expression #### **Auxin** ### Wounding ## Mutant screens for ethylene pathway genes ## Screen for ethylene mutants I. Genes involved in regulation of biosynthesis #### hls1-1/ethylene aux1-21/ethylene Wild type/air eir1-1/ethylene Wild type/ethylene eto1-1/air ctr1-1/air ein6/ethylene ein7/ethylene ein4/ethylene ein5-1/ethylene etr1-3/ethylene ein2-1/ethylene ein3-1/ethylene Roman et al., 1994 phenotype rescued by inhibitor of ethylene biosynthesis ## eto mutants – constitutive triple response - overproduction of ethylene ## eto2,eto3 dominant mutation results from single amino acid change in the C terminus ACS5,ACS9 | ACS4 | 457 | VSNWVFRLSFHDREAEER | |------|-----|--------------------| | ACS8 | 452 | VSNWVFRLSFHDREPEER | | eto2 | 453 | VSNWVFpgfmdrsct | | ACS5 | 453 | VSNWVFRVSWTDRVPDER | | ACS9 | 453 | VSNWVFRVSWTDRVPDER | | eto3 | 453 | VSNWDFRVSWTDRVPDER | | | | * 1 | #### eto3 mutation does not affect level of ACS9 mRNA | Table 1. Levels of ACS9 mRNA in Wild-Type and eto3 Seedling | Table | 1. Levels of ACS9 mRNA in | Wild-Type | and eto3 Seedling | |--|-------|---------------------------|-----------|-------------------| |--|-------|---------------------------|-----------|-------------------| | Sample | C _T nor (Experiment 1) ^a | C _T nor (Experiment 2) | C _T nor (Experiment 3) | C _T nor (mean ± SD) | ACS9 mRNAb | |-----------|--|-----------------------------------|-----------------------------------|--------------------------------|------------| | Wild type | 6.95 | 6.36 | 6.53 | 6.61 ± 0.30 | 1.0 | | eto2 | 7.23 | 6.99 | 6.07 | 6.76 ± 0.61 | 0.9 | #### eto2 mutation does not affect specific activity of ACS5 # Effect of *eto2* mutation on ACS5 protein stability Posttranscritpional regulation of ACS ## Eto1- recesive mutant with constitutive triple response ## ETO1 interacts with ACS5 and regulates its activity RGS-ETO1 ETO1 (input) 0.88 0.25Ratio (Co-IP/ input) GST-IACS5 no.1 no.2 no.3 no.4 no.5 35S::ETO1 ## ETO1 promotes ACS5 degradation through proteasome dependent pathway # Model for regulation of ethylene biosynthesis by ETO1 ## Screen for ethylene mutants II. Genes invoved in signalling pathway Roman et al., 1994 | | Ecotype | Phenotype ^b | | |-------------------------|---------------|---|--| | A. Strains ^a | | | | | aux1-7 | Columbia | Aux ⁻ | | | aux1-2I | Columbia | Aux | | | aux1-22 | Columbia | Aux ⁻ | | | + ctr1-1 | Columbia | Ctr ⁻ | | | ctr1-5 | Wassilewskija | Ctr ⁻ , kan ^r | | | * ein2-1 | Columbia | Ein ⁻ | | | ein2-6 | Wassilewskija | Ein ⁻ | | | * ein3-1 | Columbia | Ein ⁻ | | | ein3-2 | Wassilewskija | Ein ⁻ , kan ^r | | | * ein4 | Columbia | \mathbf{Ein}^- | | | ein5-1 | Columbia | Ein ⁻ | | | ein5-2 | Columbia | Ein ⁻ | | | ein6 | Landsberg | Ein- | | | ein 7 | Columbia | Ein ⁻ | | | eir1-1 | Columbia | Eir ⁻ | | | eir1-2 | Columbia | Eir ⁻ | | | eto1-1 | Columbia | Eto ⁻ | | | * etr1-3 | Columbia | Ein ⁻ | | | hls1-1 | Columbia | Hls" | | | ein2-1 tt4 | Mixed | Ein ⁻ , Tt ⁻ | | | eir1-1 ap1 | Mixed | Eir ⁻ , Ap ⁻ | | | DP28 | Landsberg | Dis ⁻ , Clv ⁻ , Tt ⁻ | | | W2 | Landsberg | Dis ⁻ , An ⁻ | | | W100 | Landsberg | Tt^{-} , and more | | | M10 | Landsberg | Ap ⁻ , Clv ⁻ | | Roman et al., 1994 #### Quantifying the ethylene response phenotype | | | Ethy | lene | | | A | ir | | |--------------|----------------|---------------------|-------------------|---------------|-----------------|---------------------|------------------|---------------| | Strain | Root
length | Hypocotyl
length | Total
seedling | Hook
angle | Root
length | Hypocotyl
length | Total
seeding | Hook
angle | | Columbia | 1.5 ± 0.1 | 3.0 ± 0.1 | 4.5 ± 0.1 | 250 ± 8 | 3.9 ± 0.2 | 4.8 ± 0.1 | 8.7 ± 0.2 | 114 ± 9 | | Landsberg | 2.1 ± 0.1 | 2.7 ± 0.1 | 4.8 ± 0.1 | 233 ± 18 | \mathbf{nd}^b | nd | \mathbf{nd} | \mathbf{nd} | | Wasslewskija | 1.0 ± 0.1 | 3.1 ± 0.1 | 4.1 ± 0.1 | 270 ± 6 | 4.0 ± 0.2 | 6.1 ± 0.1 | 10.1 ± 0.2 | 166 ± 7 | | aux1-21 | 4.7 ± 0.2 | 3.4 ± 0.1 | 8.1 ± 0.3 | 197 ± 8 | 6.3 ± 0.3 | 6.0 ± 0.1 | 12.3 ± 0.3 | 126 ± 6 | | ctr1-1 | 0.8 ± 0.0 | 2.8 ± 0.1 | 3.6 ± 0.1 | 247 ± 5 | 0.9 ± 0.0 | 3.1 ± 0.1 | 4.0 ± 01 | 246 ± 10 | | ctr1-5 | 0.4 ± 0.0 | 1.9 ± 0.1 | 2.3 ± 0.1 | 252 ± 5 | 0.6 ± 0.0 | 2.4 ± 0.1 | 3.0 ± 0.1 | 237 ± 8 | | ein2-1 | 6.1 ± 0.2 | 6.5 ± 0.2 | 12.6 ± 0.2 | 39 ± 4 | 5.8 ± 0.2 | 6.9 ± 0.2 | 12.7 ± 0.3 | 43 ± 7 | | ein3-1 | 3.6 ± 0.1 | 5.2 ± 0.1 | 8.8 ± 0.2 | 118 ± 7 | 5.4 ± 0.3 | 5.9 ± 0.1 | 11.3 ± 0.4 | 77 ± 7 | | ein3-2 | 3.1 ± 0.1 | 5.5 ± 0.1 | 8.5 ± 0.2 | 176 ± 6 | 5.2 ± 0.3 | 6.3 ± 0.2 | 11.4 ± 0.3 | 152 ± 8 | | ein4 | 7.1 ± 0.2 | 7.3 ± 0.3 | 14.4 ± 0.3 | 64 ± 9 | 6.8 ± 0.3 | 6.9 ± 0.3 | 13.7 ± 0.4 | 45 ± 5 | | ein5-1 | 2.5 ± 0.1 | 4.8 ± 0.1 | 7.3 ± 0.1 | 144 ± 10 | 5.6 ± 0.2 | 5.3 ± 0.2 | 11.0 ± 0.3 | 89 ± 8 | | ein5-2 | 2.6 ± 0.1 | 4.6 ± 0.2 | 7.2 ± 0.2 | 156 ± 10 | 4.3 ± 0.2 | 5.6 ± 0.2 | 9.9 ± 0.3 | 113 ± 10 | | ein6 | 3.5 ± 0.1 | 6.2 ± 0.2 | 9.7 ± 0.2 | 95 ± 6 | 7.0 ± 0.2 | 6.0 ± 0.2 | 13.0 ± 0.2 | 47 ± 4 | | ein7 | 2.9 ± 0.1 | 5.2 ± 0.1 | 8.1 ± 0.2 | 176 ± 4 | 5.2 ± 0.2 | 6.7 ± 0.2 | 11.9 ± 0.2 | 137 ± 8 | | eir1-1 | 3.4 ± 0.1 | 3.1 ± 0.1 | 6.5 ± 0.1 | 282 ± 7 | 5.2 ± 0.9 | 6.2 ± 0.1 | 11.4 ± 0.1 | 106 ± 7 | | eir1-2 | 3.0 ± 0.1 | 3.1 ± 0.1 | 6.1 ± 0.1 | 261 ± 7 | 4.8 ± 0.3 | 5.7 ± 0.2 | 10.5 ± 0.4 | 109 ± 10 | | eto1-1 | 1.4 ± 0.1 | 3.3 ± 0.1 | 4.7 ± 0.2 | 244 ± 10 | 1.9 ± 0.1 | 3.3 ± 0.1 | 5.3 ± 0.1 | 239 ± 8 | | etr1-3 | 4.6 ± 0.2 | 6.1 ± 0.1 | 10.7 ± 0.3 | 89 ± 7 | 4.9 ± 0.3 | 5.5 ± 0.2 | 10.4 ± 0.3 | 96 ± 5 | | hls1-1 | 0.9 ± 0.1 | 3.4 ± 0.1 | 4.3 ± 0.2 | 5 ± 1 | 3.3 ± 0.1 | 5.1 ± 0.1 | 8.4 ± 0.2 | 4 ± 1 | | B. Double mutants ^a | | |--------------------------------|--------------------------------------| | aux1-21 ctrI-1 | Aus $-$, Ctr $^{-c}$ | | aux1-21 eir1-1 | Aux^- | | ctr1-5 ein 2-1 | Ein ⁻ | | ctr1-1 ein3-2 | Ein ⁻ | | ctr1-1 ein5-1 | Ein ⁻ | | ctr1-1 ein7 | Ein ⁻ | | ctr1-1 eir1-1 | Eir ⁻ , Ctr ^{-c} | | ctr1-1 etr1-3 | Ctr ⁻ | | ctr1-1 hls1-1 | Hls ⁻ , Ctr ^{-ε} | | ein2-1 eir1-1 | Ein ⁻ , Eir ⁻ | | ein2-6 eir1-1 | Ein ⁻ , Eir ⁻ | | ein2-1 eto1-1 | Ein ⁻ | | ein2-6 eto 1-1 | Ein ⁻ | | ein2-1 etr1-3 | Ein ⁻ | | ein2-1 hls1-1 | Ein Hls | | ein 3-1 eir 1-1 | Ein ⁻ , Eir ⁻ | | ein5-1 eir1-2 | Ein ⁻ , Eir ⁻ | | eir1-1 hls 1-1 | Eir ⁻ , Hls ⁻ | Roman et al., 1994 #### ETR1 codes for histidine kinase ## His-kinases in Arabidopsis ### Ethylene signalling – homology to two component system ? ### Ctr1 – codes for protein kinase of Raf family ## ETR1 interacts with CTR1 Clark et al., 1998 ### CTR1 has protein kinase activity - -ethylene receptor dominant mutation > ethylene insensitivity - -ethylene receptor loss of function mutation > constitutive ethylene response - -ctr1 loss of function mutation > constitutive ethylene response Current Opinion in Plant Biology ## EIN2 - contains domain similar to Nramp metal transporters protein. ### EIN3 codes for transcription factor Chao et al., 1997 ### EIN3 protein level is controlled by ethylene EIN3 is rapidly degraded by a proteasome-mediated pathway #### EIN3 accumulates in nucleus upon ethylene or MG132 treatment Guo and Ecker, 2003 ## Mutation in EBF1 and EBF2 results in hypersensitivity to ethylene and accumulation of EIN3 protein ## Overexpression of EBF1 and EBF2 results in ethylene insensitivity and reduced accumulation of EIN3 protein #### **MODELS** ## Ethylene signal transduction pathway # Ethylene Modulates Stem Cell Division in roots # Ethylene promotes QC cell division. QC cell identity and function are maintained in eto1 mutants Ethylene stimulates formation of additional columella cell layers ### Yeast two hybrid screen recombinant DNA techniques are used to make fusion between protein X and glutathione S-transferase (GST) Figure 8-50. Molecular Biology of the Cell, 4th Edition. ### GST "pull downs" - GST protein is usually expressed in E. coli as microgram quantities are used in typical assays - Detection of bound proteins are usually by western blotting, using antibody to the putative interactor - Used extensively with GSTdomain fusions in structure function studies - New proteins can be identified if metabolically labeled cells are used