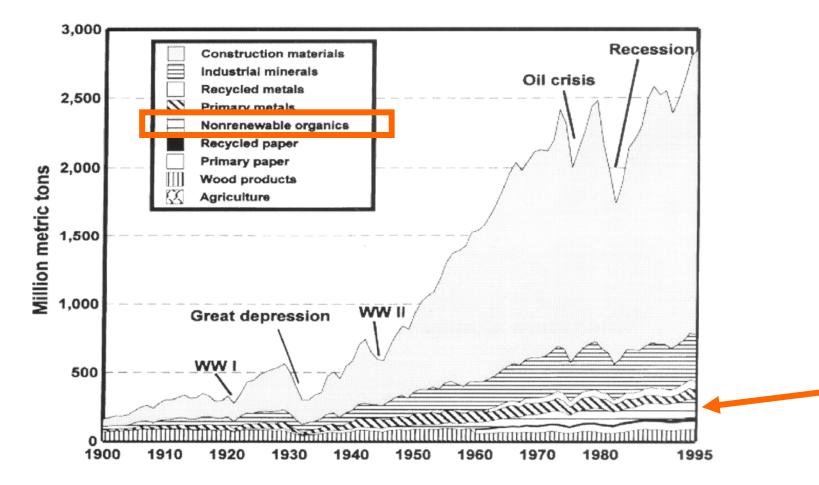
Emerging Pollutants: From source to health effects to policy

Miriam Diamond University of Toronto

13/04/2011

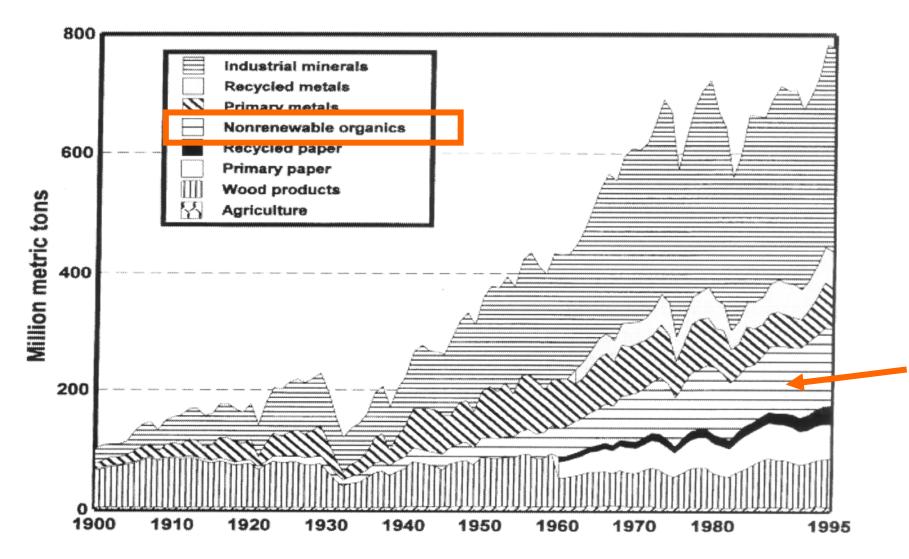
$\overline{\mathbf{r}}$

Preamble


- Extremely high production volume (HPV) chemicals (> 1 million tonnes/year) are inevitably in us
- Some are known to disrupt endocrine function at low exposures
- Are population-wide exposures putting some/all at risk?

Per Capita Material Flows Tons/capita/year Airborne waste Airborne waste 19 5 Input goods Sewage Liquid waste Input goods 89 61 8.0 6 Stock ~0 Stock 266 Solid waste Solid waste Brunner & Rechberger 2001 3

Ţ


Consumption Trends

MATOS & WAGNER

Figure 1 Measurement of the amount of raw materials consumed in the United States. WWI, 13/04/2011 World War I; WWII, World War II (5).

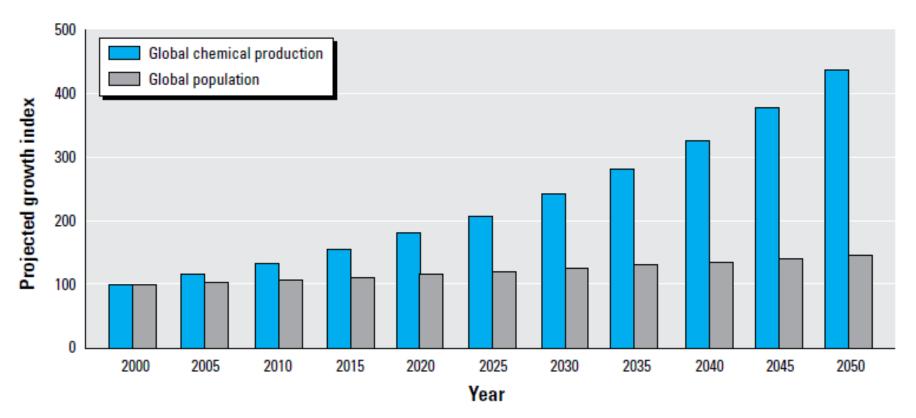
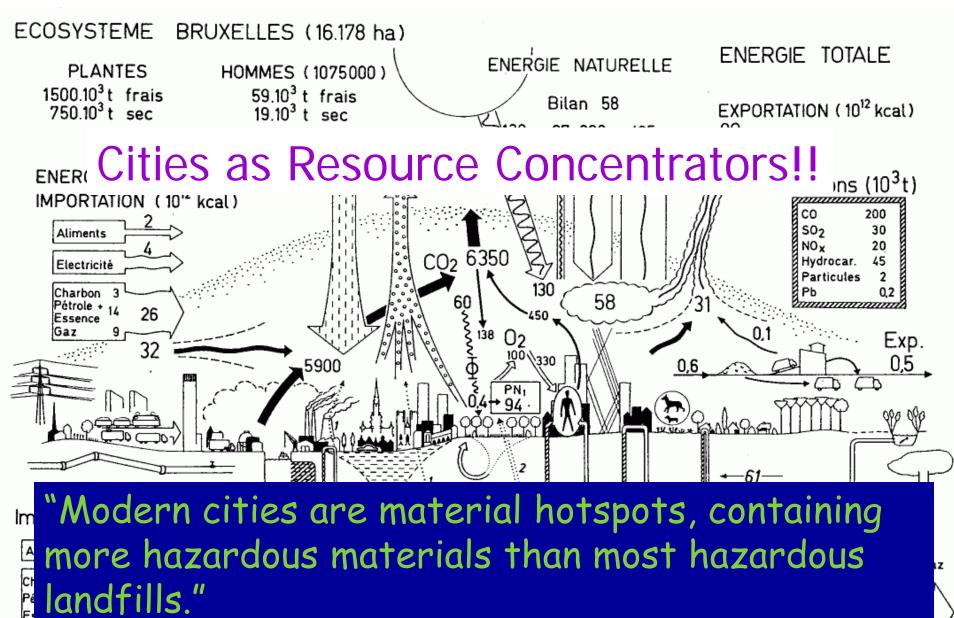

112 MATOS & WAGNER

Figure 3 Measurement of the amount of raw materials (excluding crushed stone and construction sand and gravel) consumed in the United States.


Matos & Wagner. 1998. Ammu. Rev. Energy Environ. 23:107-122.

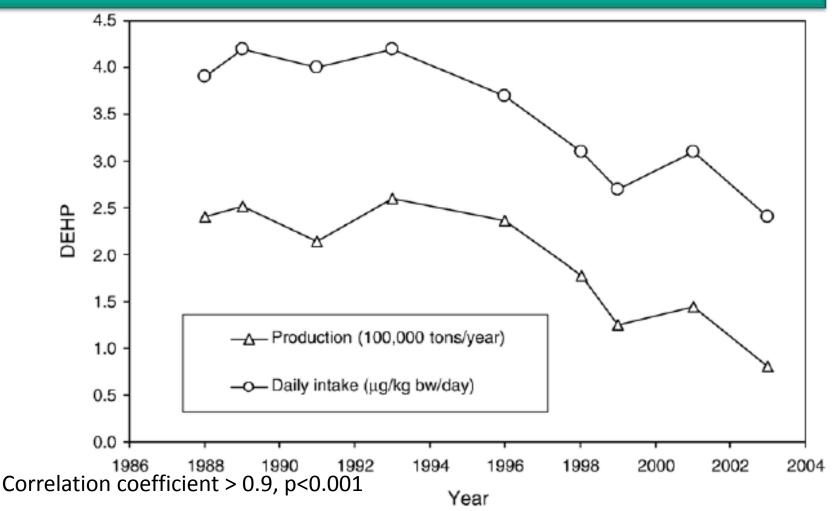
Growth in Chemical Production

Figure 2. Global chemical production is projected to grow at a rate of 3% per year, rapidly outpacing the rate of global population growth, estimated at 0.77% per year. On this trajectory, chemical production will double by 2024, indexed to 2000 (American Chemistry Council 2003; OECD 2001; United Nations 2004).

Wilson & Scharzman 2009, Environ Health Perspectives

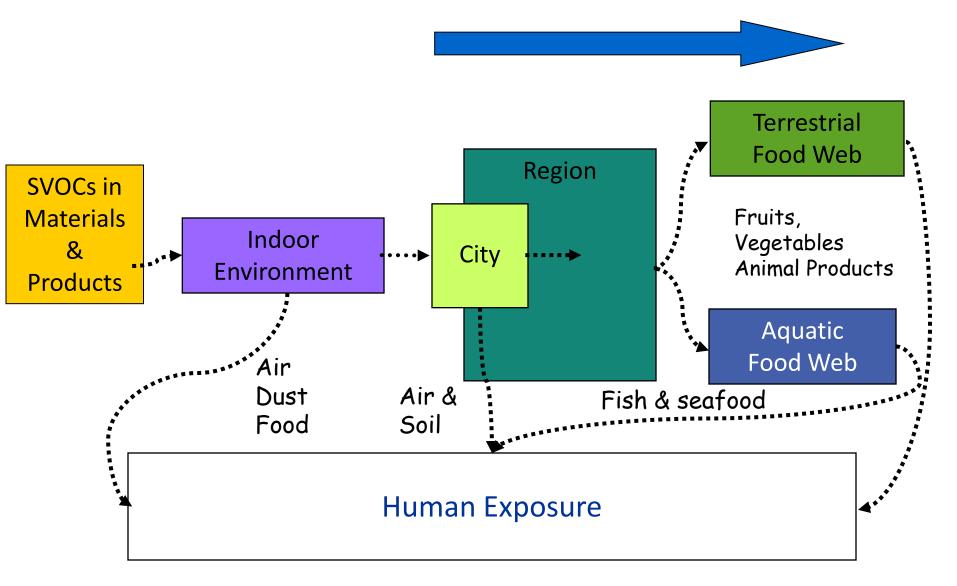
Brunner & Rechberger 2001

13/04/2011

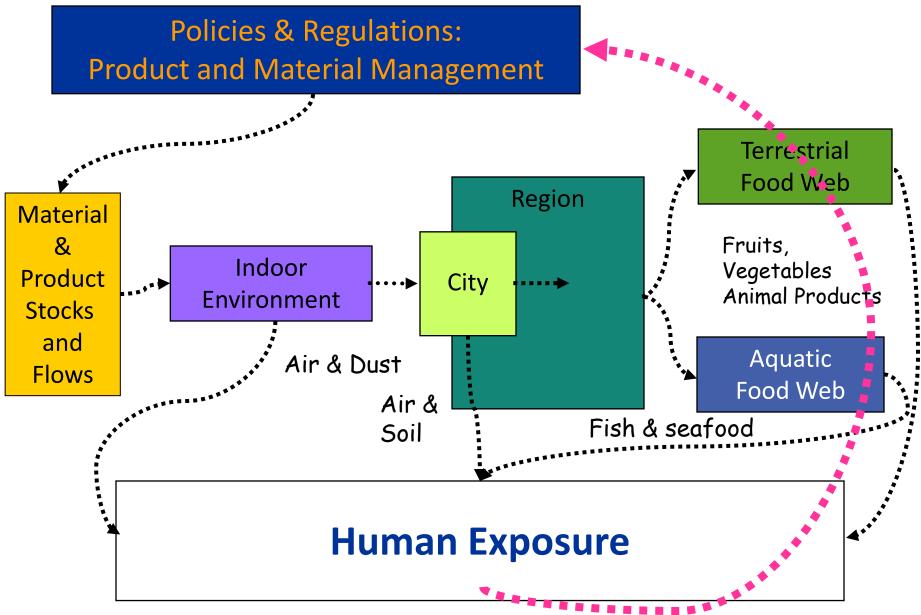

Déchets :277

Produits

manufacturés

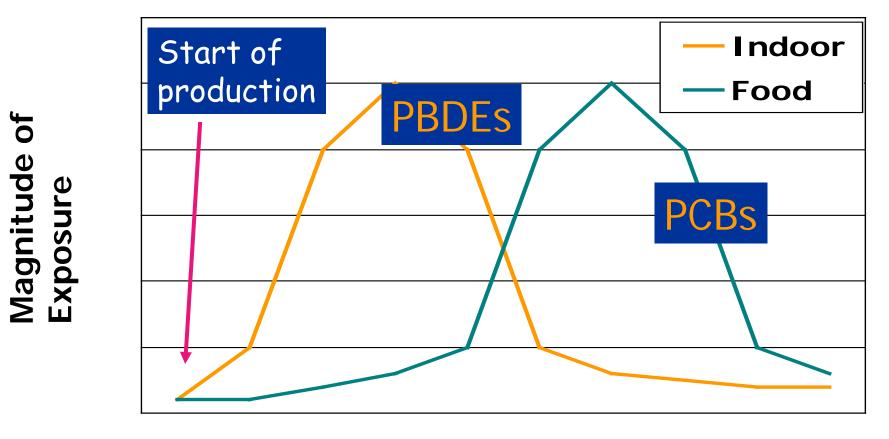

Chemical	Production (g/c.d)	Rate %	Exp to Prod Ratio, ppm
BPA	9.13 US	6-10%/y	0.23 (adult)
DEHP	6.54 Germany	~1000X '77-'88	46 (adult)
PBDEs	0.07 North America	33% ('91-'99)	2 (adult) 28 (infant)
PCBs	0.06 Canada	57% ('60-'64 vs '65-'69)	3 (adult)

Population Scale Correlation between Intake and Production

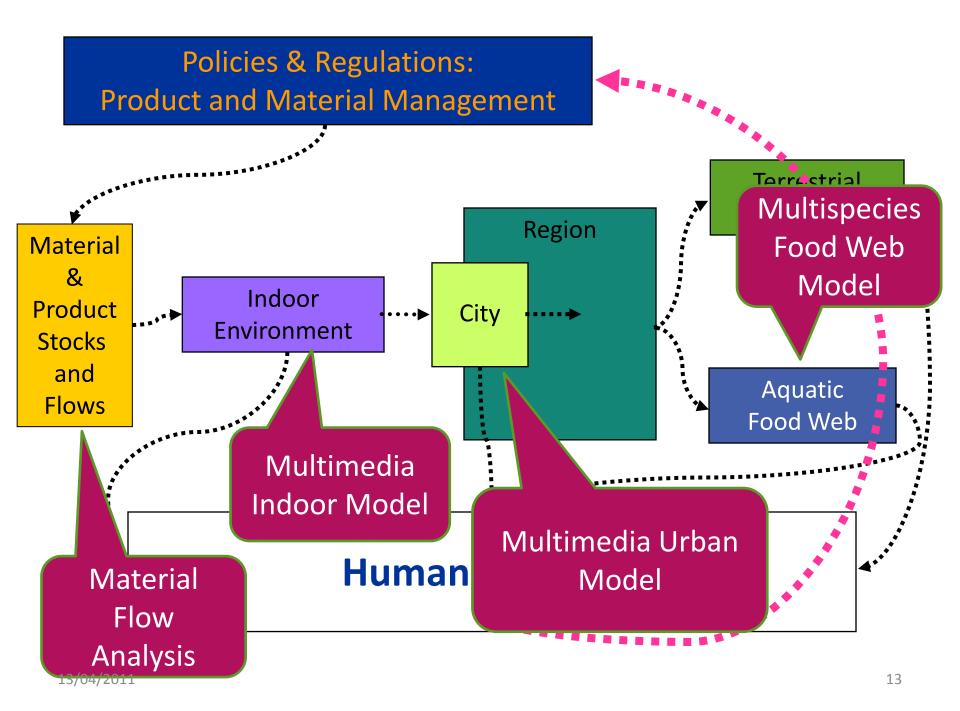


Helm D.2007 Correlation between production amounts of DEHP and daily intake. Sci Total/Environ 388:398-391.

If Persistent & not metabolised



Diamond & Harrad. 2009. The chemicals that will not go away: implications for human exposure to reservoirs of POPs/*OP/ensistent Organic Pollutants: Current Issues and Future Challenges*. S.J. Harrad Chichester, UKO, Wiley.


Diamond & Harrad. 2009. The chemicals that will not go away: implications for human exposure to reservoirs of POPs/*OP/ensistent Organic Pollutants: Current Issues and Future Challenges*. S.J. Harrad Chichester, UK, Wiley.

Contaminant Exposure

Time

Harrad & Diamond 2006 Atmos Environ 40:1187-1188

Source ♀ Emission ♀ Fate ♀ Exposure ♀ Toxicity♀ Policy

1. Phthalates

- Exposure
- Toxicity
- 2. Polybrominated diphenyl ethers (PBDEs) & Polychlorinated biphenyls
 - Material Flow Analysis (MFA)
 - Indoor Environment
 - Urban Environment
- 3. PBDEs & Bisphenol A
 - Food web transfer
 - Policy

Plastics

- Manufactured as a material that could be molded to different shapes
- Earliest mass produced plastic was Bakelite
 - Very hard, durable plastic
 - Black (could not take pigment)

http://cgi.ebay.ca/VINTAGE-GYPSY-JAZZ-GUITAR-PICK-CATALIN-BAKELITE_W0QQitemZ310209646065QQcmdZV iewItemQ00tZGuitar_Accessories?hash=item4 839ef8df1

http://www.google.ca/imgres?imgurl=http://blog.blacknight.ie/imag es/black-phone.jpg&imgrefurl=http://blog.blacknight.com/updated-telephonenumbers.html&h=282&w=425&sz=90&tbnid=CNcr9CZrLrRs_M:&tbnh=84&tbnw=12 6&prev=/images%3Fq%3Dblack%2Btelephone&usg=__CfwZ0xqRE6Kpkn34FYk5fDLg TJY=&ei=dgyyS7LPN8F5&Aa845HJAQ&sa=X&oi=image_result&resnum=1&ct=image &ved=0CAsQ9QEwAA

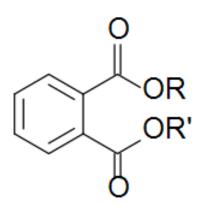
http://www.vam.ac.uk/vastatic/microsites/1331_mod ernism/files/97/1931_germany_chermayeff.jpg

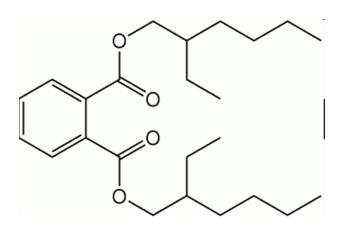

Flexible Plastic

- Durable (won't break, crack, yellow over time)
- Take colours
- Easily molded
- Inexpensive
- Light weight

http://media.giantbomb.com/uploads/0/2750 /238166-beachball_large.jpeg

http://www.vestaldesign.com/blog/wpcontent/uploads/plastic-bottle-blowinghand.jpg


http://www.vam.ac.uk/images/image/15519-large.jpg


Outline

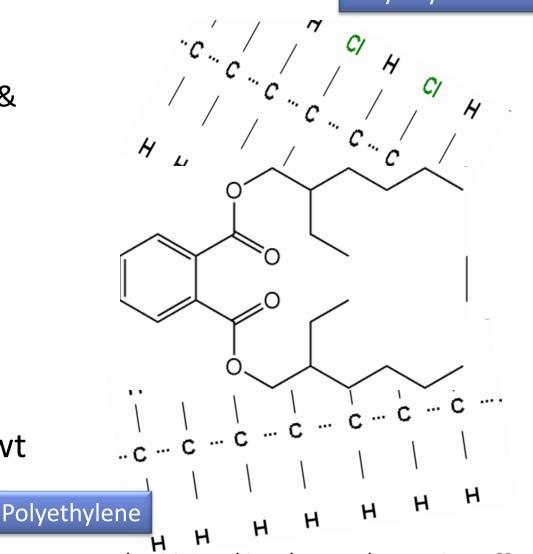
- 1. What are phthalates, what are their uses, what products are they in?
- 2. How do phthalates move around the environment? (fate)
- 3. How are we exposed to phthalates?
- 4. What are some of the toxicological concerns about this exposure?
- 5. How do we minimize our exposure?
 - Individual action,
 - Policies & regulations

What are phthalates?

Di(2-ethylhexylphthalate) or DEHP

http:///en.wikipedia.org/wiki/Phthalate

- Esters of phthalic acid
- R can be short (C1-4) or long (C8-11) alkyl groups
- Global production
 - ~3.5-4 billion kg/yr in 2003
 (Lin et al. 2003)
 - ~ 6 billion kg/yr in 2004
 (Rudel & Perovich 2009)


Common Phthalates

Abbreviation	Ester Groups	Formula	CAS No.	Molecular Weight
DMP	Dimethyl	$C_{10}H_{10}O_4$	131-11-3	194.2
DEP	Diethyl	$C_{12}H_{14}O_4$	84-66-2	222.2
DiBP	Diisobutyl	$C_{16}H_{22}O_4$	84-69-5	278.4
DnBP	Di-n-butyl	$C_{16}H_{22}O_4$	84-74-2	278.4
BBzP	Butylbenzyl	$C_{19}H_{20}O_4$	85-68-7	312.4
DEHP	Di-(2-ethylhexyl)	$C_{24}H_{38}O_4$	117-81-7	390.6
DINP	Diisononyl	$C_{26}H_{42}O_4$	28553-12-0	418.6
			68515-48-0	(418.6–432.6)
DIDP	Diisodecyl	$C_{28}H_{46}O_4$	26761-40-0	446.7
			68515-49-1	(432.7–446.7)

Phthalate Uses

Polyvinyl chlorinde

- Plasticizer
 - Increase flexibility & transparency
- esp with polyvinyl chloride
- Lubricant
- Solvent
- Emulsifier
- Added 10-60% by wt

^{13/04/2011} http://www.americanchemistry.com/s_chlorine/docs/images/pvc_poly2.gif²⁰

Phthalate Uses

- DEHP, BBZP Building materials vinyl tiles, vinyl wall paper, shower curtains, vinyl clothing
- DnBP Consumer products
 - Cosmetics, fragrances, shampoos, moisturizers, hair spray
- Medical equipment
 - IV & tubing
- Food wrappers
- Gloves used in food handling
- Agricultural crop covers
- "Inert" carrier in pesticide

mixtures

http://commons.wikimedia.org/wi ki/<u>file/Segular_strength_enteric_c</u> oated_aspirin_tablets.jpg

http://www.thecoolhunter.net /article/detail/1533

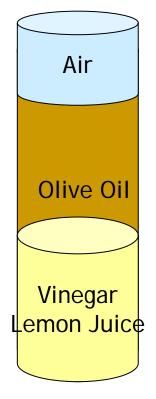
http://plasticulture.cas.psu.edu/IM AGES/field/imagepages/image4.ht

http://www.home-improvementtime.com/2008/09/06/sierra-plank-konectoflooring-vinyl-tiles/

http://niceskin.org/index.php?pa geNum_product=11&case=search &ps=Colorescience-Lip-Polish-Wand-Softer-Shade-Of-Pale&pscat=Make+Up

Outline

- 1. What are phthalates, what are their uses, what products are they in?
- 2. How do phthalates move around the environment? (fate)
- 3. How are we exposed to phthalates?
- 4. What are some of the toxicological concerns about this exposure?
- 5. How do we minimize our exposure?
 - Individual action,
 - Policies & regulations


Tangent

http://oncampus.macleans.ca/education/2009/10/06/after-the-fork-in-the-road/

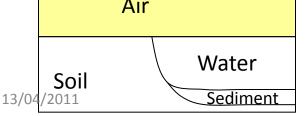
Introduction - Fugacity

- Partitioning Distribution of chemicals among environmental compartments
- Chemicals do not partition in the environment to achieve equal concentrations, but to achieve chemical equilibrium
- Fugacity
 - escaping tendency of a chemical
 - In units of pressure (Pa)
 - Comes from the Latin *fugere*, describing a "fleeing" or "escaping" tendency
 - Coined in 1901 by G.N. Lewis, a UC-Berkeley professor
 - Don Mackay, a former U of T engineering professor first applied it to modeling contaminants in the late 1970s
 - Commonly used in contaminant fate modelling

Fugacity capacity

•capacity of an environmental compartment to hold a chemical

•Function of the solubility of the chemical in a phase


Air Olive Olive Vinegar Lemon Juice

Equilibrium:

- State at which there is no tendency to change
- Fugacity in each compartment is equal
- Regardless of where and how a chemical is discharged or found in the environment, all chemicals will strive to obtain a characteristic distribution or equilibrium among environmental compartments

At chemical equilbrium:

$$f_{air} = f_{water} = f_{soil/sed} = f_{biota}$$

If:
$$f_{air} > f_{water} = f_{soil/sed} = f_{biota}$$

How will chemical move? 25

Chemical Transport

• The case of the killer vinyl shower curtains

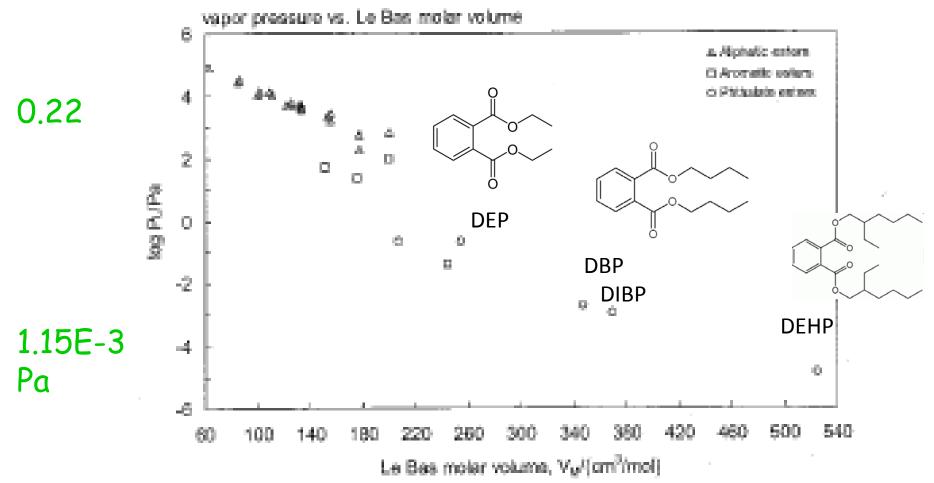
http://www.environment aldefence.ca/pressroom/v iewnews.php?id=419

13/04/2011

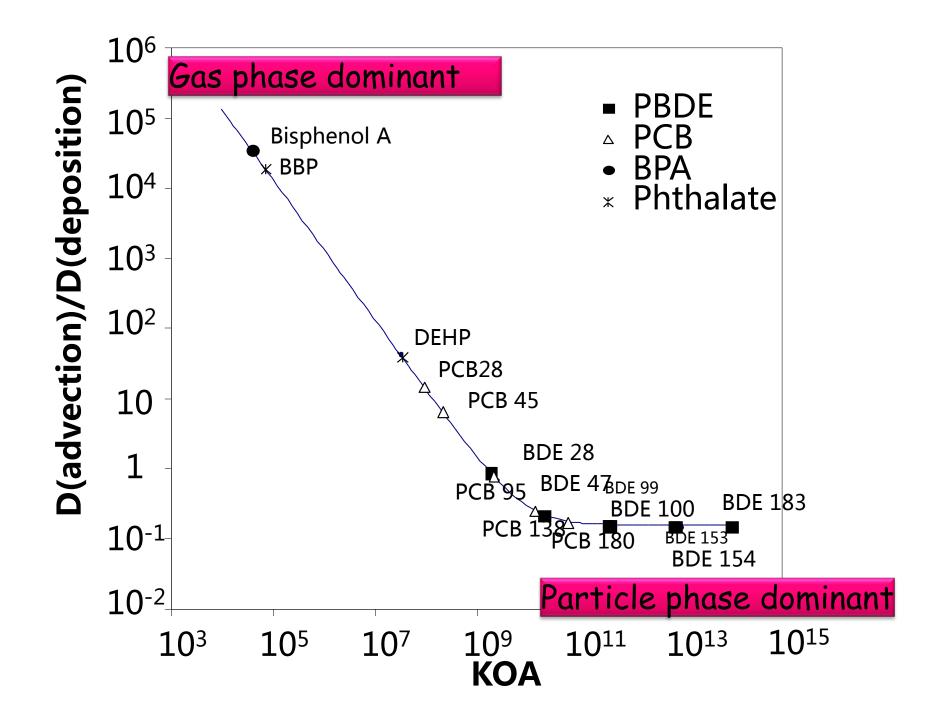
Molecular Diffusion

High Fugacity $\Rightarrow \Rightarrow \Rightarrow \Rightarrow$

http://cn1.kaboodle.com/hi/img/2/0/0 /34/e/AAAAArSBf8cAAAAAADTlqg.jpg Low Fugacity


Rate

• Fick's 1st Law


 $N \approx \Delta f$ (Pa) • MTC (m/s)

- Molecular weight
- Temperature
- Sorbents such as other plastics that don't contain compound

Phthalates & VP

Mackay at al. 2006

Outline

- 1. What are phthalates, what are their uses, what products are they in?
- 2. How do phthalates move around the environment? (fate)
- 3. How are we exposed to phthalates?
- 4. What are some of the toxicological concerns about this exposure?
- 5. How do we minimize our exposure?
 - Individual action,
 - Policies & regulations

Summary of Routes of Exposure

Sources of Exposure to Phthalates in Europeans

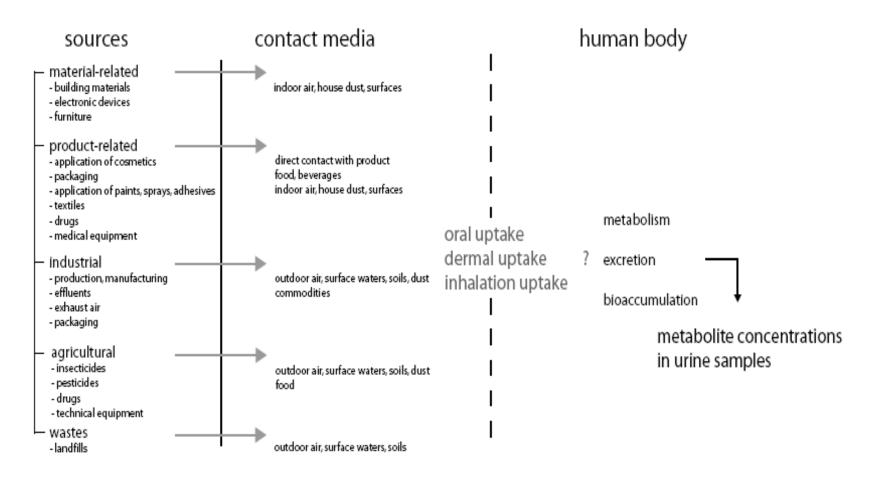


Fig. 1. Consumers are exposed to phthalates via different sources. Measurements of concentrations of phthalate metabolites in urine samples have demonstrated the ubiquitous consumer exposure to these plasticizers.

```
Wormuth et al. 2006 Risk Analysis 26(3): 803-824
```

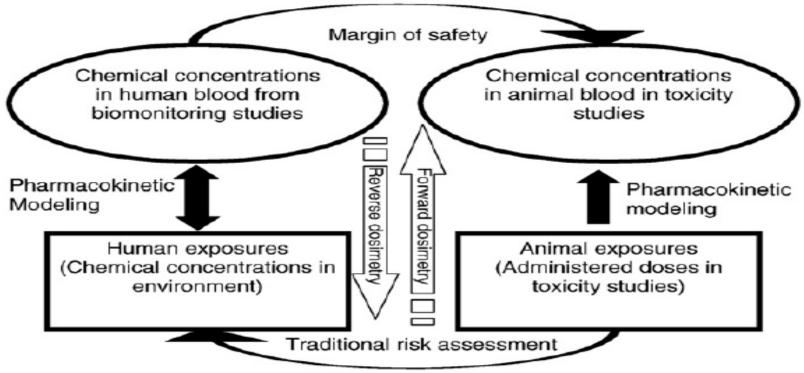
805

How are we exposed?

Food Medications Home

- Air
 - Inhalation
 - Dermal
 - Saliva
- Dust

Hand-to-mouth


All intake
routes?
Representative
intake rates?
Reliable
measured
concentrations?

Biomarker - Urine - Blood

-How representative is the sample? -All metabolites? -Back-calculation to intake?

Forward & Reverse Dosimetry

Fig. 2. Interpretation of Biomonitoring Data. To be put in context, the relationship of human biomonitoring data to animal toxicity data must typically be determined. Biomonitoring provides a measure of internal exposure. Traditional risk assessment is based on measures of external exposure, such as mg/kg/day ingested. In forward dosimetry, pharmacokinetic studies in the experimental animal can be used to support a direct comparison of internal exposures, providing an estimate of the margin of safety. Alternatively, reverse dosimetry can be performed to estimate the external exposure in the human for comparison with an animal-based health standard, such as a Reference Dose (RfD).

Clewell et al. 2008. Quantitative interpretation of human biomonitoring data. Toxiol App Pharm 231:122-133.

Forward Dosimetry: Phthalate Exposure Assessment

- Compilation of phthalates in foods, air, dust
- Compilation of how much of each food is consumed, air inhaled, etc.
- Example:
 - Wormuth et al. 2006 European exposure assessment

Phthalates in our Foods

Table 5 The five products (nos. 1–5) with the highest DINP concentration and a product substantially contaminated by a small DINP content in the gasket (no. 6)

Product		Jar size(g)	In food DINP	DINP in gasket(%)	
1	Satay sauce	220	270		30
2					
3	Sauce	180	180		33
4	Peppers stuffed with feta cheese	310	178		19
5	Seasoned garlic in oil	175	160		17
6	Anchovies	80	55	440	1.2

with DEHP as principal plasticizer, the concentrations varied between 28 and 45%. In another 14 gaskets, they were between 0.2 and 1.4%.

DEHA was never the principal plasticizer. It was present in nine gaskets, namely eight times in a range between 2.2 and 14% and once at 0.2%. Interestingly it was often combined with other esters of 2-ethyl hexanol, such as DEHP or Ehol-16/Ehol-18. Acetylated partial glycerides were found in 16 gaskets, namely twice as the main plasticizer beside ESBO (25 and 21%), four times between 2 and 8.5% and ten times between 0.8 and 1.3%.

ucts laid in oil (the olives at the bottom being at position 18 of the complete ranking). Mostly concentrations are lower because of the significantly larger jar content.

All nine foods in jars with lids with substantial amounts of DINP in the gasket contained this phthalate at concentrations above 120 mg/kg (average of 175 mg/kg). The top five are listed in Table 5. Another four products with small amounts in the gasket contained 10–55 mg/kg DINP. The bottom line shows an example: as little as 1.2% DINP in the gasket (next to 37% ESBO) was sufficient to contaminate the food at a concentration of 55 mg/kg. Hence, 9 mg/kg (SML conventionally derived from the TDI) would be reached in a product of this type with 0.2% DINP in the gasket.

Table 7	The seven produ	cts with the highest	DEHP concentration
---------	-----------------	----------------------	--------------------

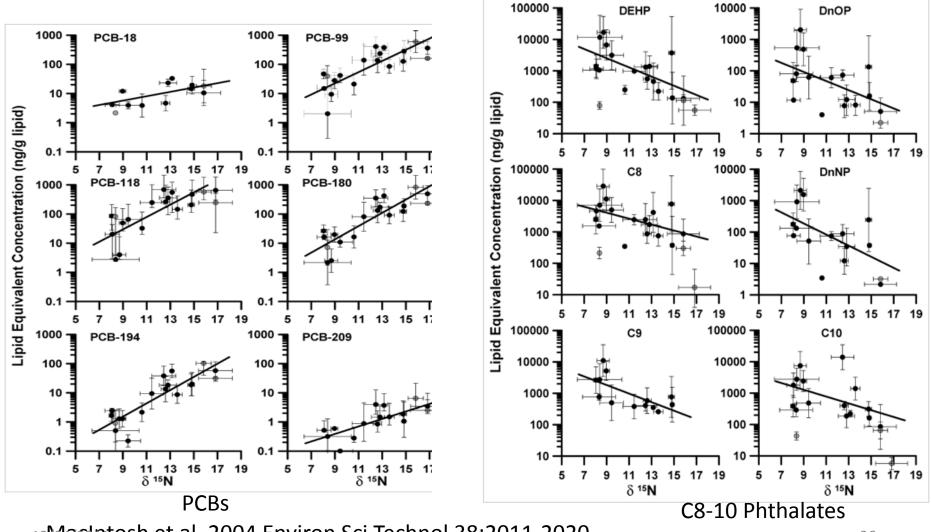

Product	Jar size (g)	DEHP in food (mg/kg)	DEHP in gasket (%)
1 Curry paste	300	825	45
2 виже риские игон	500	700	4.7
3 Pesto	185	660	27
4 Tomato paste	185	615	31
5 Biryani Paste	300	510	28
6 Olive paste	90	435	32
7 Tomato paste	190	392	28
8 Tuna in oil	167	360	30

Table 6	The five products (nos.	1-5) with highest DIDP	concentration and some o	her products of interest (no	os. 6–9)
---------	-------------------------	------------------------	--------------------------	------------------------------	----------

Product		Jar size (g)	Fat content (%)	In the fo	In the food (mg/kg)					DIDP in
				ESBO	DIDP	DEHA	ATBC	OA	EA	gasket (%)
1	Olive sauce	175			740			30	27	27
2	Pesto	180			430	55				24
3	Mango pickles in oil	350			380					
4	Tomato sauce with spices	400	6.5		170					19
5	Tomato sauce with meat	400	6.5		150					20
6	Tomato sauce with cheese	400	6.5		15, 200					20
7	Sauce tartar	120	33		<5					24
8	Meat marinade	250	12		<5					29
9	Anchoriesin oil	90		540	30		60	48	20	0.5


Kankhauser et al. 2006. PVC plasticizers/additives migrating from the gaskets of metal closures into oily food: Swiss market survey June 2005. Eur Food Res Technol 223:447-453.

Phthalates don't bioaccumulate

13MaoIntosh et al. 2004 Environ Sci Technol 38:2011-2020

Phthalate Metabolism

Consumption Rates (European)

	Inf	ants	Tod	dlers	Chil	dren	Female	e Teens	Male	Teens	Female	Adults	Male A	dults
Food	Mean	CF	Mean	CF	Mean	CF	Mean	CF	Mean	CF	Mean	CF	Mean	CF
Pasta, rice	17.0	0.070	25.0	0.654	24.2	0.589	56.0	0.693	64.1	0.637	59.7	0.869	74.6	0.863
Cereals	52.0	0.580	21.7	0.727	18.1	0.689	23.6	0.930	21.9	0.890	25.5	0.753	29.3	0.750
Breakfast cereals											58.1	0.500	74.6	0.460
Bread	30.4	0.648	39.6	0.737	41.8	1.000	87.5	0.993	123.7	0.980	94.8	0.903	130.3	0.898
Biscuits, crispy bread	5.0	0.175	15.2	0.872							15.1	0.680	21.3	0.630
Cakes, buns, puddings	21.5	0.514	10.0	0.466	25.9	0.879	31.4	0.970	55.4	0.980	38.6	0.860	45.9	0.842
Bakeries, snacks	2.2	0.251	7.7	0.656	9.1	0.781	80.7	0.817	102.7	0.883	8.7	0.591	10.6	0.595
Milk, milk beverages	386.3	0.645	307.3	0.902	276.5	0.987	150.0	0.980	212.6	0.980	154.6	0.730	188.3	0.740
Cream					2.5	0.170	14.6		4.1		5.0	0.190	4.8	0.185
Ice cream	17.0	0.055	18.3	0.579	17.8		11.4		25.8		13.8	0.329	15.2	0.324
Yogurt	38.0	0.225	43.1	0.698	26.3	0.485	52.0		39.2		42.2	0.651	36.0	0.596
Cheese	7.5	0.375	5.6	0.572	7.6	0.574	51.8	1.000	77.6	0.990	31.8	0.927	34.1	0.937
Eggs	6.3	0.083	6.3	0.288	9.4	0.412	9.7	0.990	15.4	0.990	25.4	0.861	31.1	0.877
Spreads	3.0	0.280									29.6	0.330	35.4	0.370
Animal fats	3.0	0.280	2.2	0.264	2.3	0.284	3.7	0.880	3.8	0.840	7.0	0.794	16.5	0.789
Vegetable oils	3.0	0.280	7.1	0.394	10.3	0.474	21.1	0.437	26.5	0.410	13.6	0.799	17.6	0.811
Meat, meat products	21.5	0.290	27.3	0.368	28.8		68.0	1.000	76.4	1.000	88.5	0.948	117.1	0.949
Sausage	26.0	0.033	9.5	0.448	9.0	0.484	15.3	0.880	29.4	0.940	34.8	0.855	42.7	0.864
Poultry	14.7	0.444	4.5	0.329	8.2	0.447	13.5		23.6		37.0	0.825	59.5	0.874
Fish	5.2	0.096	10.0	0.325	5.1		22.9	0.940	30.8	0.930	47.6	0.781	55.5	0.768
Vegetables	35.8	0.478	56.1	0.916	72.0	0.830	144.1	0.970	137.0	0.910	187.3	0.998	198.2	0.998
Potatoes	21.9	0.390	54.8	0.783	53.4	0.927	58.6	0.533	66.7	0.600	96.7	0.930	122.5	0.912
Fruits	117.3	0.659	91.6	0.841	113.2	0.826	90.9	0.840	103.4	0.763	223.4	0.972	220.5	0.967
Nuts, nut spreads	1.5	0.069			1.5						4.8	0.542	6.1	0.522
Preserves, sugar	3.0	0.170	6.8	0.557	7.6	0.638	3.9		8.8		11.2	0.591	14.8	0.675
Confectionery	6.0	0.130	13.3	0.633	30.9	0.719	17.4	0.990	22.2	1.000	24.3	0.808	29.3	0.801
Spices					5.1		7.8		7.8		22.7	0.991	31.6	0.992
Soups, sauces					1.7	0.815	2.7		2.7		36.2	0.650	41.3	0.643
Inicos	72.0	0.110	64.2	0.380	50.2	0.400	60.0	0.730	78.0	0.570	03.7	0.728	101.0	0 713

Table III. Amounts of Food Consumed Daily; Amounts of Ingested Soil, Dust, and Personal Care Products (g/day)

Wormuth et al. 2006 What are the sources of exposure to eight frequently used phthalic acid esters in ^{13/24/2011} Europeans? *Risk Analysis* 26(3): 803-824.

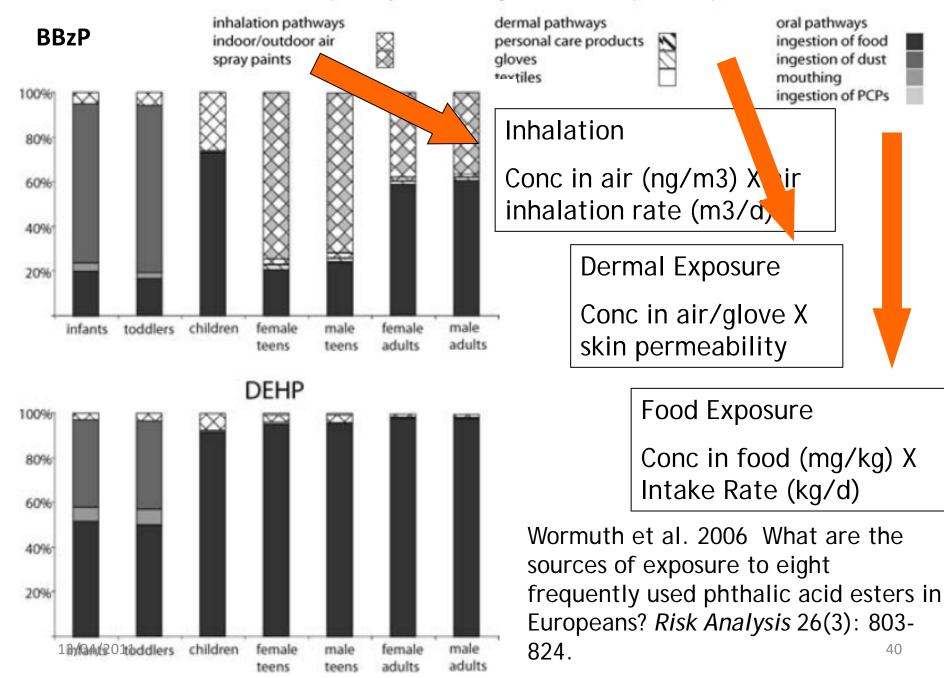
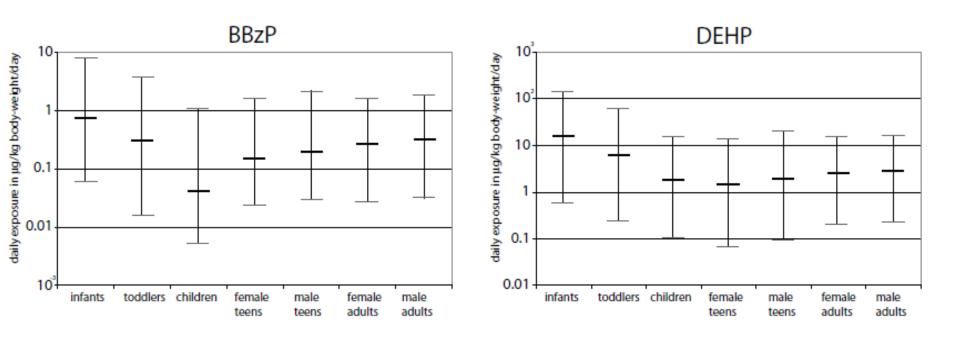

Phthalate Conc in Foods

Table IV. Phthalate Concentrations in Various Foods (mg/kg) as Used in the Scenario Calculations


		DMP	,		DEP			DiBP			DnBP			BBz₽			DEHP	
Food	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Me an	Max	Min	Mean	Max	Min	Mean	Max
Pasta, rice	0	0	0	0	0	0.01700	0.00150	0.021	0.158	0.002	0.010	0.36	0	0	0.025	0.0000	0.012	0.17
Cereals	0	0	0	0	0.00650	0.02000	0.01000	0.109	0.180	0.074	0.565	2.10	0.013	0.015	0.017	0.0700	0.574	1.70
Breakfast cereals	Û	0	0	0	0.00650	0.02000	0.01000	0.109	0.180	0.074	0.565	2.10	0.013	0.015	0.017	0.0700	0.574	1.70
Bread	0	0	0	0	0.00600	0.01740	0	0.060	0.232	0.007	0.032	5.13	0	0	0.440	0.0261	0.068	1.96
Biscuits, crispy bread	0	0	0	0	0	0	0	0.007	0.020	0	0.130	0.42	0	0.028	0.088	0.1020	0.547	1.10
Cakes, buns, puddings	0	0	0	0	0	0	0	0.007	0.020	0	0.130	0.42	0	0.028	0.088	0.1020	0547	1.10
Bakeries, snacks	0	0	0	0	0	0	0.04800	0.154	0.260	0	0.011	1.17	0	0	0.530	0.0094	0.214	4.4.2
Milk, milk beverages	0	0	0.02800	0	0	0.01000	0	0	0.016	0	0.015	0.03	0	0	0.000	0.0085	0.040	0.17
Cream	0	0	0	0	0	0	0	0.002	0.010	0	0.037	0.70	0	0.005	0.030	0.1800	0.224	0.32
Ice cream	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1650	0.242	0.39
Yoghurt	0	0.01167	0.03500	0	0	0	0	0	0	0	0	0	0	0	0	0	0.051	0.09
Cheese	0	0	0	0	0.00233	0.00700	0	0	0	0	0.056	0.30	0	0.014	0.039	0.0410	0.496	1.23
Eggs, egg spreads	0	0	0	0	0	0	0	0.050	0.100	0.034	0.067	0.10	0.010	0.050	0.090	0.2830	0.442	0.60
A nimal fats	0	0	0	0	0.00900	0.01800	0.01200	0.030	0.048	0	0.046	0.19	0	0.011	0.056	0.9130	1447	2.83
Vegetable oils	0	0	0	0	0.00500	0.00925	0	0.02.0	0.067	0	0	0.88	0	0	0.357	0	0.404	2.08
Meat, meat products	0	0	0	0	0	0.01760	0	0.007	0.053	0.024	0.075	0.11	0	0	0.072	0.0248	0.207	0.76
Sausages	0	0	0	0	0	0	0	0	0.027	0.001	0.004	0.17	0	0	0.005	0.0380	0.064	0.75
Poultry	0	0	0	0	0.00500	0.01000	0	0.030	0.060	0	0.100	0.20	0	0.015	0.030	0.2850	0.518	0.70
Fish.seafood	Û	0.00030	0.01678	0	0.00254	0.00851	0.00015	0.001	0.025	0.005	0.008	0.38	0	0.002	0.005	0.0023	0.013	0.29
Vegetables	0	0	0	0	0.00667	0.00667	0	0	0	0	0.033	0.03	0	0	0	0	0.140	0.14
Potatoes	0	0	0	0	0.00900	0.00900	0	0.005	0.005	0	0	0	0	0	0	0	0.076	0.08
13/04/2011 Fruits	0	0	0	0	0	0	0.00800	0.030	0.052	0.016	0.028	0.05	0	0	0	0.0300	0.069	0.12

pathways contributing to consumer exposure to phthalates

Summary of Forward Dosimetry Calculation

Wormuth et al. 2006 What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis 26(3): 803-824.

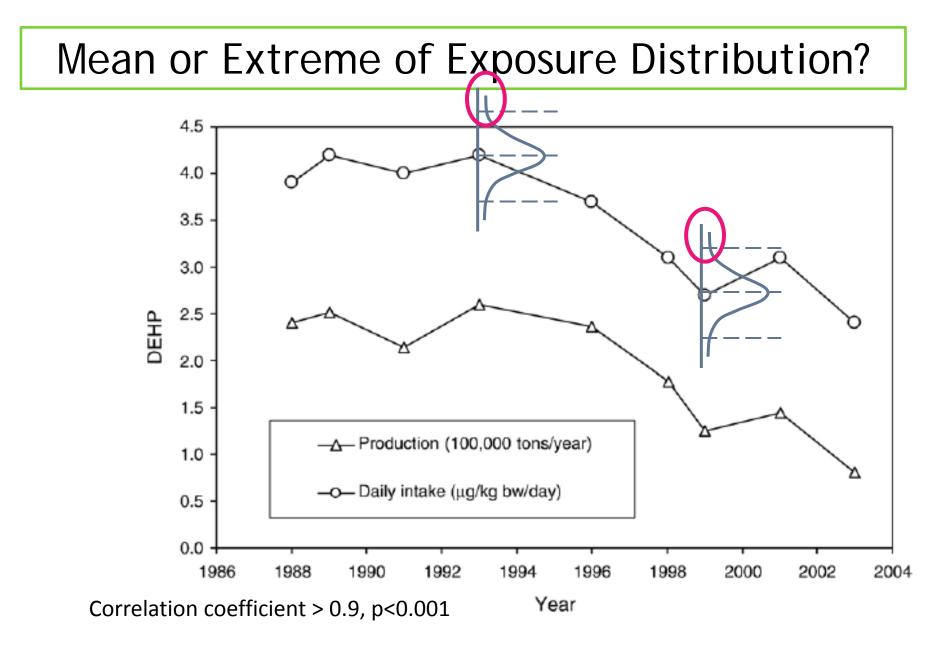
13/04/2011

Reverse Dosimetry: Phthalate Exposure

µg phthalate met/g creatinine	BBzP	DEHP
6-11 yrs	38.1	5.38
12-19 yrs	17.9	3.62
20+ yrs	12.7	3.81
Females	15.7	4.43
Males	12.7	3.32
Mexican Americans	12.4	4.16
Non-hispanic blacks	16.7	4.59
Non-hispanic whites	13.9	3.63

Geometric means of creatinine corrected urine, ug/g creatinine, 01-02 data, CDC 2005. Silva et al. 2004 Environ Health Perspectives 112:331-338; Mono-ester metabolite.

13/04/2011


Reverse: Exposure Reconstruction for NHANES III Data on Di-n-Butyl Phthalate (DnBP)

	NHANES III		cted
Percentile	Concentration in Urine	Intermittent Exposure*	Continuous Exposure
	(µg/L)	(µg/kg/day)	(µg/kg/day)
10%	-	0.30	
25%	-	0.45	0.25
50%	20.4	1.17	0.8
75%	40.4	3.78	1.4
90%	73.6	5.46	3.0
95%	108	7.74	4.2

*Assumed to be sum of three ingestion events per day

Compares well with 24-hour urine data in German study (Wittassek et al., 2007): average = 1.9 μg/kg/day, 95% = 5.3 μg/kg/day

Clewen12009

Helm D.2007 Correlation between production amounts of DEHP and daily intake. *Sci Total/Environ* 388:398-391.

Mean or Extreme of Exposure Distribution?

Table 4. Daily intakes (µg (kg body weight)⁻¹ d⁻¹) of phthalates for the German and US American general population deduced from urinary metabolite concentrations; values are median (95th percentile) (maximum).

study	Marsee et al. (2006)	Kohn et al. (2000)*	Koch et al. (2003a)	Wittassek <i>et al.</i> (2007 <i>a</i>) ^b ; Koch <i>et al.</i> (2007) ^b	Wittass ek et al. (2007b)		
country of origin sample origin sampling year urine n age (years)	USA pregnant women, SFF II ^e 1999–2002 spot 214 n.a.	USA NHANES III 1988–1994 spot 289 20. 60	Germany general population 2002 first morning 85 7-63	Germany GerES IV 2001–2002 first morning 239 2–14	Germany ESBHum ⁴ 1988–2003 24 h 632 20–29		
	V	7				RfD ^f	TDI ⁸
DEP	6.64 (112) (1260)	12 (110) (320)	2.32 (22.1) (69.3)	-	-	800	_
BBzP	0.5 (2.47) (15.53)	0.88 (4.0) (29)	0.6 (2.5) (4.5)	0.42 (2.67) (13.9)	0.26 (1.6) (27.3)	200	500
DnBP	0.84 (2.33) (5.86)	1.5 (7.2) (110) ^b	5.22 (16.2) (22.6)	4.07 (14.9) (76.4)	4.1 (19.1) (116)	100	10
DiBP	0.12 (0.41) (2.90)	-	-	-	1.4 (5.7) (29.0)	-	-
DEHP	1.32 (9.32) (41.1) ⁱ	0.71 (3.6) (46)	4.6 (17.0) (58.2) ⁱ	4.3 (15.2) (140) ⁱ	3.5 (10.1) (39.8) ⁱ	20	50
DINP	-	<lod (1.7)="" (22)<="" td=""><td>-</td><td>-</td><td>0.29 (1.7) (20.2)^k</td><td>-</td><td>150</td></lod>	-	-	0.29 (1.7) (20.2) ^k	-	150

Koch and Calafat 2009. Human body burdens of chemicals used in plastic manufacture. *Phil. Trans. Royal Soc B* 364:2063-2078.

The Most Highly Exposed

http://www.deathreference.com/images/medd_02_img00904jp

Outline

- 1. What are phthalates, what are their uses, what products are they in?
- 2. How do phthalates move around the environment? (fate)
- 3. How are we exposed to phthalates?
- 4. What are some of the toxicological concerns about this exposure?
- 5. How do we minimize our exposure?
 - Individual action,
 - Policies & regulations

Phthalate Toxicity – a moving target

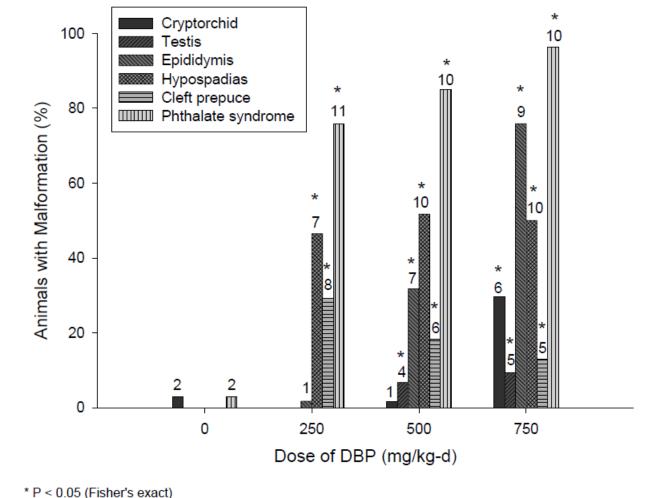
- Early studies
 - Hepatic cancer & teratogenesis at high doses
 - Cancer found to involve PPAR α (peroxisome proliferator activated receptor)
 - therefore not relevant for humans
- Newer studies have found liver tumors, pancreatic acinar adenomas
 - Factors other than PPARα
- Some types of PPAR agonists involved in inflammatory response

Toxicity – a moving target

- Early studies
 - Did not find teratogenesis
- Recent studies
 - Do find teratogenic effects on male reproductive system
- Effects in offspring depend on timing of exposure
- Effects more subtle (not included in early study protocols)

Summary Risk Assessments

NTP* Summary

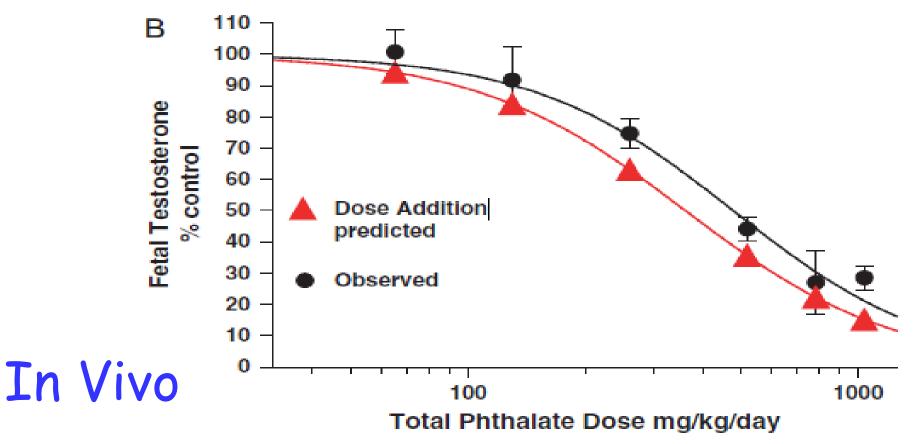

- DEHP, DBP & BBP hazardous to human reproduction & development
- DiNP & DiDP hazardous to human development
- DnHP & DnOP insufficient data to determine risk

REACH**

- DEHP, DBP & BBP classified as human reproductive toxins (effects on fertility & development
- DiNP & DiDP no risk
- DnOP yet to be assessed

European Registration, Evaluation, Authorization & Restriction of Chemicals

US Nation Toxicology Program


National Academy of Science

Phthalate Risk Assessment 2008 **FIGURE 3-3** Effect of DBP given over 3 days on reproductive tract malformations. Pregnant Sprague-Dawley rats were given DBP on GD 15-17, critical window for induction of phthalate syndrome, at 0, 250, 500, or 750 mg/kg-d by gavage in corn oil (5 mL/kg-d). Reproductive tract malformations were assessed in male offspring at postnatal day 100. Litters (10-12) were evaluated in each dose group; numbers of litters responding are indicated above bars. Control animals exhibited only cryptorchidism. Only when exposure occurred over GD 15-17 was the full suite of reproductive tract malformations that make up the phthalate syndrome observed. Other short-term (2-d) dosing

reproductive tract malformations that make up the phthalate syndrome observed. Other short-term (2-d) dosing regimens over GD 15-20 will produce specific reproductive malformations but not the full suite of malformations (Carruthers and Foster 2005).

Sprague- Dawley rats exposed on gestational days 8- 18. Testicular testosterone production. Total 1300 mg phthalate/kg/d, DPP, BBP, DBP, DEHP and DiBP

Dose Additivity

Howdeshell et al. 2008 Toxicol Sci 105:153-165

Mode of Toxicological Action

- Mono-ester metabolites appear to be toxic agent
- Classified as peroxisome proliferators
 - Mediated by nuclear transcription of peroxisome proliferator-activated receptors (PPARs)
- Some types of PPAR agonists involved in inflammatory response
 - Mechanism underlying association between asthma and rhinitis in kids & phthalate concentrations in dust? E.g., Bornehag et al. 2004 EHP

Reproductive & Development Toxicity

• BBzP, DiBP, DnBP, DPeP, DEHP, DiNP

As an Endocrine Modulator*

- Modulate endogenous production of fetal testicular testosterone
- Influence insulin-like Factor 3 & folliclestimulating hormone production
- Results in functional & structural impairment of male reproduction & development
 - Production of steroid hormones & spermatozoa, reduced fertility

* A chemical that mimics or interferes with the biosynthesis, binding and/or action of natural hormones and thus disrupts physiological processes that are hormonally controlled (Jobling et al. 1995)

Phthalate Syndrome

National Academy of Science

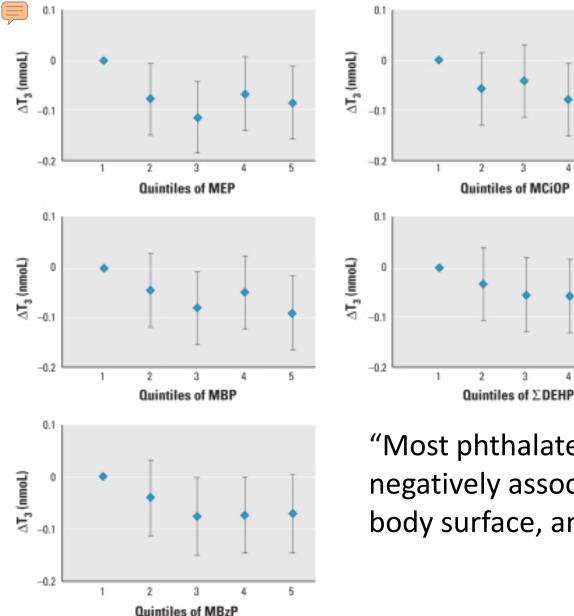
Phthalate Risk Assessment 2008



FIGURE S-1 Relationship of phthalate syndrome in rats to effects associated with agents that perturb androgen action and produce androgen insufficiency and to the hypothesized testicular dysgenesis syndrome in humans. Outcomes in brackets are restricted to findings in experimental animals. AGD, anogenital distance; insl3, insulin-like factor 3; LC, Ley-dig¹³ Cell, 1, increase; and ↓, decrease.

Summary of Reproductive Effects

Reproductive Assessment by Commuous Dreeding Study	(1991)	
Effect Noted	F ₀ Generation	F1 Generation
Decrease in fertility	-	+
Decrease in litter size (of fertile animals)	+	+
Decrease in testes weight (and histopathology)	-	+
Decrease in pup weight	+	+
Decrease in sperm count	-	+
Cryptorchidism	Not applicable	+
Male reproductive tract malformations (epididymide, external genitalia)	Not applicable	+
Female reproductive tract weight (and histopathology)	-	-
Estrus cyclicity	-	_


TABLE 3-1 Reproductive and Developmental Effects of DBP in the National Toxicology Program

 Reproductive Assessment by Continuous Breeding Study (1991)

Note: +, positive response; -, negative response.

National Academy of Science

Phthalate Risk Assessment 2008

Relationship between Phthalate Metabolites & Thyroid Hormones in kids (4-9 yrs old)

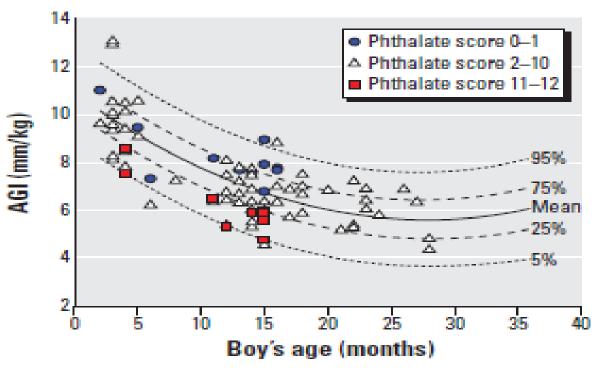
Boas et al. 2010 Environ Health Perspec 118:1458-1464.

"Most phthalate metabolites were negatively associated with height, weight, body surface, and height gain in both sexes."

Regression coefficients (95% confidence intervals) for a change in total T_3 (ΔT_3) associated with quintiles of MEP, MCiOP, MBP, MBzP, and sum of DEHP metabolite concentrations (Σ DEHP) (adjusted for sex and age; n = 758).

Consistency between human & rat symptoms

TABLE 3-2 Comparison of Human Male Reproductive Effects of Concern with Effects of in Utero


 Phthalate Exposure in Rats

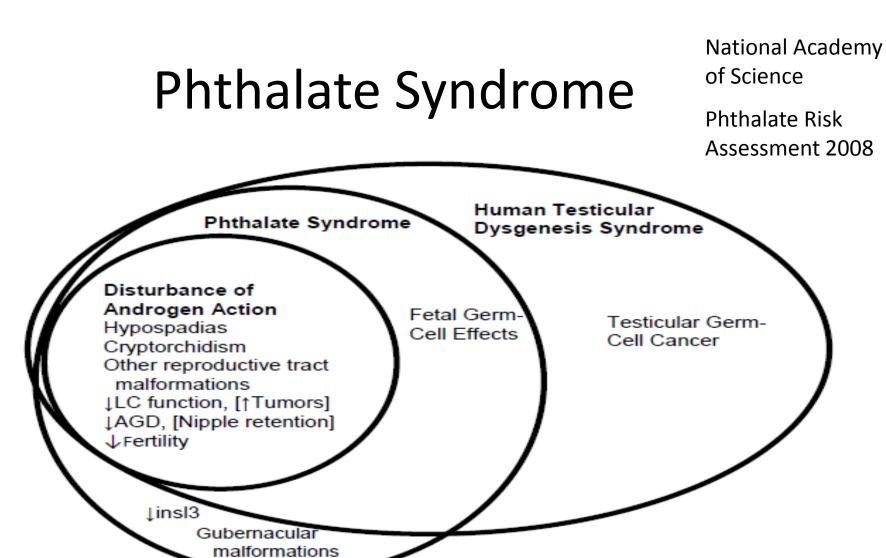
Human Reproductive Effects with a Possible in	Effects of in Utero Phthalate Exposure
Utero Origin	in Rats
Infertility	\checkmark
Decreased sperm count	\checkmark
Cryptorchidism	\checkmark
Reproductive tract malformations	\checkmark
Hypospadias	\checkmark
Testicular tumors ^a	\sqrt{a}

^aTesticular tumors in rats are Leydig-cell-derived, not germ-cell-derived as in humans.

National Academy of Science

Phthalate Risk Assessment 2008

Shorter than expected anogenital distance in boys 2-36 months old significantly related to urinary phthalate (metabolite) concentration


Figure 1. Mean AGI (mm/kg) in relation to boys' age at examination (months).

	This study						
Monoester metabolite	Percentile	Short AGI	Others	NHANES ^a			
MBP	50th	24.5	12.1	30.0			
	75th	44.8	28.0	59.5			
MBzP	50th	16.1	7.2	16.0			
	75th	27.5	17.8	35.8			
MEP	50th	225	90.4	174			
	75th	551	281	425			
MiBP	50th	4.8	2.1	b			
	75th	12.1	4.3	b			

Table 7. Concentrations of four phthalate metabolites in three groups of women (ng/mL).

^aFemales only (CDC 2003). ^bMBP in the NHANES analysis includes both MBP and MiBP; in this study these metabolities were measured separately.

Swan et al. 2005 Environ Health Perspec 113(8):1056-106³/^{04/2011}

FIGURE S-1 Relationship of phthalate syndrome in rats to effects associated with agents that perturb androgen action and produce androgen insufficiency and to the hypothesized testicular dysgenesis syndrome in humans. Outcomes in brackets are restricted to findings in experimental animals. AGD, anogenital distance; insl3, insulin-like factor 3; LC, Ley-dig¹³ Cell, 1, increase; and 1, decrease.

Margin of Exposure

The estimated 95th percentile of the population exposure distribution is 0.0077 mg/kg/day

Margin of Exposure

NOAEL = 30 mg/kg/day

MOE = 30/0.0077 = 3896

Comparison with RfD

Proposed RfD = 0.3 mg/kg/day (UF 100)

MOE = 0.3/0.0077 = 38.96

Outline

- 1. What are phthalates, what are their uses, what products are they in?
- 2. How do phthalates move around the environment? (fate)
- 3. How are we exposed to phthalates?
- 4. What are some of the toxicological concerns about this exposure?
- 5. How do we minimize our exposure?
 - Individual action,
 - Policies & regulations

Regulation & Policy

Individual Level

- Minimize phthalates in dust?
- Minimize phthalate products in home?

Chemical Management

 Risk management of particular phthalates? E.g., DEHP in kids toys

Industry

• What chemicals should be produced?

Societal Level

• Healthy kids living in healthy homes & playing outside

Chemical use

Canadian Environmental Protection Act

- DEHP (1994) declared toxic
- DBP (1994) OK
- BBP (2000) OK
- DnOP (1993, 2003) insufficient info
- DiNP & DiDP not assessed

Regulations

EU & USA

 DEHP, BBP, DBP, DiNP, DiDP, DnOP banned from soft kids toys & childcare products

EU

 Banned DEHP & DBP in cosmetics, restrictions in products coming into contact with food

Canada

- Restrict use of DEHP & DiNP in products used by kids 0-4 yr intended to be mouthed
- Imports??
- Hazardous Products Act, June 2009 proposal to harmonize with US & EU

Consumer Action in Market Place

Summary

- What are phthalates, what are their uses, what products are they in? everywhere, in many products!
- 2. How do phthalates move around the environment? (fate) not persistent, relatively volatile
- 3. How are we exposed to phthalates? food (from packaging), consumer products, other??
- 4. What are some of the toxicological concerns about this exposure? Endocrine disruptor, "phthalate syndrome"
- 5. How do we minimize our exposure?
 - Individual action

Policies & regulations