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New functions for an old variant: no substitute for histone H3.3
Simon J Elsaesser, Aaron D Goldberg and C David Allis
Histone proteins often come in different variants serving

specialized functions in addition to their fundamental role

in packaging DNA. The metazoan histone H3.3 has been

most closely associated with active transcription. Its role

in histone replacement at active genes and promoters

is conserved to the single histone H3 in yeast. However,

recent genetic studies in flies have challenged its

importance as a mark of active chromatin, and revealed

unexpected insights into essential functions of H3.3 in the

germline. With strikingly little amino acid sequence

difference to the canonical H3, H3.3 therefore

accomplishes a surprising variety of cellular and

developmental processes.

Address

Laboratory of Chromatin Biology, The Rockefeller University, 1230 York

Avenue, New York, NY 10065, USA

Corresponding author: Elsaesser, Simon J (selsaesser@rockefeller.edu)

Current Opinion in Genetics & Development 2010, 20:110–117

This review comes from a themed issue on

Chromosomes and expression mechanisms

Edited by Renato Paro and Jeannie T. Lee

Available online 12th February 2010

0959-437X/$ – see front matter

# 2010 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.gde.2010.01.003

Introduction
Histone proteins form the core of the nucleosome––the

fundamental repeating unit of chromatin. In a single

nucleosome, approximately two superhelical turns of

DNA wrap around an octamer of the core histone

proteins H2A, H2B, H3, and H4. A wealth of discoveries

in recent years has transformed our view of histones

from static scaffolding proteins to modulators of vir-

tually all processes that act on or depend on DNA,

including replication and repair, regulation of gene

expression, and maintenance of centromeres and telo-

meres. Apart from the four core histones, metazoans

have a number of histone variants such as H3.3, H2A.Z,

and H2A.X that contain a distinct amino acid sequence

and are expressed in different patterns throughout the

cell cycle. Like histone posttranslational modifications

(PTMs) and nucleosome remodeling, the use of histone

variants contributes to the regulatory repertoire of chro-

matin.
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Histone H3 variants have distinct sequences
and expression patterns
In metazoans, three main classes of histone H3 genes

encode distinct H3 proteins: the ‘canonical’, replication-

dependent histone H3, the replication-independent

histone variant H3.3, and the centromeric H3 variant

CENP-A [1,2]. Apart from the replication-dependent

histone H3 shared by all metazoans (called by its systema-

tic name H3.2 hereafter), mammals possess another repli-

cation-dependent variant H3.1 with a single amino acid

substitution (Figure 1a). Two major exceptionally con-

served differences account for unique functions of H3.1/

2 and H3.3: differential expression during the cell cycle and

amino acid variation in residues 87–90 of the histone core

region (Figure 1a). As discussed below, the rather subtle

difference in primary sequence between H3.3 and H3.1/2

in this region (‘AAIG’ vs. ‘SAVM’) is necessary and suffi-

cient to account for selective deposition and enrichment at

specific loci in the genome [3]. In the yeast species S.
cerevisiae and S. pombe, all non-centromeric H3 genes

encode for an identical H3.3-like protein sequence. Phy-

logenetic relationships (Figure 1b) suggest that the

metazoan H3.3 and yeast H3 share a common ancestor

with conserved functions.

Most higher eukaryotes organize their genes for all four

canonical histones H2A, H2B, H3.1/2 and H4 in repeats

with a total of 10–50 intronless copies of each histone

gene [4,5]. Organisms at the base of the metazoan tree,

such as Trichoplax adhearens, have only one or few copies

of H3.1/2, arguing for a later expansion of the canonical

histone genes (Figure 1c). H3.1/2 transcripts from these

clusters lack a poly(A) tail but share a conserved 30 stem

loop [6]. These unique features are thought to be respon-

sible for the tight restriction of replication-dependent

histone gene expression to S phase [7]. By contrast,

H3.3 genes are present in single copies, often contain

introns, and give rise to classical polyadenylated mRNAs.

Unlike H3.1/2, the expression of H3.3 genes is replica-

tion-independent, and H3.3 has long been established as

the predominant H3 variant in quiescent, G1, and G2

cells [8]. Consequently, its cell-cycle-independent

expression enables H3.3 to serve as a substrate for both

replication-dependent deposition and histone replace-

ment processes that occur outside of S phase.

H3.3 is enriched at active genes, promoters,
and regulatory elements
The bulk of newly synthesized histones are incorporated

during DNA replication. Once assembled into nucleo-

somes, the H3/H4 tetramer has been observed to be much
www.sciencedirect.com
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Figure 1

Protein sequences and gene complements of the non-centromeric histone H3 variants in fungi and metazoans. (a) Schematic representation of the

major non-centromeric histone H3 protein sequences from human, mouse and Trichoplax adhearens (one of the most basal metazoan species), as well

as budding and fission yeast. Amino acids that distinguish variants are highlighted with residue numbers, additional differences are indicated as dots.

H3.1 only exists in mammals and only differs in position 96 from H3.2 present in all metazoans. H3.2 and H3.3 are distinguished by one amino acid

difference at position 31 in the histone tail and three in amino acids 87-90 in the core histone fold. (b) Phylogenetic relationship of the respective

histone H3 genes. An unrooted parsimony tree was constructed on the basis of representative coding sequences (consensus tree of 100 bootstraps,

excluding the wobble bases). The H3 genes of S. pombe and S. cerevisiae cluster with metazoan H3.3. (c) Schematic overview of the major non-

centromeric gene complements of the indicated species. The placozoan Trichoplax adhearens has only one gene for H3.2 and H3.3 each, while higher

metazoans have greatly expanded H3.1/2 gene complements.
more stable in chromatin than the H2A/H2B dimers,

measured by global levels of displacement during repli-

cation and transcription [9]. However, pioneering cyto-

logical studies of H3 variant deposition in Drosophila
provided evidence for rapid H3/H4 exchange at specific

loci in euchromatin [3]. While low levels of H3.3 are

deposited together with H3.2 during replication, H3.3

was specifically enriched within actively transcribed

genes by a replication-independent replacement process

dependent on active transcription [3,10]. Conversion of

the H3.3 variant region 87–90 (‘AAIG’) to the H3.1/2

sequence ‘SAVM’ abolished replication-independent
www.sciencedirect.com
incorporation [3]. These findings underscore the import-

ance of the variant H3.3 sequence in addition to its cell-

cycle-independent expression. Interestingly, the single

replacement of a ‘S’ with ‘A’’ at position 31 of the histone

H3 tail did not have any influence on the deposition

pathway, suggesting that H3.3 S31 and its phosphoryl-

ation do not play a role in H3.3 deposition [11].

Recent advances in chromatin immunoprecipitation

(ChIP) technologies have allowed a more detailed map

of H3.3 deposition, revealing specific H3.3 incorporation

throughout the gene body of transcribed genes as well as
Current Opinion in Genetics & Development 2010, 20:110–117
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Figure 2

Genomic H3.3 localization and H3.3 deposition pathways. (a) Schematic map of an active and inactive gene locus comprising an upstream regulatory

element (RE), transcription start site (Promoter) and transcription end site (TES). The distribution of histone H3.3 across the locus is shown in green,

with representative H3.3 and H3.1/2 nucleosomes, as well as RNA polymerase II (RNAP). (b) Summary of the known factors involved in replication-

dependent (right, S phase) and replication-independent (left, Interphase) chromatin assembly pathways, in metazoans and yeast. Replication-coupled

assembly is thought to be mediated by the CAF-1 complex and Asf1 proteins in the wake of DNA polymerase (DNAP). H3.3-enrichment at telomeres is

dependent on ATRX. Replication-independent deposition at promoters, regulatory elements and genic regions in metazoans requires HIRA, CHD1,

and/or other factors, analogous to pathways in yeast mediated by Snf2, Asf1, HIR complex and/or Spt6. The FACT complex (Spt16 and Pob3/Ssrp1)

might contribute to incorporation of new or recycling of old histones.
highly enriched foci at the promoter region in Drosophila
and mammalian cells (Figure 2a) [12–17,18�,19,20��].
H3.3 enrichment at promoter regions has been observed

not only at active genes but also at inactive genes,

possibly accounting for a ‘poised’ state of these genes

[13,18�]. Furthermore, H3 replacement also occurs at

genic and intergenic regulatory regions in various metazo-

ans (Figure 2a) [13,14,20��].

Mechanism of H3.3-specific deposition in
metazoans
HIRA, the homolog of yeast Hir1 in higher eukaryotes,

has been shown to assemble chromatin independent of
Current Opinion in Genetics & Development 2010, 20:110–117
replication and to interact with ASF1a/b in a multi-

subunit complex specific for H3.3 [21,22]. HIRA and

the SWI/SNF family chromatin remodeler CHD1 have

also been implicated in H3.3 deposition in vivo [23].

Globally, H3.3 continues to be incorporated into chro-

matin even in the absence of HIRA or CHD1 [23,24].

To this end, we have recently found that, while HIRA is

required for H3.3 deposition at genic regions in mouse

embryonic stem (ES) cells, H3.3 enrichment at telo-

meres and most regulatory elements is HIRA-indepen-

dent [25��]. Instead, the SWI/SNF-type chromatin

remodeler ATRX mediates localization of H3.3 to tel-

omeres [25��,26].
www.sciencedirect.com
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Thus, a number of factors required for proper H3.3

localization at specific genomic regions have now been

identified, while the precise mechanisms of H3.3 repla-

cement remain obscure. How are the subtle differences

between H3.3 and H3.1/2 interpreted by and translated

into to a site-specific deposition? To date, there are no

structural details known on the recognition of H3.3.

While several H3.3-associated factors have been ident-

ified [22], none of them have been shown to directly and

specifically bind H3.3.

Mechanism of H3 replacement in yeast
On the basis of the homology in sequence, we expect a

common structural theme in chaperones that recognize

yeast H3 and metazoan H3.3 in a way that would allow

specific discrimination of H3.3-specific sequence fea-

tures. Despite relying on a single H3.3-like species, both

replication-dependent and replication-independent H3

deposition pathways are found in yeast: in S. pombe, H3

expressed outside of S phase is preferentially incorpor-

ated in euchromatin [27,28]. A number of studies in S.
cerevisiae detected H3 replacement at active [29�] and also

inactive [30�,31�] promoters, but only to a small extent

throughout transcribed gene bodies. Genetic studies in

yeast delineated a pathway comprising the SWI/SNF

family chromatin remodeler Snf2 and the histone chaper-

one Asf1, as well as Hir1 or Spt6 for H3 exchange at the

promoter region [31�,32,33,34,35�]. H3 deposition at the

gene body required active transcription, Hir1, and Asf1

[30�,31�,36]. Hir1, Hir2, Hir3 and Hpc2 constitute the

HIR repressor complex that has been shown to catalyze

replication-independent histone deposition together with

the H3/H4 chaperone Asf1 in vitro [37,38]. Spt6 has also

been shown to facilitate nucleosome assembly in vitro
[39]. Therefore, chromatin remodelers, histone chaper-

ones and deposition factors cooperate in the eviction of

old and deposition of new histones in yeast (Figure 2b).

Interestingly, the elongation complex FACT (Spt16/

Pob3) redeposit H3/H4 units in the wake of RNAPII,

favoring recycling of ‘old’ histone over exchanging them

with ‘new’ H3/H4 [40�]. When Spt16 is deleted, a Hir1-

dependent pathway takes over to deposits more ‘new’ H3

[40�,41]. In conclusion, yeast genetics of replication-inde-

pendent histone exchange processes might yield clues to

yet undiscovered components of metazoan H3.3-depo-

sition pathways. Moreover, novel pathways for histone

exchange might exist uniquely in higher eukaryotes

(Figure 2b).

H3.3 function: a balancing act between
facilitating and repressing transcription?
As a highly conserved replacement variant, does H3.3

have a conserved function at promoters, coding regions,

and regulatory elements? Two recent studies assessing

inducible gene expression suggest that incorporation of

H3.3 promotes initial gene activation [18�,42�]. One

possibility is that nucleosome eviction and H3.3 depo-
www.sciencedirect.com
sition may serve as a mechanism for the rapid removal of

inhibitory histone posttranslational modifications and/or

replacement with activating marks as suggested by others

[3]. However, even though nucleosomal H3.3 is enriched

in activating modifications such as H3K4me3, these

modifications in particular seem to be established only

after nucleosomal deposition [43,44]. Rather than intro-

ducing a particular set of PTMs, ongoing histone

exchange could therefore contribute to a highly dynamic

steady state of establishment and removal of histone

PTMs at specific genomic locations. Continuous histone

exchange and H3.3 incorporation at boundaries of chro-

matin domains has therefore been proposed to limiting

the spreading of certain histone modifications [13,30�].

On the basis of the apparent lability of H3.3 nucleosomes

in chromatin extracts, it has been proposed that nucleo-

some-destabilizing properties could help promote and

propagate an active chromatin state [20��,45]. As in vitro
studies found little stability difference in recombinant

H3.1/2 and H3.3 nucleosome [46,47], this effect might be

potentiated by histone PTMs or inherent to CG-rich

promoter DNA sequences that often coincide with

H3.3 enrichment [48�]. Furthermore, cooperative effects

with H2A.Z and exclusion of the linker histone H1 could

account for some of the properties of H3.3-containing

nucleosomes [45,49��].

Is H3.3 a general marker of active chromatin? Notably,

the HIR complex has been shown to have a repressive

role on transcription in yeast [45,50–52,53�,54]. Hir1 was

first identified as a potent repressor of the canonical

histone genes in S. cerevisiae [50], and recently its repres-

sor function in S. pombe has been mapped to a large

number of promoters and also to suppression of cryptic

transcripts from within coding regions [53�], probably by

repopulating nucleosome-free regions [32]. It is tempting

to speculate that replication-independent H3.3 depo-

sition in metazoans is similarly used to replenish nucleo-

some-free regions. Indeed, H3.3 knockdown leads to a

slight decrease in nucleosome density [49��].

Despite its predominant enrichment in euchromatin,

H3.3 might also play significant roles in heterochromatic

regions. HIRA, ASF1a and the mammalian Hir2 homolog

Ubinuclein-1 have been implicated in the formation of

facultative heterochromatin [55,56], and H3.3 has been

observed in pericentric heterochromatin and at telomeres

[11,57�].

Biological significance of replication-
independent H3.3 deposition
Clues for the functional significance of H3.3 come from

genetic studies in flies and mice. Loss of both genes of

H3.3 in flies leads to complete sterility, mild transcrip-

tional defects, particularly at highly expressed genes, and

partial but incomplete lethality (�42% viability) [58].
Current Opinion in Genetics & Development 2010, 20:110–117
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Figure 3

Putative compensatory mechanisms for the loss of H3.3. (a) Absence of

H3.3 as substrate for replication-independent chromatin assembly

could create nucleosome-free regions (see also ref. [63]). In rapidly

dividing cells, these gaps could be filled during the next S phase via

canonical replication-dependent chromatin assembly. (b) Elevated

levels of H3.1/2 throughout the cell cycle could provide substrate for

replication-independent chromatin assembly factors that are not

restricted to H3.3. (c) In the absence of de novo chromatin assembly,

the FACT complex could favor transient eviction and redeposition of

histone units in cis.
Intriguingly, the grossly normal development to adult-

hood of the surviving H3.3-deficient flies indicates that

H3.3 is not absolutely required for transcription and

development [58,59��]. Indeed, while expression of a

subset of genes in adults was perturbed, the precisely

timed and localized expression of developmental key

factors was not affected in H3.3-deficient flies. Similarly,

although HIRA is required for fertility, adult HIRA null

flies have no phenotypic abnormalities [24]. In mice,

targeted mutagenesis of HIRA resulted in gastrulation

defects and patterning abnormalities of mesendodermal

derivatives before early embryonic lethality [60],

suggesting a more prominent role for replication-inde-

pendent chromatin assembly during mammalian devel-

opment. Although HIRA may have various H3.3-

independent functions, H3.3 itself is also important for

mammalian development: a retroviral gene trap insertion

into the murine H3.3A gene generated an H3.3 hypo-

morph that caused developmental defects and neonatal

lethality [61��].

How do flies compensate so well for the loss of H3.3 or

HIRA? Intriguingly, an unknown mechanism seems to

allow the cells to sense overall histone levels, as replica-

tion-dependent histone H3.2 genes are upregulated in

H3.3-deficient flies. Furthermore, upregulated endogen-

ous replication-dependent histone gene transcripts were

found to be polyadenylated to some extent, probably

achieved by a known alternative histone mRNA proces-

sing mechanism [58��,62]. Importantly, viability and wild-

type expression of most genes are fully restored when an

additional H3.2 transgene is introduced [58��]. Thus,

elevated levels of H3.2 can largely rescue the transcrip-

tional phenotype in adult H3.3 null flies. In rapidly

dividing cells, replication-dependent deposition of

H3.1/2 could compensate for loss of nucleosomes during

transcription (Figure 3a). Alternatively, replication-inde-

pendent pathways could tolerate H3.1/2 as substrates in

the absence of H3.3 (Figure 3b).

Interestingly, global H3K4me3 levels in flies lacking H3.3

were comparable to wild type but drastically reduced in

flies with a H3.3K4A transgene [58��], indicating that only

in the absence of H3.3, H3.2 becomes the major carrier for

this mark. We and others speculate that in the absence of

a replacement variant, re-deposition of histones in cis
partially substitute for replication-independent incorp-

oration of new histones [63], which is analogous to the

competing pathways for ‘new’ and ‘old’ histone observed

in yeast (Figure 3c)[40�]. Thus, if no ‘new’ histones are

available, more ‘old’ histones with ‘old’ marks might be

retained.

Histone replacement by H3.3 is essential for
reproduction in metazoans
Despite potential compensatory mechanisms, HIRA and

H3.3 play crucial roles in sexual reproduction in all
Current Opinion in Genetics & Development 2010, 20:110–117 www.sciencedirect.com
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studied metazoans [24,58��,59��]. Both male and female

H3.3 null flies are sterile. In mammals, the hypomorphic

gene trap of H3.3A described above also led to male

sub-fertility [61��]. Strikingly, H3.3 is substrate for

several large-scale chromatin remodeling events during

metazoan reproduction, in particular gametogenesis and

fertilization [64�]. Meiotic sex-chromosome inactivation

in mammalian male germ cells also involves massive

incorporation of H3.3 into the X and Y chromosomes

and subsequent silencing [65�], a process that could be

mechanistically related to the formation of facultative

heterochromatin [55,56].

Meiosis is partly impaired in H3.3 null flies owing to a

defect in chromosome segregation [58��]. After meiosis,

the condensation of sperm chromatin requires removal of

most histones and replacement with protamines, although

some pool of H3.3 is retained in mammalian and C. elegans
sperm chromatin [65�,66]. After fertilization, a maternal

pool of H3.3 is used to rechromatinize the paternal

genome in the male pronucleus [23,24,66,67]. This asym-

metrical distribution of H3 variants could be important in

epigenetic distinction of maternal and paternal infor-

mation.

Critically, all remodeling events in the germline seem to

be exquisitely specific to H3.3, as a H3.2 transgene under

the H3.3 promoter cannot rescue the fly’s sterility [59��].
It is therefore likely that the phenotype is a direct con-

sequence of impaired large-scale chromatin remodeling

rather than a secondary effect due to gene expression

changes related to transcriptional defects in the absence

of H3.3. Consistent with this notion, H3.3 incorporation

in the male pronucleus precedes onset of transcription

and relies on HIRA and CHD1 activity [23,24]. The

essential germline functions of H3.3 therefore probably

created the strong evolutionary pressure that drove the

exceptional conservation of the H3.3 protein in higher

eukaryotes.

Conclusions
Why is the use of H3.3 so diverse and widespread while

not all of its functions are essential in metazoans? We

speculate that both germline and somatic functions of

H3.3 have evolved from the single H3.3-like ancestor

present in unicellular organisms. Differential timing of

H3 gene expression might have allowed some tailoring of

H3 variants for replication-dependent and independent

functions, but ultimately the diversification of H3.1/2

amino acid sequence efficiently excluded these replica-

tion-dependent histones from H3.3-specific pathways.

The separation of replication-dependent and replica-

tion-independent pools of H3/H4 might have allowed

subsequent multiplication of the replication-dependent

histone genes to fuel the growing need for bulk histones

during replication of larger genomes without affecting

fine-tuned histone replacement processes. We will need
www.sciencedirect.com
more detailed studies on how these H3.3-specific path-

ways affect chromatin structure and function to ultimately

understand why metazoans evolved this exquisite speci-

ficity. Interestingly, H3 variants similar to H3.1/2 and

H3.3 have emerged by convergent evolution in plants,

multicellular fungi and even the protozoans Tetrahymena
and Trypanosoma brucei [68,69], suggesting a universal

theme in chromatin regulation by histone variants.
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