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Abstract Since the first description of the double fertil-

ization process in flowering plants (angiosperms) 110 years

ago (Nawaschin in Bull Acad Imp Sci St Petersburg 9:377–

382, 1898), little progress has been made during the fol-

lowing 100 years to understand the underlying molecular

mechanisms. This seems to be in strong contrast to our

steadily increasing knowledge of single fertilization in

animals, where a large number of key players and the

corresponding molecular mechanisms have been unclosed

since the mid-1970s. Are the identified fertilization

mechanisms ubiquitously dispersed, occurring also in

higher plants? The past few years have seen a number of

discoveries indicating that general principles of fertiliza-

tion mechanisms in animals and flowering plants are more

conserved than previously thought. Here, we compare the

development and morphology of animal and flowering

plant gametes, discuss cell–cell communication events

between gametes and gametophytes as well as their phys-

ical interaction and fusion during single and double

fertilization, respectively.

Keywords Fertilization � Cell-cell communication �
Gamete interaction � Chemotaxis � Species-specificity

Introduction

In comparison to the diplontic life cycle of most animals,

where only the gametes are in the haploid state, flowering

plants undergo a haplodiplontic life cycle, in which

the gametes are not the direct result of a meiotic division.

The haplodiplontic life cycle of plants alternates between a

multicellular diploid organism, the sporophyte, and a

multicellular haploid organism, the gametophyte (Greek

phyton, ‘‘plant’’). After meiosis, the sporophytes of higher

plants give rise to sexually differentiated types of spores,

microspores and megaspores. These spores divide mitoti-

cally and develop into haploid gametophytes, whose main

function in angiosperms is to produce two male and female

gametes, respectively, and to manage the double fertiliza-

tion process (Drews et al. 1998; Raven et al. 1999; Lord

and Russell 2002; Boavida et al. 2005). The male game-

tophyte (pollen or pollen tube) delivers two sperm cells to

fertilize egg and central cell, respectively (double fertili-

zation), which thereafter develop into a diploid embryo and

typically triploid endosperm. While plant gametes are

derived after meiosis from gametophytic vegetative cells

during flower development in adult plants, animal gametes

are generated from a founder population of primordial

germ cells (PGCs) that are determined early in embryo-

genesis and set aside for gamete production during

adulthood (Aflatoonian and Moore 2006; Gilbert 2006).

Thus, flowering plants differ from animals, not only by an

alternation of two multicellular bodies (gametophyte and

sporophyte), but also by a different sexual life history.

Despite these major differences, mechanisms of cell–

cell communication, cell fusion and prevention of poly-

fusion evolved long before the plant and animal lineage

separated more than 1,500 million years ago (MYA), when

the first single-celled green algal antecedent to plants
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originated (a primitive eukaryote containing simple green

plastids; Yoon et al. 2004), and long before the first

multicellular organisms appeared, some 1,000 MYA (Kirk

2005). Life existed exclusively in water and it is assumed

that haploid cells of the same type fused randomly to form

a diploid cell (zygote). After genetic recombination the

zygote released haploid offspring that occasionally dis-

played a higher fitness. Thus, the evolution of sex was

disadvantageous for the single cell, but advantageous for

the cell population. Taking into consideration that different

cell types and species co-existed in the same environment,

there also appeared the necessity to evolve species-specific

communication and fusion mechanisms as well as the

formation of mobility. It is therefore not a surprise that, for

example, simulation experiments indicate that evolution of

chemotactic cell behavior occurs quickly in evolutionary

times, requiring only few proteins (Soyer et al. 2006). As

another consequence, lower plants such as algae, mosses

and ferns, similarly to animals, use mobile sperm cells for

reproduction. The first land plants probably occurred 490–

425 MYA, from a single common ancestor (Sanderson

2003) that had to adapt ways to keep from drying out and to

reproduce. Under humid environmental conditions, swim-

ming sperm cells still use flagella to arrive at the egg cells.

However, the most recent and most successful plant line-

age, the angiosperms, which originated some 180–

140 MYA (Magallón and Sanderson 2005, Bell et al. 2005)

and have captured almost every ecological environment,

were forced to evolve new reproduction mechanisms such

as precociously forming enclosed male germ cells portable

over large distances, highly protected female gametes, as

well as a sexual mode to nourish the developing embryo,

and a protected, provisioned seedling. The latter need for

nutrition is achieved by a novel, second fertilization

product, the endosperm.

Considering that the sexual life cycle of flowering plants

is fundamentally different and arguably more complex than

in animals, can we expect that basic fertilization mecha-

nisms and the molecular nature of key regulators are still

conserved? If so, can plant reproduction biologists learn

from their colleagues working with animal model systems

to understand fertilization in plants?

A complete comparison of all fertilization mechanisms

between plants and animals including also algae, mosses,

ferns and gymnosperms as well as the numerous evolu-

tionary aspects would go far beyond the scope of this

review. We therefore restrict our comparative review to

early molecular fertilization mechanisms in flowering

plants and animals, reporting mainly about gamete mor-

phology and function, as well as gamete cross-talk and

fusion. Late fertilization events that include prevention of

polyspermy, nuclear migration and karyogamy as well as

egg activation are compared in the corresponding reviews

elsewhere in this issue (Spielman and Scott 2008; Kranz

and Scholten 2008; Curtis and Grossniklaus 2008,

respectively).

Gamete development and morphology

Male and female gametes are unique from all other cells

and are also different from each other. Animal male

gametes, known formally as sperm or spermatozoa, com-

prise a head, containing the acrosome and the haploid

nucleus, and the flagellum, consisting of the neck, the

midpiece, the tail and the end piece (Clermont and Leblond

1955; Gilbert 2006; Fig. 1a, b). The acrosome plays a

critical role in facilitating sperm fusion during fertilization

and is derived from the Golgi apparatus. It contains

enzymes needed to digest extracellular coats surrounding

the egg or oocyte and thus enables the sperm nucleus to

enter the egg cytoplasm. In sea urchins and several other

species, recognition between sperm and egg involves

molecules of the acrosomal process. Animal sperm are able

to swim actively towards the female gamete via chemot-

ropism (see below). The ways sperm cells are propelled

vary according to how the species has adapted to its own

environmental conditions. In most species, each sperm is

able to travel long distances relative to its size by whipping

its flagellum. Microtubules represent the structural basis of

the flagellum, driven with energy for flagellar motion

derived from mitochondrial ATP and powered by a dynein

motor ATPase (Shinyoji et al. 1998).

In contrast to animal sperm, male gametes of flowering

plants are non-motile and are transported towards the

female gametes via the pollen tube (Fig. 1c). Here, we

describe male gamete development in flowering plants only

briefly, as excellent reviews can be found elsewhere that

describe also the evolution of aflagellate sperm cells (for an

overview see Renzaglia and Garbary 2001; Morrow 2004;

Boavida et al. 2005). Angiosperms contain two male

gametes (sperm cells) that play a central role in double

fertilization. The mature male gametophyte, also referred

to as the pollen grain or microgametophyte, develops

within the anther locules and is composed of two or three

haploid cells: a vegetative cell that encloses either one

generative cell (bicellular pollen grain) or two sperm cells

(tricellular pollen grain). In the case of the tricellular pollen

grain, sperm cells are formed after the second mitotic

division within the anther (for example in grasses and

crucifers), whereas in the bicellular pollen grain the second

mitotic division occurs during pollen tube growth, as in

many Solanaceae species (McCormick 2004). The vege-

tative cell coordinates pollen tube growth and thus the

delivery of the two male gametes to the female gameto-

phyte (Weterings and Russell 2004).
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The animal female gamete, called the ovum (a mature

egg with a haploid nucleus, as in sea urchins) or the oocyte

(an egg at an earlier stage of development arrested at

meiosis II, as in mammals), is non-motile and huge in

comparison to the male gamete. While the sperm has

eliminated most of its cytoplasm during maturation, the

egg or oocyte contains a large mass of cytoplasm storing

nutritive and regulatory proteins, ribosomes, tRNAs and

mRNAs needed to accomplish protein synthesis during

embryo development. In many species, morphogenetic

factors are also present in different regions in the egg

cytoplasm. Furthermore, many egg cells contain protective

agents (e.g. ultraviolet filters, DNA repair enzymes) that

are needed for their survival and, later on, for embryo

survival in particular environments. Each egg contains,

within this huge mass of cytoplasm, a large nucleus, which

in some species (like sea urchins) is already haploid at the

time of fertilization, whereas in other species (like many

worms and most mammals) is still in meiosis. The egg cell

membrane plays the most important role during the fertil-

ization process by regulating the secretion of sperm

attractants, the flow of certain ions and fusing with the

sperm cell membrane. Outside of the cell membrane is an

extracellular layer that is often involved in sperm–egg

recognition (Correia and Carroll 1997). In most animals,

this structure is usually called the vitelline envelope,

whereas the surrounding layer in mammals is a separate

and thick extracellular matrix called the zona pellucida

(Fig. 1a, b). Many types of egg cells also possess outside

the vitelline envelope a layer of egg jelly, which contains

glycoproteins and which is most commonly used either to

attract or to activate sperm. Mammalian egg cells are

additionally surrounded by a layer of cells called the

cumulus, with this innermost layer adjacent to the zona

pellucida called the corona radiata. Directly beneath the

egg plasma membrane lies the cortex, a thin shell of gel-

like cytoplasm containing high concentrations of globular

actin molecules. These actin molecules polymerize during

Fig. 1 Models comparing sperm attraction in marine invertebrates,

mammals and flowering plants. a Eggs (ovums) of marine inverte-

brates such as sea-urchins secrete species-specific peptides (dots) to

attract sperm cells. Short-range sperm guidance occurs along a

concentration gradient. Sperm of the same species swim towards the

egg via chemotaxis (left, one sperm penetrates the jelly egg coat),

while sperm of other marine animals are not attracted (right).
b Chemotaxis and probably also thermotaxis takes place inside the

mammalian oviduct once sperm have passed the uterus. Dots indicate

a concentration gradient of signaling ligand molecules secreted by

the ovulated egg and/or surrounding cumulus cells. c Pollen tube

guidance precedes double fertilization in flowering plants. A pollen

tube harboring two sperm cells and a large vegetative nucleus has left

the placenta to grow along the placental surface and the funiculus into

the micropyle following gradients generated by the maternal tissues

of the ovule as well as by the female gametophyte. A Polygonum-type

embryo sac containing the egg apparatus (egg cell and two synergids),

a central cell with two polar nuclei and three antipodal cells is

surrounded by nucellus cells (light green) and the two layers of the

inner and outer integuments. The nucellus is disintegrated in some

plant species generating a naked egg apparatus at the micropylar

region. Abbreviations: AN antipodal cells, CC central cell, CU
cumulus cells, EC egg cell or ovum, FU funiculus, OD oviduct, OV
ovary, PL placenta, PT pollen tube, SC sperm cell, SY synergid, VN
vegetative nucleus, YE egg jelly, ZP zona pellucida

b

Sex Plant Reprod (2008) 21:37–52 39

123



fertilization and form microfilaments that are necessary for

cell division and are used as well to extend the egg surface

into small projections called microvilli, which may aid in

sperm entry into the cell. The final structural feature of the

egg cell that serves as a critical function during fertilization

is a set of membrane-bound structures, called cortical

granules that accumulate within the cortex. These are

homologous to the acrosomal vesicle of the sperm and are

Golgi-derived organelles that contain proteolytic enzymes

and mucopolysaccharides, needed to prevent polyspermy

(Yanagimachi 1994; Gilbert 2006).

The female gametophyte of flowering plants, also

referred to as the embryo sac or megagametophyte, con-

stitutes the structural setting for double fertilization

(Nawaschin 1898). More than 15 different patterns of

female gametophyte development have been described.

The most frequently exhibited pattern, occurring in about

70% of the angiosperms, is known as the Polygonum

type (Fig. 1c), which was first described in Polygonum

divaricatum (Strasburger 1879). The development of the

Polygonum-type female gametophyte occurs over two

phases referred to as megasporogenesis (megaspore for-

mation during meiosis when three of the four megaspores

undergo programmed cell death) and megagametogenesis

(embryo sac development) (Huang and Russell 1992;

Yadegari and Drews 2004). After megasporogenesis, the

functional megaspore undergoes three cycles of mitosis,

producing an eight-nucleate syncytium. Phragmoplasts and

cell plates form between sister and non-sister nuclei after

the third mitosis, and the female gametophyte cells become

partly surrounded by cell walls (Webb and Gunning 1994).

The three cells at the micropylar pole differentiate into the

egg apparatus, which consists of an egg cell that is flanked

by two synergids (Punwani and Drews 2008, this issue).

During cellularization, two nuclei, one from each pole

(referred to as polar nuclei), migrate towards the egg

apparatus and fuse before or after fertilization to generate

the diploid secondary nucleus of the central cell (Diboll

1968; Webb and Gunning 1994; Christensen et al. 1997;

Kranz et al. 1998). The synergids form the filliform

apparatus, a complex consisting mainly of cell wall

invaginations, at their micropylar end. The three cells

opposite to the egg apparatus form antipodal cells. In some

species, like Arabidopsis, antipodal cells undergo pro-

grammed cell death before fertilization (Murgia et al. 1993;

Christensen et al. 1997), whereas in other species, such as

maize, they proliferate, generating a cell cluster of up to 60

cells (Diboll and Larson 1966; Huang and Sheridan 1994;

Kiesselbach 1999). Thus, in most angiosperms, the haploid

mature Polygonum-type female gametophyte is embedded

in several maternal diploid cell layers of the ovule and

consists of four distinct types of cells, including the two

female gametes, the egg cell and the central cell. During

double fertilization, the egg cell gets fertilized by one of

the male gametes and develops into the diploid embryo,

while the central cell is fertilized by the second sperm

giving rise to a triploid endosperm.

Despite these obvious differences between plant and

animal gametes, there also exist a number of common

features. Heteromorphism, for example, the formation of at

least two different types of sperm or pollen grains, occurs

in both animal and flowering plant species. In animals,

sperm heteromorphism is typically related to the generation

of one fertile morph and one (or more) sterile morph(s),

whereas in plants two or more pollen morphs (one of which

can be either sterile or fertile) are produced in all flowers

but sometimes in different anthers (Till-Bottraud et al.

2005). This example of convergence suggests a general

evolutionary response to sexual selection, either to increase

the success of one male’s sperm or pollen in competition

with others, or directly mediate interactions between male

and female gametes. Female gametes of both kingdoms are

generally very large and immobile polar cells containing

not only a store of RNAs and protein for subsequent

development, but also morphogen gradients, generating

daughter cells with a different fate after asymmetric cell

divisions. In animals, this is generally achieved by polar

anchoring of transcripts encoding transcriptional regula-

tors, components of signal transduction chains or RNA-

binding proteins and encoded proteins, respectively, in

cytoplasmic regions of the egg cytoplasm (for review, see

Gilbert 2006). The first examples indicating that similar

mechanisms exist in plants are, for example, transcripts for

the Homeobox containing transcriptional regulators WOX2

and WOX8, which are expressed in the egg cell, but are

differentially distributed to apical and basal daughter cells

after the asymmetric division of the zygote (Haecker et al.

2004). Direct communication pathways between male and

female gametes of marine invertebrate species have been

known already for more than 40 years (Miller 1985);

however, higher animals, including mammals, as well as

plants, seem to employ helper cells (cumulus cells in

mammals and synergids in flowering plants) to attract and

guide the male gametes and gametophytes, respectively

(for review, see Eisenbach and Giojalas 2006; Punwani and

Drews 2008, this issue). The next chapter therefore dis-

cusses cell–cell communication and chemotaxis between

gametes in animals and flowering plants.

Cross-talk between gametes

Cell–cell communication plays an elementary role in var-

ious developmental processes either between neighboring

cells or between cells that are separated at some distance.

At fertilization, cell–cell communication between male and
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female gametes is critical both in animal and plant systems.

Although there are several marine invertebrates that

accomplish internal cross-fertilization via copulation or

pseudocopulation or spermcast mating (Bishop and

Pemberton 2006), external fertilization is a more widely

recognized mode of animal mating in invertebrates species,

and this review will only refer to the marine broadcast

spawners with external fertilization. In these animals, the

encounter between their male and female gametes takes

place in a tumultuous, aqueous environment shared with

other species that may shed their sex cells at the same time.

Hence, such organisms have to solve two problems: in such

a dilute concentration, sperm must find a way to meet the

eggs from their own species and not to fertilize eggs of

another species. In mammals, where fertilization is inter-

nal, semen is placed inside the female genital tract,

requiring less specificity. However, despite the ingenious

design, in fact, only few of the ejaculated sperm (in

humans, only *1 of every million sperm enter the Fallo-

pian tubes) ever arrive near enough to the egg to be

contenders for fertilization (Williams et al. 1993; Eisen-

bach and Tur-Kaspa 1999). The number of sperms capable

of fertilizing the egg is even smaller. Many do not possess

the capacity to bind and fertilize the egg cell and, hence,

unlike spermatozoa of marine species, mammalian sper-

matozoa must first undergo a process of ripening, known as

capacitation, which takes place in the female reproductive

tract. The percentage of capacitated sperm is low (*10%

in humans) and, therefore, the chances that such low

numbers of sperm will successfully reach the egg by

chance, without a guidance mechanism, are very small

(Cohen-Dayag et al. 1995; Giojalas et al. 2004; Eisenbach

and Giojalas 2006). A ripening process has also been

observed in flowering plants. Pollen tubes of Torenia

fournieri and Arabidopsis thaliana grown in vitro are

unable to reach the female gametophyte, whereas pollen

tubes emerging from a cut style precisely find their way to

the female gametophyte, indicating the existence of com-

petence mediation by the stigma and/or style (Higashiyama

et al. 1998; Palanivelu and Preuss 2006; Higashiyama and

Hamamura 2008, this issue). However, in contrast to ani-

mals, fertilization in plants is more efficient and complex,

involving more interaction partners (Dresselhaus 2006).

Male gametophytes (pollen tubes) in compatible pollina-

tion systems are guided to the female gametophyte

(embryo sac) by a multistep process that includes pro-

moting of tube growth and guidance by the sporophytic

tissues to verify that almost every ovule is reached by at

least one pollen tube. It is therefore not surprising that

transcriptome analysis of Arabidopsis pollen grains reveal

a very high percentage of transcripts encoding proteins

involved in signaling processes (Pina et al. 2005), indi-

cating that communication is a major task of the growing

pollen tube. Moreover, communication at different levels

also exists between the male and female gametophytes and

has been distinguished as funicular and micropylar guid-

ance (Higashiyama et al. 2003). Additionally, it can also be

expected that direct communication between male and

female gametes takes place during sperm delivery in the

receptive synergid to verify that both female gametes are

fertilized. Preferential fertilization in Plumbago supports

this hypothesis (Russell 1985), and first transcriptome

analyses of isolated female gametophytes and egg cells

suggest the presence of a high number of proteins required

for signaling processes (Márton et al. 2005; Sprunck et al.

2005; Yang et al. 2006).

Animals evolved diverse mechanisms of sperm guid-

ance. In many species, sperm are guided toward eggs by

chemotaxis (Table 1), which is the movement of cells up

a concentration gradient toward a chemical attractant

Table 1 Signaling ligands and receptors involved in animal sperm chemotaxis

Ligand Source Receptor Species Reference

Resact Egg Resact receptor/mGC Sea urchin (A. punctulata) Kaupp et al. (2003, 2006);

Böhmer et al. (2005)

Asterosap Egg Asterosap receptor/mGC Starfish (A. amurensis) Nishigaki et al. (1996);

Böhmer et al. (2005)

Speract Egg Speract receptor Sea urchin (S. purpuratus) Dangott et al. (1989);

Kaupp et al. (2006)

RANTES Follicular fluid RANTES receptor/mGC Human Isobe et al. (2002)

ANP Follicular fluid ANP receptor/mGC Human Silvestroni et al. (1992);

Zamir et al. (1993)

NO Ovary NO receptor/mGC Human Miraglia et al. (2007)

Bourgeonal, Lyral NK G-protein-ass. odorant

receptors

Human and mouse Spehr et al. (2003);

Fukuda et al. (2004)

Progesterone Follicular fluid,

Cumulus

NK Human and rabbit Villanueva-Diaz et al. (1995);

Teves et al. (2006)

NK not known, mGC membrane guanylyl cyclase, ANP atrial natriuretic peptide, NO nitric oxide
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(chemoattractant). Several studies have shown that che-

moattractant signals which initiate sperm chemotaxis are

synthesized and secreted by the egg, or in some cases by

somatic cells associated with the egg, and are believed

to exert influence over short distance to enhance the

efficiency of sperm–egg contact (Miller 1985; Kirkman-

Brown et al. 2003; Kaupp et al. 2008).

Sperm chemotaxis differs among animal species and

was first discovered in the mid-1960s in marine inverte-

brate animals. Most of our current understanding of sperm

guidance originates from those studies, based mainly on

sea urchin and starfish as model organisms. In these spe-

cies, the aim of sperm chemotaxis is to recruit as many

spermatozoa as possible to the eggs and to prevent cross-

species fertilization, meaning that a chemoattractant for

one marine species is usually not recognized by the sper-

matozoa of another marine species (Miller 1985). Up to

now, around 80 peptides have been identified, mainly from

cnidaria and echinodermata, that affect sperm motility in a

species-specific fashion and are called sperm-activating

peptides (SAPs) (Miller 1985; Suzuki 1995). From these,

the chemotactic function has been so far clearly proved

only for two SAPs. One is resact, a 14 amino-acid peptide

that was isolated from the egg jelly of the sea urchin

Arbacia punctulata and whose gradient extends at least

1 mm around the egg (Ward et al. 1985; Vacquier 1998;

Kaupp et al. 2003; Böhmer et al. 2005). The other one is

asterosap, a 34 amino-acid peptide from the egg jelly coat

of starfish Asterias amurensis (Nishigaki et al. 1996;

Böhmer et al. 2005). Binding of these peptides to specific

sperm receptors belonging to the membrane guanylate

cyclase family (localized along the length of the sperm

flagellum) stimulates an increase of intracellular cyclic

guanosine monophosphate (cGMP) and mediates ion fluxes

across the sperm membrane. In turn, this affects flagellar

motion and finally determines the direction of movement

(Ramarao and Garbers 1985; Bentley et al. 1986; Nishigaki

et al. 2000; Matsumoto et al. 2003; Neill and Vacquier

2004; Kaupp et al. 2008). Thus, cGMP is considered to

play a pivotal role in the motility response of sea urchin

sperm to chemoattractants.

One of the most intensely studied SAPs and the first to

be purified and characterized is speract, a decapeptide that

is released by eggs of another sea urchin, Strongylocen-

trotus purpuratus (Suzuki 1995). Like resact, speract

activates a cGMP-signaling pathway (Cook and Babcock

1993; Matsumoto et al. 2003; Solzin et al. 2004). However,

the speract receptor, a 77 kDa plasma membrane receptor

localized exclusively in the sperm flagellum, has been

reported to be unrelated to guanylyl cyclase (Dangott et al.

1989; Cardullo et al. 1994). The speract-induced motility

changes in S. purpuratus sperm closely resemble those of

other marine species whose sperm undergo chemotaxis, but

attempts have failed to demonstrate its chemotactic activity

(Solzin et al. 2004; Wood et al. 2007). It was suggested that

resact, speract and other SAPs function through a common

signal transduction pathway to stimulate and orient sperm

motility, and that this signal involves changes in intracel-

lular pH, in the concentrations of cGMP, cAMP as well as

Na+ and Ca2+ ions, in membrane potential and in the

phosphorylation pattern of several proteins (Ward and

Kopf 1993; Cook et al. 1994; Darszon et al. 2005, 2006;

Wood et al. 2007). Hence, although the function of most

SAPs has not been firmly established, it is tacitly assumed

that they are involved in chemotaxis (Table 1). The

sequence of events and the specific function of several

cellular reactions, however, are still controversial (Kirk-

man-Brown et al. 2003; Eisenbach 2004; Kaupp et al.

2006, 2008).

In mammals, in which fertilization takes place inside

the oviducts of the female, two active mechanisms of

sperm guidance have been shown: chemotaxis and

thermotaxis (the directed movement of cells along a tem-

perature gradient). Mammalian sperm chemotaxis is still

surrounded by a great deal of controversy and has been

demonstrated in vitro primarily in humans (Ralt et al. 1991;

1994), frogs (Al-Anzi and Chandler 1998), mice (Oliveira

et al. 1999) and rabbits (Fabro et al. 2002) (for reviews, see

Eisenbach 1999, 2004; Eisenbach and Giojalas 2006). In

all of these species, only capacitated spermatozoa, which

represents a small fraction of sperm population, are

chemotactically responsive (Cohen-Dayag et al. 1995;

Eisenbach 1999; Fabro et al. 2002; Giojalas et al. 2004).

Up to now, only a few putative chemoattractants are known

to satisfy the main criterion for sperm chemotaxis, namely,

the accumulation of sperm at the optimal chemoattractant

concentration (Eisenbach 1999, 2004). Recent findings

indicate that sperm chemoattractants are secreted both prior

to ovulation within the follicle and after egg maturation

outside the follicle, and that there are two chemoattractant

sources: the mature egg and the surrounding cumulus cells

(Table 1; Ralt et al. 1991, 1994; Oliveira et al. 1999; Fabro

et al. 2002; Sun et al. 2005). The 8-kDa chemokine Reg-

ulated on Activation, Normal T Expressed and Secreted

Chemokine (RANTES), which is produced in human

follicular fluid, prior to ovulation, was shown to be a

chemoattractant for human spermatozoa (Isobe et al. 2002).

Whether RANTES is also secreted in the female genital

tract after ovulation is still not known. In contrast to

echinoderms, the molecular mechanisms of sperm chemo-

taxis in mammals are largely unknown, and the role of

cGMP in human sperm functions still needs to be clarified.

Atrial natriuretic peptide (ANP), a polypeptide hormone

produced in the human follicular fluid and a ligand for

mGC, has been observed to attract human spermatozoa in

vitro and has been proposed as a chemotactic signal in
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mammals (Silvestroni et al. 1992; Zamir et al. 1993).

However, this hypothesis is not yet confirmed. Recently,

Miraglia et al. (2007) suggested that nitric oxide (NO),

known to be synthesized in the ovarian cells of different

mammalian species, may behave as a chemoattractant

for human spermatozoa and that the signal transduction

involved is a cGMP-signaling pathway. In addition,

because human sperm are also able to synthesize and

release NO, it was hypothesized that during chemotaxis a

complex interplay may occur, not only between sperma-

tozoa, oocytes and other cells of the reproductive tract, but

also among spermatozoa themselves (Miraglia et al. 2007).

In vitro studies in flowering plants have shown that NO

has a negative chemotropic effect on pollen tube guidance

(Prado et al. 2004) indicating that plant male gametophytes

are also sensitive to NO. Other general candidate attrac-

tants include Ca2+ ions, of which high concentrations have

been measured in synergids and pollen tube tips and which

were shown to be able to reorient pollen tube growth. The

role of Ca2+ ions during fertilization has been discussed

excellently in reviews elsewhere (Malhó et al. 2000;

Dumas and Gaude 2006). Gamma-amino butyric acid

(GABA), known as the most important inhibitory neuro-

transmitter in the nervous system of animals (Boehm et al.

2006), has been shown recently to be involved in long-

range pollen tube guidance (Palanivelu et al. 2003). Until

now, nothing is known in plants about the involvement of

such general molecules in gamete cross-talk.

A general chemoattractant secreted by the cumulus cells

in mammals is progesterone, whose release does not

involve a cGMP-signaling pathway. Interestingly, proges-

terone has been identified as being a chemoattractant for

both human and rabbit spermatozoa (Villanueva-Diaz et al.

1995; Jaiswal et al. 1999; Teves et al. 2006). This finding

corroborates well with the lack of chemotaxis-related

species-specificity previously reported for follicular fluids

and conditioned media of several mammals and suggests

that at least some of the mammalian sperm chemoattrac-

tants, which originate in the female genital tract, are

common or very similar (Sun et al. 2003, 2005). Hence, in

mammals, in contrast to marine species, sperm competi-

tion, if it exists, is limited to semen from different

individuals of the same species (Gomendio et al. 1998;

Eisenbach and Giojalas 2006). Bourgeonal and lyral are

two ligands of G-protein-associated odorant receptors

recently found to be chemoattractants for human and

mouse spermatozoa and that like progesterone do not

involve a cGMP-signaling pathway. However, it seems that

they are not the physiological sperm chemoattractants,

because they are probably not secreted in the female

genital tract (Spehr et al. 2003; Fukuda et al. 2004). The

chemoattractant secreted from the egg is not yet known but

it is presumed to be different and more potent or more

concentrated than those secreted from the cumulus cells.

Thus, mammalian sperm chemotaxis in vivo seems to be a

two-step process: first chemoattraction to the cumulus

followed by chemoattraction to the oocyte (Sun et al.

2005). However, it is not yet known whether the cumulus

cells secrete other chemoattractants besides progesterone

or whether the chemoattractant secreted from the egg is

species-specific or common. Sperm guidance seems to be

much more elaborate than originally thought and chemo-

taxis seems to extend over a much longer distance. One of

the reasons why there are so many chemoattractants is that

spermatozoa might undergo a multistep chemotaxis as they

travel through the female genital tract, and each step might

sequentially guide them to the next chemoattractant source.

Another reason is that different spermatozoa might respond

to different chemoattractants, resulting in sperm selection.

Thus, chemoattractant-specific sperm selection, if it exists

in mammals, might be involved in sperm competition or

might enable the female to choose sperm (Eisenbach and

Giojalas 2006).

A similar multistep process seems to exist also in

flowering plants: general molecules (see earlier) might

be involved in long-range pollen tube chemotaxis that

involves the secretion of specific promoting factors from

the style (for review, see Higashiyama and Hamamura

2008, this issue), while short-range chemotaxis is mediated

by the synergids, which are the most active secretory cells

of the female gametophyte, and probably also by the other

cells of the female gametophyte. The last step is likely to

be controlled by the two female gametes themselves.

However, there is no evidence that egg or central cell

secreted molecules exist as would be required to attract

either one or the other of the two sperm cells or both.

Nevertheless, the synergids contain a large number of

secretory vesicles and masses of rER (Diboll and Larson

1966; Mansfield et al. 1991) and have been shown to be

involved in short-range and probably ovular attraction

of pollen tubes (Higashiyama and Hamamura 2008, this

issue). Thus, plant synergids might be functionally equiv-

alent to mammalian cumulus cells. Several studies have

been performed to demonstrate the existence of species-

specific guidance signal(s) in flowering plants. Crosses of

A. thaliana, for example, with pollen of other Brassicaceae

species showed germination and growth of pollen tubes

through the transmitting tissue, but not towards the female

gametophyte, indicating that it secretes species-specific

signaling molecule(s) (Shimizu and Okada 2000). Inter-

specific cross-pollination of T. fournieri with related

species showed similar results, supporting the hypothesis

that species-specific signaling of the female gametophyte

exist (Higashiyama et al. 2006). Until now, only one small

secreted protein (EA1) has been identified in maize that

fulfils all of the criteria of a species-specific signaling
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molecule, as it is secreted by the egg apparatus into the

micropylar region of the ovule, is degraded after fertiliza-

tion and RNA silencing experiments resulted in the loss

of short-range micropylar pollen tube guidance (Márton

et al. 2005; Table 3). Interestingly, Arabidopsis and other

dicotyledonous plant species do not possess EA1-homo-

logs. Homologs occurring in grass species display amino

acid variation in the conserved C-terminal region of the

peptide that is predicted to contain the mature peptide

ligand (M. Márton and T. Dresselhaus, unpublished results)

supporting the hypothesis that short-range pollen tube

guidance is species-specific in plants. Biotests using the

mature EA1 peptide of maize and other grasses should help

in answering this question.

In mammals, a second active mechanism of sperm

guidance exists called thermotaxis (Fig. 1b), which appears

to be an essential mechanism in guiding spermatozoa

released from the cooler reservoir site toward the warmer

fertilization site. Bahat et al. (2003) showed that rabbit and

human spermatozoa can sense small temperature differ-

ences (0.5�C and, perhaps, even lower) and respond to it by

thermotaxis. The temperature difference between the site

of the sperm reservoir and the fertilization site is generated

at ovulation by a temperature drop at the former. Similar to

mammalian chemotaxis, only capacitated spermatozoa are

thermotactically responsive (Bahat et al. 2003). Several

in vitro studies indicate that capacitated spermatozoa are

guided from the storage site to the egg primarily by a

combination of chemotaxis and thermotaxis, assisted per-

haps by oviductal contractions (Cohen-Dayag et al. 1995;

Bahat et al. 2003). Thus, thermotaxis appears to be a long-

range guidance mechanism, in addition to chemotaxis,

which seems to be short-range and likely occurs at close

proximity to the oocyte and within the cumulus mass. Both

mechanisms probably have a similar function—to guide

capacitated, ready-to-fertilize spermatozoa towards the

oocyte, and they may complement each other, meaning that

each mechanism is functional in a region where the other

mechanism is ineffective. The molecular mechanism of

sperm thermotaxis is not yet known, but if it shares some

of the chemotaxis signaling pathway, it may involve,

for example, cGMP-mediated transient elevation of intra-

cellular Ca2+ (Bahat and Eisenbach 2006).

It is unlikely however that thermotaxis is involved in

long-range guidance in flowering plants. Mól et al. (2000)

reported that egg cell maturation is essentially accelerated

after pollination in maize, but removal of silk directly after

pollination did not repress accelerated egg maturation,

suggesting an electric nature of the pollen signal. Even

wounding using sea sand is able to promote egg maturation

(R. Mól, personal communication), indicating the potential

existence of long-range signals unrelated to peptides/

proteins.

In summary, cross-talk between animal gametes and

plant gametophytes is very complex and involves species-

specific short-range guidance molecules predominantly

consisting of secreted peptides or proteins (Tables 1, 3).

The nature of long-range guidance molecules is mostly

unclear. Direct mechanisms of cross-talk between plant

gametes are unknown to date.

Gamete interaction and fusion

The direct interactions between male and female gametes

are among the most fascinating in cell biology and gener-

ally first include cell–cell adhesion and then membrane

fusion between the two gametes. In animals, the inter-

action between sperm and egg follows, in general, five

distinct steps: (1) sperm chemoattraction to the egg (dis-

cussed in the previous chapter), (2) the acrosome reaction,

which causes acrosomal exocytosis and the release of

proteolytic enzymes, (3) sperm binding to the egg extra-

cellular envelope, which is the vitelline layer, in case of

marine species, or the zona pellucida in case of mammals,

(4) penetration of the sperm through this extracellular

envelope and (5) sperm adhesion to the egg and fusion of

their plasma membranes. However, in mammalian fertili-

zation, steps (2) and (3) are reversed, and the acrosome

reaction in mammals occurs upon sperm binding to the

zona pellucida (Vacquier 1998; Gilbert 2006).

The egg envelope and extracellular matrix of animals

play important roles in sperm–egg binding, induction of the

sperm acrosome reaction, egg activation and the block to

polyspermy. Studies with both mammalian and inverte-

brate species have shown that carbohydrate moieties of

specific egg envelope glycoproteins bind to sperm surface

proteins. In marine invertebrates, such as sea urchins,

activation of spermatozoa triggering the acrosome reaction

results from their direct contact with a highly sulfated

fucose sulfate polymer in the jelly coat of the fully mature

ovum (Vacquier and Moy 1997). This interaction causes

adherence of numerous spermatozoa to the jelly coat, and

the opening of incurrent Ca2+ channels in their cell mem-

branes that permits calcium to enter the sperm head

(Hirohashi and Vacquier 2002). Here, calcium-mediated

fusion of the acrosomal membrane with the adjacent sperm

cell membrane appears to cause acrosomal exocytosis.

Interestingly, the ligand that induces the acrosome reaction

in sea urchins is a pure polysaccharide, with no associated

protein (Vacquier and Moy 1997). Egg jelly sulfated

polysaccharides have been isolated and characterized from

a number of species, and they are all species-specific

inducers of the sperm acrosome reaction (Alves et al.

1997). Such species-specificity seems to be determined by

the glycosidic linkage of the polymer and the pattern of
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sulfation of the sugar residues (Hirohashi et al. 2002;

Vilela-Silva et al. 2002; Biermann et al. 2004). Thus, the

activation of the acrosome reaction in sea urchins consti-

tutes a barrier to interspecies fertilizations (Vilela-Silva

et al. 2002; Mourão 2007).

In mammals, the species-specificity of fertilization is

thought to be determined, in large part, at the level of

sperm binding to the zona pellucida (ZP) of the egg. The

mammalian ZP is synthesized and secreted by growing

oocytes, and forms an extracellular glycoprotein matrix

with a variety of functions. Results obtained by many

scientists suggest that species-specific gamete recognition

occurs between defined carbohydrate structures of the ZP

and their corresponding receptors on the sperm plasma

membrane (Tulsiani et al. 1997; Wassarman et al. 2001;

Shur et al. 2006). Mouse ZP is composed of three families

of glycoproteins, ZP1, ZP2 and ZP3, of which only ZP3

was shown to possess sperm-binding activity with the egg

coat (Bleil and Wassarman 1980a, b, 1988). Initial gamete

adhesion is mediated by the sperm surface receptor, b1,

4-galactosyltransferase-I (GalT) that binds to specific oli-

gosaccharide chains on the ZP3 (Wassarman et al. 2001;

Rodeheffer and Shur 2002). Binding of ZP3 oligosaccha-

ride chains induces aggregation of GalT, thus activating,

directly or indirectly, acrosomal exocytosis (Macek et al.

1991; Gong et al. 1995). Recent studies suggest that there

are at least two distinct sperm–egg binding events in

mouse: a ZP3- and GalT-independent interaction respon-

sible for gametes adhesion, followed by a ZP3- and GalT-

dependent interaction that facilitates acrosomal exocytosis

(Shur et al. 2006). At least two GalT-ZP3-independent

receptors have been identified so far: zonadhesin, originally

identified in pig, and mouse isolated SED1 (Secreted pro-

tein containing a cleavable signal sequence, N-terminal

Notch-like type II EGF repeats and C-terminal Discoidin/

F5/8 Complement domains). Zonadhesin is a sperm protein

that binds to the ZP in a species-specific manner. It is

localized in the acrosomal matrix and, thus, may mediate

the binding of sperm to the egg coat during early stages of

acrosomal exocytosis (Gao and Garbers 1998; Shur et al.

2006). Sperm SED1 seems to be required for the initial

sperm adhesion to the egg coat, and in doing so, brings ZP3

oligosaccharides into close enough proximity to bind and

aggregate its receptor on the sperm membrane (i.e. GalT

among other candidate receptors). ZP3 binding activates

specific heterotrimeric G-proteins in the sperm cell mem-

brane and membrane calcium channels that culminate in

calcium-mediated acrosomal exocytosis, zona penetration

and oocyte activation (Shi et al. 2001; Shur et al. 2006).

The acrosome reaction is a crucial event for successful

fertilization and was first discovered in sea urchins, starfish

and several other marine invertebrates in the early 1950s.

In most marine invertebrates, the acrosome reaction is

characterized by two major physiological events: the fusion

of the acrosomal vesicle membrane with the sperm plasma

membrane (an exocytosis that causes the release or secre-

tion of the contents of the acrosomal vesicle) and the

extension of the acrosomal process (Colwin and Colwin

1963). In sea urchins, acrosomal exocytosis releases pro-

teolytic enzymes from the acrosomal vesicle that begin to

digest constituents of the jelly coat, making a path through it

to the egg surface. Once the sea urchin sperm has penetrated

the egg jelly and the acrosomal process of the sperm con-

tacts the surface of the egg, the acrosomal protein bindin

mediates the species-specific adhesion of sperm to egg

(Vacquier and Moy 1977; Vacquier et al. 1995; Gilbert

2006). Sea urchin bindins are not related to any other pro-

teins, but they do contain a central domain of 60 amino

acids that has been conserved for more than 150 MY

(Biermann 1998). The acrosomal process is formed by the

pH-dependent polymerization of globular actin molecules

into actin filaments. The process then extends, 1 mm from

the tip of the sperm head, projects through the remains of

the jelly coat towards the vitelline membrane of the egg, and

is covered by the bindin-coated membrane that will finally

fuse with the egg plasma membrane (Barre et al. 2003). The

interaction between the plasma membranes of sperm and

egg is a receptor-mediated event, with the egg receptor for

bindin recognizing and binding species-specifically to

sperm bindin (Kamei and Glabe 2003; Neill and Vacquier

2004). Thus, in sea urchins, species-specific recognition of

gametes occurs at the levels of sperm attraction, sperm

activation and sperm adhesion to the egg surface.

An acrosomal reaction seems not to exist in flowering

plants where the synergids play the key role in double

fertilization: synergids are required for short-range pollen

tube attraction (see above), pollen tube growth arrest and

pollen tube discharge as well as transportation of the two

sperm cells towards their targets, the female gametes (see

also Punwani and Drews 2008, this issue). Recently, a first

key regulator of pollen tube arrest and bursting was iden-

tified in Arabidopsis as a plasma membrane-localized

receptor-like serine-threonine kinase (Escobar-Restrepo

et al. 2007). FERONIA (FER) belongs to the CrRLK1L-1

group of receptor-like kinases and accumulates asymmet-

rically in the synergid membrane at the filiform apparatus,

which is the entry point of the pollen tube. A FER-

dependent signaling pathway is proposed involving an

unknown ligand from the pollen tube. Activated FER

would cause the synergid to send another signal back to the

pollen tube, inducing both growth arrest and bursting.

Candidate pollen/sperm ligands have been reported by

Engel et al. (2003), but none has been shown yet to be

involved in pollen tube-synergid signaling.

As in animals, the actin cytoskeleton seems to play also

a key role in flowering plants. In the degenerated synergid,
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the actin cytoskeleton becomes reorganized during syner-

gid cell death soon after pollen tube discharge and forms

two actin coronas. The coronas extend from the middle of

the degenerated synergid, one extending to the vicinity of

the egg nucleus and the second towards the vicinity of the

egg and central cell extending to the polar nuclei (Huang

and Sheridan 1998; Huang et al. 1999; Fu et al. 2000; Ye

et al. 2002). It is thought that these coronas are involved in

actomyosin-mediated sperm transport to approximate male

and female gametes. It is still a matter of debate whether

sperm cells become activated after delivery, are attracted

each by only one female gamete and fuse preferentially

either with the egg or central cell. In Plumbago, which

contains dimorphic sperm cells, it was shown that the

mitochondria-rich sperm preferentially fertilized the cen-

tral cell and the plastid-enriched sperm the egg cell

(Russell 1985). Two distinguishable types of sperm cells

have also been observed in tobacco (Yang et al. 2005);

however, it is unclear whether they are required for prefe-

rential fertilization. Genetic studies in maize involving

supernumerary B-chromosomes could not show a diffe-

rence (Faure et al. 2003). Recently, a mutant of Arabidopsis

known to produce pollen containing a single sperm-like cell

was used to pollinate embryo sacs. All sperm-like cells

fused with egg cells only (Nowack et al. 2006) indicating

that either egg cell fertilization occurs first due to the shorter

transport distance after delivery or due to the presence of

egg-adhesion molecules at the sperm surface. However, a

similar Arabidopsis mutant described by Chen et al. (2008)

adds more complexity to this process as the single sperm-

like cell could not discriminate either female gamete.

In mammals, sperm must be acrosome-reacted to pene-

trate the ZP and fuse with the egg (Florman and Ducibella

2006). As sperm undergo the acrosome reaction, they must

remain transiently attached to the ZP prior to initiation of

zona penetration. It has been shown that the binding of

acrosome-reacted sperm to the ZP seems to depend on ZP2,

because acrosome-reacted sperm lose their affinity for ZP3

and gain affinity for ZP2 (Bleil et al. 1988; Mortillo and

Wassarman 1991). During the acrosome reaction in

mammals, sperm membrane alterations occur that lead to

the subsequent relocalization of some membrane proteins

(e.g. the protein Izumo) into other membrane regions and

are required for fusion (Inoue et al. 2005). Acrosomal

exocytosis releases a variety of proteases that lyse the ZP,

thus creating a hole through which the sperm can travel

toward the egg (Yamagata et al. 1999; Gilbert 2006).

Once a sperm cell has undergone the acrosome reaction

and has managed to travel to the egg, fusion of the sperm

cell membrane with the egg cell membrane can finally

proceed. In sea urchins, sperm–egg fusion causes actin

polymerization in the egg to form a fertilization cone

(Terasaki 1996). Since the acrosomal process is formed by

polymerization of actin as well, a connection is then

formed by the actin from both gametes. This connection

expands the cytoplasmic bridge between the egg and the

sperm, and the sperm nucleus and tail can pass through this

bridge (Gilbert 2006). The fusion process, being an active

process, is often mediated by specific ‘‘fusogenic’’ proteins.

Among these, the sea urchin sperm protein bindin was

suggested to play a second role as a fusogenic protein, in

addition to its main role to recognize the egg (Ulrich et al.

1999).

In mammals only a few cell surface proteins have been

identified to date in both gametes as being essential for

gamete fusion (example candidates are listed in Table 2).

Interestingly, no mammalian homologs of invertebrate

sperm–egg fusion proteins have been discovered to date

(Primakoff and Myles 2007). Tetraspanins localizing to the

microvillar-rich region of the egg membrane are thought

to play an important role in mammalian gamete fusion as

they function primarily as organizers of networks of

Table 2 Candidate molecules mediating gamete interaction and fusion in animals

Molecule Source Species Function Reference

Sulfated

polysaccharides

Egg jelly Sea urchins Induction of acrosome reaction Alves et al. (1997)

Bindin Sperm (acrosome) Sea urchins Species-specific egg adhesion, fusion Vacquier and Moy (1977); Ulrich et al. (1999)

GalT/ZP3 Sperm/ZP Mouse Initial gamete adhesion Wassarman et al. (2001)

SED1 Sperm surface Mouse Binding to the egg coata Shur et al. (2006)

Izumo Sperm surface Mouse Gamete fusiona Inoue et al. (2005)

DE / CRISP-1 Sperm surface Rat Binding to the egg surface Cohen et al. (2000b), Ellerman et al. (2006)

Zonadhesin Sperm surface Pig Binding to the egg coata Gao and Garbers (1998)

Tetraspannins Egg membrane Mammals Gamete fusiona Primakoff and Myles (2007)

ZP zona pellucida
a Not yet confirmed
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transmembrane and cytoplasmic proteins (Hemler 2003).

However, until now, it is not known how exactly tetra-

spanins facilitate membrane fusion (Primakoff and Myles

2007). GPI-anchored proteins localized on the egg surface

are additional candidates mediating sperm–egg fusion;

however, a clear role in membrane fusion remains to be

demonstrated (Alfieri et al. 2003). The membrane protein

Izumo, which localizes to the sperm cell surface, was found

to be required for sperm–egg fusion either in in-vitro

assays (Okabe et al. 1988) or in knockout lines (Inoue et al.

2005). Izumo is a novel member of the Immunoglobulin

super-family (IgSF) proteins, with a C-transmembrane

domain, and shows a testis and sperm-specific expression

pattern. Like many cell surface IgSF proteins, Izumo could

act in cell–cell adhesion, but to date, no specific function

for Izumo in the fusion process has been determined. One

of the most-studied gamete surface proteins is the sperm-

associated glycoprotein DE, a candidate molecule to

mediate sperm–egg fusion. DE is known as well as CRISP-

1 protein, being the first member of the Cysteine-RIch

Secretory Protein (CRISP) family to be described in the rat

epididymis (Cameo and Blaquier 1976; Cohen et al.

2000b). Several CRISPs with a high amino acid sequence

similarity have been identified in animals, plants and fungi,

but their function is still largely unknown. CRISP-1 pro-

teins are candidates to mediate gamete fusion in the rat,

mouse and human through their binding to complementary

sites on the egg surface (Cohen et al. 2000a, 2001). Dele-

tion mutants of protein DE showed that its binding site

resides in an evolutionarily conserved region of the CRISP

family (Ellerman et al. 2006).

In summary, our current knowledge of the key players

and the molecular mechanisms mediating gamete fusion

in mammals is far advanced compared with the current

understanding of gamete fusion in flowering plants

(Table 3). However, it was shown recently in A. thaliana

that disruption of a sperm-specific gene, referred to as

Generative Cell Specific 1 (GCS1), results in severe male

sterility due to disturbed pollen tube guidance and gamete

interaction (von Besser et al. 2006; Mori et al. 2006). The

main role of GCS1 seems to be its involvement in sperm–

egg attachment or membrane fusion as suggested by the

authors (Mori et al. 2006), and its function might be similar

to that of mammalian C-terminal transmembrane proteins

localized on the sperm surface, like Izumo (discussed

above). The encoded GCS1 protein was first identified

using generative cells (precursors of the two sperm cells)

isolated from Lilium longiflorum pollen. Molecular bio-

logical and immunological assays indicate that GCS1 is

specifically expressed in the male gamete, accumulating

during late gametogenesis and is localized on the plasma

membrane of generative cells and the sperm cells, probably

anchored by the putative transmembrane domain identified

at the C-terminus. GCS1 homologues are present in various

species, including non-angiosperms.

Another transmembrane protein, LGC1, has been

reported in Lilium generative cells (Xu et al. 1999). LGC1

was identified as a male gamete-specific protein, which due

to its male gamete surface expression may have an

important function in female gamete recognition. However,

no evidence for such a function has still been obtained.

Transcriptomics approaches have identified a number of

candidate plasma membrane localized proteins in sperm

and egg cells of maize and Arabidopsis, respectively, (for

review, see Dresselhaus 2006). Although we are still

awaiting functional studies, a number of plant sperm and

egg marker lines are now available (see also Singh et al.

2008, this issue) that will aid to identify and characterize

more key players of early and late fertilization events.

Conclusions and prospects

In conclusion, early fertilization events are complex mul-

tistep processes in both animals and flowering plants

requiring extensive cross-talk between the gametes and the

gametophytes, respectively. Long-range attraction of male

gametes/gametophytes involves thermotaxis in mammals

and possibly electric signals in plants; however, the

majority of known communication events are mediated by

chemotaxis. Many chemoattractants have been identified

during the past three decades in animals, and first chemo-

attractant candidates have now been discovered also in

plants. Small common molecules such as NO and GABA

seem to be involved in long-range attraction/guidance,

whereas species-specific proteins/peptides seem to

Table 3 Signaling ligands and receptors involved in double fertilization of flowering plants

Ligand/receptor Source Species Function Reference

GCS1 Sperm A. thaliana, lily Gamete interactiona Mori et al. (2006)

LGC1 Sperm Lily NK Xu et al. (1999)

EA1 Egg apparatus Maize Short-range PT attraction Márton et al. (2005)

FERONIA Synergid A. thaliana PT arrest Escobar-Restrepo et al. (2007)

PT pollen tube, NK not known
a Not yet confirmed
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represent the major mediators of short-range chemotaxis.

Whereas marine animals use small secreted peptides

directly derived from the egg cell, higher organisms

including mammals and flowering plants involve helper

cells such as cumulus and synergids as an additional step,

probably to enhance attractant concentrations for guidance

of male gametes and gametophytes, respectively. In this

sense, plant synergids seem to be functionally equivalent to

mammalian cumulus cells. In another sense, plant synergids

are probably also involved in the prevention of polyspermy

not only by blocking secretion of further attraction signals

but also by gametophyte arrival induced vesicle exocytosis

similar to the cortical reaction in animals (Spielman and

Scott 2008, this issue). However, more detailed cellular and

molecular data are required to sustain these hypotheses.

A major difference between animals and flowering

plants is the absence of flagellar or independent movement

in higher plant sperm cells and also, for example, the lack

of an acrosome reaction. Nevertheless, male gametophytes

of higher plants steadily release vesicles by exocytosis

from the pollen tube tip during growth through the female

tissues of the ovary (Campanoni and Blatt 2007). Inter-

estingly, both mammalian and flowering plant male

gametes/gametophytes undergo a ripening process inside

the female sexual organs. Another similarity is the poly-

merization/reorganization of actin filaments during the

fertilization process. In animals, the acrosomal reaction and

sperm–egg fusion, respectively, cause actin polymerization

in the egg to form a fertilization cone as a prerequisite of

gamete fusion. In the degenerated synergid of flowering

plants, the actin cytoskeleton becomes reorganized during

cell death soon after pollen tube discharge and two actin

coronas are formed that are likely to be involved in sperm

transport and gamete fusion.

Marine organisms require species-specific attractants

and fusogenic molecules in order to assure intra-specific

fertilization. This seems to be less important in mammals

and flowering plants where sperm of the same species are

often either deposited inside or at the surface of female

sexual organs of the same species. Additionally a number

of molecular mechanisms have been evolved to inactivate

incompatible male gametes and gametophytes, respec-

tively, in order to prevent inter-specific fertilization. In

invertebrate marine animals, the interaction between the

plasma membranes of sperm and egg is a species-specific

receptor-mediated event, and it is therefore not a surprise

that mammalian homologs of invertebrate sperm–egg

fusion proteins have not been discovered. Plant receptors

involved in chemotaxis and gamete fusion are not known to

date. However, in contrast to animals, flowering plants

contain hundreds of predicted membrane bound receptor-

like kinases (Shiu et al. 2004) suggesting that these pro-

cesses are more complex and potentially involve more

interacting molecules. Membrane guanylate cyclases that

play a major role in animal sperm chemotaxis do not exist

in plants (Schaap 2005) indicating once more that although

principles of fertilization mechanisms in animals and

flowering plants are more similar than previously thought,

the precise molecular nature of the key players are

completely different. The identification and functional

characterization of these players remain a major challenge

of plant reproduction biologists for the next decade. The

identification of first candidates, already available tran-

scriptomes of male and female gametes and gametophytes,

as well as an increasing number of marker lines, will now

help in identifying and studying a larger number of fertil-

ization molecules to understand the molecular regulation of

fertilization also in flowering plants.
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Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved

in growth regulation and re-orientation of pollen tubes. Devel-

opment 131:2707–2714

Primakoff P, Myles DG (2007) Cell–cell membrane fusion during

mammalian fertilization. FEBS Lett 581:2174–2180

Punwani JA, Drews GN (2008) Development and function of the

synergid cell. Sex Plant Reprod 21

Ralt D, Goldenberg M, Fetterolf P, Thompson D, Dor J, Mashiachi S,

Garbers DL, Eisenbach M (1991) Sperm attraction to a follicular

fluid factor(s) correlates with human egg fertilizability. Proc Natl

Acad Sci USA 88:2840–2844

Ralt D, Manor M, Cohen-Dayag A, Tur-Kaspa I, Makler A, Yuli I,

Dor J, Blumberg S, Mashiach S, Eisenbach M (1994) Chemo-

taxis and chemokinesis of human spermatozoa to follicular

factors. Biol Reprod 50:774–785

Ramarao CS, Garbers DL (1985) Receptor-mediated regulation of

guanylate cyclase activity in spermatozoa. J Biol Chem

260:8390–8396

Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants. W. H.

Freeman/Worth Publishers, New York

Renzaglia KS, Garbary DJ (2001) Motile gametes of land plants:

diversity development, and evolution. Crit Rev Plant Sci

20:107–213

Rodeheffer C, Shur BD (2002) Targeted mutations in b1,4-galacto-

syltransferase I reveal its multiple cellular functions. Biochim

Biophys Acta Rev 1573:258–270

Russell SD (1985) Preferential fertilization in Plumbago: ultrastruc-

tural evidence for gamete-level recognition in an angiosperm.

Proc Natl Acad Sci USA 82:6129–6132

Sanderson MJ (2003) Molecular data from 27 proteins do not support

a Precambrian origin of land plants. Am J Bot 90:954–956

Schaap P (2005) Guanylyl cyclases across the tree of life. Front

Biosci 10:1485–1498

Shi X, Amindari S, Paruchuru K, Skalla D, Shur BD, Miller DJ (2001)

Cell surface b1,4-galactosyltransferase-I activates G-protein-

dependent exocytotic signaling. Development 128:645–654

Shimizu KK, Okada K (2000) Attractive and repulsive interactions

between female and male gametophytes in Arabidopsis pollen

tube guidance. Development 127:4511–4518

Shinyoji C, Higuchi H, Yoshimura M, Katayama E, Yanagida T

(1998) Dynein arms are oscillating force generators. Nature

393:711–714

Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH

(2004) Comparative analysis of the receptor-like kinase family

in Arabidopsis and rice. Plant Cell 16:1220–1234

Shur BD, Rodeheffer C, Ensslin MA, Lyng R, Raymond A (2006)

Identification of novel gamete receptors that mediate sperm

adhesion to the egg coat. Mol Cell Endocrinol 250:137–148

Silvestroni L, Palleschi S, Guglielmi R, Croce CT (1992) Identifica-

tion and localization of atrial natriuretic factor receptors in

human spermatozoa. Arch Androl 28:75–82

Singh MB, Bhalla PL, Russell SD (2008) Molecular repertoire of

flowering plant male germ cells. Sex Plant Reprod (in press)

Solzin J, Helbig A, Van Q, Brown JE, Hildebrand E, Weyand I,

Kaupp UB (2004) Revisiting the role of H+ in chemotactic

signaling of sperm. J Gen Physiol 124:115–124

Soyer OS, Pfeiffer T, Bonhoeffer S (2006) Simulating the evolution

of signal transduction pathways. J Theor Biol 241:223–232

Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH,

Zimmer RK, Hatt H (2003) Identification of a testicular odorant

receptor mediating human sperm chemotaxis. Science

299:2054–2058

Spielman M, Scott RJ (2008) Polyspermy barriers in plants: from

preventing to promoting fertilization. Sex Plant Reprod 21

Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T

(2005) The transcript composition of egg cells changes signif-

icantly following fertilization in wheat (Triticum aestivum L.).

Plant J 41:660–672

Strasburger E (1879) Die Angiospermen und die Gymnospermen.

Fischer, Jena

Sun F, Giojalas LC, Rovasio RA, Tur-Kaspa I, Sanchez R, Eisenbach

M (2003) Lack of species-specificity in mammalian sperm

chemotaxis. Dev Biol 255:423–427

Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC,

Tur-Kaspa H, Eisenbach M (2005) Human sperm chemotaxis:

both the oocyte and its surrounding cumulus cells secrete sperm

chemoattractants. Hum Reprod 20:761–767

Suzuki N (1995) Structure, function and biosynthesis of sperm-

activating peptides and fucose sulfate glycoconjugate in the

extracellular coat of sea urchin eggs. Zool Sci 12:13–27

Terasaki M (1996) Actin filament translocations in sea urchin eggs.

Cell Motil Cytoskeleton 34:48–56

Teves ME, Barbano F, Guidobaldi HA, Sanchez R, Miska W,

Giojalas LC (2006) Progesterone at the picomolar range is a

chemoattractant for mammalian spermatozoa. Fertil Steril

86:745–749

Till-Bottraud I, Joly D, Lachaise D, Snook RR (2005) Pollen and

sperm heteromorphism: convergence across kingdoms? J Evol

Biol 18:1–18

Tulsiani DRP, Yoshida-Komiya H, Araki Y (1997) Mammalian

fertilization: a carbohydrate mediated event. Biol Reprod

57:487–494

Ulrich AS, Tichelaar W, Forster G, Zschornig O, Weinkauf S, Meyer

HW (1999) Ultrastructural characterization of peptide-induced

membrane fusion and peptide self-assembly in the lipid bilayer.

Biophys J 77:829–841

Vacquier VD (1998) Evolution of gamete recognition proteins.

Science 281:1995–1998

Sex Plant Reprod (2008) 21:37–52 51

123



Vacquier VD, Moy GW (1977) Isolation of bindin: the protein

responsible for adhesion of sperm to sea urchin eggs. Proc Natl

Acad Sci USA 74:2456–2460

Vacquier VD, Moy GW (1997) The fucose sulfate polymer of egg

jelly binds to sperm REJ and is the inducer of the sea urchin

sperm acrosome reaction. Dev Biol 192:125–135

Vacquier VD, Swanson WJ, Hellberg ME (1995) What have we learned

about sea urchin sperm bindin? Dev Growth Differ 37:1–10

Vilela-Silva AC, Castro MO, Valente AP, Biermann CH, Mourão PA

(2002) Sulfated fucans from the egg jellies of the closely related

sea urchins Strongylocentrotus droebachiensis and Strongylo-
centrotus pallidus ensure species-specific fertilization. J Biol

Chem 277:379–387

Villanueva-Diaz C, Arias-Martinez J, Bermejo-Martinez L, Vadillo-

Ortega F (1995) Progesterone induces human sperm chemotaxis.

Fertil Steril 64:1183–1188

von Besser K, Frank AC, Johnson MA Preuss D (2006) Arabidopsis
HAP2 (GCS1) is a sperm-specific gene required for pollen tube

guidance and fertilization. Development 133:4761–4769

Ward CR, Kopf GS (1993) Molecular events mediating sperm

activation. Dev Biol 158:9–34

Ward GE, Brokaw CJ, Garbers DL, Vacquier VD (1985) Chemotaxis

of Arbacia punctulata spermatozoa to resact, a peptide from the

egg jelly layer. J Cell Biol 101:2324–2329

Wassarman PM, Jovine L, Litscher ES (2001) A profile of fertiliza-

tion in mammals. Nat Cell Biol 3:59–64

Webb MC, Gunning BES (1994) Embryo sac development in

Arabidopsis thaliana. II. The cytoskeleton during megagameto-

genesis. Sex Plant Reprod 7:153–163

Weterings K, Russell SD (2004) Experimental analysis of the

fertilization process. Plant Cell 16:S107–S118

Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke ID, Barrat CL

(1993) Sperm numbers and distribution within the human

Fallopian tube around ovulation. Hum Reprod 8:2019–2026

Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M,

Darszon A (2007) Altering the speract-induced ion permeability

changes that generate flagellar Ca2+ spikes regulates their

kinetics and sea urchin sperm motility. Dev Biol 306:525–537

Xu H, Swoboba I, Bhalla PL, Singh MB (1999) Male gametic cell-

specific gene expression in flowering plants. Proc Natl Acad Sci

USA 96:2554–2558

Yadegari R, Drews GN (2004) Female gametophyte development.

Plant Cell 16:S133–S141

Yamagata K, Honda A, Kashiwabara SI, Baba T (1999) Difference of

acrosomal serine protease system between mouse and other

rodent sperm. Dev Genet 25:115–122

Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill

JD (eds) The physiology of reproduction, 2nd edn. Raven Press,

New York

Yang YH, Qiu YL, Xie CT, Tian HQ, Zhang Z, Russell SD (2005)

Isolation of two populations of sperm cells and microelectro-

phoresis of pairs of sperm cells from pollen tubes of tobacco

(Nicotiana tabacum). Sex Plant Reprod 18:47–53

Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST

generation and analyses towards identifying female gameto-

phyte-specific genes in Zea mays L. Planta 224:1004–1014

Ye XL, Yeung EC, Zee SY (2002) Sperm movement during double

fertilization of a flowering plant, Phaius tankervilliae. Planta

215:60–66

Yoon HS, Hackett J, Ciniglia C, Pinto G, Bhattacharya D (2004) A

molecular timeline for the origin of photosynthetic eukaryotes.

Mol Biol Evol 21:809–818

Zamir N, Riven-Kreitman R, Manor M, Makler A, Blumberg S, Ralt

D, Eisenbach M (1993) Atrial natriuretic peptide attracts human

spermatozoa in vitro. Biochem Biophys Res Commun 197:116–

122

52 Sex Plant Reprod (2008) 21:37–52

123


	A comparison of early molecular fertilization mechanisms �in animals and flowering plants
	Abstract
	Introduction
	Gamete development and morphology
	Cross-talk between gametes
	Gamete interaction and fusion
	Conclusions and prospects
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


