Relaxation Times

Relaxation = return to equilibrium (Boltzmann) after a pulse, redistribution of energy

Relaxation can be described for isolated spins by the Bloch Equations, the total relaxation is determined by two characteristic time constants:

T₁

Longitudinal, Spin-Lattice Relaxation Build up of longitudinal magnetisation via energy

exchange between spins and their environment ("lattice") enthalpy

Т

Transversal, Spin-Spin Relaxation Dephasing of transversal magnetisation without energy exchange between spins and their environment, entropy

Two important relations between T_1 and T_2 must be remembered \succ T_2 cannot be longer than T_1 : $T_2 \leq T_1$ \triangleright In the "extreme narrowing limit": $T_2 = T_1$

T_1 and T_2 in Data Acquisition

repetition time

 T_1 governs the repetition frequency for subsequent transients Relaxation delay = 5 T_1 T_2 governs the decay time constant of individual FID's Optimum sensitivity of the NMR experiment is obtained if $T_1 = T_2$

Magnetization

In-Field

More nuclei point in parallel to the static magnetic field. The macroscopic magnetic moment, M_0

$$\mathbf{M}_0 = \boldsymbol{\Sigma} \ \boldsymbol{\mu}_i$$

Longitudinal Magnetization

Spin-Lattice Relaxation Time

 $R_1 = 1/T_1$ [Hz] longitudinal relaxation rate constant T_1 [s] longitudinal relaxation time spin-lattice relaxation time enthalpy

Transverse Magnetisation

Spin-Spin Relaxation Time

 $R_2 = 1/T_2$ [Hz] transverse relaxation rate constant

 T_2 [s] transverse relaxation time constant

spin-spin relaxation time

entropy

Free Induction Decay FID

- $= [cos(\omega_L t) + isin(\omega_L t)] exp(-t/T_2)$
- $= exp(i\omega_L t)exp(-t/T_2) = exp[-(1/T_2 i\omega_L)t]$

$$\frac{dM_{x'}}{dt} = (\omega_o - \omega)M_{y'} - \frac{M_{x'}}{T_2}$$
$$\frac{dM_{y'}}{dt} = -(\omega_o - \omega)M_{x'} + 2\pi\gamma B_1 M_z - \frac{M_{y'}}{T_2}$$
$$\frac{dM_z}{dt} = -2\pi\gamma B_1 M_{y'} - \frac{(M_z - M_{z_o})}{T_1}$$

Relaxation = Return to Equilibrium

13

Relaxation

Relaxation in other types of spectroscopy:

• spontaneous emission (not in NMR) fluorescence, phosphorescence

collisional deactivation

 (not in NMR, molecular tumbling does not change orientation of I, always along B₀)

stimulated emission

lasers

magnetic interactions of I with external fluctuating mg. field (dipolar) containing many different frequencies, when it contains ω_{L_1} resonance causes relaxation = emission of excess energy, transition from exited to ground state

Linewidth

 T_1 = lifetime of a nucleus in a certain energy state

Heissenberg uncertainity principle

 $\Delta E \ \Delta t \ge h/2\pi$ h = 6.626 10⁻³⁴ J s

 $h \Delta v_{1/2}$ $T_1 \geq h/2\pi$

 $\Delta v_{1/2} \geq 1/T_1 \qquad \Delta v_{1/2} \geq 1/\pi T_2$

High relaxation rate = short relation times

= wide lines in spectra

Werner Heisenberg (1901-1976) NP in physics 1932

Correlation Time $\tau_{\rm C}$

Correlation Time $\tau_{\rm C}$ describes molecular tumbling

1. Look at one molecule

 $\tau_{\rm C}$ = average time during which a molecule stays in one orientation, until a collision changes its orientation

small molecules, low viscosity 10^{-12} s

polymers, high viscosity

10⁻⁸ s

Correlation Time $\tau_{\rm C}$

- 2. Look at a group of molecules (1 mole)
- All molecules oriented in the same way, then $\tau_{\rm C}$ is time in which the orientation is dispersed to 1 rad (~60°)
- $t < \tau_{C}$ molecules are close to the original orientation
- $t >> \tau_{C}$ random distribution

 $1/\tau_{\rm C}$ = tumbling rate

Correlation Time τ_C

Time

Correlation Time τ_{C}

Correlation function describes molecular tumbling

Correlation Time $\tau_{\rm C}$

 $\tau_C <> 1/\omega_0$ poor energy transfer, T_1 long, narrow lines

 $\tau_{\rm C} = 1/\omega_0$ effective energy transfer, T_1 short, fast relaxation, wide lines

$$\tau_C = \frac{1}{6D} = \frac{\eta V}{k_B T} = \frac{4\eta \pi a^3}{3k_B T}$$

 η = viscosity, high η = slow tumbling, long τ_{c} , wide lines a = molecular diameter, large particles = long τ_{c} , wide lines

 $a = \text{molecular drameter, rarge particles} = \text{long } t_{C}$, while miles

T = temperature, high T = fast tumbling = short τ_c , narrow lines

Correlation Time $\tau_{\rm C}$

Approximate rule

 $\tau_{c} [ps] \sim M_{r}$ in H₂O at room temp.

Supercritical CO₂ is a good NMR solvent

(a)65 °C and 65 bar has low viscosity, narrow lines

long $\tau_{\rm C}$ = slow tumbling rigid molecules, high viscosity

extreme narrowing

 $T_1 = T_2 = long$ sharp lines

short $\tau_{\rm C}$ = fast tumbling, small molecules, low viscosity

The Influence of Correlation Times on Relaxation

- Correlation times are not molecular constants, but depend on a number of factors, e.g. temperature, effective molecular size, solvent viscosity...
- > Variation of these factors may induce changes in τ_c of several ordes of magnitude.
- These changes may lead to violation of the "extreme narrowing" conditions, and introduce the necessity for a more concise treatment of the correlation time dependence of relaxation times.

Linewidth

Relaxation rate

$$R = \sum_{i} \frac{1}{T_i}$$

Linewidth

$$\Delta v_{1/2} \approx \frac{1}{T_1} + \frac{1}{T_2}$$

short $\tau_{\rm C}$ = fast tumbling = long $T_1 \ge T_2$

$$\Delta v_{1/2} \approx \frac{1}{T_1} + \left(\frac{1}{T_2}\right)$$

long $\tau_{\rm C}$ = slow tumbling = long $T_{1,}$ short T_2 Linewidth is given by T_2

$$\Delta v_{1/2} \approx \frac{1}{\pi T_2}$$

Relaxation Time T₁

Fluctuating magnetic fields (of the right amplitude and frequency) make spins exchange energy with their environment

Important mechanisms to generate these fluctuating magnetic fields are:

- Direct dipolar interaction of a nuclear spin with other nuclear spins
- Molecular motion in the presence of large chemical shielding anisotropies
- Interaction of a nuclear spin with a nuclear quadrupole

The individual contributions combine to make the total relaxation

$$\frac{1}{T_1} = \frac{1}{T_{1,DD}} + \frac{1}{T_{1,CSA}} + \frac{1}{T_{1,Q}} + \dots$$

Dipolar Relaxation T_{1,DD}

The Direct Interaction of a Nuclear Spin with other Spins

INTRAMOLECULAR

The magnetic moment of a nuclear spin B influences the local field at the position of a neighbouring nucleus A:

 $B_{loc}(A) = B_{loc}, 0(A) + D$

D denotes the dipolar coupling constant which is defined as

$$D = \frac{\hbar\mu_0}{8\pi^2} \frac{\gamma_A \gamma_B}{r_{AB}^6} (1 - 3\cos^2\theta)$$

Brownian motion of the sample containing nuclei A and B induces a fluctuation of θ which leads in turn to a time dependent modulation of the local magnetic field $B_{loc}(A)$.

r_{AB}

 μ_{B}

Dipolar Relaxation T_{1,DD}

The contribution of this modulation to the T_1 relaxation of nucleus A can be expressed in terms of a characteristic time constant $T_{1,DD}$:

 τ_c = molecular correlation time

S = spin of nucles B

 γ_B = large magnetogyric ratio, faster relaxation, shorter $T_{1,DD}$ substitution H/D

nuclei with large γ (e.g. H) relax nuclei with small γ

 $1/r_{AB}^{6}$ = only directly bound nuclei contribute = intramolecular

$$\frac{1}{T_{1,DD}(A)} = \frac{\mu_0^2 \hbar^2 \gamma_A^2 \gamma_B^2}{12\pi^2 r_{AB}^6} [S(S+1)]\tau_C$$

(in the extreme narrowing limit)

Dipolar Relaxation T_{1,DD}

INTERMOLECULAR

$$\frac{1}{T_{1,DD(\text{int}\,er)}} = \frac{N_0 \pi h^2 \gamma^4}{2Da} = \frac{3\pi^2 \gamma^4 \hbar^2 \eta N_0}{k_B T}$$

 N_0 = number of molecules in m³ D = difussion coefficient T = temp, high T narrows lines

$$D = \frac{k_B T}{6\pi\eta a}$$

Protons relax both inter and intramolecularly

 C_6H_6 neat
 $T_1(H) = 19$ s

 C_6H_6 diluted in CS_2 $T_1(H) = 90$ s

I: The Influence of the observed nucleus A in a A-H fragment:						
Α	³¹ P	¹³ C	²⁹ Si	$^{15}\mathbf{N}$	¹⁰³ Rh	
γ(X)	10.84	6.73	-5.32	-2.71	-0.85	
r _{AH} [Å]	1.4	1.1	1.4	1.0	1.6	
$T_{1,DD}$ (τ_c =10 ⁻¹¹)	8 s	5 s	33 s	17 s	48 min	
T _{1,DD} (τ _c =10 ⁻⁹)	80 ms	50 ms	330 ms	170 ms	29 s	

II: The Influence of the neighboring nucleus X in an A-X fragment (A=¹⁵N):

X	$^{1}\mathrm{H}$	³¹ P	¹³ C	¹¹ B	$^{51}\mathrm{V}$
γ(X)	26.75	10.84	6.73	8.59	7.05
r _{AX} [Å]	1.0	1.7	1.4	1.3	1.8
S(S+1)	0.75	0.75	0.75	3.75	3.75
$T_{1,DD} (\tau_c = 10^{-11})$	17 s	42 min	34 min	160 s	400 s
$T_{1,DD} (\tau_c = 10^{-9})$	170 ms	25 s	20 s	1.6 s	4 s

III: The Influence of the internuclear distance in a N…H fragment:						
r _{AX} [Å]	1.0	2.1	2.7			
	(N-H)	(N-C-H)	(N-C-C-H)			
$T_{1,DD} (\tau_c = 10^{-11})$	8 s	24 min	110 min			

 $\tau_c = 10^{-11}$ s: medium sized (in)organic molecule $\tau_c = 10^{-9}$ s: small polymer 29

Quadrupole Induced Relaxation $T_{1,Q}$ The Interaction of a nuclear spin with a quadrupole moment

Nuclei with $I > \frac{1}{2}$ possess an electric quadrupole moment eQ which is quantized according to its oriention in the electric field gradient *(efg)* of the electrons if the local symmetry is less than spherical.

Due to strong coupling between eQ and I, the nuclear magnetic spin levels depend on both B_0 and the efg.

Electric quadrupole moment eQ = nonspharical distribution of the positive nuclear charge

Quadrupole Induced Relaxation T_{1,Q}

BROWNIAN MOTION of sample molecules modulates the different m_I energies which leads to a stochastic modulation of the local magnetic field $B_{loc}(A)$.

Tumbling = spread of energy levels

in solution the average transition energy does not change but the spread contributes to relaxation

Quadrupole Induced Relaxation T_{1,Q}

The contribution to $T_1(A)$ can be expressed in terms of a characteristic time constant $T_{1,0}$ (extreme narrowing limit)

$$\frac{1}{T_{1,Q}} = \frac{1}{T_{2,Q}} = \frac{3(2I+3)}{40I^2(2I-1)}(1+\frac{\eta^2}{3})(\frac{e^2Qq_{zz}}{h})^2\tau_C$$

 $τ_c$ = correlation time I = nuclear spin Q = nuclear quadrupole moment (Q ≠ 0 for $I > \frac{1}{2}$) q_{ZZ} = electric field gradient $q_{ZZ} = 0$ for high symmetry (spherical, Cl⁻, cubic T_d, O_h, ClO₄⁻, SO₄²⁻, AsF₆⁻ η = asymmetry parameter (η = 0 for axial symmetry)

$$\eta = \frac{q_{yy} - q_{xx}}{q_{zz}}$$

Quadrupole Induced Relaxation T_{1,Q}

Nuclear Quadrupole Coupling Constant, NQCC $\chi = e^2 q_{77} Q / \hbar$

Linewidth factor

$$l = \frac{Q^2(2I+3)}{I^2(2I-1)}$$

Ι	1	3/2	5/2	3	7/2	4
1 [Q ²]	5	1.33	0.32	0.20	0.16	0.10

I. The Influence of the electric field gradient q_{zz} :

¹⁴ N relaxation	on times:					
	$\operatorname{Bu}_4 \mathbb{N}^+(\mathbb{T}_d)$	$NaNO_3(D_{3h})$	$NN^{-}(C_{oh})$	$MeSCN(C_{ov})$	$DABCO(C_{ov})$	
c[MHz]	0.04	0.745	1.03	3.75	4.93	
T _{1,Q}	1.8 s	85 ms	29 ms	2 ms	0.6 ms	
⁵⁵ Mn relaxation times:						
⁵⁵ Mn relaxat	ion times:					
⁵⁵ Mn relaxat	tion times: Mn ₂ CO ₁₀	BrMn(CO) ₅	HMn(CO) ₅	CpMr	1(CO) ₃	
⁵⁵ Mn relaxat	tion times: Mn ₂ CO ₁₀ 3.05	BrMn(CO) ₅ 17.46	HMn(CO) ₅ 45.7	CpMr 64	n(CO) ₃ 1.3	

II. The Influence o	f Q and $E \operatorname{T}_{1,Q}$ in	<u>[۱</u> [M(CO)] ا			
M =	⁹⁵ Mo	⁹⁷ Mo	187 Re ⁽⁺⁾	185 Re ⁽⁺⁾	¹⁸¹ T'a(-)
$Q[10^{-28} \text{ m}^2]$	0.12	1.1	2.6	2.8	3
I	5/2	5/2	5/2	5/2	7/2
Q(2I+3)/(2I-1)	0.30	2.75	6.50	7.00	10.5
$T_{1,Q}$	>450 ms	53 ms	141 µs	122 µs	48 µs
$\mathbb{W}_{1/2}$ [Hz]	<0.7	6	2250	2600	6700

CSA Induced Relaxation, $\overline{T}_{1,CSA}$

Tumbling of molecules with large chemical shielding anisotropies Important for nuclei with wide range of chemical shifts: ³¹P, ¹⁹⁵Pt, ¹¹³Cd

Magnetic shielding is anisotropic and may vary for different orientations of the magnetic field B_0 with respect to the molecular frame.

Chemical Shielding Anisotropy CSA

$$\Delta \sigma = \sigma_{zz} - \frac{1}{2}(\sigma_{xx} - \sigma_{yy})$$
$$\Delta \sigma = \sigma_{//} - \sigma_{\perp}$$

BROWNIAN MOTION of sample molecules induces time dependent modulation of σ and thus a stochastic fluctuation of the effective local magnetic field B_{0,loc}(A).

CSA Induced Relaxation, T_{1,CSA}

The contribution to $T_1(A)$ can be expressed in terms of a characteristic time constant:

$$\frac{1}{T_{1,CSA}(A)} \approx B_0^2 \gamma_A^2 (\Delta \sigma)^2 \tau_C$$

(in the extreme narrowing limit)

 τ_c = molecular correlation time $\Delta \sigma$ = shielding anisotropy B_0 = magnetic field strength = wide lines in strong magnets !!!!

I: The Influence of the observed nucleus A in ($\Delta \sigma = 100$ ppm; B ₀ = 7 T):						
А	³¹ P	¹³ C	$^{15}\mathbb{N}$			
$\gamma(\mathbf{X})$	10.84	6.73	-2.71			
$T_{1,CSA}$ (t _c =10 ⁻¹¹)	130 s	340 s	35 min			
$T_{1,CSA} (t_c = 10^{-9})$	1.3 s	3. 4 s	21 s			

II: The Influence of the magnetic field B_0 (nucleus ¹⁹⁵Pt; $\Delta \sigma = 1000$ ppm):

		-			Π.
В ₀ [Т]	4.7	7.1	11.7	17.6	
v (¹ H) [MHz]	200	300	500	750	
$T_{1,CSA}$ (t _c =10 ⁻¹¹)	10 s	4 s	1.6 s	0.7 s	
$T_{1,CSA}$ (t _c =10 ⁻⁹)	100 ms	40 ms	16 ms	7 ms	

III: The Influenc	e of the shielding	anisotropy (nuc	leus ¹⁹⁵ Pt; B ₀ =	= 7 T):
Δ σ [ppm]	15	150	1500	15000
$T_{1,CSA} (t_c = 10^{-11})$	5.5 h	3.3 min	2 s	20 ms
T _{1,CSA} (t _c =10 ⁻⁹)	3.3 min	2 s	20 ms	0.2 ms

$$\tau_{\rm c}$$
 = 10⁻¹¹s: medium sized (in)organic molecule;

 $\tau_c = 10^{-9}$ s: small polymer;

Spin Rotation Induced Relaxation, T_{1.SR}

Tumbling molecule = bonding electrons move and induce magnetic field around the molecule. Important for small fast rotating molecules with high symmetry: SF_6 , PCl₃, PtL₄

$$\frac{1}{T_{1,SR}} = \frac{2Vk_BTC^2}{3\hbar^2}\tau_j$$

V = moment of inertia

C = SR constant

 τ_i = time in which a molecule changes its angular momentum, e.g.

time between collisions

Hubbard (if $\tau_j << \tau_{C_j}$ valid for small molecules below b. p.) $\tau_j \tau_C$

 $_{j}\tau_{C} = \frac{V}{6k_{B}T}$

Contributions of CSA versus SR

	$[\mathbf{Pt}(\mathbf{P}^{t}\mathbf{Bu}_{3})_{2}]$	$[Pt(PEt_3)_3]$	$[Pt{(P(OEt)_3)_4]$
symm	linear	trigonal	tetrahedral
T ₁ [s]	0.03	2.4	5.6
@ 9.4 T			
CSA %	100	50	10
SR %	0	50	90

SR important at high T, high symmetry CSA important at high B_0 , low symmetry

Scalar Coupling Induced Relaxation, $T_{1,SC}$

Two nuclei coupled through J_{AB} and one of them relaxes fast = the fast spin orientation change of B is transferred to A

•exchange of B nucleus (e.g. H exchange)
τ = lifetime of the exchange process

•quadrupolar nucleus B $\tau = T_{2q}$ quadrupolar relaxation time

$$\frac{1}{T_{1,SC}} = \frac{8\pi^2 J^2}{3} (S+1)S \frac{\tau}{1+(\varpi_I - \varpi_S)^2 \tau^2}$$

S = spin of B

Paramagnetic Relaxation, T_{1,e}

Dipolar relaxation by electron magnetic moment Transfer of unpaired electron density onto a nucleus

O₂ in the solvent TM ions

$$\frac{1}{T_{1,e}} = \frac{4\pi^2 \gamma^2 \eta N_p \mu_{eff}^2}{k_B T}$$

 N_p = concentration of paramagnetic species in m³ μ_{eff} = magnetic moment of e, thousand times larger than magnetic moment of nuclei, even small conc. of paramagnetic species shortens considerably relaxation time, wide lines η = viscosity

Relaxation agent $Cr(acac)_3$ can be added to the solution of a slow relaxing compound (¹³C, ²⁹Si,..) to shorten the acq. delay

Paramagnetic Relaxation, $T_{1,e}$

 $\frac{1}{T_{1,e}} = \frac{(\mu_0 \gamma_I \gamma_S \hbar)^2}{12\pi^2 r^6} S(S+1)\tau_C + \frac{(\mu_0 \gamma_S a_N)^2}{24\pi^2} S(S+1)\tau_e$

dipole-dipole term

contact term

- $\tau_{\rm c}$ = molecular correlation time
- τ_{e} = electron correlation time
- a_N = electron-nucleus spin coupling constant

Away from Extreme Narrowing Conditions

Theoretical analysis of relaxation processes under conditions which fail to fulfil the requirements of extreme narrowing revealed that dependence of T_1 on τ_c follows frequently a relation

 $v = v_{Zeeman}/2\pi$

This relation allows a more detailed analysis of temperature effects on relaxation.

The Temerature Dependence of T₁ Relaxation

 T_1 is independent of B_0 in the extreme narrowing regime ($\omega^2 \tau^2 \ll 1$) T_1 goes through a minimum (optimum relaxation conditions, $\omega^2 \tau^2 \approx 1$, very efficient relaxation) T_1 depends on B_1 if $\omega^2 \tau^2 \gg 1$

 T_1 depends on B_0 if $\omega^2 \tau^2 >> 1$

Measurement of T₁ The Inversion Recovery Experiment

Non-equilibrium z-magnetisation recorvers during delay τ $M_z(\tau)$ is converted into observable magnetisation by the read pulse Performing a series of experiments and incrementing τ allows to sample $M_z(\tau)$ at different times

 T_1 is obtained from a fit of observed signal intensities as a function of τ

Measurement of $T_1(^{51}V)$ for a Vanadium Complex

Relaxation Time T₂

 T_2 relaxation occurs without energy transfer \Rightarrow "entropic process".

The characteristic time constant T_2 is connected with the linewidth:

$$\frac{1}{T_2} = \frac{1}{T_{2,true}} + \frac{1}{T_2^*} = \pi \Delta w_{1/2}$$

describes the effect of magnetic field inhomogeneities, i.e. mostly bad shimming

Relaxation Time T₂

For most I = n/2-nuclei,

 $1/T_{2,true} >> 1/T_{2,*}$ T₂ may be determined directly from measured linewidth: $\pi \Delta w_{1/2} = 1/T_2 \approx 1/T_{2,true}$

For I = 1/2-nuclei, $1/T_{2,true} \le 1/T_{2,*}$ T₂ must be measured by a dedicated experiments (CPMG)