DAY 2: Source ♀ Emission ♀ Fate ♀ Exposure ♀ Toxicity♀ Policy

1. Phthalates

- Exposure
- Toxicity
- 2. <u>Polybrominated diphenyl ethers (PBDEs) &</u> <u>Polychlorinated biphenyls</u>
 - Material Flow Analysis (MFA)
 - Indoor Environment
 - Urban Environment
- 3. PBDEs & Bisphenol A
 - Food web transfer
 - Modelling Made Easy

Polybrominated Diphenyl Ethers

Penta	• Textiles, PUF, paint, household				
	• BDE-99, 47, 1	2004 •EU banned production & use in			
Octa	 ABS plastic for circuit boards, 	•US agreement to stop production			
	• BDE-153, 154				
Deca	• Electrical & e casings for TVs backings (e.g.,	2008 •EU banned use in electrical & electronic goods			
	• BDE-209	2011 Canada to ban use in electrical 8			
13/04/2011	Diam	electronic goods			

Bromine in flame retardants World consumption

Fig. 3-1: Annual consumption of bromine in the production of flame retardants [Arias, 2001]

Annual growth rate of ~4% per year

Figure 1: Comparison of world consumption for selected BFR (sources: TBBPA 1991 [OECD, 1994], PBDEs 1991 [IPCS 1994b], TBBPA + PBDEs 1999 [Leisewitz & Schwarz, 2000], total BFR: values for 1990 and 2000 [Arias, 2001]).

13/04/2011

Material Flow Analysis of a Product

Material Flow Analysis for a Country

Material Flow Analysis of Penta BDE

13/0 Figure 2: Flows of PentaBDPE in Switzerland in the lated 1990s Morf et al. 2003

Material Flow Analysis of Deca-BDE

Mass of PBDEs in Computers in Toronto

Why Indoors? - concentrations higher - we spend 22/24 hours/d indoors

RA. Rudel, LJ. Perovich / Atmospheric Environment 43 (2009) 170-181

Indoor Outdoor 100000 – min max 10000 mean Concentration (ng m⁻³) 1000 100 10 1 New York City [8] 0.1Norwegian Sea [5] suburban CA [10] Paris, France [11] Netherlands [9] suburban homes. homes, Cape kinderspreen, rural TX [6] apartment Sweden [7] Germany [4] Germany [3] [1] (Rudel et al., 2003), n = 120, median (not mean) plotted [7] (Thuren and Larsson, 1990), n = 51, median (not mean) plotted [2] (Sheldon et al., 1992), n = 104, range shown is 10th to 90th [8] (Bove et al., 1978), n = 138, particulate phase only, min and max percentile, median (not mean) plotted from monthly averages, median (not mean) plotted [9] (Peijnenburg and Struijs, 2006), n = 32, range shown is MQL to [3] (Fromme et al., 2004), n = 59, median (not mean) plotted 95th percentile, gas phase only , median (not mean) plotted [4] (Fromme et al., 2004), n = 74, median (not mean) plotted [10] (Sheldon et al., 1992), n = 36, range shown is MQL to 90th [5] (Xieet al., 2007), n = 6

Di-n-butyl phthalate

[6] (Atlas and Giam, 1988), n =13

Tian (not mean) plotted [10] (Sheldon et al., 1992), n = 36, range shown is MQL to 90th percentile, median (not mean) plotted [11] (Teil et al., 2006), n = 20

Fig.¹5/04/m²butyl phthalate air concentrations (sum of vapbiamen particulate phases unless otherwise noted) in selected studies.

Prediction of PBDE indoor dust concentrations

Linking PBDEs in House Dust to Consumer Products using X-ray Fluorescence Joseph G. Allen,*‡† Michael D. McClean,‡ Heather M. Stapleton,§ and Thomas F. Webster‡

13/04/2@Aviron. Sci. Technol., 42 (11), 4222 4228, 2008. 10.1021/es702964a

PBDE Air Concentrations in Stuart's Office

Model Structure

Zhang et al. 2009 Environ Sci Technol 43: 2845-50

Modelling PUF Furniture

 ${f {f C}}$ J A Curran & DoITPoMS Micrograph Library, University of Cambridge

Estimated Emission Rate from Measured Air Concentration with old computer × 80% with new computer **Measured Concentration Estimated Emission Rate** 2 8 6 1 0

PBDE Congeners

 $\Sigma E_{old} = 35 \text{ ng/h}, \Sigma E_{new} = 5.4 \text{ ng/h}$

Diamond

```
\Sigma C_{old}^{13/04/2011} = 420 pg/m<sup>3</sup>, ΣC<sub>new</sub> = 90 pg/m<sup>3</sup>
```

PBDE Congener Profile before & after Computer Replacement

Indoor Fate of P₇BDEs – old computer

Indoor Fate of P₇BDEs – old computer

Zhang et al. 2009 Environ Sci Technol 43: 2845-50

Influence of Bouncing on the Furniture

Zhang et al. 2009 Environ Sci Technol 43: 2845-50

AER & Computer Emission Rate PUF as Source/Sink

Sensitivity Analysis Result 2

Indoor Phthalates

^{13/04/2011} <u>http://www.cleanandhealthyme.org/Portals/0/bodyburden/images/toys.jpg</u>²⁵

Gas-phase DEHP Release from Vinyl Tiles

Model of DEHP Release into Room

Xu & 신애에운 2006 Environ Sci Technol 40: 456-461^{mond}

Xu, Cohen Hubal, Clausen & Little 2009 Environ Sci Technol 43:2374-2380

c representation of the two-room model.

Data from CTEPP Study
 Mechanistic fate model

 $\overline{=}$

DEHP Emissions & Conc

Phthalate Partitioning

• Data from CTEPP Study

Use of Partition Coef to Predict Concentrations

Population Scale Correlation between Intake and Production

Helm D.2007 Correlation between production amounts of DEHP and daily intake. Sci Total/Environ 388:398-391.

Chemical	Indoor Emission (ug/m ² d)	Chemical Mass (mg)	Residence Time (y)	Annual Release (%)
BPA	1.2-2.5	240	76	1.3
BBP	0.4-13.3	22	27	4
DEHP	4.3-7.7	17000	1175	0.1
PCB	0.8	600	800	0.1
PBDE	0.03-0.2	4.6		0.001

Take Home Messages

- Indoor environment has many emission sources
- Very small fraction of total mass is emitted
- Emitted chemicals can have relatively high concentrations & long residence times
 - Minimal loss mechanisms
 - Magnifying glass
- Concentrations (related to exposure) are a function of:
 - Emissions (sources & source strength)
 - Physical-chemical properties
 - Room characteristics

– Within room partitioning & loss mechanisms (sinks)

Chemical Fate

 $\overline{\mathbf{r}}$

Chemical Fate in Cities

- Numerous emissions into a relatively small geographic area
- Area is highly disturbed
 - Impervious surfaces
 - Altered drainage system that maximizes rapid water conveyance and not storage
 - Compacted soils with elevated contaminant levels
 - Simple vegetative community 13/04/2011 Diamond

Environmental Compartments in City

Diamond et al. 2001. Chemosphere, Priemer & Diamond 2002. ES&T S.A. Csiszar, M.L. Diamond, L. Thibodeaux Modelling urban films using a dynamic Multimedia Urban Model. In prep.

Environmental Compartments in City

Diamond et al. 2001. Chemosphere, Priemer & Diamond 2002. ES&T S.A. Csiszar, M.L. Diamond, L. Thibodeaux Modelling urban films using a dynamic Multimedia Urban Model. In prep.

Lano4eto al. 2005 Atmos Environ 39: 6578-6586nd

Film Accumulation

Wu et al. 2008 Atmos. Environ. 42: 5696-5705

Diamond

Wu et al. 2008 Atmos. Environ. 42: 5696-5705

Organic Film

PCBs in Film

Accumulation & Removal

 $\overline{=}$

Wash-off & Solubility

% Washoff of PAH as a Function of Solubility

Movement of PBDEs

Diamond et al. 2001. Chemosphere, Priemer & Diamond 2002. ES&T S.A. Csiszar, M.L. Diamond, L. Thibodeaux Modelling urban films using a dynamic Multimedia Urban Model. In prep.

Chemical Transport from Film

Jones-Otazo, Clarke et al. 2005 Enivon Sci & Technol 39: 5121-5130

13/04/2011

Diamond

P7BDEs Emission 200-800 ng/m²/d Export 80% or 170-760 ng/m²/d

Zhang et al. 2009 Environ Sci Technol 43: 2845-50

Comparison of Loadings to Lake Ontario

 $\overline{\mathbf{F}}$

53

Summary: Material Flow Analysis

- Mass balance of products, chemicals, etc., across a boundary
- Used here to quantify <u>mass of products and/or</u> <u>materials</u> containing chemical of interest AND <u>mass</u> <u>of chemical of interest</u>
- Need to know mass or inventory AND inputs and outputs

Summary: Indoor Environment

- "concentrator" of emissions because of numerous chemical emission sources and limited loss processes (e.g., minimal air exchange rate)
- Important to understand chemical sources AND sinks (e.g., PUF furniture, carpet)
- Tiny fraction of SVOC is emitted from a very large inventory (or mass)

Summary: Cities

- Cities are geographic "concentrators" of resources, hence elevated concentrations in all media (air, soil, water)
- Impervious surfaces are coated with thin film that "collects" atmospherically deposited chemicals and facilitates movement back to air or to surface water
- Most chemicals emitted to air in cities is lost by advection, but also impervious surfaces promote chemical mobility in comparison to soils that are efficient chemical sinks

