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Preface

Since the appearance of the first edition of this book, there has been con-
tinuing rapid development of our understanding of stellar atmospheres, and
it has been clear to me for some time that a new edition was needed. One
of the major motivations for producing a new version of the book at this
time is the desire to describe the major advances that have been made—in
developing methods to solve the transfer equation in moving media, and in
the theory of stellar winds. As was true in the first edition, I have not
attempted to cover every possible aspect of the subject, but have again
treated a limited number of problems in some depth.

It was clear from the outset that, in view of the great demands made upon
the student’s time in the now-crowded astrophysics curriculum {resulting
from the explosion of our knowledge about the Universe), it was pointless
to write a book significantly longer than the first edition. Thus, to add new
material, it has been necessary to economize the presentation of the old
material, and to omit topics that are of specialized interest or that lie outside
the mainstream of the developments of primary importance to the book. In
particular, given that today’s student is most likely to learn what he knows
about radiative transfer in a stellar-atmospheres course, but will be interested
in applying it to other physical situations, I have purposely shifted the
emphasis away from strictly stellar applications, and have developed the
transfer theory more generally and completely. T believe that a thorough
understanding of the radiative transfer theory presented in this book will
equip the student to attack a wide variety of transfer problems, whether in the
laboratory, the atmospheres of stars and planets, the interstellar medium, X-
ray sources, or quasars. Further, I have added exercises in which the student
is asked to fill in missing steps of derivations, or to apply the theory himself
to simple examples. In most cases the exercises are quite straightforward

~



xvi Preface

and should require only a few minutes work; but some of the exercises in
Chapter 7 -~quire substantial eflfort and would make good class projects.

Ideally the material in this book should be taught in a course lasting two
quarters, covering Chapters 1-7 in the first quarter, and Chapters 815 in
the second. If an entire year (two semesters) is available, the book should be
supplemented with extra material on subjects of interest to the instructor
and students, perhaps drawn from problems of solar physics, stellar spec-
troscopy, pulsating atmospheres, peculiar stars, abundance analyses, or
many others. If only one semester is available, I recommend omitting, first,
Chapters 4 and 9 (which are more physics than astrophysics) ; next, Chapters 3
and 10 (which are fairly elementary and may well have been covered in an
earlier course); and, finally, if necessary, Chapter 13 (which is not absolutely
essential for a basic understanding of line-formation).

In any case, many fascinating subjects will inevitably be omitted, and
teacher and student alike may feel frustrated, as I have been in writing the
book, that a more complete coverage is not possible. Again and again |
have felt like the traveler in Frost’s “The Road Not Taken™ (388, 105)*,
in choosing one of two equally fair paths, knowing full well that way would
lead on to way, and that I should not return to the other. I only hope that
the students will discover for themselves these other charming paths and
will spend a pleasant lifetime in their exploration.

It is no longer possible for me to acknowledge fairly the many people
who have helped me learn about stellar atmospheres and fine-formation,
and T shall not try here, beyond offering a sincere thanks to all in whose
debt I am. But I would be remiss if I did not specifically thank Lawrence
Auer, David Hummer, and George Rybicki, who (as colleagues, critics,
teachers, collaborators, and friends) have greatly deepened and enlarged
my understanding of the material in this book. Further, I wish to record my
great debt to Professor W. W. Morgan of Yerkes Observatory. His en-
couragement has stimulated much of the work T have done in the past
several years, and his wise counsel has greatly enhanced its value. T also
thank him for sharing with me a few glimpses of his perception of the nature
of scientific method from the lofty point at which he can view it.

T wish in addition to thank the people who have helped with the writing
of this book: Barbara Mihalas, for reading and correcting the manuscript
and the typescript; Tom Holzer and Richard Klein for reading and com-
menting upon Chapter 15; and David Hummer and Paul Kunasz for reading
the typescript and offering many corrections and suggestions. Thanks also
are due to Gordon Newkirk for helping to provide, through his labors as

* A NOTE ABOUT REFERENCES: Referencesarelistedseriallyattheend ofthetext,and aredenoted
in the text with boldface numbers --e.g., (105). Additional informalion, such as a page or chapter
citation, will be indicated lollowing the reference number—e.g., (105, 27) or (105, Chap. 4).
Citations to two or more references are separated by semicolons --e.g., (105, 27; 388, 105).

Preface xvil

Director of H.A.Q., the scientific environment in which this book ceuld
be written. [ also thank Paulina Franz for converting hundreds of pages of
my spidery handwriting into smooth typed copy, Kathlyn Auer for preparing
the index, and Pat Brewer of W. H. Freeman and Company for her effective
and careful supervision of the production process.

Finally, T thank my father, M. D. Mihalas, for his unintentional {(but
priceless) contribution in teaching me, through the example of his life, the
meaning of abtorenoilnara and prioTipio.
Oxford, England Dimitri Mihalas
October, 1977



Preface

TO THE FIRST EDITION

The study of stellar atmospheres is in many ways one of the most interesting
and rewarding areas of modern astrophysics. It is not an exaggeration to
state that most of what we know about stars, and systems of stars, is derived
from an analysis of their radiation, and that this knowledge will be sccure
only as long as the analytical technique is physically reliable. It is therefore
important to have a sound theoretical framework upon which our inferences
can be based with confidence. :

The field of stellar atmospheres enjoyed a period of rapid growth during
the last decade. On the one hand, great improvements were made in the
quantity and quality of the observational material. Not enly did ground-
based observations provide a continuing flow of data, but, in addition,
observations from balloons, rockets, and satellites opened broad horizons
hitherte completely hidden from us. On the other hand, enormous progress
was made in the development of theory. A concerted effort by astronomers
and physicists filled in many of the gaps in our understanding of the basic
physical processes occurring in stellar atmospheres. The availability of large-
capacity, high-speed computing machines stimulated the development of
powerful new mathematical techniques and allowed their application to a
wide range of cases. Thus, tremendous gains were made in enlarging and
clarifying the formal and conceptual basis of the subject.

One of the unfortunate side effects of this peried of growth is that
practically all of the available textbooks in this field of astronomy are badly
out of date. Students and instructors alike must now attempt to digest a
large body of scattered literature in order to learn of recent developments.
There is, in my mind, a definite need for a new text on the subject, and the
present book is an atfempt to provide such a text on an introductory graduate
level. It is based upon courses I have given to first- and second-year graduate
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students at Princeton University, the University of Colorado, and the Uhi-
versity of Chicago. It represents what { feel is a minimum background for a
student who wishes to understand the literature and to do research in the
field. Naturally, it has been necessary to be selective in the material presented.
In writing this book, [ had in mind the goal of providing a basic synopsis
of the theory that can be covered in two quarters, with the hope that the
content of the third quarter of the normal academic year will be drawn
by the instructor (and the students) from the current literature on topics of
special interest to them. Although emphasis is given to the more modern
approaches, I have also attempted to give a coherent review of the older
methods and results. I feel it is important for students to be familiar with
these classical approaches so that they will be aware of the limitations of
such approaches and the conclusions based upon them.

Ii has been tempting to include a wider range of subjects, but I have avoided
doing so in the belief that it is more worthwhile for the student to consider a
smaller number of topics in depth than attempt to survey the entire field super-
ficially. In this vein, I have purposely limited the comparison of theory with
observation to a few of the more crucial and illustrative examples. Moreover,
[ have restricted most of the theoretical discussion to what may be called the
classical stellar-atmospheres problem—i.e., atmospheres in hydrostatic,
radiative, and steady-state statistical equilibrium. This is ample material for a
two-quarter course and is understood well enough to require little speculation.
Even within this problem, I have limited the variety of techniques treated. For
example, I personally favor using differential equations over using integral
equations to solve transfer problems. Thus, although the latter method has
enjoyed wide application and good success, particularty in the hands of the
Harvard-Smithsonian Astrophysical Observatory group, there islittle discus-
sionofitinthisbook. This omissionisnotarbitrary, however, butis based upon
the view that, since the two methods are mathematically equivalent, discussion
of one suffices and, in addition, that the one  have chosen seems to offer more
proizise in future applications—for example, to situations involving hydro-
dynamics (wherein lies the real frontier of the subject). On the other hand, in my
experience, the physics background of astronomy students is often uneven: I
have, therefore, not hesitated to develop those aspects of physical theory that
areof specialinterest to theatmospheres problem. Inany case, Thope that users
of this book will find it a helpful outline, which they canedit, alter, and enlarge
upon as their needs dictate.

Williams Bay, Wisconsin Dimitri Mihalas
November 1969

Stellar Atmospheres



The Radiation Field

From quantitative examination of the spectrum of a star, information can
be obtained about the frequency distribution of the emergent radiation field.
We observe both broad, smooth expanses of continuum and spectrum lines,
where the frequency variation is quite abrupt. The entire spectrum contains
an enormous wealth of information, and the primary goal of the theory of
stellar atmospheres is to develop methods that can recover this information.
To this end we must be able to describe the flow of energy through the
outermost layers of a star, and to predict the observable characteristics of
the emergent radiation. We apply known physical laws that specify the
interaction of radiation with steilar material, and derive mathematical models
from which we compute theoretical estimates of observables, We then com-
pare theory and observation, and attempt to infer the physical conditions
in stellar atmospheres. Such analyses can provide information about the
structure of the envelope (important as a boundary condition for studies of
stelfar structure), modes of energy transport in the atmosphere, chemical
abundances, rates of mass loss, and calibrations for converting observational
parameters {e.g, M, and B — V) into theoretically interpretable numbers
(luminosity and temperature). By studying large numbers of stars we can




2 The Radiation Field

establish relations of, say, chemical composition to stellar distributions,
kinematics, and dynamics; this information provides clues in developing an
understanding of the structure and dynamics of the Galaxy as a whole.

The program outlined above is ambitious, and it is not an easy one to
carry out successfully. The observational data are often difficult to acquire,
have limited precision, and are the results of very complicated physical
structures. Often our physical theories are only primitive, and yet even
these may lead to extremely complicated mathematical systems. But the
key issue is that the information we deduce from steltar spectra will be a
close approximation to reality only if the underlying physical theory is
sound and comprehensive. We must, therefore, devote considerable attention
to the development of an approach that correctly includes the esseniial
physics.

In this chapter we introduce the basic definitions required to charac-
terize the radiation field itself. The radiation field is treated from three
points of view—using macroscopic, electromagnetic, and quantum descrip-
tions. Each of these approaches yields useful information and, taken to gether,
they provide a full picture of the nature of the ficld. We ignore polarization,
but carry along an assumed time-dependence so that in later work we can
derive equations of radiation hydrodynamics. In subsequent chapters we
shall consider how the radiation inferacts with the material and is transported
through the atmosphere (Chapter 2), and shall write down detailed descrip-
tions of the atomic parameters that specify the absorptivity of the material
(Chapter 4) and the mechanisms that determine the distribution of atoms
over available bound and free states (Chapter 5). After consideration of the
grey problem, which supplies an ideal testing ground of methods and shows
clearly the overall approach used (Chapter 3) and development of general
mathematical techniques for solving transfer equations (Chapter 6), we
discuss the central problem of the book: the construction of model atmo-
spheres (Chapter 7). We then examine the physics of line formation for a
given (static) model (Chapters 8-13), and the methods used to infer chemical
abundances in and physical characteristics of stellar atmospheres. Radiative
transfer in moving atmospheres is then analyzed (Chapter 14) and, finally,
all of the preceding developments are applied in a discussion of stellar
winds (Chapter 15).

1-1 The Specific Intensity

MACROSCOPIC DEFINITION

The specific intensity I(r,n, v, t) of radiation at position r, traveling in
direction n, with frequency v, at time ¢ is defined such that the amount of

FIGURL ]-]

Pencil of radiation used to define specific
imtensity. The vector n is the direction of
propagation of the radiation, while § is the
unit vector perpendicular to the element of
area dS.

energy tl’aqsported by radiation of frequencies (v, v + dv} across an element
of area dS into a solid angle dew in a time interval d¢ is

o0& = I(r,m, v, t) dS cos O dew dv dt (1-1)

where 8 is the angle between the direction of the beam and the normal to
the surface (i.e., dS cos 6 = n - dS); see Figure 1-1. The dimensions of I are
ergs Qm_z sec”t hz™! s~ As it has just been defined, the specific intensity
provides a compiete description of the radiation field from a macroscopic
point of view.

. in this book consideration will be given only to one-dimensional problems
in planar or spherical geometry; thal is, the atmosphere will be regarded as
composed of either homogeneous plane layers or homogeneous spherical
shells. In planar geometries we employ Cartesian (x, v, z) coordinates with
planes of constant z being the homogeneous layers; we can then ignore the
(x, y) dependence of all variables, as well as derivatives with respect to x
and y. It is convenient to introduce polar and azimuthal angles (6, @) to
specify n; we then haven -k = cos f, n-i = sin (} cos ¢, n- j = sin & sin ¢.
For one-dimensional planar geometry I will clearly be independent of ¢
hence we can write I = I{z, 1), v, t}; z is measured as positive upward in the
atmosphere (opposite to the direction of gravity). In spherical geometry
spatial location is specified by (v, ®, ®); but [or spherical symmetry, I will
depend upon r only. The direction of the radiation can be specified in terms
of the polar and azimuthal angles (0, ¢), now measured with respect to a
uqit vector ¥ in the radial direction. Spherical symmetry again implies
azimuthal invariance, and we can now write { = I(r, 8, v, £). We shall often
replace the variable 8 with p = cos 4.



4 The Radiation Field

Evxercise {-1: By use of Suells law, ny{v) sin 0y = r;(v) sin §,, in the calculation
of the cnergy passing through a unit area on the interface between two dispersive
media with differing indices of refraction, show that In,~ % is a constant,

PHOTON DISTRIBUTION FUNCTION

The radiation field can also be described in terms of a photon distribution
function fr which is defined such that fp(r, m, v, 1) dev dv is the gumber of
photons per unit volume at location r and time ¢, with frequencies on tl}e
range (v, v + dv), propagating with velocity ¢ in direction n into a sqhd
angle dw. Each photon has an energy hv. The number of photons crossing
an element dS in time dr is fz(c di){n - dS)(deo dv), so that the energy trans-
ported is 6& = (chv)f dS cos 6 dw dv dt; comparison of this expression
with equation {1-1) shows that

Ile,n, v, 1) = (chv)fp(r,n, v, 1) (1-2)

INVARIANCE PROPERTIES

An important property of the specific intensity is that it has been defined
in such a way as to be independent of the distance between the source and
the observer i there are no sources or sinks of radiation along the line of
sight. Thus, consider that pencil of rays which passes through both the
element of area 45 at point P and the element dS" at P’ (see Figure [-2).
Then the amount of energy 6& passing through both areas 13

€ = 1, dS cos B dw dvdi = & = I, dS cos 8 de' dv dt {1-3)

where deo is the solid angle subtended by 48 as seen from P, and de’ is the
solid angle subtended by dS as seen from P'. T'rom Figure 1-2 we see that
dey = r?% dS' cos @ while dew’ = 72 dS cos 8, where r is the distance from

FIGURE 1-2

Geometry used in proof of invariance of specific intensity. The points
P and P are separated by a distance r. Area dS subtends a solid angle
der' at P, and the area d5° subtends dew at P; § and § are unit vectors

normal to &S and 45’

1-2  Mean Intensity and Energy Density 5

P to P Thus it immediately follows from equation (1-3) that I, = I’. Note
also that equation (1-3) implies that the energy received per unit area falls
off as the inverse square of the distance between P and P’

OBSERVATIONAL SIGNIFICANCE

The spatial invariance of the specific intensity implies that the actual
value of T at the source can be obiained from measurements of the amount
of energy falling, in a given time, within a specified frequency band, onto a
receiver of known collecting area (and detection efficiency) from a source
subtending a definite solid angle. The requirement that dew must be specified
limits the determination of I to sources that are spatially resolved—e.g.,
nebulae, galaxies, the sun, planets, etc.

In particular, for the sun, the radiation at a given point emerges-at a known
angle relative to the local normal (in a one-dimensional model); hence
measurement of the center-to-limb variation of the radiation allows us to
determine the angular variation of I. Note that we do not, in general, see to
the same depth in the atmosphere along all rays; hence we do not obtain
the angular variation of I at some definite position (z) inside the atmosphere,
but rather at some point r,,, outside the atmosphere.

Exercise {-2: The angular diameter of the sun is 30’. Suppose that atmospheric
seeing elfects limil resolution to 17; show that this sets a lower bound on the g
for which we can infer I(p) accurately, and determine this p,..

1-2 Mean Intensity and Energy Density

MACROSCOPIC DESCRIPTION

In both the physical and the mathematical description of a radiation
field it is useful to employ various angular averages, or moments. Thus we
define the mean intensity to be the straight average (zero-order moment) of
the specific intensity over all solid angles, i.e.,

J, v, 8) = (dm)! é;[(r, n, v, 1) do (1-4)
The mean intensity has dimensions ergs cm ™2 sec™! hz~ !, The element of

solid angle dew s given by do = sin 8 dff dp = —du d¢. If we consider one-
dimensional atmospheres, [ is independent of ¢, hence

n 1
e d) = @0t [Tdg [0 ded vy = [ Te v de (5)

The same result applies in spherical geometry with z replaced by r.



6 The Radiation Field

To calculate the energy density in the radiation field on the frequency
range (v, v + dv), consider a small volume V through which energy flows
from all solid angles. The amount flowing from a particular solid angle dw
through an element of surface area dS of this volume is

8& = I(r, m, v, 1)(dS cos 8) deo dv dt

Now consider only those photons in flight across V; if the path length across
¥ is 1, then the time they will be contained within V' is dt = I/c. Further,
i dS cos 8 = dV, the differential element of ¥ through which they sweep.
Hence the energy in dV coming from dw is 66 = ¢TI, m, v, 1) do dv dV;
by integrating over all solid angles and over the entire volume, we find the
{otal energy contained in ¥, namely:

&, v, 0)dv = ¢! |:L szgg der I{e, m, v, t):| dv (1-6)

But if we pass to the limit of infinitesimal V, I becomes independent of
position in ¥, and the integrations can be carried out separately. The mono-
chiomatic energy density, Eg(r, v, ty = &(x, v, 1)/ V' is thus

Egft, v, 1) = ¢ 56 T, v, ) do = (A2/)(, v, 1) (1-7)

Ep has dimensions of ergs cm ™ 3 hz~!' The total energy density (dimensions:
ergs cm ) is found by integrating over all frequencies:

Falr, 1) = jO“ Elr, v, 1) dv = (47/c) fo“" T v, 0 dv = G/ (1-8)

PHOTON PICTURE

It is easy to show that the results derived above are consistent with the
photon picture of the radiation field. By definition, fz(r, n, v, t} is the nurqber
of photons, per unit volume, of energy hv propagating in direction n into
intervals dv dw. The energy density clearly is just this number, multiplied
by the energy per photon, summed over all solid angles: 1e.,

Elr, v, 1) = hv §3 fulom, v, 2) doo (1-9)

But from equation (1-2), hvfr = ¢~ I, hence equation (1-9) is scen to be
identical with equation (1-7).
EQUJLIBRIUM VALUE

In thermal equilibrium the radiation field inside an adiabatic enclosure
is uniform, isotropic, time-independent, and has a frequency distribution
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given by the Planck function BAT) = 2hv?/e?) ™™ — 1)71 [see (520).
{392, 365)]. Thus, in thermal equilibrium the monochromatic energy density
15 EE(v) = (4n/c)B,(T), and the total energy density is given by Stefar’s law:

o

Ef = (8zh/cY) fo (P — 1) dy = g T (1-10)

where gp = 81°k*/(15¢%h%). Here, as elsewhere in this book, we denote a
quantity computed from thermodynamic equilibrium relations with an
asterisk.
Exercise J-3: Derive Stefan’s law by substituting x = hv/kT, and expanding
{e* — 7l =e7 (1 — e 7" as a power scries in ¢”*. The sum cbtained from
the term-by-term inlegration is related to the Riemann zeta-function [see (4, 807)].

Stefan’s law is valid in the interior of a star, and in the deeper layers of steflar
atmospheres, where thermal gradients over a photon mean-free-path are
extremely small, and the radiation becomes isotropic and thermalizes to its
equilibrinm value. At the surface, the radiation ficld becomes very anisotropic
and has a markedly non-Planckian frequency distribution, as a result of
steep temperature gradients and the existence of an open boundary through
which photons escape into interstellar space; here Stefan’s law becomes
invalid.

ELECTROMAGNETIC DESCRIPTION

Electromagnetic theory provides an aliernative description of the radi-
ation field; we shall show how a one-to-one correspondence can be made
between the macroscopic and electromagnetic descriptions of the radiation
field. The electromagnetic field is specified by Maxwell’s equations [see,
e.g., (331, Chap. 6)] which, in Gaussian units, are

VD = dnp (1-11a)

V-B=0 {1-11b)

(V x E) + ¢ '(7B/é1) = 0 (1-11c)

and (V x H) — ¢~ {aD/én) = (dn/0)j (1-11d)

The electric field K 1s related to the electric displacement D in terms of the
permittivity &, namely D = cE. Similarly, the magnetic induction B can be
expressed in terms of the magnetic field H and the permeability p by the
relation B = yH. For vacuum, ¢ = g = 1. In equations (1-11), p 15 the
charge density and j is the current density j = pv associated with charges
moving with velocity v. The electric field and magnetic induction can be
derived from a scalar potential ¢ and a vector potential A, which are defined
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such that

B=VxA (1-12a) .

and E = —V¢ — ¢ YA/ (1-12b)

Equation {1-12a) satisfies equation (1-11b), while (1-12b) satisfies (1-11c).
Because B is defined as the curl of A, the divergence of A may be specified
arbitrarily; one of the most convenient choices is to impose the Loreniz

condition
V-A = —c¢ YddioD (1-13)

With this choice, Maxwell’s equations can be reduced to
Vi — T Hd pjor?y = —dmp (1-14a)
and VZA — ¢ 3(@PAJor) = —(4n/o)j {1-14b)

The solutions of these equations can be written as {cf. (331, Chap. 6), (494,
Chap. 19}],

(1-15a)

pr Ly, )

and d3r’ {1-15b)

el
where, as indicated, p and v at r' are evaluated at the refarded time t' =
t —c! agation of
electromagnetic waves. _

One of the most important solutions of Maxwell's equations is that for
monochromatic plane waves in vacuum, propagating in direction mg with
velocity ¢:

E(r, 1) = E, cos[2m(kng - r — vi}] (1-16a)
and Hr, t) = H, cosf2n(kn, - r — vi)] (1-16b)
where k = 2~! = ¢~ 'v. The vectors (E,, Hy, ny) form an orthogonal triad

with Hy = ny x Eqg, so it follows that [Ho! = |Ey|. The result obtained from
electromagnetic theory for the instantaneous energy density W{(t) in the

field is
Wit) =(E-D + B-H)/8n (1-17)

Averaging in time over a cycle introduces a factor of {cos” wt)y = %, and
using the relations |Eq| = |Ho| and p = & = 1 (for vacuum), equation (1-17)
reduces to W = (W(1)>y = Eo°/87 In terms of the macroscopic picture, a
monochromatic plane wave propagating in direction n, [ specified by angles
(B4, )] has a specific intensity I{u, ¢) = I 6(u — po) 6(¢p — o) where &
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denotes the usual Dirac function. Substitution into equation (1-7) yields the
energy density Er = ¢~ ', a result that is intuitively obvious for a plane
wave propagating with velocity ¢. Therefore we obtain a correspondence
between the two descriptions by making the identification

Iy = cE*f8n (1-18)

Tt will be shown below that this choice yields consistent relations between the
Poynting vector and Maxwell stress tensor and their macroscopic counter-
parts. The results derived here apply, strictly, only to a monochromatic
plane wave, but are easily generalized to fields having arbitrary angle and
frequency distributions by summing over suitably chosen elementary plane
WAVES.

1-3 The Flux

MACROSCOPIC DESCRIPTION

We define the flux of radiation & (r, v, i) as a vector quantity such that
F - dS gives the net rate of radiant energy flow across the arbitrarily oriented
surface dS per unit time and frequency interval. Noting that n-dS = 45
cos ¢, where § is the angle between the direction of propagation n and the
normal to dS, we immediately recognize that the flux can be derived from the
specific intensity via equation (1-1), for 6& as written there is, in fact, nothing
more than the contribution of the pencil of radiation moving in direction n
to the net energy flux. Thus we merely sum over all solid angles and obtain

Fl, v, 1) = 9§I(r, n, v, On dos (1-19)
The flux has dimensions: ergs cm ™2 sec™! hz~ !, Note that & is the first
moment of the radiation field with respect to angle.
In cartesian coordinates we have

(F\, T, F, @S In, doo, § I, dos Sﬁm dm) (1-20)

where do = —dudg, n, = (1 — p?)* cos ¢, n, = (1 — p*)¥sin ¢, n, = p.
If the radiation field is symmetric with respect to an axis, it follows that there
will be a ray-by-ray cancellation in the net energy transport across a surface
oriented perpendicular to that axis, and that the net flux is identically zero
across this surface. In particular, for a planar atmosphere homogeneous in
x and y, only &, can be nonzero; we shall therefore require only this com-
ponent of the flux, and shall refer to it as “the” flux, as if it were a scalar,
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and write

Flav) =2 [ 1 v, o dy (1-21)

Exercise [-4:  (a) Show that #_and & » anish In an atmosphere with azimuthal
(¢} independence of 1. (b) Show that in a spherically symmetric atmosphere
only &, is nonzero and is given by equation (1-21) with = replaced by . (c) Eval-
uate # for I{u) = 3 I p"; show that ouly the odd-order terms contribute 1o 5.

In astrophysical work it is customary to absorb the factor of T appearing in
equation (1-21), and to write the astroph ysical fluxas Fiz, v, 1) = n~ ' % (z, v, f).
Further, regarding the flux as one ofa scquence of moments with respect to g,
one may define the Eddington flux

1
Hiz, v, ) = 4n) 'F(z, v, 1) = Ef_ll Iz, g, O du (1-22)

which is in a form similar to equation (1-5) for the mean intensity.

PHOTON ENERGY TFLUX

The same results for the energy flux may be obtained from the description
of the radiation field in terms of photons. The et number of photons passing,
with velocity ¢, through a unit surface oriented at angle ¢ to the beam, per
unit time, is clearly

Nir,wty=c¢ 98 Jrlrom v, 1) cos @ dea {1-23)
Each photon has energy hv, so the net energy transport must be
Ty, 1) = (chv) 99 fult n, v, On doo {1-24)

In view of equation {1-2), equation {1-24) is obviously identical to gguation
(1-19).

Furthermore, photons of energy hv propagating in direction n have mo-
mentum hvn/c. Thus it is clear that ¢~ L% - dS dt gives the net momentum
transport across the surface dS in time dz, by particles moving with velocity c.
It therefore follows that the momentum densii ¥ associated with the radiation
field is Gy = ¢ 2% ; we shall find further significance of this result in §2-3
and shall use it in §14-3.

s

Exercise 1-5: Verify the assertion thai ¢~ 2% represents @ momentum density;
check units for consistency.
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THE POYNTING VECTOR

In electromagnetic theory, the energy flux in the field is given by the

Poynting vector (1-25)

S = (¢/4n)(E x H} -

i i cle is
Considering a plane wave as in §1-2, the average power over a cy

(8> = e{E x H)p/dn = (c{E*>my)/dn = (CEOZ}HO/S'n:. Qn the other hanc‘l,

in terms of macroscopic quantities, the flux associated with a plane wave is

F = é[n do = 9SIO ofn — ng)n dew = Igng (1-26)

Now using equation (1-18), it is clear that % defined by equation (1-20) is

identical to {S8>,. Again, this result can be generalized to arbitrary angle and

[requency distributions of the radiation field.

OBSERVATIONAL SIGNIFICANCTE

The energy received from a star by a distant observer can be _related
directly to the flux #, emitted at the stellar surface. Assume that the_d1stance
D between star and observer is very much larger than the stellar radius r, so
that all rays from star to observer may be c.onsidell‘ed to be pargllel. Th?i
energy received, per unit area normal to t_he ling o.f sight, from a d1fferenu}c11
area on the star is d¢, = I, dw where dw 18 the solid angle subtended.by t e
area, and J, is the specific intensity emergent at the stellalr surface. Conmdermgf
the geometry shown in Figure 1-3 we see that » = r, sinfl so that the area o

LEP To observer

FIGURE 1-3

Geometry ol measurement of stellar flux. The annulus on the surface
ol the star has an area dS = 2zr dr = 2rg, sin ( cos & d@ norjmal to
the line of sight; this area subtends a solid angle dw = dS/D* as seen
by the observer.
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a differential annulus on the disk is dS = 2zr dr = 2mr *u dyu, and- do =
2n(r, /DY 1 dy. The radiation emitted from this annulus in the direction of
the observer emerged at angle 0 relative to the normal; hence the appropriate
value of the specific intensity is I(r,, t, v). Integrating over the disk, we find

S

A = 2n(r /D) fol iy, o i dp = (r /DVF(r,,v) = Llflo:*zfﬁ(r*, v)  (1-27)

where o, is the angular diameter of the star. [ In the above calculation we have
assumed there is no radiation incident upon the surface of the star; ie.,
I{ry, — u, v) = 0.] For unresolved objects {e.g., stars), we can measure only
the flux. The energy received falls off as the inverse square of the distance
(because the solid angle subtended by the disk varies as D™ ?). If the angular
diameter is known, then the absolute energy flux measured at the earth can
be converted to the absolute flux at the star,

FExercise [-6: Show that the flux emergent from a small aperature in an adiabatic
enclosure {blackbody} is # (v} = =B {T}. Show that the integrated flux is 4 =
o T where o = (¢/Dag = 2n°KY/(158°c¢%) = 567 x 10" ergem 2 sec™ ! deg ™ *
is the Stefan-Boltzmann constant.

1-4  The Radiation Pressure Tensor

MACROSCOPIC DESCRIPTION AND THE PHOTON
MOMENTUM FLUX

The mean intensity and flux are the scalar and vector quantities given by
the zero and first angular moments of the specific intensity against the direc-
tion cosines between the direction of propagation and an orthogonal triad.
The second moment yields a tensor quantity, that we shall identify as the
radiation pressure tensor (or radiation stress tensor), namely

P(r,v, 1) = ¢ * 98 I(r,n, v, tynn do (1-28)
or, in component form,
Prvt) = ¢! § I(r. m, v, g, do (1-29)
The dimensions of P are ergs cm ™ * hz ™. Tt is obvious that P is symmetric:
Le., P;; = P

The physical interpretation of P follows directly from the description of the
radiation field in terms of photons. Thus, using equation (1-2) to replace the

3
]
%
B f%
E
é
.
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specific intensity with the photon distribution function f,, we see that
Pyt v, 1) = § LSl m, v, tem Y(hvay/e) doo (1-30)

The above expression clearly gives the net flux of momentum, in the j-
direction, per unit time, from radiation of frequency v, through a unit area
oriented perpendicular to the i-direction; this is precisely the definition of
pressure in any fluid, and hence justifies the term “radiation pressure”.
The average of the diagonal components of P may be used to define a mean
radiation pressure:
.1

P = g(Pxx + P, + P,.) {1-31)

But (n,” + n,> + 1,%) = 1 for any unit vector n, hence in general

P, v, 1) = (3¢)71 Eﬁ I, n, v, 1) dw = % Eu(r, v, 1) (1-32}

However, it must be emphasized that despite the generality of this result, P
does not give the actual radiation pressure unless the radiation field happens
to be isotropic. In general the radiation field in stellar atmospheres is far from
isotropic, and ordinarily the numerical factor relating pg (a scalar parameter
that can be used to calculate radiation forces) and the energy density Eg
exceeds % (see below).

RELATION OF THE PRESSURE TENSOR TO VOLUME FORCES

Let us now examine the relation of the radiation pressure tensor to
volume forces exerted by the radiation field, Consider an element of area 45
the flow, per unit time, of the i-component of momentum in the radiation
ficld across this element is ) ; P, n; S, where the n /s are the direction cosines
of the normal to dS. Now integrating over a closed surface S, and applying
the divergence theorem, we find

QT Py ds = [ @Pyfoxy av [wear 033y

where V' is the volume enclosed by S. The integral on the left gives the net
flow, per unit time, of the i-component of momentum out of the volume
through the surface S; thus from the integral on the right we see that (V - P),
must be the rate at which the i-component of the momentum density in the
field decreases; i.e., ¢~ *0.F /61),.
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Hence for the radiation field alone (i.e., n the absence of absorbing or
emitting material) we have

(8Gg/0) = ¢ [aF (x, v, 1)/dt] = —V P, v, 1) (1-34)

Equation (1-34) is essentially identical to the usual momentum equation of
hydrodynamics for an ideal fluid with no applied forces (cf. §15-1). We shall
generalize this result to include interactions with material in §2-3.

THE MAXWELL STRESS TENSOR

In electromagnetic theory, the stress in the lield is described by the
Maxwell stress fensor, which is defined such that

(0G /o) = V- T (1-35)

Here G, is the momentum densily associated with the electromagnetic
field. The components of T are:

1.,
T.M = [E;-Ej + H.H; — 5aU(E- + Hz)}/dm {1-36)

where d,; denotes the usual Kronecker S-symbol. By comparison of equations
(1-34) and (1-35) we see that the Maxwell stress tensor should be equal to
the negative of the radiation pressure tensor; it is instructive to verify this
conclusion by direct calculation.

Consider a plane wave propagating in direction ny; from the macroscopic

definition of radiation pressure we have
P=c"' 98 Inn do = c’llogﬁ d(n — ng)nn dw = ¢~ Ty
= (Eo*/8mngng (1-37)

which should equal T for a plane wave. Choose the electromagnetic field
to yield a Poynting vector S along ny; in addition to {8, o) we must also
specify the polarization of the wave via the angle Wro. Here i, measures the
angle of rotation of E around $ from the plane through n, and k (the unit
vector in the z-direction); see Figure 1-4. It is easy to sec that

E, = E,fsin g sin ¢p — COS g cO8 g €08 O) (1-38a)
E, = —Eyfsin 5 cos ¢ + €Os Yo sin ¢y, cos Og) (1-38b)
E, = Eycos g sin U, {1-38¢)

Exercise 1-7:  Derive expressions analogous to equation (1-38) for (H,, H,, H.).

15

et
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FIGURE {-4

The plane clectromagnetic wave generated by E and H
is propagating zlong the Poynting vector S in direction
ny. The angle ¥, measures the rotation of E around S
out of the plane defined by n, and k, the unit vector in
the z-direction.

Substilution ol equations (1-38) and the corresponding equations for H into
equation (1-36) vields components of T¥; for example, for T..™ we find

1
.M = [Ef + HP =SB+ HZ)J / 4r = EyXsin® 6, — 1)/4n
= —E,? cos? 0,/47 (1-39)
Averaging over time yields (T, "%, = —(E.2/87) cos? 0, which is indeed

— P_.; note that the final result is independent of ifr;.

Exereise i-8: Caleulale the remaining compenents of TY and show that TY =
—P, independent of .

The above results demonstrate that a complete correspondence exists
between electromagnetic theory and the macroscopic or photon descriptions
of the radiation field; we shall exploit this correspondence in a useful
way in §§14-3 and 15-3 where we will be able to use the known Lorentz-
transformation properties of clectromagnetic field guantities to esiablish
those of their radiation-field-description counterparts.
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LIMITING CASES! SYMMETRY, ISOTROPY, EQUILIBRIUM,
PLANE WAVES

In a one-dimensional planar or spherically-symmetric atmosphere the
radiation field is azimuthally invariant, hence the pressure tensor becomes
diagonal

pr 0 0 1 3pr — Ex 0 0
Pr,v,t)={0 pr 0 |-~ 3 0 3pr — Ex 0] (1-40)
0 0 pg 0 0 0
where prlz, v, t) = dr/c)Kiz, v, 1) {1-41)
and, in turn,
d,wzzf 2 v, O dp (1-42)

is the second moment of the radiation field in Eddington’s notation.

Exercise 1-9: (a) Derive equation {1-40} for the conditions stated. (b) Show
that the same expression for P is obtained in spherical symmetry relative to the
orthogonal triad (b, B, £ () Verily that the tensor shown in equation (1-40) is
consislent with equation (1-32),

It is clear from equation (1-40) that, for a one-dimensional atmosphere,
only two scalars (p, and Ep) are sufficient io specify the full radiation pressure
tensor. Further, for such atmospheres, derivatives with respect to (x, v) or
(0, ¢), in the planar and spherical cases respectively, are identically zero, and
the only nonvanishing components of the divergence of the radiation pressure
tensor are

(V-P), = dpplz, v, )iz (1-43a)
in planar geometry—or, in spherical geometry,
(V- P), = [Oprlr, v, )] + [Bpglin v, 1) — Ex(r, v, )]/r  (1-43b)

In this book we shall confine attention strictly to one-dimensional problems,
and with the exception of further formal development of the equations of
radiation hydrodynamics in §15-3, the full tensor description of the radiation
field will not be required; for ease of expression, we shall therefore refer to
the single scalar p; as “the” radiation pressure.

Exercise {-10: Show that, for any diagonal tensor A, in spherical coordinates

(V- A), = (84,,/8r) + 24, — Ay — Agy)/r; use this result to derive equation
(1-43b).
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In general, py as defined by equation (1-41) will not equal P defined by
equation (1-32), but the two become equal if the radiation ficld is isotropic.
For an isotropic field, I is independent of u, and equations (1-7) and (1-41)
immediately yield pp = 3Eg, so that equation (1-40) reduces to

pr 0O 0
Pi,bv,t)={0 pg O (1-44)
0 0  pg

That is, when the radiation field is isotropic, the radiation pressure tensor
is diagonal and isotropic, and may be replaced, for all purposes of computa-
tion, by a scalar hydrostatic pressure, or even gliminated entirely in terms of
E. If in addition to being isotropic the radiation field has its thermal
equilibrium value, then the monochromatic radiation pressure I8

1
Prlz v, 1) = T ER(z, v. 1) = (4n/30)B,(T) (1-45)
and the total radiation pressure is

PElz 1) = %a’fﬁ' (1-46)
a result first obtained by thermodynamic arguments {160, 55; 565, 123).
From equations (1-7) and (1-41) we see that py is an average of I () weighted
by u? whereas £ Is a straight average. If the radiation field becomes peaked
in the direction of radiation flow out of the atmosphere, the larger values
of ¢ become more heavily weighted in pg (recall ¢ = 1 for 6 = 0) and pg
will exceed its isotropic limit of $E;. The most extreme departure from
isotropy occurs when the radiation flows in a plane wave. For a wave in the
outward direction we can write I(z, v, ¢} = I{z, v) 8(u — 1); then K(z,v) =
J(z, v) = H(z,v), and pplz, v) = Eg(z, v). This extreme limit is approached
in the outermost layers of very extended stellar envelopes (or in nebulae)
in which the radiation field originates from a stellar surface that occupies
only a very small solid angle as seen from the point in question,

Exercise £-11: (a)Show that for a plane wave moving along one of the coordinate
axes, the radiation pressure tensor has only one non-zero component.  {b) Show
that the pressure tensor is isotropic if the angular dependence of the radiation
field is given by K{i) = I, + I,y This result is important because the radiation
field is accurately described by an expression of the stated form in the diffusion
limii which obtains at great depth in the atmosphere (cf. §2-5).

Exeicise I-12:  Suppose an observer is at distance ¢ from the center of a star of
radius r, which has a uniformly bright surface (Le., I is independent of u). Derive
dﬂdlyil(,dl expressions [or J, H, and K in terms of 0, = sin™'(r/7), YR
that in the limit (r/r,) - o, J = H = K.
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VARIABLE EDDINGTON FACTORS

From the results derived above it follows that the ratio pa(r, v, £)/Ex(r, v, ).

or K(r, v, t)/J(r, v, 1) is a dimensionless number whose value is fixed by the
degree of isotropy of the radiation field, and typically ranges between 4 and 1.
It will be shown later (§6-3) that this ratio can be used in certain numerical

methods to reduce the number of independent variables in the transfer

problem; further, it may be used to effect a closure of the system of moment
equations derived from the transfer equation. It is useful, therefore, to define
the variable Eddington fuctor

f{ra v, t) = K(I’, vy t)/J(r, ¥ f) (1'47)
or, in abbreviated notation f, = K /J,.

Exercise i-13: (a) Consider an expansion of the form I{y) = I, + Y, Lu"; show
that f = 3 if the sum includes oniy odd powers n. (b} Suppose that ! () = I,
for (0 < < 1) and I(i) = I, for (—1 < u < 0); show again that f = 1. This
tepresentation of I provides a rough description (the rwo-siream approximation)
of a stellar radiation field, for we may let I,/f; — 0 at the surface and 7,/I, — 1
at depth. (c) Show that, for a slab of infinite extent in (x, y) and finize extent in
z, f may drop below L.

2

The Equation of Transfer

As radiation passes through the gas composing a stellar atmosphere, it
interacts with the material and is absorbed, emitted, and scattered repeatedly.
These phenomena determine how radiative transfer occurs in the atmosphere.
In this chapter, macroscopic quantities that define radiation—matter inter-
actions are introduced (§2-1), and the equation of transfer (which describes
the transport of radiation through the medium) is developed (§2-2). Using
this equation, we can compute the emergent spectrum from a star, and
calculate how the angle—frequency variation of the radiation field changes
with depth in the atmosphere. The time-dependent equation of transfer will
be derived in order to obtain moment equations (§2-3) that describe the
dynamical behavior of the radiation field, but the discussion will then be
restricted to static atmospheres in all subsequent work through Chapter 13.
In Chapters 14 and 15 radiative transfer and its dynamical effects in steady
(ie., time-independent) flows will be considered.
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9.1 The Interaction of Radiation with Matter

DISTINCTION BETWEEN SCATTERING
AND ABSORPTION—EMISSION PROCLSSES

In the interaction of radiation with matter, energy may be 1:emoved from,
or delivered into, the radiation field by a wide variety of physical proce\ssels.
For the present, it is adequate 10 characterize these processes by rna(nrosc,f)pf1
coefficients: as will be seen in Chapters 4 and 7, these coefficients are specifie
by atomic cross-sections and cccupation numl?ers of energy levels of the
constituents of the steflar material. It is worthwhile, from the outset, to make
a distinction between “true” absorption and emission on one hand ar_ld the
process of scaitering on the other for, as we shall see 1'epea?edly mvthe
development of the theory, the physicai. nature qf the m.teractlon between
the atmospheric material and radiation 18 qu.xte dlﬁ"erem_m these two clases.
However, it is also immportant to realize that in spectral lines the d1chot(?my
between these processes can be established uniquely _only when we consider
a transition between two specified atomic states, w1tlj1 no coupling to any
other states allowed. As soon as sequences of transitions among sev;:rz_il
interacting states are considered, fundamental am‘mgt_ntlis a1'15‘:f:, an‘d Ft 13
no longer possible to describe a given line as an “absorption” ora scatteru; g
line in a rigorous way ; n10r would it be important or useful to do so. Neverthe-
less, it is fruitful to have at feast an intuitive not}on of_ the conirast betwefan
these Lwo basic processes, obtained by consideration of some definite
exa‘;?apx;y identify as scattering processes those in »\_fhich a photons 1pt§ractsl
with a scattering center (perhaps producinga chapge in the scattelrer s interna
excitation state) and emerges from the interaf:tlon in a new F:hregtlon with
(in general) a sfightly altered energy. The ess'entlal .pomt is that in this p}"(ices_s,
the energy of the photon is not converted 1_11&0 kinetic energy of.partl_c kels. ;ln
the gas. In contrast, we shall identify absq‘puon processes as those 1 Whlc the
photon is destroyed by conversion of its energy (wholly or partly} into the
¢hermal energy of the gas. In this process we say that the photon has been
thermalized. The crucial physical point to note is that the local ra’{? of energy
ernission in scatiering processes depends mainly upon the rachc{rzar? feld
{which may have originated at some other remc_ﬁely situated point in t?e
atmosphere) and has only a weak connection with the local z‘JaIues (?f er

thermodynamic properties (€.8., temperature) of the gas. Absm'pm_m pfocess.es,
on the other hand, feed photon energy directly into the thermal kinetic ener qy
of the gas, and hence aie more intimately cloupled to local tffte_rmod.}ilnqnu(i
properties of the material. Conversely, the inverse of absor_ptxoln, L el ma
emission, transfers energy from the thermal pqo!_ of the gas directly into the
radiation field. Thermal absorption and emission processes thus tend.to
produce local equilibrium between the radiation and material; but scattermg
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Processes allow photons to move from one part of the almosphere to some
other part without coupling to local conditions, and thus tend to delocalize
the control of the gas—radiation equilibration process, and to introduce
global properties of the atmosphere (e.g., the presence of boundaries) into
the problem.

To illustrate the ideas developed above, let us consider the following as
typical examples of scaitering processes.

(a) The interaction of a photon with an atom in bound state a leading

to the excitation of a higher bound state b {the photon’s energy being con-
verted to internal excitation energy of the atom), followed by a direct return
to state a with the emission of a photon. In general the emitted photon will
propagate in a different direction from that of the incident photon. Further,
both the lower and upper states ¢ and b of an atom in a radiating gas will
not be perfectly sharp, but wili have finite energy widths arising, for example,
from the finite lifetime of each state produced by radiative decay, or from
interactions of the atom with other particles of the plasma in which it is
imbedded. Each of the bound states can, therefore, be considered to consist
of a distribution of substates, with radiative transilions possible from any
substate of one level to any substate of the other. Thus if the decay of the
upper level occurs to a different substate of the lower level than that from
which the excitation occurred, or if there is a redistribution of the excited
electron from the original excited substate to some other substate (because,
say, the atom suffers an elastic collision. with another particle} then the
emitted photon’s energy may be slightly different from the incident photon’s.
Similarly, motions of the scattering centers with respect to the fixed labora-
tory frame can change the emitted photon’s energy from the incident energy
if the projection of the scatterer’s velocity along the direction of propagation
is different for the two photons, for then a differential Doppler shift can occur.
(Example: imagine the incident photon to be moving in the same direction
as v of the scatterer and the emitted photon to move in the opposite direction.
The emitted photon will be redshifted by an amount Ay = —2vyu/c relative
to the incident photon). Changes in photon direction and frequency during
scattering are described by redistribution functions (see below). Note that in
this process no significant part of the photon energy is imparted to the
material.
{(b) Scattering of a photon by a free electron (Thomson or Compton
scattering) or by an atom or molecule (Rayleigh scattering). Thomson
scattering may be viewed as the result of the free charge oscillating in the
clectrormagnetic field of the radiation, Compton scattering as a collision of a
photon with a free charged particle, and Rayleigh scattering as a resonance
of a permitted “oscillation” of the bound system with the field. The remarks
made in {a) above concerning redistribution and lack of coupling of radiant
energy to the thermal pool apply here as well.
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Similarly, we may consider the following to be examples of thermal
absorption processes (and their inverses as thermal emission).

(a) A photon is absorbed by an atom in a bound state, and ionizes
the bound electron, allowing it to escape with finite kinetic energy into the
continuum. In this process of photoionization or bound—free absorption, the
photon is destroyed and the excess of its energy over the electron’s binding
energy goes initially into the electron’s kinetic energy, and ultimately into
the general thermal pool after the electron suffers elastic collisions that
establish a thermal velocity distribution for the particles. The mverse process,
of a free eleciron dropping to a bound state with the creation of a photon
whose energy equals the sum of the electron’s kinetic and binding energies,
is called direct radiative recombination. These processes clearly transfer
energy back and forth between the radiation field and the thermal pool of
the materal.

{b) A photon is absorbed by a free electron moving in the field of an ion,
resulting in an alteration of the eleciron’s kinetic energy relative to the ion.
The electron then, classically speaking, moves off on a different (hyperbolic)
orbit around the ion. This process is known as free—fiee absorption because
the electron is unbound both before and after absorbing the photon. The
inverse process, leading to the emission of a photon, is referred to as
bremsstrahlung.

(c) A photon is absorbed by an atom, leading to a transition of an electron
from one bound state to another; this process is called photoexcitation or
bound—bound absorption. The atom is then de-excited by an inelastic collision
with another particle. Energy is put into the motion of the atom and the
collision partner and thereby ends up as part of the thermal pool. The photon
is said to have been destroved by a collisional de-excitation. The inverse
process leads to the collisional creation of a photon at the expense of the
thermal energy of the gas.

(d) Photoexcitation of an atom with subsequent collisional ionization of
the excited atom into the continuum. Photon energy again contributes to
the thermal energy of particles. The inverse processes is called (three-body)
collisional recombinaiion.

To illustrate the conceptual limitations of the kinds of arguments given
above, let us now consider some ambiguous cases. Suppose an atom has
three bound levels a, b, and ¢, in order of increasing energy, and a photo-
excitation from a to ¢ occurs. Then suppose that ¢ decays radiatively to b,
and b then decays radiatively to a; this process is called fluorescence. Here
a single photon of energy hv,, = E, — E, is degraded into two photons of
energies hv, = E, — E, and hv,, = E, — E,. Was the original photon
scattered or absorbed ? By our original definition it has not been “scattered”
and, moreover, the new photons may have vastly different properties (e.g.,
probability of escape through the boundary surface) from the original, so
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that the nonlocal behavior of the radiation field has been altered. On the
other hand, no contribution has been made to the thermal energy of the gas.
Alternatively, consider the same process, but now with a collisional de-
excitation ¢ — b followed by an emission b — q. The original photon can
be said to have been destroyed (absorbed); but is the emitted photon
“thermally” emitted when most of the original cnergy was derived from
the radiation field? Many other more complex and subtle cases may be
constructed, which, taken together show the limits of usefulness of the
absorption-vs-scatiering description.

In fact, a truly consistent picture emerges only when we write down the
full eguations of statistical equilibrium (cf. Chapter 3), which describe all
possible processes (both radiative and collisional) that couple an arbitrary
state { to some other state j, and solve these together with the equations
(transfer equations) that describe how the radiation is absorbed, emitted,
and transported through the atmosphere. To do this is, in general, quite
difficult, and formulation of successful methods of solution of the prob-
lem will occupy the bulk of this book. (The [ull import of these comments
will emerge only when the student has studied the material through
Chapter 12; nevertheless they should be borne m mind at all stages of
subsequent development).

THE EXTINCTION COLEFFICIENT

To describe the removal of energy from the radiation field by matter
let us introduce a macroscopic coefficient ¥(r, v, t) called the extinction
coefficient, or opacity, or sometimes (loosely) the fotal absorption coefficient.
This coeflicient is defined such that an element of material, of cross-section
d$ and length ds, removes from a beam with specific intensity I{r, n, v, #),
incident normal to dS and propagating into a solid angle dew, an amount of
energy

OE = y{r,n, v, ), m, v, 1) dS ds dew dv dit (2-1)

within a frequency band dv in a time dt. The extinction coefficient is the
product of an atomic absorption cross-section (cm?) and the number density
of absorbers {cm ™ ?) summed over all states that can interact with photons
of frequency v. The dimensions of y are cm ™', and (1/y) gives a measure of
the distance over which a photon can propagate before it is removed from
the beam—Ii.e., a photon mean-free-path (cf. §2-2).

The frequency variation of y may be exrremely complicated, and may
imclude thousands or millions of transitions (bound-bound, bound—free, and
free—free). For static media in which there are no preferred directions imposed
on an atomic scale (e.g., by a magnetic field), the opacity is isotropic. For
moving media, the opacity has an angular dependence introduced by the
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Doppler shift that radiation experiences in the fluid frame relative to its
original frequency in the stationary laboratory frame; this Doppler shift
obviously depends on the projection of the velocity vector onto the direction
of the incident beam. In what follows we consider only static atmospheres.

As ouilined earlier in this section, it is sometimes useful to distinguish
between “absorption” and “scattering”; hence we introduce volume coeffi-
cients x{r, v, #)and a(r, v, ¢) that describe [via equation (2-1}] the rate at which
energy is removed from the beam by “true absorption” and “scattering,”
respectively. The total extinction is given by

7(r, v, t} = xir, v, t) + ofr, v, 1) (2-2)

That is, both processes are assumed to occur independently and to add
linearly. In aciual practice y is sufficient to describe energy removed from
the beam; the distinction between x and ¢ is useful mainly in defining the
emission coefficient.

In the calculation of ¥ it is necessary to include a correction for stimulated
emission (sce §84-1 and 4-3). This is a quantum process in which radiation
induces a downward transition from the upper state at a rate proportional
to the product of a cross-section, the upper-state population, and the specific
intensity. Because the process is proportional to I{r, n, v, 1) and effectively
cancels out some of the opacity, it is convenient to include it in the definition
of y. Stimulated emission occurs only when the emitting system cxists in a
definite upper state (whether bound or free). There is thus no stimulated
emission in Thomson scattering (free electrons) or Rayleigh scattering
(involves virtual states) but there is stimulated emission in spectrum lines,
even if they are described with a “scattering” coeflicient.

If we know the vatue of #(r, v, t) [or of x(r, v, t} and a(r, v, )], we have a
complete macroscopic description of the rate at which material removes
energy from a beam of radiation. But it is crucial to emphasize that the
“completeness” of the description is illusory. The reason this unpleasant
comment must be made is that the simple picture we obtain from equation
(2-1) glosses over the fact that the level populations, which “determine” the
rate of energy removal from the radiation field by their contribution to y,
are, in turn, determined by the radiation field via photoexcitations, photo-
ionizations, radiative emission, radiative recombination, and related pro-
cesses. Thus, in reality, the interaction of the radiation field with the absorbing
material is nonlinear. The problem just described still remains (though more
subtly) even if it is assumed that we can calculate level populations by local
application of thermodynamic equilibsium relations that depend only on
the density and temperature. (This is the so-called local thermodynamic
equilibrium or LTE approximation.) The reason is that the temperature is
determined by overall balance between energy emitted and energy absorbed
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by the material, and thus by the nature of the radiation field and its response
to the global properties of the atmosphere (e.g., boundaries, scattering,
gradients, etc.). The remarks made in this paragraph carry over with equal
force in the macroscopic description of emission. Again, the full significance
of these remarks will emerge only with considerable further development
{see.particularty §§5-1 and 5-3).

THE EMISSION COEFFICIENT

To describe the emission of radiation from the stellar material, we intro-
duce a macroscopic emission coefficient or emissivity n{r, n, v, £) defined such
that the amount of energy released from an element of material of cross-
section 45 and length ds, into a solid angle de, within a frequency band dv,
in direction m in a time interval dt, is

SE = nir,m, v, t) dS ds deo dv di (2-3)
The dimensions of # are ergs cm ° st~ hz ! sec™ . As was true for the
opacity, thermal emissivity is isotropic for static media (without imposed
preferred directions) but is angle-dependent for moving material owing to
Doppler-shift effects. For radiation emitted in scattering processes, there is
normally an explicit angle-dependence, even for static media. The emissivity
is calculated by summing products of upper-state populations and transition
probabilities over all relevant processes that can release a photon at frequency
v, In writing the transfer equation we shall usually use the unembellished
symbol # to denote the total emissitivity; if electron scattering terms appear
explicitly in the same equation, # will then denote all other emission. Sub-
scripts “c” and “I” may on occasion be used to denote continua and lines,
respectively. Again, we must realize that the simplicity of this description 1s
deceptive, for the reasons given above in the discussion of the extinction
coefficient.

An important relation exists between the emission and absorption coefii-
cients in the case of strict thermodynamic equilibrium {T.E.). If we consider an
adiabatic enclosure in steady-state equilibrium containing a homogeneous
medium, we know that the material will have the same temperature T
throughout (otherwise it would be possible to devise processes to extract
work from the lemperature gradient, in violation of the second law of
thermodynamics). Further, we may expect the radiation field to be isotropic
and homogeneous throughout the enclosure (including at the surface of the
walls), for if it were not, beams traveling in opposite directions would not
be exactly similar and a directional transport of energy would result, from
which work could be extracted, again in violation of the second law of
thermodynamics. Consideration of the energy absorbed and emitted in
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angfe-frequency ranges dw dv by an element of material, in time dt, now
shows that if a steady-state thermal equilibrium is to be achieved (no et
gain or loss of energy by the matter), the thermal emission must be given by

#(v) = k(I v) (2-4)

which is known as Kirchhoff”s luw. For an enclosure in strict T.E. at temper-
ature T the intensity of the radiation field is given by the Planck function
B(T), so that

i) = £Hv)BT) (2-3)

which 1s the Kirchhoff-Planck relation. This result has been obtained without
reference fo the composition of the material and is valid (in T.E.) for all
materials. [See the excellent discussion of the interaction of matter and
radiation in T.E. in (160, 199-206) and in an article by Milne in (416, 93-96}.]

Strictly speaking, the Kirchhoff-Planck law applies only in the case of a
system in T.E. But if the material is subject only to small gradients over the
mean free path a photon can travel before it is destroyed and thermalized
by a collisional process (as is true, e.g., in the interior of a star), then we could
expect equation (2-5) to be valid to a high degree of approximation at local
values of the thermodynamic variables specifying the state of the material.
In such a case we write

n(r v, 1) = k¥, v, 0B,[T(r, 1)] {2-6)

The hypothesis of local thermodynamic equilibrium {or LTE) just mentioned
makes the assumption that the occupation numbers of bound and free states
of the material, the opacity, the emissivity—indeed all of the thermodynamic
properties of the material-—are the same as their T.E. values ai the local
values of T and density, throughout the entire atmosphere, out to the outer-
most regions. Only the radiation field is allowed to depart from its T-E. value
of B,[ T(r)], and is obtained from a solution of the transfer equation. Such
an approach is manifestly internally inconsistent, although LTE expressions
remain valid for certain quantities even in the general case. For example,
equation (2-6) is a valid expression for the contimuan emission coeflicient
even in the presence of departures from LTE so long as the velocity distri-
bution of recombining (or, for free—free emission, colliding) particles is
Maxwellian; the equation is not valid for line emission, and further, the LTE
formula for the opacity is not correct. The use of LTE is a computational
expedient that simplifies the calculation of models of stellar atmospheres,
and has been widely applied. (We shall employ it in places to provide a
prototype with which we can introduce basic mathematical techniques of
solving transfer problems, and will discuss models built assuming LTE in
§§7-2 through 7-4.) But it must be stressed that stellar atmospheres are regions
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in which there are large gradients of material properties, lan‘d an ?éae}'l
boundary through which radiation freely escapes; the radl‘atlonh ﬁ_e | is
therefore highly anisotropic and has a markedly n01.3-P.1anck1an. c ;1 af:tefi.
One might argue for using LTE, even thf)ugh- the radiation field is c{) taine :

from solving a nonlocal transfer equation, if one could Ashow that some
mechanism, specifically collisions among the particles, ergfori'ced Ll?E_ polpslué
lations. As already mentioned above, and as we shall see in detail in &L -

and in Chapters 7 and 11-14, this will not, in gener.al, be the case. Rat ter,
the radiation field determines the state of the material, and hence cqual‘uo_n
(2-6) becomes invalid; in the end we must carry through a generfﬂ gr};a ysis
in which we specify the thermodynarmic state of the gas and the distri utlc?n
function of the radiation field simultaneously by solving the coupled equa-

i transfer and statistical equilibrium. o

thllj.Ztojs now consider radiation scattered by the matertal. For s1m_p1.1c1ty 'of
notation, we suppress explicit reference to ¢, though 3:11 of the quantmesil m;y
be time-dependent. As described earlier, in scattering processes bot . ];t, g
direction and frequency of a photon may change. These changes are describe

by a redistribution function
R(v,,w; v, m) dv dv{dw'/4m)(dew/dw)

which gives the joint probability that a photon will be sc?tt_ered frc_)m dlre}ctu;n
' in solid angle deo’ and frequency range (v, v’ + dv) into sohd_ angle do
in direction n and frequency range (v, v + dv). We shal.l c}erwe redistrlbut%on
functions and discuss them in detail in ChapFer 13, butitis helpfllﬂ to mentmﬁ
some of the general properties of these functions at the present time. We sha

normalize R such that
(4n)—295m’3f; do [ dv [ dv RO wl v, m) = 1 2-7)

The redistribution function contains within it both a normalizec? absoiption
profile ¢(v), and a normalized emission proﬁl_e ).JJ(U) for the scattering procests.
From the physical definition given above, it is ev1den_t that if we m'tfagra e
over all emitted frequencics and angles we must obtain _the pr(?ba}?ll1t3f ior
absorption from solid angle doy’ and frequency range v'—i.e., ¢(v) dv’ do'’/4.

Thus
b(v) = (dm)"! SB do> [\7 v R(Y, w5 v, m) (2-8)

which by virtue of equation (2-7) is normalized such _that | qb[(v’) dv' = 1. rIf
aq(r) denotes the total scaitering coefficient, we may erte’O‘(I,', v ) =b aor)piv ():1
The joint probability that an amount of energy oo(r) I {r, 0', v') will e rlemove

from the beam in solid angle dey' at frequency v, and scattered into dlco at
frequency v, is oo(r)R(Y, n'; v, M (r, 0, v') &v' dv(dw'f4n){do/4n). Hence if we
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integrate over all incoming frequencies and angles, we find the total amount

of energy emitted at frequency v into solid angle deo, namely
7o, . v) dv(dom/dn) = a,(r) dv(dcu/4n)9g(dw /47{)J‘ dv' R(v',n'; v,m)I(x, n', v')
(2-9)

Exercise 2-1: Show that the fote! emission rate ich ¢ deo f(r,m, v) equals the
total energy removed from the beam 4dnoy r)jq‘) S, ) dv'—ie., that the
scattering process is conservative.

Equation (2-9} gives the full angle-frequency dependence of the emission
profile. Tt is usually difficult to treat radiative transfer problems in the degree
of generality implied here, and useful simplifications of the problem can be
made. For example, if we are primarily interested in redistribution in fre-
quency and not in angle, we could assume that I(r, n, v) is nearly isotropic,
and replace it in equation (2-9) with J{r, v}. Then the emission into dv dw 13

7(r, v) = o,(r) fom R, wJ(r, v) dv' (2-10)
where the angle-averaged redistribution function
R(v,v) = (4n)~! é; R(V,n';v,n) do = (4m)~* éR(v’, n;v,n)dm (2-11)

gives the redistribution probability from (v, v + dv) to (v, v + dv) and is
normalized such that

fo‘” dv' fo“‘ dv R(v', v) = fo’" () dv' = 1 (2-12)

The function R{», v)is rendered independent of angle as a result of integrating
over either de’ or dw; this follows from the fact that (cf §13-2) R(v, n’; v, n)
depends only on the angle between n' and n. Equation (2-10) provides an
extremely useful approximation in line transfer problems because the crucial
phenomenon there is the frequency diflusion of photons from the opaque
line core (where they are trapped) to the more transparent line wings (whence
they may escape from the atmosphere at depths where [ is, in fact, very nearly
1sotropic). In the angle-averaged approximation the emission profile

w{(v) = nir, v)/fom #(r, vy dv

is given by

W) = f R, v)J(x, v} dv’ / [ eIt vy av (2-13)
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which shows that the distribution of emitted photons depends upon the
frequency profile of the incoming radiation.

Tn the limiting case that the intensity is independent of frequency, we
obtain natural excitation, with

W) = J:c R(Y, v) dv (2-14)

Ii we have R(v', v} = R{v, V), as occurs in most cases of interest (cf. §13-3),
then ¥*(v) = ¢(v); that is, for natural excitation, the emission and absorption
profiles are identical (a result that is not true in general!). Natural excitation
prevails, of course, in T.E., and it is usually thought of in that context. There
are, however, other physmal circumstances in which the result (v) = ¢(v)is
recovered. In particular, suppose that there is a complete reshuffling of atoms
in their excited state in such a way that there is no correlation between the
Jrequencies of incoming and scattered photons; then both have frequencies
independently distributed over the absorption profile ¢(v). This situation is
referred to as complete redistribution, or complete noncoherence. A good
approximation to this case occurs, for instance, when atoms are so strongly
perturbed by collisions during the scattering process that the excited electrons
are randomly redistributed over substates of the upper level. In this case,
both the absorption and emission probabilities independently are propor-
tional to the number of substates available at each frequency within the
line [ie., to ¢(v) itself |, and the joint absorption—emission probability
R(v, vyis the product of these two independent distributions—i.e., R(v, v) =
(W B(v). For complete redistribution, the emissivity is

(e ¥) = aoln)é() (7 60 (2-15)

from which we see clearly that the emission and absorption profiles are
identical. Complete redistribution is also a good approximation within the
Doppler core of a spectrum line, and actually provides an excellent first
approximation in line transfer problems. We shall, in fact, assume complete
redistribution in our discussion of line formation until Chapter 13.

Another class of problems arises when we focus attention on the angular
redistribution of the emitted radiation, but assume that the scattering is
essentially coherent (ic., v = v). This 1s the situation of interest, e.g., in
scattering of light by large particles in a planetary (including earth’s) at-
mosphere. We can then write

R, n's v, m) = g(n', n}p(v) (v — v)) (2-16)

where § is the Dirac function and g is an angular phase function normalized
such that

(4m)~1 § g, ny de’ = 1 (2-17)
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Two important phase functions are those for isotropic scattering

gln',m) = 1 (2-18)

and the dipole phase function (which applies for Thomson and Rayleigh
scattering)

g(w', n) == (1 + cos® @) (2-19)

|

where cos @ = n' - n. The phase functions for scattering by large particles
(ie., whose size is comparable to a wavelength of light) are often extremely
complicated and show large, rapid variations as a function of angle (312;
359, Chap. 4).

For coherent scattering, equation (2-9) reduces to

i3

7(e, m, v) = ofr, v) 95](1‘, n', vig{n’', n) dw (2-20)
4r

In a spectrum line, coherent scattering would occur only if the lower state of
the line were sharp, the upper state were not perturbed during emission, and
the scattering atoms were at rest in the observer’s frame. This is not the case,
however, and line scattering is much more accurately described by complete
redistribution (except in the far line wings where ¢ varies slowly over the
range corresponding to a Doppler shift). On the other hand, for continuum
scattering (e.g., by electrons) the frequency distribution of radiation is smooth
and essentially constant over the typical frequency shifts occurring in the
scattering process. For this reason continuum scattering processes are
customarily treated as il they were coherent (though this may be inadequate
near a spectrum ling). Moreover, as the angular redistribution effects from
a dipole phase fanction are usually very small in a stellar atmosphere, it is
customary to assume thai continuum scatfering is also 1sotropic, and to write

#3(x, v} = alr, vJ(r, v) (2-21)

2-2  The Transfer Equation

DERIVATION

Let us now consider the problem of radiative transport. Choose an in-
ertial coordinate system and examine the flow of energy through a fixed
volume element in a definite time interval. Let us assume that the radiation
field is, in general, time-dependent. If we suppose the material to be at rest,
then both y and # will be isotropic (unless we consider anisotropic scattering).
In moving material one must account for changes in photon frequency and

31

ds e+ Ar,ngv, r + AD

dw

Hrom, v, £)
FIGURE 2-1

Element of absorbing and emitting material considered in derivation
of transler equation,

direction {Doppler shift and aberration) resulting from the transformation
between the laboratory frame and the fluid frame. These effects depend upon
n - v; hence both y and » will have an explicit angle-dependence in this case.
Now calculate the energy n a frequency interval dv, passing in a time drf
through a volume element of length ds and cross-section dS oriented normal
to a ray traveling in direction n into solid angle dw (see Figure 2-1). The
difference between the amount of energy that emerges (af position r + Ar
at time t + At) and that mcident (at r and t) must equal the amount created
by emission from the material in the volume minus the amount absorbed.
That is,

[I(r + Ar,n, v, t + Af) — I(r, n, v, )] dS deo dv dt
= [nE,n, v, 1) — x(e,m, v, DI, 0, v, 1}] ds dS dow dv dr (2-22)
Let s denote the path-length along the ray; then At = As/c, and
Ir + Ar,n, v, ¢ + A1) = I(r,m, v, 1) + [e” Y(&/or) + (81/ds)} ds  (2-23)
Substituting equation (2-23) into equation (2-22) we have the transfer equation
[c™Ye/at) + (@/dsy]I (e, m, v, 1) = wlr,m, v, t) — y(r,m, v, ) {r, n, v, 1} (2-24)

The derivative along the ray may be re-expressed in terms of an orthogonal
coordinate system:

ol (m—) (6‘1) (@) (d) (62) (61) ol o ol
- = {3 = + i1z Tl =M+ e+ B
38 Gs J\dx LY ANGYY s /\0z ox T dy oz

(2-25)

where (1, n,, n.) are the components of the unit vector n. We may thus re-
write equation (2-24) as

[¢™Y6/60) -+ (- V)]I(r, 0, v, 8) = ne,n, v, &) — e, o, v, DI, n, v, 1) (2-26)
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For a one-dimensional planar atmosphere n, = (dz/ds) = cos 0" = p;

further, the derivatives (6/0x) and (8/¢y) are identically zero, and we obtain

[e'@/0n + we/é)] iz n, v, 1) = glz.m v, 1) — x(zm, v, N1z, m, v, 1)

(2-27)
or, for the time-independent case,

u[81(z, n, v)/z] = niz,n, v) — xlz,m vz, 0, ) (2-28)

Equation (2-28) is the “standard” transfer equation for plane-parallel model-
atmospheres calculasions; the coordinate z increases upward in the atmo-
sphere (i.e., toward an external observer). For siatic media, the specification
(z, m, v) in 7 and y may be reduced to {z, v) only. Note that if n and y are given,
equation (2-28) is an ordinary differential equation, which may be solved for
all relevant choices of ¢ and v. When r includes scattering terms, the transfer
cquation becomes an integro-differential equation containing angle and
frequency integrals of 1.

THE TRANSFER EQUATION AS A BOLTZMANN EQUATION

The basic equation describing particle transport in kinetic theory is the
Boltzmann equation; we shall now show that the transfer equation is just the
Boltzmann equation for photons. Suppose we have a particle distribution
function f{r, p, f) that gives the number density of particles in the phase
volume element (r, r + dr}, (p, p + dp). We follow the evolution of within
a particular phase-space element for a time interval dz, in whichr — r + v dt
and p —» p + F dt, where F denotes externally imposed forces acting on the
particles. The phase-space element evolves from

(@*1)old*plo — (@N(dp) = T r)oldp)o]

where J is the Jacobian of the transformation.

Exercise 2-2:  Show that to first order in dr the Jacobian ol the transformation
of a phase volume element is J = 1.

In view of the result of Exercise 2-2 we see that the phase-space element is
deformed, but its phase volume is unchanged. 1f all external forces ¥ are
continuous, then the deformation of the phase-space element is continuous,
and all particles originally within the volume remain there; as the volume
itself is unchanged, the particle density is unchanged. But if, in addition,
collisions occur, individual particles may be reshuffled from one element of
phase space to another “discontinuously”; i.c., their neighbors may be totally
unaffected during the same time interval. Thercfore, the change in the particle
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number density within a phase-space element must equal the ner number
introduced into the element by collisions; i.e.,

of (NN L (NS (2N
7+ EE) G)E) GE
N AN Ay
ﬁpx Y 8Py apz

by
(ﬁ)cell (2_29)

(@ffor) + (v V)f + (F-V,)f = (DffD1)con (2-30)

or, in more compact notation

For a “gas™ consisting ol photons (with rest-mass zero), in the absence of
general relativistic effects, ¥ = 0, and photon propagation in an inertial
frame occurs in straight lines with v = ¢n, while the frequency remains
constant. The distribution function fj can be written in terms of the specific
intensity by means of equation (1-2). The analogues of “collisions™ are photon
interactions with the material, and the net number of photons introduced
into the volume will be the energy emitted minus the energy absorbed,
divided by the energy per photon. Thus for photons equation (2-30) becomes

(chv) '[(@1/00) + en- V)] = (7 — x)/(hw) (2-31)

which is identical to the transfer equation (2-26). In effect the transfer equation
is a Boltzmann equation for a fluid that is subject to no external forces but
which suffers strong collisional effects. As will be seen in §2-3, the moments
of the transfer equation yield dyaamical equations for the radiation field, just
as moments of the Beltzmann equation for a gas lead to equations of hydro-
dynamics.

SPHERICAL GEOMETRY

In a spherically svmmetric medium, the specific intensity will be inde-
pendent of the coordinates @ and @ of the triplet (r, ®, @) which specifies
a position in the atmosphere, and of the azimuthal angle ¢ of the pair (0, ¢)
which specifies the direction of the beam relative to the local outward normal
t. Thus I(r, n, v, £) reduces to I(r, G, v, ). In writing the transfer equation,
starting from the general form of equation (2-24), we must now account for
the variation ol 9 along a displacement, and employ the general form ds =
dr ¥ + rd@ 8. As is clear from the geometry of the situation (see Figure 2-2),

dr = cos 0 ds, while r df = —sin 0 ds (note that 48 < 0 for any ds), so that
(0/0s) — cos 0(@/6r) — v~ ' sin 8(8/86) = p(@/dr) + v~ M1 — p*)é/ow
{2-32)
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FIGURE 2-2

Geometric relations among
variables used in derivation of
transfer equation in a spherically
symmetric medium.

where, as usual, ¢ = cos 0. Hence the transfer equation for a spherically
symmetric atmosphere is

[e™'(@/éey + p8/er) + r~ M1 — p)&/emw]IGr, w, v, 1)
=n{r,v, ) — (v, OI(r, v, 1) (2-33)

which simplifies in an obvious way in the time-independent case. Note that
now, even with » and y specified, equation (2-33) is a partial differential
equation in r and u. However, this added complexity can be avoided by using
the (straight-line) characteristic paths that reduce the spatial operator to a
single derivative with respect to pathlength (see §7-6). In fact, equation (2-33)
is not structuralty different from equation (2-28) and can be solved almost
as easily.

Exercise 2-3:  (a) Censider an atmosphere which is axially symmetric but not
spherically symmetric (e.g., a rotationally flattened star). Show that now I{r, n) =
i(r, ®,0,¢). (b) For the general case where I{r,n) = I(r,®, 9,0, ¢) (cg, a
rotationally flattened star illaminated by a companion), show that the transfer
equation in spherical coordinates, accounting for all the spatial derivatives, is

e HoNE) + widlfer) + (pr)(R1/30) + (o/r sin @)A1 /ED)
+ 7Y — pAB1fEn) — (o cot @/ /ed) = v — ¥

where y = cos ¢ sin § and ¢ = sin ¢ sin 0.

OPTICAL DEPTH AND THE SOURCE FUNCTION

For the remainder of §2-2 let us confine attention to the time-independent
planar transfer equation (2-28). Writing dz(z, v) = — y(z, v) dz, we define an
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optical depth scale ©(z,v) which gives the integrated absorpiivity of the
material along the line of sight as

t{z, v) = J‘zmm y(z', v) dz’ (234

z

The negative sign is introduced so that the optical depth increases inward
into the atmosphere from zero at the surface (where z = z,,,), and thus
provides a measure of how deeply an outside observer can see into the
material [cf. equations (2-47) and (2-52)]. Recalling that y ! is the photon
mean-free-path, we recognize that t(z, v) is just the number of photon mean-
firee-paths at frequency v along the line of sight from z,,., to z. In addition,
we define the source function to be the ratio of the total emissivity to total
opacity,

Sz, v) = n(z, v)fx(z, v) (2-35)

To simplify the notation we shall for the present suppress explicit reference
to z and y, and denote frequency dependence with a subscript v. The equation
of transfer may then be written in its standard form

ueljoey =1, - 8, (2-36)

From the discussion of §2-1 we can write prototype expressions for the
source function which we use to study methods of solving equation (2-36).
Suppose first we have strict LTE. Then from equation (2-6} we have

S, = B, (2-37)

If we have a contribution from thermal absorption and emission plus a
contribution from a coherent, isotropic, continuwm scattering term (say from
Thomson scattering by free electrons or from Rayleigh scattering) then we
could write

Yo =Ky T 7, (2-38)

and S, = &B, + ¢, )k, + 7)) (2-39)
For a spectrum line with an overlapping background continuum we have
To = Ko + 0 =z + udy (2-40)

where y, and y, denote the continuum and line opacities, respectively. If we
assume that a fraction ¢ of the line emission occurs from thermal processes
and the remainder is given by angle-averaged complete redistribution
[equation (2-15)], we can write

e = Xch + x.’d)v |:SBv + (1 - E) J‘(.bv‘]v dv:| (2'41)
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and
I+ Eq‘)v (1 - S)r/)v oz -
Sv = ( -t "7) B\‘ + [W Jv(br']r dv = ngv + (1 - g\) f(pvjv dv

(2-42)

where r = y./y;. (We may ignore the frequency variation of the continuum
over a line-width.) In equations (2-39) and (2-42) we have examples of the
explicit appearance of integrals of the radiation field over angle and fre-
quency, which shows the integro-~differential nature of the transfer equation.
It must be stressed that the source functions in equations (2-37), (2-39), and
(2-42) are only illustrative; they are based on essentially heuristic arguments,
and a physically rigorous formulation can be provided only after the equa-
tions of statistical equilibrium (Chapter 5) are developed.

BOUNDARY CONDITIONS

Solution of the transfer equation requires the specification of boundary
conditions. Two problems of fundamental astrophysical importance are
{a) the finite slab (in planar geometry) or shell (spherical geometry), and (b} a
medium (e.g., a stellar atmosphere) that has an open boundary on ane side
but is so optically thick that it can be imagined to extend to infinity on the
other side—the semi-infinite atmosphere.

For the finite slab of total geometrical thickness Z and total optical depth
T, (defined to be zero on the side nearest the observer), a unique solution is
obtained if the intensity incident on both faces of the slab is specified. Writing
@ for the angle between a ray and the normal directed toward the observer,
and u = cos #, we must specily the two functions 1™ and I~ such that

Iz, =0, uv) =1 (i), (1 €pu<0) (2-43)
at the upper boundary, and
Ir, = Tp,mv)=IT(py), O<p<]) (2-44)

at the lower boundary. For a shell of outer radius R and inner radius r,
equation (2-43) still applies at ¥ = R.

Exercise 2-4: (a) AL the inner boundary of a spherical shell, r = 7, show that
the lower boundary cendition is given by I(r., +u, v) = I(r,, —p, v) if the central
volume - < r,is void; this is Miine’s “planetary nebula” boundary condition. (b If
the volume contains a point source (a star) of intensity I, show that the resuit in
(a) must be augmented by I, +1,v) = [y(v) é(p — 1} {c) Exiend results (a)
and (b) te the case of the volume being partially filled by an opague source on the
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range 0 < r € ry, {r, < r.) with intensity To(y', v) where ' is the angle cosine
at the opaque surfuce; this case simulates an envelope around a star.  (d) Show
in case (a) above thal the flux is idenrically zero at all pointsr < 7.

In the semi-infinite case (planar or spherical), the radiation field incident
upon the upper boundary must be specified by an equation of the form of
(2-43}; for stellar atmospheres work, it is customary to assume I~ =0
(clearly this would not be done, e.g., in a binary system). For a lower boundary
condition one may replace equation (2-44) by a boundedness condition in
analytical work where the limit 7, — o is taken. Specifically we impose the
requirement that

lim Iz, y, vie ™" = 0 (2-45)

Tl
The reasons for this particular choice will become clear in the discussion
below. Alternatively, at great depth in the atmosphere we may write I(z,, i, v)
in terms of the local value of S, and its gradient, or may specify the flux; these
conditions follow naturally from physical considerations in the diffusion
limir where the photon mean free path i1s much smaller than its optical depth
from the surface (sec §2-5}.

SIMPLE EXAMPLES

Belore writing the formal solution of the equation of transfer, it is
instructive to consider a few simple examples in planar geometry.

(a) Suppose no material is present. Then 7, = 5, = 0, and equation (2-28§)
reduces to (21,/dz} = 0 or I, = constant. This result is consistent with the
proof in §1-1 of the invariance of the specific intensity when no sources or
sinks are present.

{b) Suppose that the material emits at frequency v, but cannot absorb.
Then equation (2-28) is w(d1,/dz) = »,, and for a finite slab the emergent
intensity is given by

HZ vy = gt f: 0z, v dz + 17(0, i, v) (2-46)

The physical situation described above occurs in the formation of optically
forbidden lines in nebulae. Atoms may be excited to merastable levels by
collisions; because nebular densities are so low, the chances of a second
collision leading to de-excitation are very small, so the atoms can remain un-
perturbed in these levels for long periods of time, and large numbers of atoms
may accumuiate in these states. Eventually some of the atoms decay via
“forbidden” transitions, which have very small but nonzero transition proba-
bilities, and emit photons. Because the line is forbidden, the probability of
reabsorption is negligible, and the photon escapes. Thus photons are created
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at the expense of the energy in the thermal pool, and none are destroyed by

absorption. _ o
(c) Suppose that radiation is absorbed but not emitted by the r.naterl_al.
Then p(dl,/02) = — ¥t and defining dr, = — 7, dz, the emergent intensity

from a finite slab of total optical thickness T, is

fz, = 0, vy = I7(T,, pv) exp(—=T./p) (2-47)

Equation (2-47) applies, for example, to rad_iation passing through a ﬁltgr n
which photons are absorbed and degraded into phqtops of some very differ-
ent frequency (e.g. extreme far-infrared heat rad@tmn) before bemg re-
emitted, or are destroyed and converied into kinetic energy of the particles

in the absorbing medium.

FORMAL SOLUTION

Let us now obtain a formal solution of the equation of trapsfer; we con-
fine attention exclusively to planar geometry. Regarding S as given, equgtlon
{2-36) is a linear first-order differential equation Wlth constant coef.ﬁmen.ts,
and must therefore have an integrating factor. The integrating factor is easily

shown to be exp(—1,/u), so that
a[1, expl—1,/w]/or, = —p 'Sy exp(=7/p) (2-48}
Integration of equation (2-48) yields
Hea, v = Iy, o ve™ =70 4 ™ [ S (e e (2:49)

If S, is given, equation (2-49} provides a complete solution of the planar

transfer problem. o o o

We may apply equation (2-49) at an arbitrary interior point in a semi-infinite
atmosphere, Yor p 2z 0 (outgoing radiation), set 7, = T, and Ty = 0, and
impose the boundedness condition of equation (2-45); the result is

Iz, 1 v) = j TS e dijn, (0 < w <) (2-50)

For incoming radiation, {—-1 €< j < 0), set 7, = 0 and apply the upper
boundary condition [~ = 0; we then obtain

Hoy o) = [ S ™ M diii—p, (~1<p 0 (25D

One of the most important applications of equation (2-50) is the expression
for the emergent intensity seen by an external observer (z = 0},

10, 1, v) = fo“’” S, (He ' di/u (2-52)
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The physical significance of equation {2-52) is that the emergent intensity is a
weighted average of the source function along the line of sight; the weighting
function is the fraction of the energy emitted at each depth that penetrates
to the surface along a ray whose optical slant-length is (/). Mathematically
speaking, equation (2-52) shows that the specific intensity is the Laplace
fransform of the source function, a property that may be used to solve for S
in certain classes of problems.

Considerable insight can be gained by supposing the source function is a
linear function of depth: S (z,) = Sy, + S,7,; then equation (2-52) yields

‘[(05 H V} = SO\' + Si = Sv(‘rv = Iu') (2_53)

which is known as the Eddington-Barbier relation. This result states that the
emergeit iniensity is characteristic of the value of the source function at about
optical depth unity along the line of sight (recall that ¢, represents the normal
optical depth, so that slani optical depth unity for a ray penetrating at angle
cos~ !y oceurs at 1, = u). The Eddington—Barbier relation has been widely
applied in empirical analyses of the solar and stellar spectra, and provides a
basic conceptual framework for many interpretive methods. In the case of
the sun, when we observe, at a fixed frequency, the variation in intensity from
disk center (¢t = 1)tothe limb{y — 0) we can (in principle) infer information
about S,(t,)for 0 < 1, < 1. For stars, we cannot observe the center-to-limb
variation, but it is clear that if we observe at different frequencies {¢.g., within
a spectral line), we encounter unit optical depth in higher layers for fre-
quencies with high opacity (¢.g., ling-center) and in deeper layers for frequen-
cies with low opacity (e.g., line-wings). If we then know something about the
frequency-variation of S, we can infer information about its depth-variation;
for example, in LTE, S, = B, and the frequency-variatiosn over a narrow line
can beignored, so that one can, in principle, infer the run of the temperature
with depth. Although it is extremely useful conceptually, the Eddington-
Barbier relation should not be applied indiscriminately and used literally to
argue that I(0, i, v) is identical to S,(tr, = p), because (a) there are always
significant contributions to I,{0) from other depths (i.e., there is an intrinsic
“fuzziness™ in the problem), and (b) the assumptions from which it follows
may not be valid. A detailed critique of the hmitations of the Eddington—
Barbier relation can be found in (18, 121-130) and (20, 20—-30}.

Exercise 2-5:  Suppese the source function is to be represented by a power-series
expansion abous the point 7, ; i.e., S¢) = S{r,) + S(1, )7 — 7,) + 572 )z — 7,)%
Calculate the emergent intensity and show that the choice 7, = g is “optimum”
in the sense that it efiminates the contribution of 8 and minimizes the contribution
of 8" to I(0, p).

Another instructive example to consider is a finite slab of optical thickness
T, within which S is constant, and upon which there is no incident radiation.
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The normally emergent intensity is /{0, 1) =81 —e ForT » 1,1. = S
This result is sensible physically, for the radiation that emerges consists of
those photons emitted over a mean-free-path from the surface; the emission
rate is n and ¢he mean-free-path is ¥~ ', hence .I = y/y = S. For T_ «< 1,
e T a1~— T,sol ~ ST. Again this resultis physically reasonable, for in the
optically thin case we can see through thq qntire voiu@e; hence thfe energy
emitted (per unit area) must be the emissivity per unit volume 1 times th_e
total path-length Z, or [ = #Z = (n/7)(xZ) = ST. Note that this result 18
consistent with equation (2-46}.

THE SCHWARZSCHILD —MILNE BQUATIONS

By integration of the formal solution for the .spu?ciﬁc:‘intensity over apgle,
concise expressions for the moments of the rachatlon- field may be derived.
Thus by substitution of equations (2-50% and (2-51) into equation (1-4) we
have for the mean intensity

1 1 1 o0 L _tv)‘lﬂ
ey =g | L = 5[ fy u [ suertem

t . dt
0 o —{r, =0~ 1) (2_54)
+ f ° dp fo S, (te (—u)]
Equation (2-54) is reduced to a more useful form by inte_rchang‘ing the order of
integration, and making the substitution w = =+ 1/p in the first and second
integrals respectively. Then

— it — 1y} . . e_fw(rv‘-r)
1 oL o e Ty *
T fw) = 2[ f " s fl dw =t fo dt S,(0) L vy S —— ]
(2-53)

The integrals over w are of a standard form and are called the ﬁrst. exponen-
tial integral. Tn general, for integer-values of n, the nth exponential integral is
defined as

X

E,(x) = L“’ (R dr = x" ! fx e dr (2-56)
In terms of E,{x), equation (2-55} can be rewritten as

Jv(Tv) L f[:o Sv(tv)Elhv - T\'\dtv (2'57)

2
Equation (2-57) was first derived by K. Schwarzschild and s pamcd in his
honor; Schwarzschild's paper (416, 35) is one of the foundation stpnes of
radiative transfer theory, and merits careful reading. Because the mt.egral
appearing in equation (2-57) occurs so often in radiative transfer theory it has
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been abbreviated to an operator notation:

ALf(©] = % [ 0B — ol (2-58)

Exercise 2-6. {a) Show that eguations (2-30) and (2-51) are equivalent to
fir,n) = ﬁ:"m () exp[ —=(r, 1)) dJr — 1
where r'(s) = r — sn t(r, 1) =[5 #{r'ls)] ds, and s, is the distance along the
ray to any boundary surface in the direction (—n}; 5,,,, = oo [or outward-directed
rays in a semi-infinite medium.  (b) Substitute the above result into the definition
of J(r) [equation {I-3)] to derive Peierls’s equation:
O = () [, i) exp[— ot 0 — o} 4%

where IV denotes the entire volume containing material.

By an analysis similar to that used to obtain equation (2-57) we can derive
expressions for F, and K, first obtained by Milne (416, 77):

Fie) =2 [7 St Eoe, — 7) di,
=2 [ S WEe, — 1) d, (2-59)
1 o
and K@) =3 fo S,(6,)Eslt, — .| dr, (2-60)
We also define the corresponding operators
OLA0] =2 |7 f0Ef — v di
—2 fo OBt — 1) dr (2-61)
and X[fol=2 fo“” JOOEs|t — 7| de (2-62)
Exercise 2-7;  Derive cquations (2-59) and (2-60).

The mathematical properties of the exponential integrals are discussed in
detail in (4, 228-231) and (161, Appendix I), and the properties of the A, @,
and X operators are discussed in (361, Chap. 2). A few of the most important
results are mentioned in the following exercise.

Exercise 2-8: (a) Differentiate equation (2-56} to prove E{x) = —E, ,(x).

(b) Integrate equation (2-56) by parts to show that F,(x) = [¢ ™ — xE,_ (x)]/in — 1)
forn > 1. (c)Show that the asymptotic behavior (x » 1)ofE,(x)is E,{x) ~ e “/x.
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Some interesting physical insight can be gained by considering a linear
source function S(z) = q + bt; with the results of Exercise 2-8, it is easy to
show that ‘

Ada + b8y = (a + bo) + %[bES(T) — aFy(n)] (2-63)
®fa + br) = g b+ 2[aEs(z) — bE, ()] (2-64)
and X{a + bt) = g(a + bt + 2DES(x) — aF, ()] (2-65)

Exercise 2-9- Verify equations (2-63) through (2-65).

From the expressions written above (which will be applied in Chapter 3
and later work), we can note somie important results. First, because the
exponential integrals decay asymptotically as ™ %/x, it is evident from equa-
tion (2-63) that J{7) = A(S) strongly approaches the local value of S(r) for
T > I; that is, the A-operator tends to reproduce the source function at
depth. In contrast, at the surface, E,(0) = 1 and E5(0) = £, and we obtain
Ao(8) = 2a + {b; in particular, if b = 0, then J(0) = 1a = 1§, Physically
this reflects the fact that J at the surface is the average over a hemisphere
containing no radiation (none incident from empty space) and a hemisphere
in which I = § (no gradient in S). When a gradient is present, J(0) may lie
above or below §(0) depending on the sign and magnitude of the gradient,
In a general way, J will depart most strongly from § at the surface. Second,
we see from equation {2-64) that for 7 » L, H — 3b. That is, the flux at
depth depends only on the gradient of the source function (see also §2-3).
The flux at the surface is H(0) = La + Lb: clearly the surface Aux will be
larger, the faster the source function rises inward. Note also that the effect
of a gradient, relative to the case b =0, is larger for H (0} than for J(0)
(Why?)

Finally, it must be stressed that the solution of the transfer equation as
given by equations (2-50) and (2-51) or {2-57) and (2-59) is only formal, and
1ts apparent simplicity is illusory. For example, suppose the source function
contains a scattering term as in equation (2-39) or (2-42). Then it is clear
that the source function, which s required to compute the radiation field,
depends upon the radiation field, and hence upon the solution of the transfer
equation. In such cases we cannot calculate 7 or J by simple quadrature,
but must find the solution of an integral equation or of the corresponding
differential equation.
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Exercise 2-10:  Assume a source-function of the form of equation (2-39). Show
that J{z,) satisfies the integral equation

JV(I‘.) = Atv[p\-(r\-)“{v([\;)] + AT\I[I - pv{r\')]b’v(rv)}
where p, = a,/(x, + &,)

Complications of this kind are also introduc'ed.by other physmgl con;
straints on the solution. For example, we sha}l see in §2-4 that the requlren;ene
of energy balance couples together the r:adlat_lon ﬁeld'and the t;mpeéasuris
structure of the atmosphere. Thus even if strict LTE is assume , and S, s
set cqual to B, and presumed to be independent of J,, we are ni)lt in ﬁgngg X
able to specify the run of T{r,) and hence of B\,[T.('r‘,)] unt‘ﬁ the radia !
field is already known. Here again the source function required to compu ?
the radiation field depends upon the field itself When the more glenerr:il
non-LTE situation is considered, these problems bfecprpe more subt eda(r;_
complex, for now material propertieg (opz,mtyf emissivity, §tc.) dep%n i 111;
rectly upon the radiation field, for it determu}es occupation-num Tr !
atomic states. The transfer problem, in short, is fundamentally 1'10111_ 1%153.(:1
in real stellar atmospheres. The development of methodslto treat comp fd ek
interactions of the types just described will occupy a major part of this book.

2-3  Moments of the Transfer Equation

The angular moments of the transfer equation yielq re§ults of deep physical
significance and great mathematical utility. The basic time-dependent trans-
fer equation (2-26) may be rewritten as

¢ 'ef, m, v, 8)/t] + Y, m[A1(x, m, v, 1)/éx;]
J
=plt,n, v, 1) — y(e,m, v, (e n, v, 1) {2-66)

where x; denotes the jth cartesian coordinate, To obta_in the zero—ordecil'
moment Jequatiom, we Integrate equation (2-60) over a.H solid angles dw, an
use the definitions in equations {1-4} and (1-19) to write

(drfc)[oJ(r, v, 1)/ét] + V- F(x, v, 1)
= 98[1?&, m,v, 1) — x{e,n, v, I, n, v, 1] do (2-67)

where we have allowed for the possibility that ¥ and » may depend upon
angle (as they will for moving media). If we integrate equation (2-67) over
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all frequencies, and recall equation {1-8), we find
[OER(x, )/dt] + V- F(r, 1)

= [“avdolntn v, 0 - zon v 0lE 0 v 0] 269

This is an energy equation for the radiation field, and it closely resembles
the standard energy equation for a moving fluid (cf. §15-1). The terms in
the equation have a straightforward physical interpretation: the time rate
of change of the radiation energy density equals (a) the total energy emitted
into the field by the material, (b) minus the total absorbed from the field
by the material, (¢} minus the net flow of energy through the surface con-

taining a volume element (the divergence of the flux). If the medium is static,
v and # are {sotropic and the integrals on the righthand side simplify to yield

{OER(t, )/0t] + V- F(r, 1) = 4n J:)w [p(r, v, £) — x{r,v, )J(r,v, )| dv  (2-69)

For a time-independent radiation field in a one-dimensional planar static
medium, equation (2-67) reduces to the “standard” result

[6H(z, v)/iz]| = 5z, v) — x(z, Wd(z, v) (2-70)
or, abbreviating the notation and using equations {2-34) and (2-33),
(6H, jor) = J, — S, (2-71)

For spherical geometry (in a time-independent static atmosphere), by use
of the appropriate expression for the divergence, we find

?‘_2[6(1'2Hv)/8f‘] =M — XvJ\! (2_72)

Equations (2-70) through {2-72) will be employed repeatedly to obtain
solutions of the transfer equation, and equation (2-69) will be used to develop
the equations of radiation hydrodynamics (cf. §15-3).

Exercise 2-1T;  Derive equation (2-72) directly from equation (2-33).
The first-order-moment equation with respect to the ith coordinate axis is

obtained by multiplying equation (2-66) by n; and integrating over (dw/c),
which vields

¢ [8F x, v, /oK) + Z [OP;(r, v, 1)/8x;]

_ et 95[;7(1-, v o) - gy, 01 v, Ol do  (2-73)
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or, in vector notation,
ceF (v, 03] + VP, v, 1)

=c¢ ! 95 [g{r,m, v, 1) — x(r, n, v, HI(r, m, v, fndw  (2-74)

Recalling that the momentum density in the radiation field is G, = ¢~ 2%
(see §1-3), we see that equation (2-74) is analogous to the hydrodynamical
equations of motion, and may be viewed as a dynamical equalion for the
momentum in the radiation field at frequency v. When we integrate over all
frequencies, we obtain a total momentum equation for the radiation, which
we shall use in the equations of radiation hydrodynamics (c[. Chapter 15):

c A eF (v, v)jot] + V- Pir, 1)
=’ J‘Om dv Eﬁ deoln(e, v, v, 8) — 70, mov, DI, n, v, OJn (2-75)

Equation (2-75) states that the time rate of change of the total momentum
density in the radiation field is equal to the negative of the volume force
excried by radiation stresses {cf. §1-4) plus a term that must represent the net
momentum gain {or loss) from interacting with the material [see further
discussion following equation (2-76)]. As in equation (2-68), equation (2-75)
allows for the possibility of material motions. If the medium is at rest, then
the integral over # vanishes (which merely states that the net momentum loss
from the material by isofropic emission is zero, as is physically obvious),
while the second term reduces to an integral over the flux:

¢ [oF (e /6] ¢ VPO Y = e {7 e v, 0F (v, v (276)

The physical significance of the integral on the righthand side of equation

(2-76) can readily be seen by the following argument. Consider a beam of

specific intensity I, entering an element of absorbing material of surface area

dS, at an angle 4 relative to the normal. The energy absorbed by material of
opacity y from a solid angle dw and frequency band dv in time dt is

AdE = 31 dS cos 0 ds dw dv dt

where ds = (dz/cos #} is the slant-length of the ray through the element of
thickness dz along the normal. The component of momentum deposited in
the material along the direction of the normal is ¢! dE cos 6; hence the
momentum deposition per unit volume per unit time is

(¢! cos 0 dE)/(dz dS diy = ¢ 'yf cos 0 dew dv
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If we sum over all angles and {requencies, we obtain precisely the integral in
equation (2-76). We have thus shown that the integral is the radiation force,
per unit volume, on the material, this interpretation is clearly compatible with
the overall physical meaning of the equation.

For a time-independent radiation ficld in a one-dimensional static planar
medium, equation (2-74) reduces to

[8prlz, W/iz] = —(@n/jc)y(z, H(z, v) {2-77a)

or, integrating over all frequencies

[pel(2)/22] = —(dnfe) [)" xlz, WH(zv) dv (2-770)

Alternatively we can write
[6K(z, v)/oz] = —ylz, ViH(z, v) (2-78)
or (0K,/dt,) = H, (2-79)

In spherical geometry, under the same assumptions, equation (2-74) reduces,
with the aid of the expression derived in Exercise 1-10 for (V- P),, to

(0K, jary + r 3K, — J,) = —y . H, {2-80)
Exercise 2-12: Derive equation {2-80) directly from equaticn (2-33).

Thus far we have examined the moment equations primarily from the
standpoint of their dynamaical significance; but in the time-independent case
they may also be used as teols to solve the transfer equation. By the introduc-
tion of moments, the angle-variable is eliminated and the dimensionality of
the system to be solved is reduced. As we have seen in §2-2, the mean intensity
can be determined from the solution of an integral equation (see Exercise
2-10). This gives the source function, from which the higher moments (e.g.,
the flux) can be determined by quadrature. The question now arises whether
we can solve the moment equations as differential equations, Examination of
equations (2-71) and {2-79) immediately reveals an essential difficulty: the
moment equation of order n always involves the moment of order n + 1,
hence there is always one more variable than there are equations to deter-
mine them! This difficulty is known as the closure problem: one additional
relation among the moments must somehow be obtained to “close” the
system. For solving transfer equations, a variety of methods exist that employ
moments of arbitrarily high order, and introduce ad hoc closure relations
[see, e.g. (361, 90-101; 365)]. However, in this book attention will be con-
fined entirely to the moments J,, H,, and K, (an exception appears i1 §14-3),
and the system will be closed (see §6-3) by eliminating K, in terms of J, and

L
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the variable Eddington factor f,—i.e., K, = f,J,. The factor f, is obtained by
iteration and allows us to effect an approximate closure of the exact system
(if the iteration converges, the closure is also exact). Alternatively, it will be
shown in §6-3 that the transfer equation can be rewritien in terms of angle-
dependent mean-intensity-like and flux-like variables, and that exact closure
of an angle-dependent equation that resembles a moment equation can be
obtained. This equation is easily discretized and solved. In sum, the solution
of the transfer equation in terms of moments or equivalent variables can be
effected by differential-equation techniques of great generality and power.

2-4 The Condition of Radiative Equilibrium

Deep within the interior of a star, nuclear reactions release a flux of energy
that diffuses outward, passes ultimately through the star’s atmosphere, and
emerges as observable radiation. In normal stars there is no creation of
energy within the atmosphere itself; the atmosphere merely transports out-
ward the total energy it receives. In a time-independent transport process,
the frequency distribution of the radiation, or the partitioning of energy
between radiative and nonradiative modes of transfer, may be altered; but
the energy flux as a whole is rigorous!y conserved.

There are two basic modes of energy transport in those atmospheric layers
in which spectrum-formation takes place: radiative and convective (or some
other hydrodynamical mode). In these layers conduction is ineffective and
can be ignored (it becomes important in coronae at temperatures of the order
of 10° °K). When all of the energy is transported by radiation, we have what is
called radiative equilibiium; conversely, pure convective transport is called
convective equilibrium. Whether or not radiative transport prevails over
convection is determined by the stability of the atmosphere against convec-
tive motions.

The criterion for the stability of radiative transport was first enunciated
by K. Schwarzschild (416, 25) in another of the fundamental papers of radia-
tive transfer theory. Schwarzschild was able to demonstrate convincingly
that the dominant mode of energy transport in the photosphere of the sun is
radiative. Since his work, a number of analyses of radiative stability have
been carried out for a variety of stellar types; results are summarized in
(638, 215; 11, 449; 654, 432). The basic picture that emerges for a star bike the
sun is that radiative equilibrium obtains to continuum optical depths of erder
unity, and that below this depth the atmosphere becomes unstable against
convection, Convection zones exist below the outer radiative zone in all stars
of spectral type fater than about F5. For earlier spectral types, radiative
equilibrium prevails throughout the entire outer envelope of a star. In this
book primary concern will be given to the early-type stars, and accordingly
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emphasis will be given to the radiative equilibrium regime. The theory of
convective transport is not, at present, in a {ully satisfactory form, and lonly
the mixing-length theory (a phenomenological approach that has been widely
applied in astrophysics} will be described (§7-3). . o

Let us now consider some of the implications of radiative equilibrium;
assume the medium is static and the radiation field is time-independent.
From the discussion in §2-1, it is clear that the total energy removed from the

beam is
fom dv 9563_&) z(r,v)Hr,n,v) = 4n ‘fom w(r, W, vidv  (2-81)

where y denotes the total extinction coefficient. The total energy delivered
by the material to the radiation field is

jﬁ“’ dv Eﬁdm e, v) = 4z f: w(r, VIS, v) dv (2-82)

where equation (2-35) has been used. The condition of radiative equilibrium
demands that the total energy absorbed by a given volume of material must
equal the total energy emitted; thus at each point 1n the atmosphere

4z f:’ [n(r, v) — xir, VJ(x, vl dv = 0 (2-83a)
or 4 [" pte WIS v) — I vl dv = 0 (2-83b)

Exercise 2-13: Suppose that §, is given by equation {2-39). Show that, in the
condition of radiative equilibrium, the scattering terms cancel out to yield

jow k,BAT) dv= J.Om Ko f, dv

Using equation (2-83) in equation (2-69) we have, alternatively,
V- F =0 (2-84)

Hence in planar geometry the condition of radiative equilibrium is equival_ent
lo the requirement that the depth derivative of the flux is zero—i.e., the ﬂux
is constant. Physically, equations (2-83) and (2-84) have the same¢ meaning,
but mathematically the requirement # = constant is rather different from
the expressions in equations {2-83); either form of the constraint may be
used in constructing model atmospheres.

Because the total flux is constant in a planar atmosphere, it may be used
as a parameter that describes the atmosphere; an equivalent quantity often
employed is the effective temperature. From Exercise 1-6 we know that th4e
integrated flux from a black body of absolute temperature T'is F g = a7
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Although the radiation emerging from a star is by no means Planckian, it
is nevertheless customary to define the effective temperature as the temper-
ature a black body would have in order to emit the actual stellar flux—ie.,

ol = ff F,dv = 4n fo“’ H,dv = LA4nR?) (2-85)

Here L is the total lJuminosity and R is the radios of the star: the atmo-
spheric thickness is assumed to be negligible compared to R. Although T
has only an indirect physical significance, it is a convenient parameter with
which to characterize the atmosphere, for typically the actual kinetic tem-
perature T will equal T near the depth from which the continuum radiation
emerges (i.c., unit optical depth at frequencies where the opacity is lowest).
In spherical geometry equation (2-84) implies

% = constant = L/dn (2-86)

In an extended atmosphere it is no longer really possible to choose a unique
radius R for the star and to define a unique value of T, ; rather, L or the
quantity r*# should be regarded as fundamental. However the identification
R = r(zgy = %) is sometimes made, and a value of “T ¢ derived with this
radius; here g, is the Rosseland optical depth scale (cf. §3-2).

Finally, it is important to return to the point raised in the discussion of
the formal solution. Suppose that the opactty «, is independent of T; then
for physically reasonable distributions of «,, the integral | x,B,(z} dv (which
gives the total thermal emission) will be a monotone increasing function
of T. Thus when we fix the total thermal emission at some value, we fix the
local value of T. It is then clear from equation (2-83b) (and from the result
of Exercise 2-13) that the local value of T is determined by the mean intensity,
which depends upon the global properties of the atmosphere because it
follows from a solution of the transfer equation. Thus the temperature at a
given point in the atmosphere is to some extent determined by the temper-
ature at all other points and, at the same time, helps to establish the tempera-
ture structure elsewhere. This nonlocalness in the problem is a result of
radiative transfer, through which photons moving from one point in the
medium to another lead to a fundamental coupling (i.e., interdependence)
of the propertics at those points.

2-5 The Diffusion Approximation

At great depths in a semi-infinite atmosphere the properties of the radiation
field and the nature of the transfer equation become extremely simple. We
can obtain in a straightforward way an asymptotic solution that applies
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throughout the interior of a star (except, of course, in convective ‘zoneQ,
and that provides a lower boundary condition on the transfer _prgblem n
the stellar atmosphere. Consider first the properties of the radiation field.
At depths in the medium much larger than a photon rqean—free-path, the
radiation is effectively trapped, becomes essentially isotropic, and (eventual}y)
approaches thermal equilibrium so that §, — B,. Choose a reference point
7, » 1, and expand S, as a power-series:

S,(t) = i) [d"B,/dz,"](t, — ©,)"/n! (2-87)

Calculating the specific intensity for 0 < p <1 from this source function
with equation (2-50) we have

© "B, B, ,dB,
Iz, 1) = Zou g =B g (2-88)

A similar result for —1 < g < 0 follows from equation (2-51) and differs
from equation (2-88) only by terms of order e " in the limit of great depth
the latter vanish and equation (2-88) applies on the full range '——_1 < p <l
By substitution of equation {(2-88) into the appropriate definitions we find
for the moments

0

L) = Y @n + )7H@PB./dr, )

n=0

= Bj1,) + %(6123\,/611:‘,2) b (2-892)
Hv(Tv) - Z (2]/2 + 3)71(dZn+1Bv/dfz_n+ 1)

n=0

— L(@B )+ (2-89b)
and Kje) = Y (20 + 3)7(d>"B,/dz,™

=0

: LB, 2-89
- g B\'(T\!) + g(d“Bu/dTv ) 4o ( B C)

Note that only even-order terms survive in the even moments J, and K, and

only odd-order terms in H,. o
We now inquire how rapidly these series converge. The derivatives can be

approximated, at least to order-of-magnitude, by appropriate differences—
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Le., |d"B, ,f’dr‘."| ~ B./t". Then it is clear that the ratio of successive terms in
the series is of order O{1/7,%) or O(1/{y,>* Az?) where {y,> is the average
opacity over the path-length Az In terms of the photon mean-free-path
i, ~ 1/x,, the convergence factor is O(/,*/Az?). It is clear that the convergence
is quite rapid; indeed the estimate just given turns out to be conservative.
Also, it is obvious that convergence will be most rapid at frequencies where
the material is quite opaque. For a star as a whole one expects Az to be some
significant fraction of a stellar radius, say Az ~ 10'° em, while (> ~ 1
(which implies a photon mean-free-path of 1 cm), so that the convergence
factor of the series is of the order 10 2%, It is clear that in the deep interior of
the star only the leading terms are required.
In the limit of large depth we may therefore write

Iiz,, ) = B(r,) + p(dB,/dr,) {2-90a)
J\'(T\:) = BV(T\‘) (2'90b)
H(z,) =~ %(a’Bv/d'c‘,) (2-90c)
Kt~ %B‘.{r\,) (2-90d)

In equation (2-90a} we have retained two terms so as to account for the
nonzero flux [ef. equation {2-90c)]. Note that equations (2-90b) and (2-90d)
show that lim_,,, [K,(z,)/J,(t,)] = %, which is what we would expect for
isotropic radiation; we shall show below that the ratio of the anisotropic
to isotropic term in I(z, j} becomes vanishingly small as © — oo, so that the
fimit just found is appropriatc. Insofar as the specific intensity as given
by equation {2-90a) was computed from the formal solution of the transfer
equation, in effect using a source function S,{t,) = B,(t,) + (t, — t,{dB,/dz,),
equations (2-90) should obviate further use of the transfer equation. It is
easy to verily that this is so, for by inspection one sees that substitution from
equations {2-20) reduces both the transfer equation (2-36) and the zero-order
moment equation (2-71) to the single requirement d2B,/dt * = 0 (already
assumed), whilc the first-order moment equation (2-79) is identical to (2-90c).
Thus, in effect, at great depth the transfer problem reduces to the single

equation
1/éB 1/1adBNdT
Hy=2{"1=—3l- 1> 2-91
' 3(61) 3<xv 5T)(dz) (251)

It is clear that equations (2-90) and (2-91) can be used, as mentioned in §2-2,
1o set lower boundary conditions on the transfer equation in a semi-infinite
atmosphere.
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Equation (2-91) [and also equations (2-90)] is referred to as the d.iﬁits‘ion
approximation, primarily because of its formal similarity to other diffusion
equations, which are of the form

(flux) = (diffusion coefficient) x (gradient of relevant physical variable)

e.g, ® = —i VT for heat conduction. The coefficient %ijl(an/a;f) is, in
fact, sometimes called the radiative conductivi;y, a designation that is quite
appropriate in view of the fact that x,”* =1, is the pholton mean-free-path.
Note that equation (2-91) exhibits the essential physical content of our
earlier result that the flux computed by application of the (I)—operz_itor tg a
linear source function depends only on the gradient of S [see discussion
following equation (2-65)]. Also it shows that the mere fact that energy
emerges from the star implies that the tempemtyre fnust4zn67'ease mwa{rd.
Indeed, replacing H with (L/4nR?*) and (dB/dz} with (05T, /mR), and taking

{yy & 1, it is easy to show that the central temperature T, of the sun must -

be of the order of 6 x 10° °K, a result consistent with our earlier statement
that the ultimate energy source in a star is thermonuclear energy-release at
the center. ‘

In an intuitive picture of diffusion, one usually conceives o'f a slow 1ea}<age
from a reservoir of large capacity by means ofa seeping gctlon. The_se zdF:as
apply in the radiative diffusion limit as.well. The diffusion approximation
becomes valid at great optical depth {ie., many phoion me_an-free-pa‘;hs
from the surface) whence many individual photon flights, with successive
absorptions and emissions, are required before the photon finally trickles to
the surface, and issues forth into interstellar space. _

If we integrate equations (2-90a—c) over all -frequer}cies, we o_btain Iz, ) =
Bir) + 3uH. The ratio of the anisotropic to isotropic terms gives a measuse
of the “drift” in the radiation flow; this ratio is

Anisotropic term  3H 3 (GRTfff) / (GLT_J" ) N (Eg)‘l (2:92)

7?0&7);)10 term B 4 o s T
Clearly at great depth, where T becomes » Ty, the “leal’” beoqmes ever
sinaller. The same result is found by a physical argument from a slightly dif-
ferent point of view. If zF is the energy flux carried from an_element (?f
material by photons of velocity c, the rate.of energy flow per unit volume 18
(nF/c); the energy content per unit volume is (4nJ/c) =~ (an/c)., so that (Rate
of energy flow)/(Energy content) = (F/4B) = £(T./T)*. Again, we see that
diffusion, in the intuitive sense described above, occurs at great depth where
T % T, while free flow of radiant energy occurs at the surface where
T = Ty

3

The Grey Atmosphere

The grey atmosphere problem provides an excellent introduction to the study
of radiative transfer in stellar atmospheres. The nature of the defining as-
sumptions is such that the problem becomes independent of the physical
state of the material, and requires the solution of a relatively simple transfer
equation. At the same time, the grey problem demonstrates how the con-
straint of radiative equilibrium can be satisfied, and the solution can be
related to more general and more realistic physical situations. Furthermore,
an exact solution of the problem can be obtained, and this provides a com-
parison standard against which we can evaluate the worth of various approxi-
mate numerical methods that can be applied in more complex cases.

3-1  Statement of the Problem

The problem is posed by making the simplifying assumption that the opacity
of the material is independent of frequency; ie., y, = y. This assumption
1s of course unrealistic in many cases. Yet as we shall see in later chapters, the
opacity in some stars (e.g., the sun) is not too far from being grey and, in
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addition, it is possibie partially to reduce the nongrey problem to the grey
case by suitable choices of mean opacities. Thus the solution also provides a
valuable starting approximation in the analysis of nongrey atmospheres.

If we assume y, = %, then the standard planar transfer gquation (2-36)

becomes
‘U.((’}Iv/a'f) = Iv - Sv (3_1)
Then by integrating over frequency, and writing

= e 32

and similarly for J, §, B, etc., we have
weljory =1—-38 (3-3)

If we impose the constraint of radiative equilibrium [equation 2-83b)], we

require
v = J s av (3-4)

which, for grey material, reduces to J = S. Thus equation (3-3) becomes
poljory=1T—J (3-5)

which has the formal solution [equation (2-57Y]
1 e
It = AL = AL =5 [ JOEj - <l de (3-6)

Equation (3-6) is a linear integral equation for J known as M ilne’s equation;
the grey problem itsel is sometimes called Milne’s problem. It is importani to
recognize that, when a solution of equation (3-6) is obtained, it satisfles
simultaneously the transfer equation and the constraint of radiative equilib-
rium. The determination of such solutions in the nongrey case will occupy
most of Chapter 7.

If we now introduce the additional hypothesis of LTE, then S, = BT —
which, from the condition of radiative equilibrium, implies that

J(z) = S(z) = BLT(@)] = (exT")x (3-7)

Thus, if we are given J(1), {he solution of the integral equation (3-6), then the
additional premise of LTE allows us to associate a temperature with the
radiative equilibrium radiation field via equation (3-7). :

Several important results may be obtained from moments of equation (3-5).
Taking the zero-order moment and imposing radiative equilibrinm we have

(dH/d'c}:JfS:J—JEO (3-8)

3-1  Statement of the Problem 55
which implies the flux is constant, while the first moment gives
(dK/d7) = H ' (3-%

which, because 1 is constant, vields the exact integral
K(t) = Ht + ¢ :EFT +
=3 c (3-10

To mak.e further progress, we must relate J{t) to K{r). This is easily done on
the bas;:? of th; discussion in §2-5, where we showed that at great depth the
specific intensity is quite accurately represented by I{p) = [, + [ pwhich
produces a nonzero flux and also implies that, for v » 1 K(r;) = lJl’ ‘Fj} Th

the fact that K(t) — 4Fz for  » 1 implies that at greatjdepth S

J(t) — 2 Fr (= 1) (3-11)

”(f)hat is, asymptotically the mean intensity varies linearly with optical depth
n general grounds we expect the behavior of J{1) to depart most from

lingarity at the surface [note equati i
quation (2-63)], which -
able general expression for J(t) is . susgests that a reason

3 3
J(x) = ZF[T + q(t)] = 7 (exTé/mr + ql7)] (3-12)

}l“he functign q(7), k_nc_)wn as the Hopf function, remains to be determined;
rom equation (3-6) it is clear that g(t) is a solution of the equation ’

1 o
T4 gle) = Efo [t + g@]E, |t — < dt (3-13)

Finally, we notice that because

1 1 '
lim [3%)—1{(1)}:2“@ [r4q0) —c—c]=0 (14

T oo
T 0

we have ¢ = g(co0) and hence can write equation (3-10) as

1
Kir) = ZF[’C + g(o0)] (3-15)

The solution of the grey problem consists of the specification of g(t). Given

¢g(z), the temperature distribution is obtain ni i
ed b :
and {3-12) into the relation ¥ combining equations (3

3
T = Thlz + 9] (3-16)
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We shall derive approximate expressions for g(t) in §3-3 and describe the
exact solntion in §3-4. First, however, it is useful to delineate the nature, and.
extent, of the correspondence between the grey and nongrey problems.

3.2 Relation to the Nongrey Problem:
Mean Opacities

The opacity in real stellar atmospheres usually exhibits strong frequepcy
yariations, at least when speciral lines are present. Although numerical
methods now exist that allow a refined solution of nongrey transfer equations
and an accurate determination of the temperature structure in a nongrey
atmosphere, the calculations are, at best, laborious, and it is important to ask
whether a significant connection exisis between the grey and nongrey cases.
We shall show in this section that such a connection, though limited in scope,
does exist, and that, among other things, it permits the temperature distribu-
tion of the deepest atmospheric layers to be determined quite accurately
from the grey solution. ‘

Let us first compare side-by-side the grey and nongrey transfer equations.
Starting with the transfer equation and calculating the zero and first-order
moments we have, in the nongrey and grey cascs respectively:

w(@l,/0z) = (S, — 1) (3-17a) p(dljoz) = x(J — 1) (3-17b)
(0H,jdz) = 7,05, — 1) (3-18a) (dH/dz) = 0 (3-18b}
(6K, /0z) = — 1, H, (3-19a) (dKjdz) = —xH (3-19b)

Here variables without frequency subscripts denote integrated quantities, as
in equation (3-2). We now ask whether it is possible to define a mean opacity
7 formed as a weighted average of the monochromatic opacity, in such a way
that the monochromatic transfer equation, or one of its moments, when
integrated over frequency, has exactly the same form as the grey equation.
Several possible definitions have been suggested.

FLUX—WEIGHTED MEAN

Suppose we wish to define a mean opacity in such a way as to guarantee
an exact correspondence between the integrated form of equation (3-19a)
and the grey equation {3-19b). If such a mean can be constructed, then the
relation K(%¥) = Ht + ¢ will again be an exact integral, as it was in the grey
case. Integrating equation (3-19a) over all frequencies we have

_(dK/dz) = f:’ o H, dy = 7:H (3-20)
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where the second equality produces the desired identification with equation
(3-19b) if we define

o

r=HJo nH,dv {3-21)

The opacity ¥y is called the flux-weighted mean. Note that this choice does
not reduce the nongrey problem completely to the grey problem, for the
monochromatic equation (3-18a) does not transform into equation (3-18b)
with this choice of 7. Further, there is the practical problem that H, is not
known a priori, and therefore 7, cannot actually be calculated until after the
transfer equation is solved. This latter difficulty can be overcome by an
iteration between construction of models and calculation of 7. Although
the desired goal has not been fully attained, the fact that the flux-weighted
mean preserves the K-integral is important, for it implies that the correct
value is recovered for the radiation pressure |cf. equation (1-41)]. It also
follows that the correct value of the radiation force, which is the gradient of
the radiation pressure, is likewise obtained. Thus from equation (2-77)
we have

(dApr/d7) = 2~ dpe/d2) = (micze) [ H, dv = (énHfc) = (0T/o)
{3-22)

so that use of the flux-mean opacity produces a simple expression for the
radiation pressure gradient. This is a result of practical value in the computa-
tion of model atmospheres for carly-type stars, because in these objects
radiation forces strongly affect the pressure (or density) structure of the
atmosphere via the condition of hydrostatic equilibrium (or momentum
balance in steady fiow).

ROSSELAND MEAN

Alternatively, suppose we wish to obtain the correct value for the inte-
grated energy flux. From equations (3-19) it follows that this may be done if
7 is chosen such that

- fo“‘” 7, 10K, /82) dv = fo““’ H dv=H= —7 'dK/dz) (3-23)
or, equivalently,

771 = jo"“ v, MoK, /87) dv / f;“ (0K ,)8z7) dv (3-24)

Again we face the practical difficulty that K, is not known a priori, and hence
the indicated calculation cannot be performed until the transfer equation is
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solved. But the mean defined in equation (3-24) can be agproxin-lated' in the
following way: at greal depth in the atmosphere, K, — 1J, while J, — B,
Thus may write (8K, /8z) = L{@B,/oT)(dT/dz). We then define the mean

opacity g as

" B. w 1 8B,
l<£)fo (i)%d” N
1 _3\dz v/ O :__%Br_ (3-25)
Tr l ﬂ J‘mﬂgﬁd\, I dy
I\ dz Jdo &T o gT

= —1

or et = (AR T [ (@BLET) dv (3-26)

il

The opacity 7g is called the Rosseland mean in hono_r of it_s origina_tor.
Note that the harmonic nature of the averaging process gives highest weight
{o those regions where the opacity is lowest, and_, where as a result, ‘the greatest
amount of radiation is transpotted—a very desirable featgre. Again the use of
7g OF the mean defined by equation (3-24) does not permit a correspondence
between equations (3-18a} and (3-18b), and hence does not allow the nongrey
problem to be replaced by the grey problem. On. the other hand, it is obvious
that the approximations made to obtain equation (3—_26) are precisely those
introduced in the derivation of the diffusion approximation to the transfer

cquation (2-91); Le.,
1/ 1 aBN[dT -
B = T 3\y, 6T )\ dz

Hence use of ¥ is consistent with the diffusion approximation. Therefore
on the Rosseland-mean optical-depth scale T we must recover the correct
asymptotic solution of the transfer equation and t&e correct flux transport
at great depth. This implies that at great dep_-th (’c% > l?) tile jempera:ture.
structure is quite accurately given by the relation T* = 3T 5[ T + (.I(TR)],
see equation (3-16). It is therefore clear why Rosseland mean opacities are
employed in studies of stellar interiors. N_ote also that s0 Jong as the dlff.us%on
approximation is valid, a simple expression can be written for the radiation

force, namely

(dpp/dig) = {]61"EO'RT3/3C%R)(—££T/£IZ) {3-27
FExercise 3-1:  Derive equatien {3-27},

Although the diffussion approximation is negrly exact at great depth, and
provides the very useful results just discussed, it must of course.break down
at the surface, and exact flux conservation is not guaranteed i the upper
layers by use of the Rosseland mean, nor will it give the temperature structure
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or the radiation force correctly in the outermost regions of the atmosphere.
This point must be recognized clearly, for it is precisely these layers in which
spectrum-formation occurs, and hence which are of primary interest in the
analysis of stellar spectra.

PLANCK AND ABSORPTION MEANS

Several other expressions for mean opacities may be chosen. For exam-
ple, if we demand that the mean be defined to yield the correct integrated
value of the thermal emission, then we require

Tp = [ fo 1,B,(T) dv} /B(T) = ﬁf’ K,B,(T) dv / axT*  (3-28)

Note that only the true absorption is used, and scattering is omitted. The
opacity K, 1s known as the Planck mean; it has the advantage of being
calculable without having to solve the transfer equation. On the other hand,
ip does not permit a reduction of equation (3-18a) to (3-18b) nor of (3-19a)
to (3-19b), and therefore it lacks the desirable features possessed by ¥ or
7r- Nevertheless this mean does have additional significance.

In particular, near the surface of the star, the physical content of the
condition of radiative equilibrium 1s expressed most directly by equation
(3-4). In view of this constraint, a correspondence between equations (3-18a)
and {(3-18b) can be made near the surface if & satisfies the relation

fo“’ (k, — NS, — B,)dv =0 (3-29)

Once the material becomes optically thin {ie., T, < 1 at all frequencies), J,
becomes essentially fixed, and the integral above will be dominated by those

frequencies where x, >» K. If we represent B, by a linear expansion on a
7-scale, 1.e.,

B,() = B(1) + (dB,/dT)(t — 7) ~ B,(1) + (dB/dD)(%/ic,)(1, = 7).

then by application of the A-operator we find [cf equations (2-57), (2-38),
and (2-631],

1
J\(f) - B»(:E) = 7§B\{T]E2(T\)

+ (K/K\‘)(LEB\'/(E?) 1:; EB(Tv) + % T\EZ(I\!)] (3_30)

Inthe limitt > 0, E,{t) — 1, and E;{z) — 3, so the first term yields —3B,(%)
while the second becomes [east important when i, > & [ precisely the region
of highest weight in equation (3-29)]. Thus to satisfy equation (3-29), k
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should essentially fulfill the requirement
fo kB, dv = EJ‘O B, dv (3-31}

which shows that the Planck mean is the choice most nearly consistent with
the requirement of radiative equilibrium near the surface.

Alternatively, we might demand that the mean opacity yield the correct
total for the amount of energy absorbed. We then obtain the absorption

medn
%, = f;"“ i, J, dv / J (3-32)

Again only the true absorption is included, and scattering is omitted. As
was true for 7, we cannot calculate ; until a solution of the transfer equation
has been obtained. Further, %, does not permit a strict correspondence
between the grey and nongrey forms of the transfer equation or any of its
moments (as was also true for the Planck mean).

SUMMARY

We have seen that no one of the mean opacities described above allows,
in itself, a complete correspondence of the nongrey problem to the grey
problem. Yet mean opacities provide a useful first estimate of the temperature
structure in a stellar atmosphere if we assume, as a starting approximation,
T(Tz) = Tyrey (Tr). and thenimprove this estimate with a correction procedure
that is designed to enforce radiative equilibrium for the nongrey radiation
field. Indeed, the mean opacities 7r, &p, and &, appear explicitly in some
temperature-correction procedures.

From an histerical point of view, it should be recognized that, before the
advent of high-speed computers, the nongrey atmosphere problem required
far too much calculation to permit a direct attack, and the use of 7 and
i, provided a practical method of approaching an otherwise intractable
probiem. In fact, the answers obtained in this way often do not compare
too unfavorably with more recent results despite the apparent crudeness of
the approximation. Oaly some of the more basic properties of mean opacities
have been mentioned here; further information may be found in (419) and
(361, §§34-35).

3-3  Approximate Solutions
THE EDDINGTON APPROXIMATION

In §2-5 it was shown that, at great depth in a stellar atmosphere, the
relation J = 3K holds; further, in §1-4 (cf. Exercise 1-13), it was demonstrated
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that this relation is also valid for a variety of other situations, including the
two-stream approximation, which provides a rough representation of the
radiation field near the boundary. In view of these results, Eddington made
the simplifying assumption that J = 3K everpwhere in the atmosphere. Then
the exact integral K = {F7 4 ¢ implies that in the Eddington approximation
Je(1) = 3Ft + ¢. To evaluate the constant ¢ we calculate the emergent
flux and fit it to the desired value. Thus from equation (2-59) we have

w3 . 3 4
F(0) = 2f0 (4 Fr + c) E,(7) dr = 2¢'E4(0) + 1 F [—j — 2E4(O):] (3-33)
so that, using the relation E,{(0) = [/{n — 1) and demanding F({0) = F, we
find ¢ = 3F. Thus

J(7) = %F (T + i) (3-34)

In Eddington’s approximation g(t) = %. Imposing the constraint of radiative
equilibrium and the assumption of LTE we have from equation (3-16})

T = 2 T (r + %) (3-35)
Equation (3-33) predicts that the ratio of the boundary temperature to the
effective temperature is (To/T.) = (3)'/* = 0.841, which agrees fairly well
with the exact vatue (To/T.e) = (342/4)1* = 0.8114. Assuming S(z) = Jg(7)
we may calculate the angular dependence of the emergent radiation field
iz the Eddington approximation by substituting equation (3-34) into
equation (2-52) to obtain

3 w
I:(0, p) = ZFfo (r + %),u_l exp(—t/u) dr = S;F(,u + %) (3-36)

which yields a very specific form for the Eddington—Barbier relation [cf.
equation (2-33)]. The center of a star’s disk, as seen by an external observer,
corresponds to 0 = 0°, or g = 1; the limb is at & = 90°, & = 0. The ratio
I(0, wy/1(0, 1), which gives the intensity at angle § = cos™ ' u relative to
disk-center, is referred to as the limb-darkening law. In the Eddington
approximation the limb-darkening is

10, /120, 1) — ;(,u + %) (3-37)

This result predicts the limb intensity to be 40 percent of the central intensity.
Observations of the sun in the visual regions of the spectrum are actually
in good agreement with this value and, in fact, it was precisely this agreement
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that led K. Schwarzschild (416, 25) to propose the validity of radiative
equilibrium in the outermost layers of the solar photosphere. :
Equation (3-35) predicts that T = T when © = £. This resuit has given
rise 1o the useful conceptual notion that the “effective depth” of continuum
formation is T & 2; in fact, this is often a rather good estimate. In support
of this idea we may note that a photon emitted outward from 7 = 2 has a
chance of the order of e~ %7 ~ 0.5 of emerging from the surface; this
corresponds in a reasonable way with the place we would intuitively identify

with the region of continyum formation.

Exercise 3-2:  The Eddington—Barbier relation shows that the intensity I(0, My is
characteristic of S(z) at ©{g) = w. Show then that the average depth that charac-
terizes the flux is {15 = %.

Anticipating the exact solution given in Table 3-2, we can evaluate the
accuracy of Jg(z); one finds that the worst error occurs at the surface, where
AT = (Jg — Jexae)/Hexaa = 0.155. Both the size of the error and the fact
that it occurs at T = 0 are unsurprising when we recognize that the basic
assumption upon which the derivation is based, namely J = 3K, is known
to be inaccurate at the surface. We know that J(z) must satisfy the integral
equation (3-6), and we know further that the A-operator has its largest
effect at 7 = 0 [see equation (2-63) and associated discussion |. This suggests
that an improved estimate of J(z) can be obtained from

3 2 3 2 1 1
Jg'}(’l‘f) = At[JE(t)] = At [4 F (f -+ 3):\ - EF |:T + g - g EZ(T) + 5 E3(T)]
(3-38)

Recalling the properties of E, (), it is clear that the largest difference between
J@(7) and Jp(t) occurs at the surface, where we find S0}/ J,(0) = §. The
new estimate of To/Tor is thus (75)'* = 0.813 (exact value is 0.3114) and
g{0) drops from % to 75 = 0.383 (exact value is 1//3 = 0.577).

It is thus clear that an application of the A-operator has produced a
dramatic improvement in the solution near the surface. Note, however, that
there is no improvement in the solution at 7 — oo, where g remains at its
original value %. In principle, successive applications of the A-operator should
improve the solution, and, eventually, produce the exact solution. In fact,
one can show that im, ., A1} = 0 [see (684, 31}] so that ap initia] error &
at any depth can ultimately be reduced to zero by repeated application of
the A-operator. In practice, however, the convergence is too slow to be of
value, for the effective range of the A-operator is of order At = 1, so errors
at large depth are removed only “infinitely slowly.” (We shall encounter this
problem with A-iteration repeatedly in a wide variety of contexts! See, e.&.,
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§6-1, §7-2.) Further, even a second application of the A-operator to J&(z)
introduces the functions A, [ E,(¢)], which are cumbersome to compute [see
(361), equations (14-50), (14-53), and (37-36) through (37—44)]. Therefore
alternative methods for obtaining a solution must be developed.

Exercise 3-3;: Using the results of Table 3-2, evaluate the percentage errors of
Jo(r) and J(x) and display them in a plot. The required values of E,(r) can be
found in (4, 245).

Exercise 3-4: Show that, although J.(v) was derived assuming F = constant,
the flux computed from Jg(z) via equation (2-59} is not constant; make a plot of
the error AF(z)/F.

Exercise 3-3; Apply the X-operator [cf. equations {2-62) and (2-65)] to Ju(z)
to obtain KiP(r) = & F[%t + § — $E7) + 2E4{z)]. Use this result to write an
analytical expression for the variable Eddington factor f{z) = K(1)/J(t). Show that
flr = o) = tand f(r = 0) = & = 0405, Using the results of Table 3-2, evaluaie
the fractional error in f(7) [recall equation (3-15)] and plot it.

Exercise 3-6:  Show that the improved estimate of the emergent intensity ebtained

by using J@(z) is 1900, 1) = 3F1% + du + Ga + 4 [ + p)/u]). Compare

this result and [-{0, i) given by equation (3-36) with the exact resuft shown in

Table 3-1, and plot a graph of their fractional errors.

ITERATION: THE UNSOLD PROCEDURE

The primary shortcoming of the A-iteration procedure is its failure to
vield an improvement in the solution at great depth. Uns&ld (638, 141)
proposed an ingenious alternative method that overcomes this inadequacy
and can be generalized to the nongrey case. The basic idea is to stast from an
initial estimate for the source function Bit), and to derive a perturbation
equation for a change AB{t) that more nearly satisfies the requirement of
radiative equilibrium.

If we calculate the flux from the initial guess B{t), we will ind that it is a
function of depth, H{t), and not exactly constant unless B{t) happened to be
the exact solution of the problem. From the first-order moment equation (3-9)
we then have

K() = fo H(T)dt' + C (3-39)

If we make the Eddington approximation J(z) = 3K(r) and evaluate C by
writing J(0} = 2H(0} [ cf. equation (3-34)] we obtain

J(0) & 3 fa H(t) dt' + 2H(0) (3-40)

But from the zero-order moment equation (3-8) we have

B(r) = J{r) — [dH(7)/d7] (3-41)
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so that . )
Bix) ~ 3 .E H{z) dv + 2H(0) — [dH(7)/dr] (3-42)

Equation {3-42) cannot be exact because of the approximations made in its
derivation, but it can be used with sufficient accuracy to compute perturba-
tions. In particular, suppose AB(z) is chosen just so the flux computed from

B(7) + AB(t) is constant; thus
B(z) + AB(1) ~ 3 fo Hdo + 2H (3-43)

and by subtraction of equation (3-42} from (3-43) we obtain an expression
for AB(t), namely

AB(z) = 3 fo AH(Z) dv' + 20H(0) — [d AH(7)/dr] (3-44)

Thus if we know the flux errors AH(z) = H — H{z) we can compute the
correction AB(r); this correction is then applied and new values of the flux
are computed, which give new (smaller!) errors AH; the process is iterated
until H becomes constant and AB — 0 at all 7. Equation (3-44) can be
generalized for nongrey atmospheres: see equation (7-18). Unsold’s pro-
cedure is very powerful compared to A-iteration, for it provides a great
improvement in the solution at depth as well as at the surface; this result i3

demonstrated in the following exercise.

Exercise 3-7. Assume a starting solution B(r) = 3H(r + c); ie. g(t) = e
{a) Show that AH(z) = H — H(t) = 3H[E 7)== cE5{r)]. Obtain expressions for
AH(0) and HAH)/dz. (b} Apply Unstld’s procedure and show that

17 1 | 3 3
AB(z) = 3H % —c— —2—CE2(I) + iEj(T) + 5 cE (7)) — 3 ES(t)

{c) Show that, independent of the initial choice of ¢, the improved solution has
4(0) = & = 0.583 (exact value 0.577) and g(oo) = 33 = 0.708 (exact value =
0.710). (d) Show that, in conlrast, the A-operator acting on g = ¢ gives g(0) =
le + 1, which agrees with Unssld's value only if ¢ = %, and g(cc) = ¢, which
shows ne improverment whatever at depth.

THE METHOD OF DISCRETE ORDINATES

The method to be described now furnishes a means of obtaining both
approximate solutions and the exact solution of the grey problem. More
important, it introduces the fundamental mathematical scheme that provides
the basis for practically all modern techniques of solving transfer equations.
Introducing the definition of J [equation {1-4)] into equation (3-3), the
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transfer equas... v« 1 -d may be written in the form
. - 1
plotte, wyee] = 110 ~ 5 [ 16e, ) du (3-45)

Which is f:lassiﬁed as an integro-differential equation. The essential difficult

in obtaining the solution arises from the presence of the integral over an 1ey
Howa\fer, definite integrals such as that in equation (3-45) may be evalua%e&
numer%cally by means of a quadrature sum consisting of the function evaluated
ata ﬁr.ute set of_points on the interval of integration times appropriate weights
Thus introducing {g;} on [ —1, 1] we write, for any function f(u), -

1 M 1
1 a5 Y afw) (3-46)
Thf-: numbers {z;} are called the quadrature points, {a;} the quadrature
weights, and { f(u,)} the discrete ordinates. Having chosejr: a definite quad-
rature formula, we replace the integro-differential transfer equation (3-45)
with a coupled system of 2n ordinary differential equations:

. 1y
wlol/ot) = I, — §j=z—n afd;, (i==+1,..., +n) (3-47)
whcr.e I; denotes I(z, p;). The radiation field is no longer represented as a
continuous function, but rather in terms of a set of pencils of radiation, each
ofowht;:hqupresents the value of I{u) over a definite interval. On ph,)fsical
E 4:11;0 s 1t is reasonable to expect the solution to become exact in the limit
The accuracy of the quadrature depends both upon the number of points
and upon their distribution on the interval. If the points are distributeci
u1_11f0rmly on the interval we obtain a Newton-Cotes formula, of which
Simpson’s _mle with points at {u} = (—1,0,1) is a familiar e;;am le. A
betier choice is to use a Gaussian formula, in which the 2n points on [E 1‘ 1]
are chosen to be the roots of the Legendre polynomial of order 2n. Tt W07uld
take us too far afield to discuss the construction and accuracy of qﬁadrature
formulae [see (161, Chap. 2)]; an important result that we shall merely state
18 this: an m-point Newton—Cotes formula gives exact results for polynomials
pf order m — 1 (for m even) or m (for m odd), but an m-point Gauss formula
is exact for polynomials of order 2m — 1. For solving the transfer equation
El}ac double-Gauss formula is superior (619) to the ordinary {or “single”)
iFa;a.luzss iorr;luia. Here one chooses two separate n-point quadratures on the
; g -— < u < 0)and (0 € g < 1); on each range the n points are given
y the roots of the Legendre polynomial of order n, scaled from [ —1, 1] to
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the appropriate range. This approach has the advantage that I{z, s u) and
I(z, — ) are approximated independently, and thus the integration formula
can account, without difficulty, for the physical fact that (—u)=0atr =0
while I{+ ) remains finite. In the single-Gauss formula, the discontinuity in
I(p)at u = Owhent = Ointroduces significant errors. In all of these formulac
the points are chosen symmetrically about zero so that g ; = —p;, while:
o=

\JVe néw wish to solve the system of equations (3-47). Observing that the
system is linear and of the first order, we take a trial solution of the form
I; = g; exp(—kz), where g; and k are to be specified. Substituting into equa-
tion (3-47) we find

Y ag; = c (3-48)

i=-

M| -

gl + kp;) =

so that g; = ¢/{1 + ku,). If we use this specific form for y; and again substi-
tute the trial solution into equation (3-47), we find

Y oayl + k)t =1 (3-49)

i=—n

1
2
This is the characteristic equation, which is satistied only by certain values of
k, called the characteristic roots (eigenvalues). Recalling that a_; = a; and

f-; = — M equation (3-49) can be used to define the characteristic Junction
(i),
T =1~ Y afl — ) (3-50)
i=1

The roots of T [ie., those values of k for which T(k*) = 0} are the desired
characteristic roots. If we set f(x) = 1 in equation (3-46) we see that

i

1 & .
3 Z aj:Za,,-zl

j=—n j=1

hence it follows that k* = 0 is a solution of the characteristic equation; ie,
T(k*> = 0) = 0. There are an additional {n — 1) nonzero roots, which may
be seen as follows. Note that k* = y;”* is a pole of T, which becomes in-
finite for these values of k2. For k* = p;7% — &, T(i’) < 0, and by making
¢ arbitrarily small, T(k%) — — oo. Similarly, for k> = ;"% + &, T(k*) > 0,
and as £ — 0, T — +oo. It is thus clear that T must pass through zero
somewhere on the interval between successive poles, hence the (n — 1) non-
zero roots must satisfy the relations

-2 L 2 -2 2 -2
Hy < 'i”l << fa < < kn*l < Hy
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where we have ordered {;} such that y; > ;... Note that the largest u;
must be less than unity, hence the smallest nonzero k* must be greater than
unity. In all there exist 2n — 2 nonzero values of the ks, in pairs of the form
+ki=1...,n— 1.

The general solution of the system (3-47) is therefore of the form

1 n—1
Ifn) = b[ L+ k) le™ + % L_(1— kaui)‘le“ﬂ} (3-51)
=1

=1 x

We must now seek the special solution corresponding to the root k* = 0. In
view of equation (3-11) which shows that J(r) must become linear in 7 at
depth, we examine trial solutions of the form I, = b(r + ¢;). Substituting
this expression into equation (3-47) we obtain

1 n
gy = W + 3 E il (3-52)
j=-n
Now ol?serving that if we set f(u) = w in equation (3-46) the quadrature sum
Y a;u; is zero, we see that equation (3-52) is satistied by the simple choice
¢; = 0 + 1 Hence the particular solution is I;(z) = b(z + O + y;) and
the complete solution is

=1 L e—kmt n—1 L €+km‘[
I,v(r):b(r—&-Q—l— L+ £ + e .
g QZE 1+ ko agl 1 — kot (3-53)

We must now specify the 2n unknown coeflicients b, Q, and L. This is
done by application of the boundary conditions. -

In the case of a finite slab of total optical thickness T, both /_, ™ = I{0, — ;)
and I," = (T, + ;) are given functions of g Thus we may write 2n equations
for the 2n unknowns:

n—1 L n—j_M G—k“T
10, Hs)—b(Q—uiJr AN s S
a;I I — Kk rx;i I 0y B

3-54a
and ( )

n—1 =k, T n—1 M

L.e
I(T, +“:):b(Q+T+ ;T “ -+ i = I.*
# w=1 I+ kmu'i DEZI f— kmu‘i '

(3-54b)

where, to improve the numerical condition of the equations, M, = I._ &'
Equations (3-54) may be solved by standard numerical techniques for linear
equations.
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In the casc of 2 semi-infinite atmosphere in radiative equilibrium we have
the boundary conditions f_; = 10, — ;) = 0, and demand that f(z) must:
not diverge exponentially as 7 — 0. To satisfy the latter constraint we set

L.,=0 (3-55)

and use the upper boundary condition to write the n equations

n—1
0t ¥ Ll ~l) ™ =0 i=1.s ) (3-56)
a=1

yields the n unknowns ¢ and L,. In addition,

Solution of equations (3-56)
¢ nominal flux F. Thus we demand that

we require that the flux equal th

1 H
2 M Hdp =2 3wl = F (3-57)

j=—n

Qubstituting equations (3-53)(with L_, = 0), we have

n " n—1 " aills

bl Y a2 oamt X e L B Ler B S |
j=—n j=—n a=1 j=—n + kmuj

(3-58)

¢st sum is zero, the second equals 2 and

In view of equation (3-46) the fi
he fourth is found to be zero.

from the characteristic equation t
Exercise 3-8 Verily the statement made above about the vahies of the sums in
equation {3-58}.

cted from equation (3-11); note
a constant fiux automatically.
infinite atmosphere may be

Thus we find that b = 3F, as would be expe
also that the quadrature calculation yields
Finally, the complete solution for the semi-

written

3 n—1
I(t) = ZF[’E FO o Le %1 + kaui)_l], i=1,...,m
z=1
(3-59)

We may compute J(t) by substituting equations (3-39) into the guadrature
formula; making use of the characteristic equation (3-49), we obtain

J(©) = %F (T O+ Zl Lae’k“’) (3-60)
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and thus the discrete-ordinate representation of g(t) is

n-1 .
gy =Q + 3 Le (3-61)
=1
Exercise 3-9:  Derive equation (3-60).

Numerical regults for ¢(1) were obtained for n = 1, ..., 4 by Chandra-
sekha.r (153} using a single-Gauss formula and by S,ykelsv(619) using th
superior double-Gauss formula. In every case the exact value g(0) = 1/%/3 i:
obtained. The mgximum percentage (absolute) error in J(z) for the single-
Gauss solutions is (9.0, 4.1, 2.7, 2.0) for n = 1, ..., 4, respectively whilegfo
the double-Gauss it 18 (9.0, 1.8, 09) for n = 1,. 3 respect;vel Th::
double-Gauss estimates of g(co), namely Q, are 0.7f13:2 and 0710%7 for
n = 2 and 3; these values compare favorably with the exact value; 0.710446
Tll';e double-Gauss solution with n = 3 gives the emergent intensity I (0 )/F'
with a root-mean-square error of only 0.1%, and is very accurate (0 02';)1?0r
w031t shpuld be stressed that the main importance of the discr'ete E)rdi—
{1&1;1 ’mzthod is that in the limit n — <o it yields the exact solution and that
1p hca:;rd ; raglb E;?mdy powerful approximation technique for more com-

Sev;ral very important results that will be useful in later work can be
established by analytical manipulation of the characteristic equation and
?eébcﬁnzdagl corlllditions. To simplify the notation we define x = 1/k and

= 1/k*. The characteristic i i i
N mtton in the cquivatent ;m. ni;t;nctlon defined in equation (3-50) may be

T(X)El—Xiw 4G 5 a X L4 % @
Xy 2, j;x Z,JJTJ_LY

_ gz
.Puj i=1

Ji=1

(3-62)

To clear T(X) of fractions, multiply through by [ [}, (% — X); this yields

n n

PX) = jl:[l (l”:jz - X T(X) = _Zl a” H (#‘;‘2 - X) (3-63)

i= J#i
grhu:h is clearly a polynomial of order (n — 1} in X. But we know that T(X)
t}i:lvtohr;(}é&l) r;)(ots X, =1k? ..., X, = 1/}, so P{X) must have
o : 1) : (X - _X - .+ To c—;valuate the constant, we note that
coe cwnt_ofthe termin X"~ in equation (3-63)is (— 1y~ Y i, au” =
(— 1)~ ' L. this is simply C itself. We thus have e
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and therefore

1— 1

(0 = ;[ﬂ (X, - X)]/ T =) (364

From equation (3-62) we see that T(X =0 =1, hence setting X = 0 in
equation (3-64) we obtain the useful (see below) result that

Uty takrka et = 1//3 (3-65)

Now consider the emergen
that

i intensity 10, p)- Define a function S{) such

S(a) = Q - i+ z Lt~ ko) (3-66)

The surface boundary conditions in equation (3-56) may then be written

3
10, —) = 5 FSGu} = O (3-67)
We then generalize S(u) to apply at all values of p and wrife
3
HO.m =7 FS(-u) (3-68)

for p = 0. Note that, with this generalization, (0, —p)is not =0, but will in
general have nonzero values for —p 5 j_s BY working with S(u), we can
obtain an expression for [(0, 1) that does not involve the constanis L, and Q

explicitly. Clear fractions from equation (3-66) to obtain

s 1 (1 = ko = (@ = 0 [ (= ) + S LT - k) G-69)
a=1 a=1 a=1 i oo

The righthand expression 18 obviously a polynomié,l of order n in u. But
ial must be of the form

S(p) has the n TOOL8 fiys - - < 1,3 hence this polynomi
Clp — (i — ) TO find C we note that the coefficient p* on the

righthand side of equation (3-69) is (—1ky - k,_, which is C itselfl
Therefore
'f';l k) 1= i i- g — M
S0 = (L= nl)lﬂ gl — 1 _ ﬂrll(u ) (3-10)
Hf=1 {Lr— kipt) ni=1 (x: — )

which, when inserted into equation {3-63), yields the desired expression for
1{0, ). 1t is customary to define a limb-darkening function H( L) as

H(w) = 10, w/10,0) {3-71)
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[note that unlike equation (3-37), the reference point here is the timb, not

disk-center]. In the discrete-ordi imati
360 and (370 inate approximation we find from equations

n—1

H(y) = [lj[l (1 + #flm]/_lj (1 + ki) (3-72)

thye T{Zh;;ddzdilgiirrf;n% tS}‘l(,u) itis possible to write explicit expressions for
" of the ;
P points {y;} and the roots {k,} [see (161, 78-79;
Before leaving the discrete ordi
‘ rdinate method, let us show
‘ _ : , that =
is the exact value. First, note that i the nth discrete approxizana({gg)n 3

3 n—1
J,1(0)=—F<Q+ L _3
; 3 L) =3 FeO (373)
while from equation {3-59) we find
3 n—1
[00,0) = -
0,0 =7F (Q + m; La) = J,(0) (3-74)

independent of the order n. Thus we
. conclud i X i
I(0, 0). But from equations (3-68) and (3—%/' O? thatin the exactsolution JI0) =

3 3
I.“!(030):7FSO = — e
5 SO = Fauy gl ko (3-75)

I 1ET11 CO}“bnllIlg equaUOIlS {3"6 —:‘ lld '; 3 W =
gl il - t] 3
pendel’lf Uf Ihe OF def ”, qn{O) - 1/'\/3, hBIlCC thls IGSult 15 E:X&Ct.

3-4 Exact Solution

The i

. (;: e(xact solution for ¢{z) and H(y) can be obtained by taking the di

o maj[e Fnetho‘d‘tO the limit n — oc (161, Chap. 5; 361 §27)g b iscrete-
r;—jng‘z:aple (1){ fnvarignce (161, Chap. 4; 361, §28), or ’b‘y d:ireztaggbjmg
will be oot ods (361, §29; 684, Chap 3). Only certain important s
details, > e reader should consult the references cited for

iy p .
I i \

H(i) = (i = )12 exp | L (7201807 (utanb)
N — ‘m} (3-76)
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TABLE 3-! .

Exact Limb-Darkening Law for

Grey Atmospheres
-

i 1O, p)iF I IO, )/t
S
0.0 0.43301 0.6 0.95009
0.l 0,54012 0.7 1.02796
0.2 0.62802 0.8 1.10535
0.3 0.71123 0.9 1.18238
04 0.76210 10 1.25912
0.5 0.871356

-

Evaluation of this integral (152; 518) yields the results summarized in Table

3—1”fhe value of g(o0)} can be obtained by noting from equation (3-15) that

K{0) = Hgloo), and thus, using equation (3-71),

l -
a(e0) = [ [, Huw? fiu:\/ o Hlw du 377
From the known expressions for H(y) one then obtains
6 1 pa2f3 1 0 (3-78)
deo) =z 2 e (@ g HcotB)

which vields g(oc) = 0.71044609 (519). Finally, a closed-form expression can

TABLE 3-2
The Exact Solition for ¢{t)

T al) i ql1)
0.00 0.577351 0.8 0.693534
0.01 0588236 1.0 (.698540
0.03 0.601242 L5 0,705130
0.05 0.610758 2.0 0.707916
0.10 0.627919 2.5 0.705191

- 0.20 0.649550 30 0.709806
0.30 0.663365 35 0.710120
0.40 0.673090 4.0 0.710270
0.50 0.680240 5.0 0.710398
(.60 0.685301 w0 0.710446

-
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be written {(407) for g{t), namely

1 e ¥dy

1
01 e

(3-79)
where H(u) i1s as defined above and

1 L+ |* 1
Zw=11 —Zul 222 )
(1) [ 2Li n(l #H)J +4n U (3-80)

Results obtained from a numerical evaluation of equation (3-79) are given
in Table 3-2.

3-5 Emergent Flux from a Grey Atmosphere

The basic physical assumption made in the grey-atmosphere problem is that
the opacity is independent of frequency. In this event, the constraint of
radiative equilibrium reduces to S(t) = J(1), and the problem simplifies to
that of obtaining the solution of equation (3-6). If, in addition, it is assumed
that LTE prevails, then we may equate B(r) = (6, T%)/n to J{1), and thus
arrive at equation (3-16) for T(z). The radiation field has a dependence upon
frequency because the source function, which we assume is B, (1), depends
upon frequency. Given the source function, the flux, also [requency-

dependent, can be computed at any depth by means of equation (2-59},
which now reads

Fofo) =2 [% B[TW]E — 1di -2 Jo BITWIEG - nar (3-81)

The temperature appears in the Planck function only in the combination
(hu/kT); further, the ratio T(z)/T: is a unique function of 1 [cf. equation
(3-16)]—say, 1/p(7). We may therefore simplify the equation by introducing a
parameter o = (hv/kT ), in texrms of which we can write (hv/kT) = wp(7).
Expressing the ffux in the same units by writing F,(t) = F (t)(dv/dw), and
using the relation F' = (g T5;)/n, we may rewrite equation (3-81) as

F(7) _ 47'5—[‘74 o FEyt — 1) dt . Ey(t — f)dt
F (h3c2aR> o’ {J; explap(t)] — 1 J;J exp[ep(0] - 1} (3-82)

The expression in the brackets is a function of o and 7 only, and may be
calculated once and for all. A tabulation of F,(z)/F is given in (161, 295),
and a plot of the function is displayed in Figure 3-1. The figure shows clearly
the degradation of photon energies as they transfer from depth to the sur-
face; for example, the most common photon energy at z = 0 is only about
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FIGURE 3-1
Frequency distribution of flux at
(155), by permission,

selected depths in a grey atmosphere. From

75 percent of that at © = 1. This progressive reddening of photons in the
outer layers results from the outward decrease in temperature produced by

the requirement of radiative equilibrivm.

3.6 Small Departures from Greyness

By use of an appropriate mean opacity, it is possible to account for small
departures from greyness, at least approximately, and thus to extend greatly
the usefulness of the results obtained for a grey atmosphere. Suppose that the
frequency variation of the opacity is the same at afl depths so that we can

write
v, = 21+ By = X {3-83)

where 7 F = ff L P dv (3-84)

In equation (3-84), F'1 denotes the flux in a grey atmosphere. The mean opac-

ity 7. defined in equation (3-84) is known as the Chandrasekhar mean; a3 We
shall see in what follows, this mean is constructed in a way that makes
optimum use of the information contained in the grey solution. Unlike the
flux mean [equation (3-21)] the Chandrasekhar mean can be computed
straightaway for any given frequency dependence (ic., B, ory,)of the opacity
because F is a known function.
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t ider
Let us now consider how we may solve the nongrey transfer problem using

a method of successive a i i I h
. pproxnnatmns. < Nno e i
(' it )1 ) ngrey tran_sfer equatlon

;; gfoi?ﬁlz(fsntﬁt :}ﬁe de;laar_tures S, may be regarded as small, then a first
e solution of equation (3-85) is obtai ; I
£, = 0 initially. The transfer equati et far the
. quation th i
B orotlom el aamety en returns to the equation for the

pelhjezy = 1t — B, (3-86)

whose solution i i
lution is aiready known. To obtain a second approximation we write

wWPIPemy = 19 — B, + B,U% — B)
= I — B, + f,p(@1"/67) (3-87)

Egs Sﬁ?r?;lt;g;ntggm eque(tition {3-86). If we demand that the radiation field
) is second approximation should satisfy th i
radiative equilibrium, then we must e e b he
1 . ust have (dF®Vd7) = )
integrated flux; then from equation (3-87) ( Je) = 0 where s the

JB — B Al {
N d? J;) [j,vFvl) dv = 0 (3_88)
But noie that equations {3-83) and (3-84) imply that

F =7 J, (0 BIF Ay = L + 7 [T BFD Ay (389)

or that
[ pFav=0 (3-90)

3;161;{:20;6 ttllxle ra;)dxatwe equﬂ.ibril,llm constraint for a nongrey atmosphere
treate the}lft the above approximation scheme collapses to J @ = B(7). This
e f:ﬂgrey soluvtlon for ?"(f) on the Chandrasekhar-mean optical-
fepin seale wi aut(_)ma{waliy satisfy the condition of radiative equilibrium
| e approximation to the nongrey atmosphere. The method f
obtaining higher approximations is described in (161, 296 ff)) >

tit thiS ﬁIStlevel Ofﬂl)[) “X. a -(! We I y '8 o a Ty

100, 8) = {7 BITG] exp(~5/uiy./m &7 (3-91)
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and the flux as
FA0) =2 [ BLTeE T, a7 (3-92)

If we introduce the parameter o = {hv/kT ) as was done in §3-5, and write

BLTE)] = B.(To) [%} - BTOb® (399

equations (3-91) and (3-92) reduce to the parametric forms
1,0, 0) = B(To) [} by expl= 370, /) 0T = BATo)# (e vfp) - (394
and

F,(0) = 2B(To) [ bDE, dr = BAT))# (. 7) (3-95)

The function b,(7) is unique for a given value of o, and hence the functions
Ho, ) and F(x, f} may be computed once and for all; tables of these func-
tions are given in (161, 306-307). .

The functions #(zx, f) and F {(«, f} described above at one point played an
important role in the development of the theory of stellar atmospheres. By
analysing the observational material available for the sun, Mlinch (473) was
able to find those values of y, that best reproduced the observed fluxes and
limb-darkening. These were shown to be compatible with thg frequency
variation of the absorption coefficient of the negative hydrogen ion, H’,_as
computed by Chandrasekhar. Analyses such as these led to conclusive
identification of H™ as the major opacity source in the solar atmosphere.
We examine opacities in some detail in the next chapter.

4

Absorption Cross-Sections

In this chapter we outline the quantum mechanical calculation of atomic
absorption cross-sections. The discussion is meant (o be self-contained, but

limitations of space require that knowledge of the basic principles of quantum
mechanics at the level of (392, Chaps. 2—8) be presupposed.

4-1 The FEinstein Relations for Bound—Bound
Transitions

Let us first consider the absorption and emission of radiation by an atom
in a transition between two bound states. Assume that the lower state (i)
has statistical weight g;, and the upper state () statistical weight g;. There
are three basic processes involved, which are usually described in terms of
rate coeflicients first introduced by Einstein (207).

The first process is the direct absorption of radiation, leading to an upward
transition from level i to level ;. The rate at which this process occurs for
radiation of specific intensity 7, can be written in terms of the Einstein
coefficient B;; as

n{(V)R; {dewjdn) = n(v)By,1 (deo/4n) {4-1)
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where n;(v) is the number of atoms per cm? in state i that can absorb radiation
at frequencies on the range {v,v + dv). In general the spectrum line corre-
sponding to the transition will not be sharp; rather, because of perturbatiohs
exerted by nearby atoms and ions, as well as the finite lifetime of the upper
state, it will have a spread in frequency that we can describe by an absorption
profile, ¢, normalized such that { ¢ dv = 1. Thus if the total number of
atoms in state i is n;, the number capable of absorbing at frequency v 18
nv) = mp,. In making the fransition from level i to level j, the atom absorbs
photons of energy hv;; = E; — E.. Thus the rate at which energy is removed
from an incident beam of radiation is

avl\r = ni(Bijhvij/4Tc) qvav (4_2)

where a, denotes a macroscopic absorption coefficient (per unit volume),
uncorrected for stimulated emission (see below).

For atoms returning from level j to level i, two processes are possible.
The first of these is a spontaneous transition with the emission of a photon.
Writing the probability of spontaneous emission per unit time as A, the rate
of emission of energy is

n.{spontaneous) = n{A;hv;; fAm)r, (4-3)

Here the emission profile i, specifies the number of atoms in the upper state
that can emit photons on the frequency range (v, v + dv); it is normalized
such that vy, dv = 1. The other possible return process is a transition
induced by the radiation field (stimulated emission). The rate at which such
emission occurs is assumed proportional to the intensity of the incident
radiation field. The energy emitted may be written in terms of the Einstein

coefficient Bj; as
n,(induced) = n;(Bjhvi/4mp.1, (4-4)

In writing equation (4-4), use has been made of the result that the profile
for induced emission is the same as that for spontaneous emission, as can
be shown from general quantum mechanical considerations (197, §62). 1t
should be noted that spontaneous emission takes place isotropically. Induced
emission is proportional to and has the same angnlar distribution as 1,;
because of this, induced emissions are sometimes considered to be negative
absorptions, though this is not quite correct, for in general i, will not be
identical to ¢,.

The coefficients 4;;, B, and B;; are simply related, as can be shown by
calculating rates of absorption and emission in thermodynamic equilibrium.
In strict T.E., the radiation field is isotropic,and I, = B,, the Planck function,
Furthermore, in T.E. the occupation numbers of levels i and j are related
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by the Boltzmann law [ cf. equation (5-3)]
(n;/m)* = (g,/9:) exp(—hv,;/kT) ' (4-5)
Moreqver, inTE., .1[/.‘, = ¥ = ¢, [cf. equation (2-14)]. Now in strict T.E,,
each.upward transition on the range (v, v + dv) must be exactly balanced
(detailed balancing) by an emission on that range. Hence, frequency by
frequency we must have
nf“B”B\, = F’ITAJ;; + n;'kBﬁBv (4_6)
Solving for B, we find

B = J JE — JI gl 1
; ;ke;*b’” B, (Bﬁ) [(9‘ = _{) exp(hvy/kT) — 1} (4-7)

Ja

But the f:orrect expressiqn for the Planck function as obtained from statistical
me_:chamcal.arguments is B, = (2hv*/c?)[exp(hv/kT) — 1]7", and to make
this expression correspond to equation (4-7) we conclude that

Aji = (2hv3/CZ)Bﬁ (4—8)
and 98y = 9,8 (4-9)

We shall use these results repeatedly in later work.

1t should be noted that, although the Einstein relations in equations (4-8)
and {4-9) were derived, for ease, from a thermodynamic equilibrium argu-
ment, the Einstein coefficients are really properties of the atom only, and
must be independent of the nature of the radiation field. Therefore we ,must
conclgde that equations (4-8) and (4-9) are true in general. It is of interest
that. historically a line of argument similar to that presented above led to the
realization that the stimulated emission process must occur in nature—a
fact not intuitively obvious at first sight.

Exercise 4-1: Show that for a Planckian radiation field at typical stellar temper-
atu.res-‘. {~10* °K) spontaneous emissions oceur much more rapidly than induced
emissions in the uvltraviolet where Av/kT > 1, while the reversc is true at [ar-
infrared and radio wavelengths where hv/kT < 1.

The mi.croscopic formulation described above may immediately be incor-
porated into the equation of transfer. If only the bound-bound process
occurs, then the appropriate transfer equation is

oL j02) = [nA, — By, — nBup )L ](hvy/4n)  (4-10)
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Here we have followed the usual practice of grouping togc_:tljler all. tcrm;
involving I,. In this way one can define a line absorption coefficient corrected

for stimulated emission, namely

n:Byjlvi; 1 nBy _ (B q&,(l —n—j%) (4-11)
wlv) = an il - n; B, 4 ) nig ;s

and a line source function

-1
LI (%;”3) [ﬁ—”*g@” - 1] (4-12)
a B, — niji]abv c njgi'ubv

The {ransfer equation then reduces to the standar.d fqrml [equation'(2-3t.3)].

In many cases of astrophysical interest, the simplifying .appr0x1mat103
of complete redistribution is valid; then , = ¢, and equations {4-11) an
(4-12) reduce to

niBijhvij _ % (4_1 3)
o= (A (1 -18)
and S = (211‘}1}3/62)[(nigj/njgi) - 1]71 (4-14)

These expressions will be used through most. of this book, except 1 C?ithEr
13 where a distinction between ¥/, and ¢, will be made. In the caseho kT),
Boltzmann statistics apply; bence (n;/ng) = (/)™ = (g,/g:) exp(—hv; kT
and the absorption coefficient becomes

¥iv) = (“iBithij/4ﬂ)‘P\-[1 - exp(éhvij/kT)] (4-15)

The factor [1 — exp(—hv/kT)] is usually referred to as the correction fo.r
stimulated emission; but as is evident from equations (4-1 1} apd (4_1‘3):]_{?;;
;axpr'ession for the correction factor is valid in LTE only. Similarly, m L
the source function becomes

§¢ = (kv explhvykT) — 1177 = B, (4-16)

~om the Kirchhoff-Planck relation [equation (2—5)1. . _
* 13232222?11‘(4-14) contains implicitly the sol'ution of the stat1st1<i[ak.ll e?;_;;
librium equations (cf. Chapter 5), inasmuch as 1t makes referelgci lt% ! ;ﬂr o
of the populations of the levels involved. Only mn the cas?ebol AP cn
ratio be expressed in terms of a single therrgodynamlc variable, 1‘1 1 dg T
it will depend upon the temperature, density, and the radla_tlon 4]61 P al.l
transitions of the atom). We shall therefore refer. to equah’on (_ -14) lajcjﬂ
implicit form of the source function. An aitern.at-ive app‘r(')dc'h is expalﬁonyg
to introduce analytically the solution of the statistical equilibrium equ
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into the source function, yielding what we shall refer to as an explicit form.

As we shall see in Chapters 7 and 11 through 14, the latter form is by far
the more powerful and useful. '

4-2 The Calculation of Transition Probabilities

Let us now turn to the calculation of the Einstein coefficients. Specifically,
we shall derive the direct absorption probability B;;, as B and 4 can be
obtained from B;; by use of equations {4-8) and (4-9). The computation may
be made on three successively more accurate levels of approximation, as
follows.

(1) Classical Atom and Electromagnetic Field. The electron is considered
to be a damped harmonic oscillator driven by the electromagnetic field.
A uniqgue absorption coeflicient is derived, which is dimensicnally correct
and accurate for very strong lines; for weal lines it may be wrong by orders
of magnitude.

(2) Quantum Mechanical Atom and Classical Electromagnetic Field.
Here the correct values of B;; and Bj; can be derived, but A does not appear
in the formulation (although it is still given correctly by the Einstein relations).

(3) Quantum Mechanical Atom and Quantized FElectromagnetic Field.
Here the correct results are automatically obtained for all three coefficients,
and this approach represents the complete theory.

In this section we shall carry through the calculation by method (1} for
historical interest and general background, and by method (2) to obtain the
correct expression for B;;. Application of method (3} is more complicated
and does not need to be carried through if one is satisfied to use the Einstein
relations. A complete discussion of the third method may be found, ¢.g.,
in (197, Chap. 10; 293, 857, 14, 17; and 418, Chap. 22).

THE CLASSICAL OSCILLATOR

Consider first the electromagnetic radiation from a moving charge.
Suppose a particle has charge e, velocity v, and acceleration ¥. Then from
classical electromagnetic theory (331, Chap. 9; 343, Chap. 17; 494, Chap. 20)
the electric and magnetic fields at a distant position r relative to the charge
are found to be

Efr, t) = (ev/c*r)sin 0 0 (4-17)
and Hir, 1) = (et/c*r)sin 0 (4-18)

where @ denotes the angle between the acceleration v and f, 0 and ¢ are
unit vectors in a spherical system defined by v and ¥, and ¢ is evaluated at a
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fime ' =& — (r/c). The power radiated per cm? is given by the Poynting
vector [cf. equation (1-35)]

§ = (c/An)NE x H) = (2 fanc iy sin® O F (4-19)

re of vadius v by forming S-dA where

Now integrating over 2 sphe
2), we find the

dA = (P do)f = (r du d)f and writing sin? 0 = (1 — ¥
total powet radiated in all directions is

pe) = (€262 4c”) ﬁ dé jjl (1 — @) dp = 03 (4-20)

for a harmonic oscillator we can write x(f) = xg oS Wi,

cos ot. Substituting into equation
ion by noting that

in particular,
p(f) = — %o SN WL, and B(f) = —©"Xo
(4-20) and averaging over one period of the oscillat

{cos? oty = 3, We find

(Plwp = (2307 w*/3¢Y) (4-21)

Because the oscillator is radiating away energy, the oscillation will even-
tually decay. We may describe the decay in terms of a damping force that
may be viewed as the force exerted on the moving particle by its own electro-
magnetic field. To calculate the effective damping force, we assune that the

rate of work done by it accounts for the energy loss by the oscillator. Thus

from equation {4-20) we write

F. v + (2e20%/3¢%) = 0 (4-22)

Then

t

L (Foaq -V AL+ (2¢*/3¢%) (

1

Cyev - fv-vdz):o (4-23)

Over a cycle the integrated term vanishes, therefore on the average

Fo = (26236 (4-24)

To a good order of approximation we may calculate V from its value for the

undamped oscillator, namely V= — 0,7V, and thus we ¢an write
Fa = —mw (4-25)
where y = (2e2w02/3mcS) (4-26)

The constant 7 is called the classical damping constar

resemblance of t
{0 a viscous damping term.

¢ because of the formal
he radiation reaction term as expressed in squation (4-25)
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We now can calcy

. ) tlate the scatterin fici

in an imposed ele . g coefficient for a classical osci

2 consorvative C:(-’:Ziltlag_netw field. In the classical picture the in(‘zeszcma'tor

ceatiered out of a b ering process; hence we can computé th ey

driven by the elt::trf)dm by C_B.lculating the energy fadiatedpby an ;S;ﬁ?rgy
: magnetic field of the incident radiation. The eql ;l_tor

. uation

of motion for an oscillator of m
) of .
amplitude E, and frequency o is ass m and charge e driven by a field of

m(x + (Dozx) = eEoefwt o m’}}X (4 27)

Taking a irial solutio
n for x that is i
the steady-state solution is proportional to exp(iwt), we find for

x — RQI: (e/m)Eqe™”
(e (4-28)

- we?) + iy

from which we derive

X =y = Re|: —(ew? /m)Eqe™" J

(@? = o) + o (4-29)

h i
I us SleS[ItU.UHg IIltO equatl()ll (4 2()) alld a\‘elaglng over a pel’l()d we ha‘de
£l

(P(o)> = (‘34@4 Ey2
= 2 3 -IO
3S J (o — o™ + yhe? (4-30)

which is to be i i -

calculate thzeeili?’z;ﬁszitll;:dthe total energy scaitered out of the beam. To

o . ) , we suppose that th ' '

15 1sotropic e scatterin ~ :

that to gro’dﬁi \:rét; i, @) = To 0(p — po) 8(d — ¢o); in%f_l;s\;;?mlog

magnetic deseript rrespondence between the maCrosé N oun
escriptions of radiation, we have I, = (cEq?/8 C)’P}Chand electro-

- o /OTTL us

<P(a))> = (T( ) 1dQ) = g CE02 2z 1
w 56 () - )fo de¢p J‘—1 di (3 — o) 8 — o)
= (CEOZ/Sﬂ)O'(Q))

(4-31)

Comparin i
g equations (4-30) and (4-31) we see that the scattering coefficient is
o(w) = Bre'w*3mich)(w? — w?)? + ?o?] ! {4-32)

Equation {(4- impli
e Cor(r 68120)11((:121&1; be 81mp11ﬁed by_ noting that, because v « o for fi
o oper g to light, a(w) is a sharply peaked function n T}?“
= . F0 a good approximation we can replace e

(0? — we?) = {0 + we)lw — @) = 2wyl — wg)



84 Absorption Cross-Sections

and substitute equation (4-26) for y into equation (4-32) to find

LY I S |
()’((,L)) = (‘@) [((D , CUO)Z + (’)’/2}2] (4'33)

The total cross-section can be found by integrating equation (4-33} over all
frequuencies, namely

re? pu (y/dm*) dv el l peo dX ne®
_me e M o= - " (434
Tot = e .[0 (v — vo)® + (y/dmy mem J‘—w 1+ x (4-34)

where we have written x = dn(v — vo)fy and observed that, for all practical
purposes, —dmvyfy = — oo The total cross-section gives a measurc of the
cfficiency with which energy is removed from the beam. The factor in square
brackets in equation (4-33) 1s thus a normalized profile function that is known
as the Loventz profile (or damping profile). For our present purposes, attention
will be confined to the total cross-section alone; the profile function will be
discussed in detail in Chapter 9.

The classical result derived above predicts a unique scattering efficiency
for all transitions; this is not surprising insofar as the theory makes 1no
seference to the actual atomic structure or to the nature of the levels between
which the transition occurs. The quanium mechanical treatment shows that
cross-sections for different transitions may differ by orders of magnitude.
A customary way of writing the guantum mechanical result for the total

cross-section is
G = (mE7/mOf; (4-35)

where f;; is called the oscillator strength of the transition. n pictorial terms,
f;; may be thought of as giving the “offective number” of classical oscitlators
involved in the transition; only for the strongest lines does fi; approach
unity. The oscillator strength is related to the Finstein cocfficient B;; by the

expression
G = (me®/me)fy; = By (hvi;/4m) (4-36)

QUANTUM MECHANICAL CALCULATION

Let us now consider the calculation of Bj; when; the atom is treated
according to quantum mechanics and the cadiation fiéld according to clas-
sical electrodynamics. The atomic structure is described by a wave function
P(ry, Ta, - oo T t) where 1y, etc., are the positions of the bound electrons.
The quantity yi* dry =~ dr, is interpreted to be the probability of finding
the atom with the electrons in the volume element (ry, ¥y + dr,), etc. The
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wave functions are solutions of Schrodinger's equation

Hyr = ih(o/ér) : (4-37)

\Zligrch is the total Hamiltonian of the system in operator form [see, e.g
(418, Chaps. §-10) for a discussion of mathematical expressions fo; t-h;

Hamiltonian|. The Hamiltoni i
iltonian |. ian operator is constructed I
Hamiltonian according te the rule from the classical

Hlg;, p)) — Hlg,, (h/1)(2/59,)] (4-38)

ghere Lii gmd p; are space coordinates and momenta, respectively. The atom
as certain stationary states (or eigenstates) i ich i -
Sriain state: es) in which its energy is consta
nt.
For simplicity we shall assume that these states are nondegenerate. Thus if

H 4 is the Hamiltonian of an ioh 19 :
E. then atom which is in a stationary state j of energy

Hap, = (iW)oy,/on) =
which implics ;= ([)(oY;/08) = Eply; {4-39)
Wilt) = v {0) exp(—iEt/h) (4-40)
We may therefore write the general solution in the form
Wilr, 1) = Py} exp(—ikt/h) (4-41)
where the time-independent solutions ¢, satisfy the equation
HA(f’j = Ej(ibj (4-42)

and are orthogonal so that

[bre, dc = <otig = 5 (4-43)

W0) = ) a0, (4-44)

J

\;jfh(;:re ;j = <(f)ﬂ}b.(0)>. For.a system in a general state with wavefunction
(0), the probability of finding the system in a specific state j by a measure-

ment process is gfa; = |a; 2 . . :
state as *q; = |a;*. At an arbitrary time ¢, we can write the general

Y = 3 afowr () = 3 a0, exp(—iEt/h) (4-45)

J i

and again the probability of finding the system in a specific state j is [a-(t)]z
A0}
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’ onstant. 1
i LU ie. H = H,), then the a;s are constant. 1%,
the atom is unpertiy bed (ie., - > cor
hol\«iever the atom is perturbed by some potential ¥, then the ¢'s will change

with time; this is interpreted as the Etom uildf}:::fgt(?(l)l;gi;r?l?;it;(:::rtfégn};yozi
: : such a perturbati

e t01 ag;i?z;j;;ﬁ ?ﬁ?ﬁ;on the at%mic electrons..ln the 1pwest orc.ler
eXt?ma e' ation we cap assume the atom is in a uniform, time-varyimng
% dpprommetic field, E = (E, cos wil. The assumption of 5umforrmty is
eleCtTOH’;)ﬁllgf; r light v:faves which have wavelengths (2 ~ 1_0 cm) that are
T gt d%o a typiu’:al atomic dimension characterized by the Bohr
1ardg‘e C(nga;ex 10~9 cm). The potential of the atomicelectrons in the field is
radius (@g = .

V=eiE-rizE-d:(Eocoswr)(i'd) (4-46)

i=1

o . al,
where d is the dipole moment of the atom. With a perturbing potentt
Schrodinger’s equation becomes

(Hy + VI = ih(or/at) (4-47)
Qubsiituting equation (4-45) for ¥ we have
Hy + V)Y a0 = i1 X dn + Y afdy,fon  (4-48)

1n view of equation {4-39), equation (4-48) reduces to

Y G, = (4-49)
lhz anl}‘/n = Z Ger]J,ln

n n

. . . he
i i by using the orthogonality of t
isolate a particular coefficient d,, by W

d)’sv%ﬁ? multiply equation (4-49) by W}, and integrate over all space. We

then have |
iy dy exp{i(En — E)i/hdilds = Y ant) expliE, = E /A5 VIda>

{4-50)

Now writing o, = (Ew — E)/hand V,,, = {pE|V|d,>, and using equation
(4-43), equation (4-50) reduces to

dnlt) = (W72 (1) V'™ (4-51)

For the perturbing potential given by equation (4-46), we see that

V., = (Eq cos offi- (ild|pay = (Eo cOS wt)(i - dy)
= 2h, cos Wf = My (€ + e ') (4-52)
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The quantities d,,, are called the dipole moment matrix elements. Substituting
equation (4-52) into equation (4-51) we have

dt) = (1)) () e (e + e {4-53)

We now make the simplifying assumption that, at time ¢ = 0, the atom is
in a definite eigenstate k, and we consider a time interval T so short that this
state is not appreciably depopulated. That is, at t = 0, we assume ¢,{0) = 1
and ¢,(0) = Oforailn # k Moreover, we choose T such that g,(7) = 1 forall
t < T.Then the sum in equation {4-33) may be replaced by a single term

(£} = (ih) ™ Mh, e’ (et 4 7i) {4-34)
Integrating equation (4-34) with respect to time we obtain

e fexplil@m — o)t] = 1 expli{w,, + w)i] — 1
am(r) B E{ (wmk - CL)) - (wmk + Cl)) } (4-55)

As we are interested in absorption processes we choose E,, > FE,, so that
0, > 0. From the denominator of the first term in the braces, we see that
the dominant contribution to g,,(r) will come when @ &~ o,y (ie., radiation
near the line frequency is most effective in producing transitions). It is clear
that the second term can be neglected in comparison with the first. Then,
writing x = (@ — w,y), and forming |a,,]> = aka,,, we have

1 1
|a0)|* = 487 2R,y x 2 sin? (E xt) = h72E?|i - d,pPx " ?sin? (5 xt) (4-56)

Equation (4-56) gives the number of k — m transitions (per atom in the initial
state k) produced in time ¢ by radiation of frequency v = w/2x. To calculate
the total number of transitions, we must sum over all frequencies that can
contribute. Suppose that the line has a profile ¢, that falls sharply to zero over
some characteristic frequency interval Av, and that over this range (at least)
the intensity of radiation (and hence E,*) is constant with a value J,. Then
integrate over dv = dw/2m = dx/2x, and define u = $xt, to obtain

N m = (B2 fAmh?)|i - dPt f C T sin? wdu (4-57)
Now for thermal radiation, a characteristic frequency interval Aw over which
the intensity will be constant is of the order (kT/h) ~ 10>, while transition
times t ~ 107 % sec; hence the limits + U on the integral may be extended
formally to + oo, The value of the integral is then found in standard tables
to be n. Further, as was shown in §1-2, Ep = (4nJ,/c) = (E,*/8r), therefore

N i = B H)|i - d,u|*T {4-58)
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Now in terms of the Einstein coeflicient By,
‘/V‘km = ‘B.kmjvr (4'59)
hence By = (872/H20)|i - dyl? (4-60)

In general we shall be interested in the absorptivity of bulk material. 1f we .
assume the atoms are oriented at random with respect to a beam of radiation,
then <|i - d,>> = d, .2 {cos? § = %d,,”, so we may write, finally

B, = (87% d.°/3h%c) {4-61)

The spontaneous emission rate follows from equations (4-8) and (4-9), which

give
A, = (64n*v?/ 3he)S(i, §) (4-62)

In many cases the upper and lower states of a line will be degenerate (or we
may wish to group several levels belonging to a multiplet). It is then customary
10 sum over all substates k of the lower state i and substates m of the upper
state j, and to define a line strength S such that

S, J) = 3 dui® (4-63)
mik
Then we may write :
g A = (64m*v?/3he”)S(, J) (4-64)
or, equivalently,
g:B; = (320%/3h7¢)S(, J) (4-65)

and from equation (4-63)
g:fi; = (8a*my/3he*)S(, j) (4-66)

Finally, noting that S(i, j) is a sum over all upper and lower substates,
equation (4-66) can be used to express the total oscillator strength of a “line”
connecting two degenerate levels (or of the entire multiplet connecting two
sets of closely-spaced levels). Let n’ be the principal quantum number of the
lower level, and label each sublevel with I';let nand | correspond to the upper
level. Then

gu f (0, 1) = rz! Gor S, U1, 1) {4-67)

APPLICATION TO HYDROGEN

Hydrogen, the most abundant element in the Universe, has the simplest
atomic structure, and it is possible to obtain exact analytical expressions for
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its wave functions and osciliator strengths, There are four quantum numbers
that specify a distinct state of hydrogen: », the principal quantum number,
which characterizes energy; [, the azimuthal quantum number, which charac-
terizes the orbital angular momentum; m, the magnetic quantum number,
which gives the projection of the orbital angnlar momentum along a preferred
axis (taken to be the z-axis); and s, the spin quantum number of the electron
equal t0 +7. ’

In most atomic systems, the energies of different (n, [) states are distinct, but
for hydrogen they depend upon the principal quantum number 7 only, and

E, = —%/n* (4-68)

where 4 is the Rydberg constant
R = (2t uye*h?) (4-69)
Here g is the reduced mass, given in terms of the masses of a proton, m,, and

electron, m,, by
-1

py t=m, 4 m, ! (4-70)
The wave function has the form [cf. (392, Chap. 3; 418, Chaps. 9 and 10)}
l[/nlm(ra 07 @5) = Rnl(i‘)YI’m(Qz ‘?5) (4'7 1)

where Y;" is the spherical harmonic function expressible in terms of associated
Legendre functions, and R, is the radial function, which can be expressed in
terms of associated Laguerre polynomials and exponentials. These functions
are normalized such that

f 7R dr = 1 (4-72a)

{

2n © i !
and fo do fﬂ AOLY0, Y0, ¢y sin 0 =, 0 (4-72b)

mmn'

In equation {4-72a), r is measured in units of the Bohr radius
ay = h*fidn*e? i) (4-73}

It is often convenient to work with the function P,(r) = rR,{r) which is
defined such that P,* measures the charge density of the electronic wave
function.

Because all states with a given #n are degenerate, we require the statistical
weight g, and normally will work with the oscillator strength f(w, n) for all
transitions (" — n). The statistical weight is

g, = 2n? {4-74)
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i s It °t the llowed values of lare 0 € 1 < n — L
Tich follows from the fact that the a . <n _
?hz)se ofmare —1 < m < [yand each nbm state has two possible spin orienta

tions s = +7-
Fxercise 4-2:  Derive equation (4-74).

Because the wave functions are known analytically, explicit expressions
can be derived for the oscillator strengths:

171 Ly max(h, I 5, o, ]
(GRS =5 - =7 - ) (4-75)
e, Fim =3 (n*l nz> Qi+’ n
and -
1 1 ] " r 2. T ] lr _ 1
fir, m) En (n’i — n_z) Lzl Vo', I'; n, )
-1
+ Y 4+ Do, yn U+ 1)] (4-76)
V=0
’ 7
where gim, tin ) = (‘fo P A1) Palrir dr) (4-77)

An explicit expression for o2 was first derived by Gogdon (254) and an erip}l;{:;;
form for f{n', n) was derived by Menzet and Pekeris (4]_’7}. Extensflveh adro_
of f(i', n) can be found in (417) and (257). A very convenient form fcg) zemi_
gen oscillator strengths is obtained by expressing them in terms of the
classical value derived by Kramers (363), namely

. 32 i 1373 7_17 (4-78)

which shows the principal dependences of f upon n and - It is then cus-
tomary to express the exact f-value in terms of Kramers approximation

by writing o ]
e fiot, ) = anlols Wi, ) (4-79)
where g;(n, n) 18 called the Gaunt factor. The Gaunt factors are 'all numbers
of order unity; an extensive tabulation of g1, n} can be found in (60).

Exercise 4-3: Using ihe analytical expressions for hydrogen wave funcuofns
given in texts on quantum mechanics [e.g. (392, 183]], calculate the j—va’h}’e.s oir
Lafn =1->n= 2yand Haln' = 2 — i = 3). Obtain val'tles for each f(n‘, ,E,l ]
and combine these to find £, n). Compate your values with those given in tables

[e.g. (9, T0)].
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TRANSITION PROBABILITIES FOR LIGHT ELEMENTS

(a) Hartree—Fock Method.  When the atom has more than one electron,
the wave equation can no longer be solved in closed form, and approxi-
mations must be made. The actual Hamiltonian for an N-electron atom is

!

=

H o= (i) Y, v -

i=1 i

(Ze*r) + Y (@, — ) (4-80)
1 all paigs
)
The first term represents the kinetic energy of the ¢lectrons, the second their
electrostatic potential with the nucleus of charge Z, and the third their mutual
Coulomb repulsion. It is the last term that causes the principal difficulties.
QOne of the most important methods of deriving approximate wave func-
tions is Hartree's self-consistent field method. In this approach, the sum over
electron pairs is replaced for each electron by its spherical average. An
excellent description of how this average is computed is given in (576,
Chaps. 3 and 9). Each electron then moves in a potential that depends only
upon its distance from the nucleus, and we make the replacement

2 (ez/lri - "j|) - Z Vilr:) (4-81)
all pairs i

@5
This results in the approximation of the actual potential by a central field.
With a central field potential, the angular factors in the Schrodinger equation
can be separated out in exactly the same way as for hydrogen, and for each
electron the wave function has the form

Uidr, 0, g1 L, s) = 17 P50, )X () (4-82)

where the normalizations given in equation (4-72} still apply. The functions
U7, are called electron orbitals. The radial equation for each orbital is of the
form (v in units of a,, E in Rydbergs)

(d*Pfdr®) + [Ey + 207 Zogsr) ~ I+ 1)r72]Py = 0 (4-83)

Here Z_(r) is the “effective nuclear charge™ sensed by an electron after
allowance is made for shielding by other electrons [using the central fields
of equation (4-81)]. The atom is now considered to be made up of N such
orbitals, and these are used to construct the wave function for the entire
configuration.

Because of the Pauli exclusion principle, the set of four quantum numbers
(n, [, m, 5) for each orbital cannot be identical for any two orbitals. Also, the
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be constructed so that it is antisymmelric

dinates of any two electrons. In practice -
r deter-

wave function of the atom must

ander the interchange of the coor
these conditions may be met by writing the wave function as a Slate

minant (376, Chap. 12,

U (et} up UL
1 T ey Ualdf U
Dlrg, I8 = Tﬁ_\f:‘ b"f:(”) ;.(ﬁ ) 2:.(") (4-84)
Ul UsB) - Unv)

., N denote the orbitals of electrons 1, 2, etc.,

where the numbers 1,2, .-
d spin coordinates of electrons

while o, f,---»V stand for the space an

% oeoa Vs respectively.
function is carvied out iteratively. Thus Zeer(F)

The solution for the wave
depends in ap involved way on integrals over the electron orbitals, but in
turn it determines those orbitals. Therefore, we start with an approximate
get of orbitals, compute Zogrs solve for the Pus, recompute Z s and iterate
until the procedure converges. The calculations are time-consuming and

jaborious, butl are within the capabilities of modern compulers, and a large
number of wave functions for a wide variety of atomic configurations are

now available.
in an atomic spectrum can be characterized by certain

A specific term 1
quantum numbers describing the atom as a whole. In light atoms these
describe the total orbital angular momentum L (the vector sum of the in-
dividual 17s), the total spin angular momentum S (the vector sum of the §;8);
and the total angular momentun J, which is the vector sum of L and S.
This type of coupling of the ‘adividual momenta 18 called {L—S) of Russell-

Saunders coupling. As a given L, S, and J may result from tmore than one
arrangement of the indjvidual I's, m’s, and §'s of the orbitals, the complete
wave function will, in general, consist of a sum of Slater determinants, and
thus may be very complicated.

In calculating transition probabilities, it is generally assumed that only
one orbital is different between the initial and final state—1.8. only one
clectron undergoes 2 transition. In this case the matrix element rj; Cap be
split into factors, One coming from the initial and final radial wave functions,
and another depending on the angular and spift Wave functions. It is cus-
somary, thevefore, to write the expression for the line strength in the form

S(w, L, 8, T3 B, L8 )= agletet(n, |

2
Here o2 = @ity - O PerPur & (4-86)
0

L, NAMNS (L} (4-85)
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WI]ere Il'l'lEiX = max 1 ’ s M
depending on nLS (a,n [d)'n’];,}’l;f filcl;olt‘hy’f(%t' ) lsjhe strength of the nudtiplet
. s & e factor A (%) 1 . L
Eil zlthghI;le Jgultz&n,ﬁt, Extensive tables of &#(.# )(frl)cllsé’}z; )”5;653 Oj; the fine
> . 2 o 1w+ J9 . © n L i
computigg . ;‘;e fapfmd'lx, 9, “?26—28; 250; 251), and general focr:m?:;; dfm
Generally. the ctors are given in (534; 535,572, §§10.8-10.10; and ;: o
g, but Sye’rio ‘most dlmcl_llt part of the calculation is th'e detérm:'dn i o
L: rious complications also occur when there : ' hation of
S coupling. ere are deviations from
(b) The Counlomb Approximati
- pproximation. Becau i
obtaining &~ s¢ of the labo ;
approxi n%a“:—e iﬁgﬁoﬁiﬁrfefljocg calculations, it is desirablie 1?; (;ﬁig ;2
at can be applied easi .
developed b . bp easily. Such an a .
largestpcontgib?;;tjls i‘“d Damgaard (74), who pointed out tllljal,)tr?;}fgl V:}EIS
whore the elect 1 to thf: radial integral comes from large valu f ;
intogral can ber(:; ;T;g;fﬁ; ;I;ez nee_uly }(ljoulomb potential. In this evgitothré
the princi using hydrogenic wave functions i
e 112\:;1011?&21 iu;ntugl numbers are chosen to give the obsei'(\)f:z{ ngr‘éﬁei
vel. e charge in the asymptoti i ©
effective qua ! ptotic potential, then ihe appropri
below thgcogiﬁlmuulxmr:er is nff = Zje,* where ¢,; is the energy (131‘.P tlf(l)ep lr:ft;
Bates and D , measured in Rydbergs; in general, nj* is i
2 amgaard then show that one can write , Bt 18 not an mteger.

o(mig, { — 1inf, ) = F(nf, DA, nf, 1)/Z (4-87)

Exiensive tables of the fi i
. unctions & and .£ can b i
extensio . - # can be found m (74) : :
othod I;tolfat:}[e-)et:forydli given in (389). Because of the (s1n)1;111c:11t(;‘833 ,t?ln
g widely applied in ast i ©
tabulat ) L rophysical analyses; :
p El)c:ne(.)if Coulomb approximation f-values is given i}ne(siﬁin 366)(31:%lslve
o inaccuia;t (:nenlrlc‘z; I\flrefh()ds. In many cases the Coulomb app’roxim—'?l).
simply oo c;r?lfpllisaj ;ﬂ to re accurate quantum mechanical calculati;nlo'[;
. fed to carry out. In th : !
determined : oM n these cases the f-val
standargeto bt)efs(zxgleglments, which in addition, provide a dfregtifmﬁgi:sg :
; accuracy of various the i . "
variet . ) _ oretical computations .
vene ig:;;:xperimentdl tgchmques exist; brief descripti OES sflon&. A Wl.de
S Sl mﬁthods are given in (11, 300-310; 261, 146149 2620?}? of the
a : L. * ! - ) s
determinations%? jé?;if:sreoiotntalqn'lg both experimental and the:r}?a'ti]csaﬁ
) ) _ ransition probabilities; 1
graphy of this - . probabilities; a compl -
eva{auaﬁed Ei ;S Y‘Vbof:iv 1; lSr %WCE in (454, 230; and 231). Compjlationf c:ft irilz]ibhl?
e €, b st values”) transition probabilities for many ofth oty
physical interest are given in {(453; 584; 670; 672; an}d 673)6 elements

Exercise 4-4: Calcul :
: ate f~values for the He T A
Qp 'P-3d'D), ¢ ' e He I i5876 (2p 3P-3d 3D ,
(485 with b *P—4d °D) lines using equatiorfé I(EE616/)L667(81
trom tabl apprommatzon values of ¢ and multiplet i o
es. Compare with standard values in (672) plet- and line-strengths
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4.3 The Finstein—Milne Relations
for the Continuum

The Einstein relations were generalized to bound—free processes by Milne
(461) in a paper of considerable interest and importance. We consider photo-
ionization processes that start with atoms {or jons) in a definite bound state

not necessarily the ground state) and produce an ion in a definite state
(perhaps excite

d} of the next highest ionization stage plus a free electron
moving with velocity . The inverse process is a recombination of a [ree
electron by a collision with an ion (in the particular state mentioned above)
to form an atom {(in the proper state). The recombination process can occur
spontaneously or ¢an be induced by incident radiation. Let ng be the number
density of the atoms, 7y the density of the ons, and n, the density of Iree
electrons. The electrons have a Maxwellian velocity distribution, and we
write n,(v) dv for the number with speeds on the range (v, v + dv). Let p,
be the probability of photoionization of an atom by a photon in the frequency
range (v, v + dv); then the number of photoionizations in time dr on this

I dv dr. The usual energy absorption coefficient o, is

frequency range is nppty
related to p, by the gxpression ¢, = p,hv. Furtber, let F(v) be the spontaneous

recapture probability and G(v) be the induced recapture probability for
electrons in the velocity range (v, 0 + dv) by the ions; then the number of

recombinations by electrons of velocity v in time d7 is
n A0 F ) + G(v)l, v duv di

The energy of the photon required to ionize the atom (and thus of the photon

emitted in the recombination process) 1

1
h =y + Emvz (4-88)
where y; is the jonization potential from the atomic to the ionic state (Le.,

the energy difference between these states).
Now in thermodynamic equilibrium, the number of photoionizations must
exactly equal the number of recombinations. In T.E, I, = B,, hence

nip,B, = nfn (o) F{t) + G(0}B,](R/m) (4-89)
ation (4-88)

where the asterisks denote T.E. occupation numbers, and edu
has been used to write A dv = my dv. Sotving for B, we find

B, = [F (v)/G(v)]{[nﬁpvm/n’{'ne(v)hG{v)] -1t (4-90)

This expression is to be compared wit
function, namely B.(T) = (2hv3/c*) e

h the standard expression for the Planck
miET _ {17! Fora Maxwellian velo-
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city distribution [cf. equation (5-2}]

n,(v) dv = n,(m/22kT)? exp(—mv?/2kT)dnv* dv - (4-91)

Anticipating the results of Chapte ati
At pter 5 [cf. equation (5-14)], the T.E. relation

(a/m Y = ne{gof2g )1 [ 2mmkT)* exp(y; /kT) (4-92)
Using equations (4-88), (4-91) and (4-92) we find that

nipum/in (hG(v) = (hgo/Smm*g,v*)[ p,/G(v) Je""T {4-93)

Thus to reduce equation (4-90) to the Planck function we must have
F(v) = 2hv*/c*)Glo) {4-94)
and p. = (8um?v?g, /h2go)Glv) = (dnc*m?v?yg,/h g,y ) F (o) (4-95)

Eézssn?zre l:}llle continuum analogues of equations (4-8) and (4-9). Again we

p m;micee a}tb a}though these relations have becn derived froin thermo-

dzpen p oncll;i) ln :llum axrguments, the quantities p,, F(v), and G(v) must really
he properties of the atom; Y

are true in general. m; hence equations {4-94) and (4-95)

The i .

manifes%r\(:f}llt importance of the results just derived becomes more clearl

o er Consign We write the transfe_r equation assuming that at the frequency

processes CO;;_ZUO%OIEY the particular photoionization and recombinatjog
ered above occur. The generalizati i

atom case with - O ne zation to a multilevel, multi-

e ‘:’;;}I;&:gzza;,o"”;dpp?g opacities and emissivities is trivial be-

inearly and the conclusions ;
the sum. The transfer equation is ons we shall derive apply to

wol,joz) = —ngp vl + non,[F@) + G}, ](h*v/m)  (4-96)

Nei . .
areittl;er n_ot nokrl n, necessarily has its LTE value in the above equation. If w
. ‘ . - . ¥
e i« [.1‘1 et ;ltr‘dnsfer equation in standard form, then it is clear that the
ption coefficient corrected for stimulated emission must be

K, = {ng — mu (o) AG(w)/mp, ] Hp,hv) (4-97)

Using equations (4-88), (4-
we find (4-88), (4-91), (4-92) and (4-95), and recalling that o, = p,fv,

Ky, = (”0 - n(ﬂ')ce_hvfkT)Dﬂv (4'98)

In equati - s [
(4_;;])11;21;11 {;11 98), i denotes the LTE value of ny computed from equation
2 g the geiual values of vy and n, (i.c., the LTE population relative
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). In the particular case of LTE where ny = 15,

—Jn-/k]") (4_99) ’

to the actual ion density
k= ngo(l — ¢

As was true for bound-bound transitions, the term (1 i Il 1st 1;19;1?11111);
called the correction factor for stimulated emission; but it 18 F;lear4 gg) s
cxpression 18 correct only for LTE. Indeed we sec from f.:quatlond { ; 08 e
the stimutated emission always occurs at the LTE rate (if we En er mbmao_
to have the meaning given above); thl1s mt{gﬁ be trusic‘gzga\l’:asisfht acr:] r:;:si”brium
[i s a collisional process involving part ! .

E(:] E/lrz‘;;\ifﬁllian) velocity distribution. Note the go_ntrast here \y1th thi;?;};
givé:n in equation (4-13) for bound-—bou{ld traqsﬁpns, whlere a{ }%enedc the
stimulated emission term does ot have its equilibrinm value. When ol

ures from LTE affect the bound-free opacity, they change tlle direct E}Jlslorp—
tion term involving Rg {which n general will not F:qpal ni). V_V’e shall use
these results both in calculating the stimulated emission rafes in the equaz.l—l
tions of statistical equilibrium [¢f. equation %5—63)] and in writing a gener
i i ation (7-1}].
ression for the opacity [cf. equation ( -1) . o
eXI;{eturning to equatlon (4-96) and examiming the term involving F(v), 1t 18

clear that the emissivity 13
e = [hnno)F@)mp.Jo, (4-100)

which, with the help of equations (4-88), (4-91), (4-92), and (4-95), can be
written

W = (2!1\:3/(32)11%0:“8*"‘*” = nio(l - e "B, = kB AT) (4-101)
Thus the continuum emissivity always occurs at the LTE rz_lte (}f ng is des:;
fined as above), which is what we would expect, for the regombman(fn pio;:ew
is collisional. Notice that this derivation recovers the K;rchhf_}fﬁl; anc t raasi
equation (2-6), and extends its validity so'me.what. Again, notice t : conLTE
with the bound-bound spontancous emission where depgrtures rcl)rr}ted >
enter directly if r; is not identical to n}*‘.. These resplfts will bT ;:x_p ol o n
calculating spontaneous emission rates in the statistical equi 1f rl?}?e el}n o
tions [cf. equation (5-61)] and n wriling a general expression 10F

sivity [ cf. equation (7-2)]

Exercise 4-5. Verify equations (4-53), {4-98), and (4-101).

4-4 Continuum Absorption Cross-Sections

ions for bound-free absorption can be caleplated quantuim

Cross-sect as used in §4-2 for bound-

mechanically by essentially the same methods
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bound transitions. Consider absorptions from a bound state r, of statistical
weight g,, to the continuum in a frequency interval Av. The free states have
wave functions characterized by E, the energy of the free electron, and are
normalized such that

so that there are AE states in the energy interval AE. Thus by analogy with
equation (4-65) and in view of (4-36) we can write

g, Av = (87%/3h%¢) AECE]d

n>2(hv/4r) (4-103)
or &, = (87 v/3eg, ) E|d|n)? (4-104)

The calculation of free-state wave functions will not be considered in this
book; the reader should refer to standard texts on quantum mechanics—
e, (197) or (418)—for information on this subject. Further, we shall not
consider the details of calculations based on equation (4-104), though results
of such work will be quoted. An approximate method for the evaluation of
&, by means of equation (4-104), the quantum defect method, is described
below.

An alternative formula for o, can be written if we suppose each continuum
state k to have an effective oscillator strength f,, for absorptions from the
bound state n. If there are Ak free states in the frequency interval Av, then

w, = (me” /me) [ (Ak/Av) (4-105)

This formulation is useful for calculating the cross-sections of hydrogen.
The guantum defect method, developed by Seaton and Burgess (566; 120),
is the continuum analogue of the Coulomb approximation. This method
exploits the fact that the dominant contribution to the matrix element
(E|d|n>* often occurs in regions where the wave functions can be represented
by Coulomb wave functions in the appropriate potential. Consider absorp-
tions from a bound state (u, ) ic the continua (E, ! = 1) where E is the energy
of the free electron. Let I, be the ionization energy of this state, expressed in
Rydbergs, and let Z be the charge on the ion after the electron is removed.
Then define the effective quantum number v, such that I, = Z 2 In
general, v,, will not be equal to the principal quantum number # of the shell
to which the electron belongs, and we can define a quantwm defect p(v, I} =
i — v,,. The quantum defect can be found for each level (n/SL) of a given
spectroscopic type, defined by (ISL) (e.g, *P or *D), in a series. Defining
&y = —1/v,;%, we can determine the behavior of p(e,, 1) versus &,; in favor-
able cases y is a simple function of ¢ (say, constant, or linear in g). It is then
assumed that this variation of g with & can be extrapolated into the con-
tinuum (ie., for ¢ > 0) to give w(e). This establishes the properties of the
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continuum wave functions. The radial matrix element can then be-evaluated

using hydrogenic wave functions, and the cross-section when the energy of

the ejected electron is k2 = 7% (in Rydbergs) can be written

alnl, k¥) = 8.56 107 Y[, + LA X Cp[g(vi;al’)lz cm?®  (4-106)
=T

e
Here g(vl; el = [{(v N *Gl; el cos{a[v + i(e) + yivl; elY]} (4-107)
fiv ly = 1+ 2v72[ap(e)/e] (4-108)

and G(vl; &) and x(vi; &l) are tabulated functions (503) [NoTE: the notation
in the reference cited differs from that in (120), which is used here]. The
coefficients €, are algebraic factors obtained from the integrations over
angular and spin coordinates and are tabulated in (320) for several important
cases; they are analogues of the factor F{M)F (£} appearing in equation
(4-85) for bound—bound oscillator strengths.

The quantum defect method, despite its simplicity, often gives very good
cross-sections [see (120; 503)] and has been widely employed in astrophysical
work. A number of quantum defects pu(e) are given in (503) where they are
used to calculate cross-sections and opacities for abundant elements in
stellar atmospheres [see also (502)]. For brevity, only absorption by hydro-
gen and helium, and their ions, will be discussed in this chapter; these are
the most abundant elements in stellar material, and usually dominate the
opacity. References 10 other opacity sources will be given in §7-2.

HYDROGEN

A simple way of obtaining bound—free and frec-{ree absorption cross-
sections for hydrogen was suggested by Menzel and Pekeris (417). They
introduced the formalism of representing bound states by real (integer)
guantum numbers, and free states by imaginary quanfum numbers. The
bound-state energies relative to the continuum are given by equation (4-68),
and it follows that the energy of the transition (7' — 1) 8

hvypw = R/ — (1/n)*] (4-109)

If a free state has the imaginary quantum number ik, then by analogy
1
v, = ALY + (1/k)*] = (An'™*) + 3 mu® (4-110)

where the first term clearly represents the jonization potential from bound
state #, and the second the energy of the free clectron. Note that k — co at
the ionization limit and becomes small high in the continuum.
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The formula for the continuum oscillator str
T _ 4 eneth fol al-
ization of equations (4-73) and (4-79) to ath follows from & gencre!

P B TELTE. 173
Jk 373 e h‘.’erk‘?) guln', k) 4-111)

wher&_: i %s the bound-—free Gaunt factor. Formulae for the Gaunt fact

are given in (417} and an extensive numerical tabulation is given in (35;r'
gp s a number_of order unity at the ionization threshold, shows a slow ris)c;
to about 1.10 (in the limit as n” — oo) at about 1 Rydber:g above threshold
and then_decreases to small values in the X-ray regidn. The absor tionj
cross-section can now be derived by substituting equation (4-111)p' t

(4-105), noting from equation (4-110) that for »’ fixed, e

(dkjdv) = —(hk>325) (4-112)

o, = (Eez) (W)( 32 1 N\ gnlw. k)
me J\29 J\37./3 n’5k3) () (4-113)

which, in view of equation (4-69), reduces to

We then find

64ntmet®N 1 ,
s= Vg, V) = guln', v)
: (3\/5 Ché) ?’1’51)3 g][(n, V) = E:,lr5v3 (4-1 14)

where o = 2.815 x 10 Thus bound-free absorption from level n com-
mences abruptly at the threshold frequency v, = (%/hn®} and falls off at

higher frequencies as v~ ° (neglecti iati
glecting the weak variation of the G
The threshold cross-section is given by © Gaunt factor)

(v, 1) = 7.91 x 10718 ngy(n, v,) cm?

The opacity per cm? of the stellar material can be computed by multiplyin
the cross-section for level n by the number of hydrogen atoms (per Crrr)lg) iﬁ
that level, and summing over all levels that can absorb at a given frequency v
(1.6., a_‘;Il i such that_ v, < v). The bound-free opacity of hydrogen calculat)e(:d
]1]11 this way has a jagged character, as shown in Figure 4-1. Except for the
ottest stars, most of the hydrogen is in the ground state, and the absorption
edge at ./19]2 A (one Rydberg) is extremely strong. For 9i2 Ag<ig 3627 A
abso%‘p’uons from the ground state can no longer occur and\the Eomin ‘E
opagty source is photoionization from the n = 2 level (]’3almer continuu?rrll)
Su;ularly, for_ 3647 A £ ) < 8206 A, bothn = 1 and n = 2 cannot absorb.
?\n the dominant continuum 18 from n = 3 (Paschen continuum); and so onj
ctually the opacity variation shown in Figure 4-1 is idealized 11; that there;
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FIGURE 4-1

Opacity from neytra! hydrogenat T = 12,500°K and
T = 25,000°K,in LTE; photoionization cdges are labeled
with Lhe quantum number of state [rom which they arise.

Ordinate: sum of bound -free and free—free opacity in cm?/atom;

abscisse: 177 where  is In microns.

of lines converging on each photoionization threshold at the
series limit. Near the limit the lines blend together smoothly and merge into
the continuum. Bound-{ree absorption from hydrogen is the dominant
continuum opacity source in stars of spectral types 4 and B.

Let us now consider the free-free opacity of hydrogen. In this process, a
free electron passing near a proton causes a transitory dipole moment, and
absorptions and emissions of photons (with a consequent change in the
clectron’s energy) become possi
bound—free absorption, we introduce imaginary quantum numbers for both
the initial and final states, say ik and il, such that, if v is the initial velocity
of the free electron, and v is the frequency of the radiation absorbed, then

exists a series

1
Hk™* = 5 m” (4-115)

ble. By analogy with the calculation of -
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and Rk~ + hy = P2 {4-116)
Assume that absorptions take place from a band of states 4k into a band of

states dl = (dl/dv) Av;thenine i
PR quation (4-105) we replace f,, with f,, dk, and

alv, vy = (me?/me) fiy di(dlfdv) 4-117

as the absorplion coefficient ]
: ' per ion and per electron moving wi [
The appropriate generalization of equations (4-78) and (4-1"6!19;1'151 pelocity v

Ju = ﬁii i __1 _3Q1H{k, 3
3n 3o\ )P (4-118)

where g, is the statistical weight I
v eight of a frec electron, given by quantum statistics
g = 2h™ N dmmo? dv) = (162Bm o/h> k) dk (4-119)

the second equality following f ati
e A g g from equation (4-115). Substituting into

2 .
aly, v} = (E‘)( 64-) Wk % * gy, v) (dl
me J\3n /3 \L6nRm*s }\ hy BB \dy (4-120)

and making use of the relation that y ) f
I AN e OF e pelt hat Jor & (or ¢) fixed, (di/dv) = {(h*/29) from

alv, v) = ( 20the’ Yurlv, )
3ﬁ\/§ mi¢ V3 (4-121)

The ' i i
total absorption cross-section per ion and per electron is obtained by

dlSlllbUtIOll as gl\"ell b} Cqu’chOIl (4'91). ”16 ICSLIlt 18

4(’,6 2 E
alv, TV = [ =} =" = -1 -3
) (3ch) (3 km3> T35 gy, T) (4-122)

where use i
¢ has been made of equation (4-69), and gy, is the thermal average

“of the Gaunt factor

Gm(v. T) = f[; Guv, v)e " du (4-123)

where u = (mo?/2kT).

Exercise 4-6:  Verily equations (4-122) and (4-123).
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Inserting numerical values for the atomic constants, multiplying by the
electron and proton densities, and correcting for stimulated emission (notice
that because the process 18 collisional it is always in LTE. at the actual
electron and ion densities), we obtain the opacity coefficient

K (free—free) = 3.69 x 108 Gy(v, TIv T Ingin(1 — e MERTY (4-124)

Formulae for fy are given in (417) and extensive tables can be found in {85)
and (352). The free—free opacity plays an ever more important role at low
frequencies compared to the bound—free, because of the decreasing number
of photoionization edges that contribute as v — 0. Further, the free—free
becomes more important at high femperatures, for as can be seen from
equation (4-92), in the limit (T/ion) > 1, the bound state populations vary
as n; oo non, T~ ¥ hence the ratio of free—free to bound-free opacity rises
T in the high-temperature linit. The free—free process is the dominant true

absorption mechanism in, e.g., the O-stars.

THE NEGATIVE HYDROGEN JON

Hydrogen, because of its large polarizability, can form a regative ioh
consisting of a proton and two alectrons. This ion has a single bound state
with a binding energy of 0.754 ¢V. Because ofits low binding energy, H™ does
not exist at high temperatures (it is destroyed by ionization) but is prevalent
mainly in the atmospheres of solar-type and cooler stars. It was recognized
by Pannekoek and Wildt that H~ could be an important opacity source in
such stars. As it turns out, the abosprtion cross-section of H™ is large and,
although only a small fraction of the hydrogen exists in this form, the opacity
from H -~ is the dominant one in the atmospheres of cooler stars.

The negative hydrogen 10n can absorb and emit radiation via both bound—
free and free—free processes; 1e.,

H + v = H + ¢v) (4-125)
where Tmp? = hv — 0.754 ¢V, and
H o+ eln) + = H + et (4-126)

where Lmy'? = $mu® + hv. In the free—free process, an electron passing near
to a neutral hydrogen atom induces, by polarization, a temporary dipole
moment that can interact with the radiation field, leading to absorptions and
emissions. The bound-free absorption process has its threshold at about
16500 A (1.65 p), corresponding to the detachment energy. It reaches a
maximum cross-section of about 4 x 10-17 e¢m? at 8500 A and decreases
toward shorter wavelengths, The free—frec cross-section is about equal to the
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FIGURE 4-2

Bound—ﬁ'ﬁ?e and free—frec opacity from ™ at T = 6300°K. Ordinate:
cross-section ( x 10?%) per nsutral H atom and per unit electron . ‘
pressure p, = n,kT; abscissa: A/1000 where £ is in A.

bound free near 15000 A (1.5 1) and increases towards longer wavelengths
The summed absorption coefficient (see Figure 4-2) has a minimum at a%mﬁ
1.6 #; although other absorption processes act to wash out the minimum, th
opacity for cool stars is smallest near this wavelength. e
‘ The determination of cross-sections for the.{wo processes mentioned above
is difficult and has been attempted both theoretically and experimentall
V_ery claborate wave functions are required to give the desired accuracy-
Pioneer calculations that gave fairly accurate values were carrted out by.
Chapcllrasekhar and Breen (162). These were shown to be in accord Wiﬂ{
empirically c_leduced values for the absorption coefficient in the sun, and led
to the firm identification of H™ as the major opacity source in {he solar
g;nsﬁzp?ere((;:;)@-Z}.fMorfe accurate values are now available for both the
—free and free—r -sections; i
et it evme et Valui;z .(604) cross-sections; these are in good agree-
In I.,TE, the number of H™ {ons per ¢cm® s given by a Saha formula [see
equation (5-14)] that is of the form »*(H™) = n{H)p,®(T) where n(H) is th
number of hydrogen atoms per ¢cm?, p, = nkT, ande(I)(T) contains the te :
perature dependence of the ionization equilibrium. The LTE opacity can thnt;lg
be written k¥(H ™) = oo, (H )n(H)p, &(T)(1 — e **7); departures from LTE
may enter both in the calculation of #(H{7) and in tl;e stimulated emission
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correction factor. Because w*(H ") is proportional to Pes i_t is clear that it will
be a more important opacity source in dwarfs than in giants, Also, because
the clectron density in G-type and cooler stars depends. upon the z‘ibundancc
ofthe metals, H™ will be a much weaker opacity source in Population [T stars
(which have low heavy-clement abundances).

OTHER I0NS OF HYDROGEN

Hydrogen exists in two other forms that ca}rn contrib}lte signiﬁc.aptly. o
the opacity in stellar atmospheres, namely H,™" and H, . The po.sﬂw‘e ion
H,* consists of a single electron shared by two protops; absorgt}on CIoss-
sections are given in (72) and (117). As the number density of H, is propor-
tional to n{H)n,, H , " contributes significantly to the totall op.acuy only for
the temperature—pressure range where both nqutral and ionized H—atorqs
exist simultancously in appreciable pumbers; ie., where the hydr+ogen is
about half-ionized. This range is characteristic qf th}f A-stars, Fmd H," makes
about a 10 percent contribution to the opacity m the visible part of the
spectrum (the [, " absorption peak at 1100 A is swamped by the Balmer
continuum of hydrogen). _ |

The negative molecular ion H, - exists only at re_lat;vely low lempcrgluresﬂ
characteristic of the M-stars, and its free—free continuum mqkes a s.1g.mﬁcant
contribution at long wavelengths (the bound-free process 1s n(_*,gh_glble). In
this process, an electron passing near an H, molecule tempgrarlly 111d}1ces a
dipole moment by polarization effects, and this moment can 1ptera_ct_w1th the
radiation field. The I, continuum tends to ﬁll- in the opacity minimum of
H~ at 1.6u. The free—free cross-section is given in (592).

HELIUM

Helium is observed in stellar spectra in both its neut_ral gnd singly-
ionized states. Because the ionization potential of neutral helium is 24.58 eY,
it persists to temperatures characteristic of the B-stars, where }tfydrogen' is
already strongly ionized; in the O-stars, He IT becomes a major opacity
source. The threshold for abosprtion from the ground state of He I 1s at
3504 A - the ultraviolet spectrum for 4 < 504 Alis dominated.by He I.absorp—
tion for stars of types BO and cooler. The excited states of hc?ll‘um fau into two
groups, singlets and triplets, and each (n, £, 5) st.ate _has a different 10111zat10.r1
energy. Roughly speaking, the jonization energies lie close to t'he hydrogenic
value at the same #; thus helium coniributes several.absorptlon edges near
each hydrogen edge (for n = 2). Because the excitation energy of even the
lowest excited state is so large (19.72 V), helivm adds to the opacity mllhs
visible regions of stellar spectra only in hot (B-type) stars. Generally, helium
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is appreciably ionized before the excited states contribute to the opacity
significantly. In a few stars the helium to hydrogen ratio is anomalous, and
approaches or exceeds unity; here helium can dominate the opacity.

Helium is a three-body system, and exact wave functions cannot be
obtained. A number of special methods can be applied to obtain accurate
approximate wave functions [see (87, §§24-32; 577, §§18.1 — 18.3)]; varia-
tional techniques applied to the ground state have been refined to the point
of vielding very precise wave functions. The ground-state absorption coeffi-
cient calculated from an accurate Hartree—Fock wave function is given in
(603); this agrees well with experimental values (311). Absorption cross-
scctions from the 2°S, 27 P, 215, 27 P levels have been calculated using accurate
variational bound-state wave functions and close-coupling free-state wave
functions (332). For higher excited states, precise cross-sections have not
been published, and here one may use the quantum defect method.

Tonized helium is a hydrogenic ion with Z = 2. As energies in such ions
scale as Z%, the frequencies of the ionization edges, v,, are larger by a factor
of four, and the ground-state edge occurs at 2227 A. This edge dominates the
far ultraviolet spectrum of O-stars, except at the very highest temperatures
where the helium becomes doubly ionized. The n = 2 edge of He II coin-
cides with the hydrogen Lyman continuum; higher edges from states with
even quantum numbers coincide with hydrogen edges from states with
n = n(He 1I)/2, while those from states with odd quantum numbers fall
between the hydrogen edges.

Hydrogenic cross-sections can be used for He I1, but the bound-free cross
sections are a factor of Z* larger, and the free—free are a factor of Z* larger.
The hydrogenic Gaunt factors apply if one evaluates them as functions of
{v/v,). He II affects the visible spectrum only in stars of types B0 and hotter.

Finally, helium can give rise to a frec—free opacity in cool stars. Cross-
sections for this pracess are given in (593; 340).

Exercise 4-7: Calculate the photoionization cross-sections of Hel from the four

n = 2 states by the quantum defect methed and compare these resufts with the
more accurate values cited above,

4-5 Continuum Scattering Cross-Sections

As mentioned in Chapter 2, continuum radiation may be scattered as well as
absorbed. In the latter case, photons are destroyed, and their energy con-
tributed at least partially to the thermal content of the gas. In a scattering
event, the phoeton is not destroyed, but merely redistributed in angle, and
perhaps shifted slightly in frequency. Cross-sections for the two most impor-
tant scattering processes in stellar atmospheres are derived in this section.
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THOMSON SCATTERING

The scattering of light by free electrons is referred to as Thomson seat~
tering. The classical formula for this process can be obtained directly from

equation (4-32) by noting that for an unbound electron both the resonant

frequency we and the damping parameter are Zero. Thus we find
g, = (Bnet{3m*et) = 6.65 % 107 2% cm? (4-127)

Note that this cross-section is independent of frequency. The Thomson
cross-section has been verified by guantum mechanical calculations in the
limit of low photon energies; ie, hv « me®. At high photon energies (4 <
1 A, in the X-ray region} one must employ the Klein—Nishina lormula
(293, §22; 392, 433), which predicts a smaller cross-section; in practice the
departure of ¢ from g, can be ignored in stellar atmospheres work (except
for X-ray binaries).

In the derivation of equation (4-32) an angle averaging was performed,
and thus the angular dependence of the scattering coefficient was suppressed;
the correct anguiar dependence is given by the dipole phase function in
equation (2-19). 1n stellar atmospheres applications, this angular dependence
can almost always be ignored and the process considered to be isotropic.
Frequency redistribution in the laboratory frame caused by Doppler shifts
from the electrons’ motions have also been neglected; these will be considered
in Chapter 13 {sce Exercises 13-5 and 13-6). In the continuum, the frequency
redistribution just mentioned can be ignored; near a spectral ling, it may be
necessary to take it into account. Flectron scattering is one of the most
important opacity sources in hot stars {e.g., the O-stars).

RAYLEIGH SCATTERING

The term Rayleigh scattering refers to the scattering of radiation by
bound systems, such as atoms or molecules, at frequencies much lower than
characteristic transition frequencies of the system. Again using equation
(4-32), the process can be described by representing real transitions of the
scatterer with equivalent classical oscillators of appropriate strengths f;;, and
resonant frequencies w; equal to the actual sransition frequencies. Then for

< o, equation (4-32) simplifies to yield
olw) = (871:@4/31112(:4)fijco4/(coij2 — o) = oufiptllet - »?)?*  (4-128)

Far from the resonant frequency, &(w) varies as w* or A%, which leads to 2
strong color dependence of the scattered radiation; a well-known example
of this dependence is the blue color of the sky, resulting from sunlight scat-

tered by molecules of aix.
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Rayleigh scattering can be important in the atmospheres of sta f
Fnoderate temperature (spectral types G and K). Here most of the h ddrsv0
ts nt;utr]il and 1? the (glround state. The resonant frequencies cbrresgorrlil%i[gl

o the Lyman lines (1 — n} lie far in the ultravi isi
interact wi_th these transitions by the Raylei;la\s]z:{z)tlti:rierl:gdg;if;iEr?lo%)gs
macroscopic scattering coefficient is ebtained by summing over all lin : 2
mqltlplymg by the density of hydrogen in the ground state. Raylei heS a'n t
tering from neutral hydrogen can dominate the total opac-ily ayt re%at'sc‘il-
low tempergtures and high frequencies; see the graphs in (97) and (16\;313/
Moreover, in stars with low metal abundances (Population 11 stars) tl)'
numbe_r of free electrons (coming mainly from the metals) is greatly red ’ 216
accorc_hngly the Qpacity from H™ is diminished, and thus thz im }(;rtanucc f
Rayleigh sc_:at_termg is much enhanced. Molecular hydrogen Hp ma CelO
(si:g;ger radlatlonbiln an analogous fashion. The cross-sectio;l pé; m;}l/eiljl(;

is comparable to the cross-section per atom : i

low temperatures (¢.g., in M-stars), H, is m[ilch more ;Orl;;?efrflliihg}d;?ge@ ﬁt
and thus molecular Rayleigh scattering dominates. e

It should be noted that in a continuum scattering process there i
analogtle of the stimulated emission that occurs in absorption rSCIS‘ .
Thus.m the macroscopic scattering coefficient there 18 no correctfon febstes'
for stimulated emission such as appears in equations (4-98) and (4-99) o
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The Equations of
Statistical Equilibrium

Stellar atmospheres arc regions of high temperature and low density. There-
fore the gas consists mainly of single atoms, ions, and free electrons; in
cooler stars molecules also form. Because of the low densities, the material
always behaves as a perfect gas. The state of the gas is specified when we
know the distribution of the particles over all available bound and free
energy levels—ie., when we know the occupation numbers of these levels.
We then have the information required to compute the gas pressure, mass
density, opacity, emissivity, etc. of the material.

To specify occupation numbers, we must deal with the phenomena of
excitation and ionization of each chemical species in the gas. One approach
is to assume that we may apply the equilibrium relations of statistical me-
chanics and thermodynamics at local values of the temperature and density;
this is the local thermodynamic equilibrium (LTE) approach. As we shall see,
L TE provides an extremely convenient method for computing the particle
distribution functions. One of the fundamental properties of stellar atmo-
spheres, however, is the presence of an intense radiation field whose character
is very different from the equilibrium Planck distribution. This radiation
field interacts strongly with the material via radiative excitations and photo-
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;onizations (and their inverses), and thus acts to help determine the occupa-
tion numbers of the gas; we shall show in fact, that radiative transiiions
dominate the state of the gas. In this case the occupation numbers must be
determined from equations of statistical equilibrium, which specify all of the
microprocesses that produce transitions from one atomic state to another.

The fact that the state of the material depends upon the radiation field
introduces the essential difficulty of stellar atmospheres theory for, as we
mentioned in Chapter 2, the radiation field, in turn, depends on the occu-
pation numbers via the absorptivity and emissivity and their effects upon
the transfer of radiation through the atmosphere. Thus what is required is
a completely self-consistent simultaneous solution of both the radiative transfer
and statistical equilibrium equations. This is a difficult problem in general,
and its solution occupies the bulk of Chapters 7, 11, and 12 of this book.
For the present we shall only show that there are strong expectations that
the state of the material will depart from that predicted by LTE, which is
therefore at best a computational expedient. If in any particular case the
occupation numbers obtained from the general analysis happen to agree
with those predicted by LTE, then one may legitimately use the LTE assump-
tion; but for a wide range of problems (line-formation in particular), such
agreement is not generally attained (nor can we accurately predict a priori
when it will be for most cases of interest!).

5-1 Local Thermodynamic Equilibrium

In thermodynamic equilibrium, the state of the gas (Le., the distribution of
atoms over bound and free states) is specified uniquely by two thermo-
dynamic variables (we shall choose the absolute temperature T and the
total particle density N) via the well-known equilibrium relations of statistical
mechanics. These relations will not all be derived in this chapter, as they are
easily found in standard texts [see. e.g.. (565, Chaps. 12, 14, and 15; 11,
Chap. 3)} but will be summarized in forms useful for further developments
in this book. The assumption of LTE asserts that we may employ these
same relations in a stellar atmosphere at the local values T(r) and N(r)
despite the gradients that exist in the atmosphere. This simple assumption
is actually a very strong one, for it implies that we propose to calculate the
above-mentioned distribution functions without reference to the physical
ensemble in which the given element of material is found. Thus it is assumed
that it is irrelevant whether the material is contained within an equilibrium
cavity (the classical hohlraum), an atmosphere with a strong radiation field,
or in the exhaust of a space vehicle, despite the obvious dissimilarities of
these situations! In LTE, we have a purely local theory, which makes no
allowance for coupling of the state of one element of gas with that of another,
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say by radiative exchange (except as may be imposed by. ce-rtain glc.)l.)allcon—
straints on the atmospherc—e.g., hydrostatic or rad1gt1ve equlhbr_lur_n).
Moreover, in LTE the absolute temperature T has a quite .gene_ral -s1gr1.1ﬁ-
cance. The same T applies in the calculation of theT velocity dlstrlbu.taon
functions of atoms, ions, and electrons; the distrlbutlgn Qf at.oms and ions
over all states (Boltzmann—Saha equations) ; and_ the_ distribution of thermal
emission (Planck function). In short, the full 1mp11'cat10ns of the LTE assump-
tion are quite sweeping. It is this very fact which makes 1t_so eﬂ"ect.lve 11n
reducing the complexity of the equations, and at the same time so difficult
to justify physically and so vulnerable to error.

THE MAXWELLIAN VELOCITY DISTRIBUTION

The probability, in thermodynamic equilibrium, that a p.arti.clc of mass
m at temperature T has a velocity on the range (v, v + dv) is given by the
Maxwellian velocity distribution

3

() do, dv, dv, = (27:%) exp[ —m(o,2 + v} + v.Y2KT] dvgdvy dv, (5-1)

2%

or, in terms of speeds on the range (v, v + duv)

f() do = (ﬁ?)lexp(mmvzﬁk'l")ﬁmuz dv (5-2)

These distributions may be characterized in terms of the most probable

speed )
! vy = (2kT/my* = 12.85(T/10%* A)* km/sec {5-3)

where A is the atomic weight of the particle. Related parameters are the
root-mean-square speed (0¥ = (3kT/m)?, and the roc;t—fnean-squarf: ve-
locity in one component (¢.g., along the line of sight) (o 25F = (kTimp.

THE BOLTZMANN EXCITATION EQUATION

In thermodynamic equilibrium at temperature T, atom§ are dist_rlbuted
over their bound levels according to the Boltzmann excil?ano.n e'qua_uon. Let
n, , denote the number density of atoms in excited level i of jonization state
jéf chemical species k. Let j = 0 denote neutral atoms, j = 1 singly ionized
atoms, etc. Measure the excitation energy ¥ij relatwe. to the ground staFe
of the atom. Let g; denote the statistical weight asmgneq to the level to.
account for degenerate sublevels (e.g., the 2J + 1 m-states in the absepce of
a magnetic field). Then, according to the Boltzmann law the population of
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any excited level is
(”fjk/”ojk]* = (gijkff!ff(}jk} exP(*Zijk/kT) (5-4)

where the subscript 0 denotes the ground level and the superscript * denotes
1L TE. For any two excited levels./ and m,

(nmjk/nljk)* = (gmjk/gljk) eXp[*(I{mﬂc - Zi_fk)/’r"T]
= (Qmﬂc/?f.!jk} exp(—hv,,/kT) {5-5)

where hv,,, is the energy of a photon that equals the energy difference between
the levels. In calculations of ionization equilibria, we typically wish to know

the total number of atoms in a particular ionization state, which can be
written as :

NG = Z iy = (WS ldos) Y. Y €D — i /K T)

!

= (n;g_jk/ngk)Ujk(T) (5-6)

where UJR(T) = Z dim CXp(—;{Uk/kT) (5-7)

is called the parrition function. A form of equation (3-4) customarily used in
classical curve-of-growth analyses of spectra (see §§10-3 and 10-4) is

(M5 /N = e eXP{— 2w/ KTV U o(T) (5-8)

The partition function is tedious to compute, and for some atoms and
ions (e.g., of the rare earths) our knowledge of the term structure is so
incomplete that we lack the needed data. Tabulations of partition functions
{11, 115-117) and convenient analytical fits with approximation formuiae
(103; 220) arc available. Often a fair cstimate is just gy; Or @ sum over a
few low-lying states. Note that formally the partition function in equation
(5-7) diverges if the sum extends over all (an infinite number} of bound states,
for a lower bound to each term of the sum is exp(—y,/kT) (where y, 5 is
the ionization potential), which is nonzero. This probiem is not a physical
ong, for in reality the highest levels cannot remain bound because they are
strongly perturbed by neighboring atoms and ions. To estimate the effect
we might suppose that the only levels that are bound are those contained
within the average velume available to ions. For a particle density N, the
mean interatomic distance is r, = (3/4nN)*, and for a hydrogenic ion of
charge Z the radius of the state of principal quantum number nis r, = #?ay/Z
where g is the Bohr radius = 5.3 x 107% cm. If we set r, = r, and choose
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a typical value of N ~ 10'° we find n & 30Z*, 80 clearly the sum is finite.
A more accurate calculation (see §9-4) shows that in a plasma w1.th charge
density n, and temperature T, an ion of charge Z suﬂ‘;rs jlllowermg of the

ionization potential by an amount Ay = 3 % 1078 anlT.j % ¢V. For hydro;
genic energy levels this implies nk. ~ 4 % 108 Zn, 5T Or fyyy ~ G022
for n, ~ 10'*and T ~ 10%

THE SAHA IONIZATION EQUATION

Above the discrete bound eigenstates of an atom there exists a continuum
of levels in which the electron is unbound and has a nonzero kinetic_ energy.
The energy above the ground level at which this continuum begin§ is called
the ionization potential y;. The relative numbers of atoms and ions in succes-
sive stages of ionization can be computed from the Saha ionization equation,
which we shall derive as an extension of the Boltzmann formula to free states.

Consider a process in which an atom of species k is ionized i"rom-its ground
Jevel, resulting in an ion in the ground level plus a free electron in the con-
tinnum moving with speed . The energy required to carry out this process is
71 0.5 + 3mv” (where we have used notation para_tllel to .that used in our
ciiéchssion of the Boltzmann formula). The statistical weight of the initial
state is go, o, and the statistical weight of the final state (ion + electron)
may be written g{v) = go, 1,k X Gelcotron: If we use g, 1.«{v) to denote the
number of ions in the ground level with accompanying free electron with
speed in the range (v, v + dr), we may apply equation (5-4) to write

[”0. Ui g, A= [Q{U)/go,o,k] GXP[_(ZL 0.k T %mvz)/kT] (5-9)

We identify goeoyen With the number of phase space clements available to the
free clectron, which, according to quantum statistics, is

= 2(dx dy dz dp, dp, dp,)/W’

electron

where the factor of 2 accounts for the two possible orientations of the
electron spin. We choose the space-volume element (0 contain exact_ly one
free electron, and make the substitution dx dy dz = n,”l. We rewrite the
momentum volume element in terms of the electron’s speed,

dp, dp, dp, = 4np* dp = dmnm’v* dv
Then equation (5-9) becomes

[”o, 1, (D), o, k]ﬁ

= 87[17?3]?_3(90‘ 1./da, 0, k)”e_l exp[ — (10,5 + %”wz)/krr] v* du (5-10)
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Now, summing over all final states by integrating over the electron vélocity
distribution we obtain

{no,1. i/, 0, 1) 7
= 8um*h ™ (Go. 1 /b0, 0.« )2k Tm) exp(— s 0.1/kT) J": e™¥x? dx  (5-11)
or, evaluating the integral,

1 o1 = 15, 1,600 3 2mmk TV g0, 0,1/90.1,1) €XP(1r, 0, 1/KT)  (5-12)

which is a basic form of Saha’s equation. Note that in the derivation we made
no explicit reference to the ionization state of the initial “atom,” hence we
may extend equation {5-12) to apply between any two successive stages of
lonization

Ry = NG, j+ 1,0 %(h2/271}”]{T)%(§]0,f1c/90,j+1,k) explyn/kT) (5-13)

If, further, we apply Boltzmann’s formula, equation (5-4), we obtain an
expression for the occupation number of any state of ton j in terms of the
temperature, electron density, and ground state population of ion j + I,
namely

ny = RO,j+1,kne(gijk/g(),j+1,R)CITﬁ% exp{{yra — Xijk)/kT]
= g, i1, 1 Pg(T) {5-14}
Equation (5-14) is the most useful form of Saha’s equation for the formalism
we shall employ, and will be used to define LTE populations in the full
non-LTE equations of statistical equilibrium (lor this reasen the superscript *

on ng ;41 and n, has been omitted). The constant has the value C; =
207 x 107 % in ¢gs units.

By applying equation (5-6), we may rewrite equation (5-14) as
n?:ik = Nfﬂ,k”e[ge,ﬁ l,k/Uj+1,k(T)](Dijk(T) = 1V?+1,kne(I)ijk(T) (5-15)

Further, by summing over all bound levels of the lower ionization stage and
again using equation (5-6), we obtain an equation for the ratio of the total
number of atoms in successive stages of ionization:

(N]k/Nj+ 1,,1‘)* = ne[Ujk(T)/U“._}.l’k(T):[chﬁg eXp(}{Ijk/kT) = ne(ﬁr)jk(T)
(5-16)

By recursive application of equation (3-13} between successive stages of
ionization, we can obtain an expression for the fraction of atoms of chemical
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species k in ionization stage j relative to the total number of atoms of that
species: .

Sl T) = (Np/NJ*
(NJ—Lk/NJk)* e (Njk/Nj—-r l,k)*

L Ny /N {NJ*l,k/Njk)*(NJfZ,k/NJfl,k)* +
+ (Nyo /N N/ N *

1T [ndu(m] / S 1] [ndu(T)]

t=j m=0 I=m

4

= Palne, TVSn, T) (i =1,...,J) (5-17)

where J, is the last ionization stage of species k considered. We observe
the convention that the product term for { = J, (which formally becomes
void) is replaced by unity in both the numerator and denominator.
Consideration of the above results shows that, if we know (n,, T), then we
may determine, for any chemical species k, the fraction in any chosen
ionization slage from equation (5-17), and.in any particular excitation state
from equation (5-15). If, in addition, we know the total number density of
atoms of this species, we can obtain absolute occupation numbers n. In
practice this procedure is useful in LTE calculations of line spectra where
we are given a model atmosphere that specifies n.(z) and T(z). In computation
of the model itself, however, we generally do not know n,(z), but rather the
total particle density N(z); we must then determine »,, and as can be seen
from equation (5-17), this implies we must solve a nonlinear set of equations.
Let us therefore now consider methods of solving the nonlinear problem.

5-2 The LTE Equation of State
for Ionizing Material

The Saha—RBoltzmann relations aliow a computation of the fraction of each
chemical specics in various stages of ionization, and the number of free
clectrons that each contributes to the plasma. Stellar atmospheres consist
of a mixture of elements with widely differing ionization potentials; in
general some of the species may be neutral while others are singly or multiply
ionized. Usually the transition from one ionic stage to the next occurs
fairly abruptly with increasing temperature, and normally a particular
chemical species exists essentially entirely in two successive 10mzation stages.
This provides a sensitive diagnostic tool to infer the temperature structure
of a stellar atmosphere, for it implies that ratios of line strengths of two
successive fonic spectra (¢.g., He T and He IT, or Ca I and Ca II) will vary
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rapidly as a function of temperature. In fact, this was the basis upon which
the first understanding of the spectral sequence as a temperature sequence
was built by Saha {546; 547), Pannekoek (495), Cecilia Payne (501), and
Fowler and Miine (222; 223). In normal stellar atmospheres hydrogen is
by far the most abundant constituent, and helium is next most abundant
with N{He)/N(H) = 0.1. The heavier clements have much smaller abundances
relative to hydrogen [see, e.g., (252) for element abundances in the solar
atmosphere]. At typical temperatures in the solar atmosphere (6000°K)
hydrogen is essentially neutral, and the electrons are contributed mainly
by the “metals” such as Na, Mg, Al Si, Ca; and Te. At higher temperatures,
charz_icteristic of the A-stars (10,000°K), hydrogen ionizes and becomes the
dominant source of electrons. At very high temperatures, characteristic of the
O- and early B-stars, helium ionizes and makes an appreciable contribution
of electrons,

CHARGE AND PARTICLE CONSERVATION

In calculations of stellar atimospheres we specify the gas pressure from
the equation of hydrostatic equilibrium. Thus, given p, and T, we know the
total number density N from the refation ‘ '

Py = NKT = (Nyome + Nime + #)KT = (Ny + n)kT  (5-18)

Here NN_denotes the density of “nuciei”; i.e., atoms and ions of all types.
In equatmn (5-18) and subsequent equations of this section we suppress
the “*~ tha!‘. denotes LTE for notational simplicity. We define the abundance
o, of chemical species & to be such that N, = o, Ny where Z0p, = 1. Then

NJ' = a.’c(N - ne) (5-19)

i

summarises the constraint of pariicle conservation (e, TN, = Ny). In
addition we require the plasma to be electrically neutral; then the number
of free clectrons equals the total ionic charge, and the condition of charge
conservation reads

Jic

Ji ' o I
=2 Y iNa = XN Y b T) =V~ 0) S Y ifuln. T)
I k i=1

E j=1 k =1

(5-20)

AS mentioned above, il we know (n,, T) we may calculate N and the fin
directly. But if we know (N, T), we must find r, from a nonlinear equatidn.
Before the availability of electronic computers this problem was solved by
cogstructing tables of log p,(T, log p,) (here p, = n,kT), in which interpo-
lations could be made to find log p,(7T, log p,)- Examples of such tables are
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given in (11, 130) and (638, 104). We shall develop a ditferent pr.ocedure,
along lines suggested by L. H. Auer, that is better suited {or machine com-
putation, and that fits into the overall approach of Chaptq 7 for the
computation of model atmospheres. Bui first consider an instructive example
that vields physical insight in limiting cases.

Su{)posepthzu the gas consists only of hydrogen (xu = 1.3.6 ;V) and one
metal “M? with a single jonization stage of much lower jonization potential
(say yy = 4 or 5eV) and an abundance; relatsve'to hydrggcn Oy L. At
high temperaturcs where the hydrogen is appreciably lonized, 1t_w111 con-
tribute most of the electrons; at lower temperatures the hydrogen is neutral,
and #, is determined by fy, the ionization fraction of the metal. The number

of particles of all types is

N = ng(l + fu) + oaaita(l + fu) (3-21)
while the number of electrons 1s

ne =y + e = talfu + omfu) (5-22)
Then peips = (S + onaful/[L + fu + ond + Sl (5-23)

At high enough temperatures, fy — L, and as oy <« L, (pe/g_q) — % At
intermediate temperatures, where o < fy <« 1, and at the same time f; = 1,
{(p/D;) = Ju. At low temperatures, fiy — 0 while fy/fis » 1, hence (pe/g;q) —
oy fu. We thus see that at high temperatures the metals are essentially
irrelevant to the determination of p,/p,. while at low temperatures they
play a crucial role. In particular, note that the metal abundance enters
directly in fixing p, in cool stars; this is importar‘n because theﬁd_ommant
opacity source in cooler atmospheres is absorption by the H™ ion, and
n(H ™ )/n(H) is proportional to n,. Thus in these stars the metal abundance
fixes the opacity as well.

For a pure hydrogen gas, equations (5-16), (5-19), and (5-20) may be solved
analytically to obtain

nH) = &y [(NDy + 1)F — 1] (5-24)

which shows that at low degrees of ionization, n, ~ N*for a given T.
Exercise 5-1; Derive equation (5-24).

If only the metal in our two-component gas described above is ionized
(fy <« o) then we have

[

_ 1 1
(M) & @y {[VMA@M +40+ 20@} ~ S0 aM)} (5-25)
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A fairly good estimate ol », can be obtained from equations (5-24) and (5-25)
ifog « Land yy « py by writing v, = n,(H) + n,(M).

SOLUTION BY LINEARIZATION

Let us now turn (o the problem of determining n, for a given value of
(N, T')by means of an iterative linearization procedure (generalized Newton—
Raphson method). We shall describe the procedure in fair detail because it
is a simple example of the approach we shall use in more complicated cases
(e.g., the non-LTE rate equations and the transfer equation). The only
equation to be solved (contrast this with the non-LTE case, ¢f. §5.51) is
equation (3-20) where fj.(n,, T) is given by equation (5-17). Suppose that
we have an initial estimate of the electron density, n,°; suppose also we
find that using n,° to evaluate the righthand side of equation (5-20) yields
a density n,' # n,° It is then clear that the true density differs from n,°,
so we write n, = n,° + n, where &n, is to be determined in such a way
as to satisfy equation (5-20) exactly. Because the equation is nonlinear, we
cannot determine this dn, exactly, but on the supposition that én,/n,° « 1,

we can estimate dn, by expanding all terms to first order and solving for
on,. Then we have

nl + on, > [(N — 0 — én,) Z(n,°, T + (N — n,%[eE(n,, TV/on,J,.0 o1,
(5-26)
or  dn, [N —n2E — 001 + & — (N — n,90%/0n)]"  (5-27)

Jx
where L. T) = 3 oSy '(n, T) Y jPuin,, T) {5-28)
K

=1

Note that we may rewrite the functions P(n,, T) and S(n,, T) as

Je—1
Pyln, T) = H {ns‘&)lk(T)] = nf) H.R(T) (5-29)
i=j J
g Ji .
and Silte, T) = 3. Pyln., Ty = ). a2 [T (T) (5-30)
i=0 i=0 -

The value of dn, given by equation (5-27) will not be exact, so we iterate
the procedure by using a new estimate . %(new) = n.%old) + dn, to re-
evaluate £ and #%/8n,, and to compute yet another value of on,.

The convergence of this procedure is guadratic (if our original estimate
lies within the range of convergence) so, il the fisst fractional error dn./n,
is ¢, subsequent iterations will produce corrections of order &2, &%, &%, etc.,
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which implies that one can obtain the result to the §esired accuracy quickly.
It is also worth noting that the derivative ¢¥/on, can be evaluated

analytically:

k

~ - o ol — -2 A i :. -31
@S jen) = Y o |:Sk 1;;(L-ij/one) Sk (3S;c/0”e);JP,;xj| (5-31)

where (8P ;/0n,) and (85, /on,) follow immédiately from equations (15-31192
and (5-30) and produce a compact expression for (5-31). In geréera,

derivatives appearing in linearization procedures can be eannate numer-
ically; however, we shall usually be able to obtam. analytical der1;fatf1\j[;s,
and experience has shown that in this way we obtain better control of the

calculation. ’
Finally, having obtained a satisfactory value for n,, and, as a byproduct

the fu, we may calculate any particular occupation number from equa-
Js
tion (5-15)

N ndT) = N — ndnfye it TIE(T)  (53)

”ijk

i e computation of the LTE equation of state. o
thl”sfl(ll:rgfcl)ifgéﬁe outlilzjled above has a larger signiﬁcance than 111d1cg1t§d
thus far. We have assumed that N and T are given. But thf:se quantities
follow from constraints of pressure and energy balance, and_ in general czllr;a
known only approximately at any particular stage.of ca.lcul_atlon of a model.
As we shall see in Chapter 7, we may apply the linearization procedure to
all the variables nvolved, and hence we shall peed fo _evaluat‘e the resp%pse
of the occupation numbers to the perturbations 6N and &T. Perturbing

equation (5-20) we obtain
n, + on, = (N + 0N — n, — n.)Z
4 (N — n)[(e%/an,) on, + (0Z/aT) 8T] (5-33)
or, assuming that n, is a solution of equation {5-20) at the current values
of (N, T},
sn, = [1+ $ — (N — a)@Zjon)] '[ZoN + (N — nN0Z/0T)OT]
= ((’;RL/('}N)T (SN + (Bng/ﬁT)N 5T (5_34)
where again ¢£/6T may be evaluated analytically. Further, from equation
(5-32) we may develop an expression for dn;y, of the form omy = AL 0N +

A, 8T + A; én,. which can be collapsed down by use of equation (5-34)
to an expression of the form

Oty = (0n;5/NYy ON + (OnpfoT)y 0T (5-35)
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Exercise 5-2: Obtain expressions for the coefficients in equation (5-35) in terms
of Py, S, and @, and their derivatives.

Equations (5-34) and {5-35) provide the information we shall require in
§7-2 to find the response of the opacity and emissivity (8y, 1) to changes
in the model structure (3N, 6T).

Exercise 5-3: Show that dNy, for the last ionization stage of element k, has a
particularly simple form because [y, involves only ;. Then show that expressions
for 8N of lower ions can be evaluated recursively from equation (5-16), and that

these lead from equation (5-15) 1o simple expressions of the form of equation
(5-35) for dnyy.

5-3  The Microscopic Requirements of LTE

Before we develop the equations of statistical equilibrium, it is worthwhile
to discuss qualitatively the microscopic requirements of LTE. An interesting
commentary on these requirements by K. H. Bohm may be found in (261,

Chap. 3); we shall summarize and discuss this analysis here along with other
material of relevance.

DETAILED BALANCE

In thermodynamic equilibrium, the rate at which each process occurs is
exactly balanced by the rate at which its inverse occurs, for all processes: i.c.,
each process is in detailed balance. This is a very strong requirement, and it
proves to be very useful in constructing relations among rate coefficients
{recall the use of this procedure in Chapter 4). We may classify processes
that produce transitions from one state to another (bound or free) into
two broad categories: radiative and collisional. Collisional processes are
the processes invoked in statistical mechanics to establish equilibrium, and
can be expected to be in detailed balance whenever the velocity distribution
of the colliding particles is the equifibrium (i.e., Maxwellian) distribution. We
shall show below that this can be expected to be the case in stellar atmo-
spheres. Furthermore, we may make the same statement about processes
which are essentially collisional in character, even though a photon is
emitted (e.g., free—bound radiative recombination and free-free emission);
we can therefore use detailed balancing arguments to calculate the rates of
these processes when convenient to do so. In contrast, radiative processes
{c.g., photoexcitation, photoionization) depend directly upon the character
of the radiation field, and will be in detailed balance only if the radiation
field is isotropic and has a Planck distribution. We shall show below that
this is not the case in stellar atmospheres.
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etailed balance while others are not, the final
etermined by a competition among ‘Fhem and .
may deparl more or less strongly from an equilibrium dlstrlbutlcc)ln. LtTl::;
will be valid in the deepest layers of stellar atmospheres }Mhle:r; Sngl 1:0
are high and the collision rates become large, and the optica hep ; ﬁszed
large that no photon ¢scapes from the atmosphere befgre being t ;rm bsew:
so that the radiation field approaches the Planck function. Butinthe o

able layers, precisely the opposite regime is found.

If some processes are 1 d
occupation numbers will be d

THE NATURE OF THE RADIATION FIELD

A stellar atmosphere is not in any sense a closed system in equitibrium

a1 a upiform temperature. Indeed the opposite situation prevails: radiation

flows freely from the surface layers of .the star nto es_sentiallly emgtifh'?};atfé
which implies that the radiation field is de(_:ldedly amsotl.'lo_pxc, aﬁn " i o
atmosphere has a large temperature gradmnt. The rac}ml;on e ! a nm}é
point is the integrated result of enissions and absorptions over the ei:nt ©
(possibly large) volume within which a photop can travel fromdns pf) <ol
emission to the test point. This volume may mclud? the ‘b.oun ary ?ur ¢
and empty space beyond, with a consequent reduction of _mte\:nyty, gs \:21]
as layers of higher temperatures and del?sm'es‘from which 1mt(-',nse radia 1nd
originates. The radiation field thereforenls chshgctly nonlocal n nafure,1 a d
has an absolute intensity, directional distribution, and _ﬁeq_ucnc; sp_ebc iu "
that may have no resemblance whatever to the local qulllbrlp_m istri u1 128
B,(T). Radiative rafes may therefore be far from their equilibrium values,
a;ld thus tend to drive the material away frgm LTE. N
The radiation field is plainly anisotropic l?ecause the_ra.dmtmg su;_ace
subtends a solid angle less than 4z, and essentially 1o radiation fantcrcsl rom
the surrounding void. We may describe this geomsamcal eﬂect by mtrgt uc(llng
a dilution factor W defined to be w, /4w where o, is the solid angle subtende

by the steltar disk.

FExercise 3-4;  Show that
1 N )
W= St [ G (5-36)

where 1, 1 ;
observer. Show that for r /v « 1, W = L/

As defined, W clearly measures the factor by which the energy density in

g
the a(ilat on ield 18 1€dUC6d as the source Of ladln’ltlon mMOvEeS to a lar C

distance. At the “surface” of a star, it is obvious that W =

s the radius of the radiating surface and r denotes the position of the
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less because of limb-darkening) but in an extended stellar envelope W <« 1
(and in a planetary nebula, W ~ 107!%). Thermodynamic equilibrium
requires that W= 1, so it is clear that detailed balancing in radiative
transitions cannot in generat occur in a stellar atmosphere.

In addition to being difute, the stellar radiation field has a markedly
non-Planckian frequency distribution. As we know from the Eddington—
Barbier relation, the emergent specific intensity at frequency v is approx-
imately equal to the source function S, at 7, = 1. Bven if §, were B,, the
fact that the material is vastly more opaque at some frequencies than at
others (line to continuum ratios are often 14° and may reach much larger
values) implies that the radiation will emerge from greatly differing depths
at substantially diflerent temperatures; the radiation field is therefore a
composite of widely differing radiation temperatures. The effects of the
temperature gradient become extreme when hv/kT > 1, for then the Planck
function varies as exp{— hv/kT) and becomes very sensitive to small changes
in T. If we were to parameterize the radiation field by introducing a radiation
temperature Tg(y, v) such that for p = 0, I(r,, p, v) = WB[ Trip, v)], we
would find marked variations of T, with both v and p. For example, in
the solar spectrum, Ty ranges from 4800°K in the visible to ~25,000°K
in the ultraviolet in the ground-state continuum of He ", In sum, the radiation
field displays an extremely complex behavior, and the conditions required
to assure LTE a priort are simply not met.

THE ELECTRON VELOCITY DISTRIBUTION

In stellar atmospheres, the free electrons are produced by photo-
ionization and collisional ionization. The inverse processes are radiative
recombination and three-body collisions, which lead to recaptures of elec-
trons into bound states. While in the continuum, an electron may undergo
elastic collisions with other electrons and inelastic collisions (leading io
excitation or ionization of bound electrons) with atoms and ions. The elastic
collisions redistribute energy among the electrons and tend to lead to an
equilibrium. partitioning—hence a Maxwellian velocity distribution, If a
Maxwellian velocity distribution is in fact attained, we may define the local
temperature to be the kinetic temperature of the electrons. On the other
hand, inelastic collisions and recombinations disturb the achievement of a
Maxwellian veloctty distribution, for the inelastic collisions involve efectrons
only in certain velocity ranges and tend systematically to shift them te much
lower velocities, while recombinations remove electrons from the continuum
and prevent further elastic collisions. Whether or not the Maxwellian velocity
distribution is established hinges upon how rapidly thermalization by elastic
collisions occurs compared to the perturbing processes: if it occurs much
more rapidly, the velocity distribution will be very nearly Maxwellian,
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The thermalization rate can be measured in terms of the relaxation time
of the system, which, for particles interacting with themselves, is

t, = mP3KTY¥/[179n,e°Z* In(D/py)] see (5-37)

(sce 598, Chap. 5). Here D is the Debye radius (see §9-4) D = (kT /8me*n,)?
and p, = e*/mv” is the impact parameter for a 90° collision. Now consider
recombinations; if ¢ is the average cross-section for the process then the
mean fime between recombinations is

t, = (No{v))™' = N~1lg™ Yam/8kTY sec (5-38)

where N is the density of the particles with which recombination occurs.
Two astrophysically important processes are (a) H + ¢ » H™ and (b) H* +
e H. At T ~ 6000°K (a typical solar temperature) oy- ~ 3 x 10722
em? and /Ny ~ 107% At T ~ 10000°K, oy ~ 6 x 1072 cm? and
nfh, ~ 1. Substituting these values into equations (5-37) and (5-38), we
find t,/t, ~ 10° for process (a) and £,/t, ~ 107 for process (b). We conclude,
therefore, that under representative conditions in stellar atmospheres a
free electron will undergo an enormous number of elastic scatterings between
recombinations, and that the latier will not seriousty hinder equilibration
to a Maxwellian distribution.

Let us now consider inclastic collisions. Collisions of electrons with the
most abundant element, hydrogen, occur frequently, but the excitation
energy of hydrogen is 10 eV while the thermal energy of the electrons
is 1eV. Thus only 3 x 1077 of the electrons have sufficient energy to
induce the excitation, and only a fraction of these will be effective. Using
typical excitation cross-sections one finds that (at 10,000°K) the rate of
inelastic excitations is of the same order as the recombination rate—I1.g.,
very small compared to the elastic collision rate. One must also consider
collisions with other elements, which may be arouped as follows: {a) the
alkalis, which have large cross-sections but low abundances (10~°); (b) Fe,
which has numerous low-lying levels and moderate abundance (4 x 1077);
and (c) C, N, and O, which have small cross-sections but large abundance
(107 *). Most of the ievels for groups (b) and {c) are metastable, so that most
of the inelastic excitations are subsequently cancelled by coilisional de-
excitation; ignoring this effect we overestimate the number of inelastic
excitations. Taking the various [actors into account and ignoring compen-
sating de-excitation, Bohm estimates (ctastic collisions/inelastic collisions) ~
10% and hence concludes that a Maxwellian velocity distribution that defines
T, is established. Recent work (573) suggests that departures {rom a Max-
wellian distribution in a pure hydrogen gas can occur in the high-energy
tail if (a) the ionization level is very low (n,/ny = 0.01)and (b) the ground-state
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population is far from its equilibrium value; these conditions can oceur in
the solar chromosphere.

Finally, one may ask if the atoms and ions in the atmosphere also have a
Maxwellian velocity distribution, and if their kinetic temperature T, = 7.
An analysis of this question (88) for a pure hydrogen atmosphere of atom;,
jons, electrons, and radiation, demanding a steady-state solution, while
aliowing for energy exchange among the four components of the medium
shows thatif n, > 10'° (a condition easily met in the bulk of the atmospherei
and 5 x 10° < T, < 10°, then |T, — T,| = 107* T,. It thus appears safe
to conclude that a unique local kinetic temperature applies to all the particles
in most atmospheric regions.

THE IONIZATION EQUILIBRIUM

The degree of ionization of stellar material is determined by the balance
of photoionizations and collisional ionizations against radiative recombi-
nations and three-body collisicnal recombinations. Let us first examine the
relative rates of photoionization and collisional ionization; it suffices to
obtain only an order-of-magnitude estimate.

The energy absorbed by an atom in bound state i at frequency v in interval

dy 18 {LnJ ,o;(v) dv; each photon has energy hv, hence the total number of
photoionizations is

nR,, = ndmh ! f “ ()t dv (5-39)

Yo

To estimate R, , we adopt a hydrogenic cross-section
o, = (me? /A f(2ve7 /)

where‘ /. Is the integrated oscillator strength for the continuum, Further,
we Wrile

Jy = WBATr} = W(2hv/c) Y. exp(—nhv/kTg)

n=1

Then Ry = (16222 med )W S Ey(nhvo/kTy) (5-40)

n=1

”.l"he? rate of collisional ionizations can be computed from ¢(v), the collisional
ionization cross-section for electrons of velocity v:

ol

nChe = nit, f ): o(p)f (v)v dv (5-41)

v
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TABLE 5-1
Ratio of Radiative 10 Collisional Ionization
Rartes
Star Fion = €Y Fion = FEV
s
Sun 10* 2
O-star 20 0.2

Sourcr: From data by K. . Bshm, in Steflar
Atmospheres, ed. 1. L. Greenstein, Chicago:
University of Chicago Press, 1960, by permission.

To obtain an estimate, we adopt the semiclassical Thomson formula [cf.

(684, 120Y]
a{p) = 3j'cﬁeﬂ’E_1[(hv0)_1 — E™Y] (5-42)

where = tmu? is the energy of the incident electron. Substituting equations

(5-2) and (5-42) into (5-41) and integrating we obtain
C,. = ne[lzn%e"j‘;/(ka"T O Jug M E{uo) {5-43)

where 1y = hvo/kT,. In the limit that hvg » kTg and hvy » kT, we retain
only the first term of equation (5-40), and use the asymptotic result that for
x w1, Ex)— E,x) > e ¥/xto obtain

R.  AQRrkhve (WTy 1 1
Ry | ARTRI W (170K o | — — 44
Ci amte’c® \n. T2 SXPL ol g, KTy (5-44)

For photospheric layers we couldadopt W = 3, Tr &~ T,. Bshm calculates
estimates of Ry/Ciy for representative cases of levels with ionization poten-
tials of 1 eV and 8 eV for conditions characteristic of the outer layers {z ~ 0.05}
of the sun and an O-star. In particular, for the sun he adopts 1, = 3 % 1012,
and T ~ 5 x 107 °K while for the O-star he uses n, = 3 X w0, T =
32 % 10* °K and finds the values for R;./C;. listed in Table 5-1. It is clear
that in stellar photospheres, the radigrive rates dominate, except for high-
lying levels at high temperature and densities. In fact, for O-stars the im-
portant levels have even larger values of 7,a than those listed in Table 3-1
{e.g.. the ground state of H at 13.6 eV and the ground state of He Tat 24.5eV),
and are even more markedly radiatively dominated. Thus the ionization equi-
librium is vulnerable to departures from LTE if J, departs from B,. Note in
passing that in the corona of a star where T, ~ 2 x 10% °K and Tg ~
6 x 10° °K (for the sun), while the relevant values of hivg arc around 300eV,
the exponential factor in equation (5-44) becomes very small and collisional

ionizations dominate.
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anzl?vf;?;y }():grdry oultl gi_milar estimates [or the rates of radiative recombination
-body collisional recombination; the
nd | -t ; se processes are both en-
tially collisional and hence per | - then ts
- per ion occur at the LTE rate. We c:
detailed balancing ar e e
guments to compute the rates in tc ilibri
dotalled _ erms of the equilibrium
vl fadii ttllii L;g;\;voa;:lb.rati:?. We 1vrlnay still use equation (5-44), except that for
inations the appropriate temper i 1
e pro perature is now T, not
CORI HSiOHZII/ rectﬂ\i; th::_n ﬁn(}i:| that radiative recombinations always out\;eigh
ination, both in the photos na (i
‘ , phere and corona (in th
corona, yet another mechanism—di i i eighs
onz —dielectron i i
e rocombination ic recombination-—outweighs
ﬁvzlll.z {:C())m;;.ﬂlop balance 1s thus determined by photoionizations and radia
mbination; to establish the equilibri ‘
ination; quilibrium the numbers of lonizati
o e : § of lonizatlons
;Ollows bml;u{lialt]’qilsdare equal: mR;,. = n.R.; = n¥R} where the last eqcuaiity
y a detailed-balance argument. Hence for the ground state

Vo v

(n§;fng;) = 4nW f‘: () ', B (Tg) d\)/47-[ J“” () 1a,B,(T,) dv

o
=W o Xy- 1 % _
hvgfhT g X dx x.—1
pER h ¢ X dx

vo/kTe
= WE (hvo/kT ) E (hvo/kT,)
¥ WTW T)[exp(— hvo/kTlexp( — hvo/kT,)] (5-45)

where we h i i
ave again used hydrogenic cross-sections. If we substitute for

ng; from the Saha equation (5-13 i
-13) we m : "0Xi jonizati
o (5-13) ay obtain the approximate ionization

(172”0.,,4 1/”o,j)
= W- (290,j+ 1/90.1')(27“”}‘TR/112)2 ’ (Te/TR)% : eXP(‘?rj/kTR) {5-46)

which ha enis i i
T;hrllr}l‘lsl vbeenhex‘lcn‘sway applied—e.g., in analyses of gaseous nebulae
dcadec( a E?ze the ionization balance in stellar atmospheres we now must.
Comparialzg (:F]Vet(‘), fl}:(éosefJI ajp(c} (b) fvhich levels dominate. Bohm suggested
: alues of 4n [ ()™ 'k, J, dv with 4z | (hv)"!
- . oy vi™ 'k, B, dv, where
E;t eli Stllt]}? ;c{))iali ozafclty from all overlapping continua and J, is the mezfn
ained from LTE model-atmosphe i )
e om | phere calculations. If these num-
ﬂ:s ;;rf eqii:al the cld}nj is made that L.TE is self consistent. Bohm examines
the Fe « Fe _II equilibrium in a model solar atmosphere and finds that
ne es m.entlone_d above have a ratio of 29 atT = 0.01, 13 at7 = 0.05
; 1’111 Se’ss?n_tlallly unity at 7 = (.1; from this one is tempteél to ‘conclude t.h t,
?f aha lonization formula is valid below 7 = 0.1 )
he C in thi "y
e S;e r!iilrr(l:, (Iilowew?r, ﬂaws. in this argument. First, it is clear that integrated
ed over all continua of an atom may be subject to cancellations
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and compensations, and it is not at all clear what a given departure between
the two integrals implies for any pasticular level (1e., some levels may be
overpopulated and others underpopulated and the integrals could balance).

Second, and far more important, the reasoning is circular if from the outset
we use B, as S, to caleulate J,, for we know that

Jv(Tv) = Arv[B\'(tv)] = Bu(T\-) + 0(871‘,)

ie. J,is forced to B, at T, > 1, and the two integrals automatically become
equal artificially.

As we shall show below (cf. §7-5 and Chapters 11 and 12) the characteristic
feature of non-LTE transfer is that the source function contains a dominant
scattering term that is only weakly coupted to local thermal parameters. In
such cases, S, may differ greatly from B, over large ranges of optical depth
(essentially to the depth from which a photon cannot escape without being
thermalized despite the high probability of scatiering and low probability
of destruction). Furthermore, if we attempt to find S, by starting with B,,
computing J,, using this to re-evaluate S, and iterating, it is found (cf. §6-1)
that the convergence rafe is extremely slow; with a single iteration one
inevitably obtains an estimate of S, that is very close to LTE, but that is
false. Further iterations (perhaps thousandsl) are requited to propagate
:nformation about the existence of a boundary to the deeper layers by the
inefficient iteration procedure; each iteration will show a continuing, pro-
gressive departure from LTE, and when strict consistency between S, and
J, is obtained, the departures are much larger and extend far deeper than
the first iteration indicates. In short, experience has shown that estimates of
the kind outlined above, based upon a single iteration away from LTE are
worthless, The fact that the seemingly plausible arguments based on such
estimates are false was not realized in much of the classical work on stellar
atmospheres, and erroneous conclusions about the validity of LTE were
drawn: we shall return to this crucially important point in Chapters 7, 11,
and 12—further discussion has also been given by Thomas (626, 141-147).

In summary, we have shown that in the ionization process radiative rates
dominate collisional, and given the nonequitibrium character of the radiation
field we must expect that LTE will not be valid, and therefore from the
outset we must perform a simulfaneous solution of both the statistical equilib-
rium and transfer equations. Only when a strictly self-consistent solution
i obtained is it possible to decide in which regions LTE actually prevails.

THE EXCITATION EQUILIBRIUM

As in the case of ionizations, we again ask whether any particular
transition is dominated by collisional or radiative processes. The radiative

excitation rate is given by B;; f b, dv, which we shall estimate by replacing

TABLL 3-2
Ratio of Collisiona! to Radiative Excitarion Rates

Star A(A) = 3000 4000 5000 6000 7000 8000 5000
Sun 0.003 0.007 0.017 (.03 0.061 0.099 0.15
O-Star 0.19 0.44 0.85 1.4 2.2 31 4.2

Sourch: K. H. Béhm, in Stellar Aumospheres, ed. ] i
of Chicago Press, 1960, by permissien. ’ ' Oreenstein, Chicago: Universiy

J‘: th_h WEB,. We again use equation (5-43) to calculate the collision rate
with f. replaced by f;; = Bjjhivme/dn*e®. We then find

Cy [ 3ehmii” | (n,
R, ~ | 2nekmy |\ ) 0N D (5-47)

where x = hv,;;/kT. Bohm estimates this ratio for typical conditions in the
solar atmosphere and the aimosphere of an O-star (using W = 1) and obtains
the reSL_ﬂts shown in Table 5-2. We see that the radiative rates dominate
except in the red and infrared of hot stars. The same remarks made above
about the‘non—Planckian nature of the radiation field apply (even more
strongly!) in the lines; hence again we conclude that the statistical equilibrium
and transfer equations must be solved self-consistently. One might be tempted
to conc}ude that LTE must prevail in the long-wavelength line spectrurﬁ on
the basis of the dominance of collision rates. But as we shall see in §12-4 this

is not true, and, in fact, these lines often show
pnotiee the largest effects of departures

5-4 The Non-LTE Rate Equations

Let us now consider the equations of statistical equilibrium (or rate equations)
by which we calculate the actual occupation numbers of bound and frée
states of atoms in stellar atmospheres. We shall make the simplifying assump-
IlO!‘l.Of complete redistribution m the lines (i.e., the emission and absorprign
profiles are taken to be identical); the equations developed on this basis will
bg usec_l in our discussion of line formation through Chapter 12, and con-
sideration of partial redistribution effects will be deferred until C’hapter 13.

GENERAL FORM

. Copsidcr a vc_)lume element in a moving medium. The number density
o p_artscles of a given (bound or free) state i of chemical species k will change
in time according to the net flux of particles through the volume and the
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net rate at which particles are brought from other states, J,
collisional processes, that 1s,

{éng /o) = SV V) Y (P — 1P} (5-48)

JFEL

by radiative and

Here P;; denotes the total rate {rom level i to j. The first term of the vight-
hand side can be shown, by use of the divergence theoreim, to be the net

number of parsicles streaming into and out of the unit volume. If we sum over
all states of species and write Ny, = zi ny,, then we have a cortinuily equation
for this species
(EN,jo0) - V- (Ny) =0 (5-49)

Multiplying equation (5-49) by M the mass of species i, and summing over

all chemical species we obtain the standard hydrodynamical continuity

equation
(8pjor) + V- (pv) = 0 {5-50)
where p = 2« m N For a steady state, equation {5-48) simplifies to
nik Z PU it Z ”jkij = 'ﬁv : (Hik\f) (5’51)
j#i iFL

and for a static atmosphere we have (suppressing the subscript k)

n Y Py — 2 =0 (5-52)

i*i i#i
As we consider only static media through Chapter 13, we shall deal almost
exclusively with equation (5-32). We ghall show how to handle moving media
in Chapter 14, and will mention some implications of the righthand side of
equation (5-51) in Chapter 15. The total rate Py in general contains both

radiative and collisional terms; let us now write these out in detail.

RADIATIVE RATES

{a) Bound—Bound T ansitions. We shall develop two notations (which
have identical physical content) by writing bound-bound rates in erms of
Einstein transition probabilities or in terms of energy-absorption Cross-
sections; the former is useful for analytical manipulation with simplified
atomic models, while the latter allows bound-bound and hound-free rates
to be written in an identical form well-adapted to model-atmosphere com-
putation. Consider transitions from bound level i to a higher bound level j,
in a line with absorption (and emission) profile ¢, The number of transitions
produced by incident intensity I, in the frequency interval dv and solid angle

de is By Ly dv deofdn OF n(o;/vyd Ly dm dv. In a static medium, ¢, 18
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isotropic, so lntegratin
g ¢ over all angles and fre i
. . " . - . FC V
e abammtions in the linc quencies we have the number

”iRi'= Bf ) = I T
; 1; ij (/Jv‘]v d‘v = ?’IiBijJI-J- == ni4TIOCI-J-JU/hV5j

= nAn J‘o:,-j{v}(hv)*lnfv dv (5-53)

In moeving medi '

I Whicﬁ jcaseed;a (Cti?apter 14) we may consider either the comouving frame
T ed by anqu% ion (5-33) remains valid if J, is the mean inténsity a;
observer at rest with respe i
measured By an ¢ / pect to the moving fluid, or th
chaervers 6fg r;:i; lino\\i;l;l;:h (I:ase dz{.fnow has an angular depeidencc; and z

out ngtes and frequencies must b i :
e carried ici
Slrﬁlar remarks apply to other radiative rates given below outexpliely
he number of stimulaied emissions is '

B {dJ, dv=mn T = T
32 f v = mBudy; = nidgBfgNTy = nida/hvdaesio) Ty (5-54)

The number af spontaneous emissions 18

n.A.. ) = H
Ay J‘cj)\ dy nj(ZhL,-j”)‘/cz)Bﬁ = ny(2hy; P fe*drfhv Mg lg;)  (5-55)
i ¥
T 3 , Ve 5 3
he total downward rate is the sum of the spontaneous and stimulated rates:

n.R, = nilAd, T
Jii ﬂ_;(Aﬂ + Bjijij) = ”i('ﬂ'“/hvfj)(Ffi%jfgj)[(2]11)”3/&) + jif] (5—56)

A prime h ‘ y
p as been added to R, so as to reserve the unadorned symbol for a

differe i
nt use below. We may rewrite equation (5-56) by factoring out the term

(i/m)* = g; explhv;/kT)g; i
i i 0T - .
downward rate as i/kT)/g; from the righthand side, and express the total

1\ B
Ry = n; (’) R, =n LAY o;(v) 2hy?
J j ; j i i, 47L'f f;.v o + J‘) o~ AT dv:| (5_57)

At first si i
(o) v;g}:nzqzjéi(f)n](5}fzr))appears very cumbersome, for clearly the terms

» V7 —hv/kT) can all be take i i '
e sttt o n outside the integral ow
i partici?eriiase Ofb¢\= away from v;;. We have written the dow%lward rffe Eﬁ
L parer ot }\;vay ecause it is then of exactly the same form as the dow
e ;nfacfoion;muumi MOTeoVer, the downward collision rates wlllli
notational Cconomyojn(t”hié!‘if,‘}]"l appearing explicitly. In the end we achieve

( : . ull rate equations by usi i
thc;r? th]e simpler Einstein probability form ¥ using equation (5-57) rather
inally, it i B :
ly, it is sometimes useful to work with the net rate from level j to level i
Ay + ByJyy) — nBiJy; = mAuZ {5-38)

JiE i
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where the term Zj; is called the net radiative bracket (NRB). Net radiative
brackets are useful notational devices that we shall employ in Chapters 11
and 12. Further, Z; can be rewritter as

— 1 = TmBy — mB)fmAy) = 1 — (T5/5,) (5-59)

F A1)

where S, is the frequency-independent line source function. Because the NRB

contains only the ratio of J to S, it is often true that itis known to much higher

accuracy in an iterative procedure than either S or J themselves. Under
favorable conditions, use of NRB’s can significantly enhance the convergence
of certain types of selutions of multilevel line-formation problems. 1T a
particular line i — jis in radiative detailed balance, then Z;; = 0, and we may
cance!l the corresponding terms out of the rate equations analytically (ie.,
omit R;; and R;;); this situation occurs when a particular line thermalizes, and
the cancellation procedure is of great use in simplifying the rate equations
{cf. §7-5).

{(b) Bound-Free Transitions. Let us now caleulate the radiative rates from
a bound level i to the continuum x. Let #,.(v) be the photoionization cross-
section at frequency v; then the number of photoionizations is calculated by
dividing the energy absorbed in interval dv by the appropriate photon energy
hv, and summing over all frequencies. Thus the number of photoionizations is

#R,, = ndn f” 2, (W0) T, dv (5-60)

We may calculate the number of spontaneous recombinations by use of a
detailed-balancing argument. In thermodynamic equilibrium, the number of
spontaneous recombinations must equal the number of photoionizations
calculated from equation (5-60) when ( a) J, has its equilibrium value (ie.,

B,) and (b) we correct for stimulated emissions at the T.E. value by multiply-
ing by a factor of (1 — ¢~ (c.f. §4-3). Thus if n, denotes the ion density,

(RRL)E, = n¥dn f ")) B = e MR dy(5-61)
The recombination process is a collisional process involving electrons and
fons, and therefore is proportional to n, - n,. For a given electron density
and a given T,, which by definition descrlbes the electron velocity distri-
bution, the rate just caiculated above must still apply per ion, even out of
T.E. Hence to obtain the nen-LTE spontaneous recombination rate we
need correct equation (5-61) only by using the actual ion density n. . Then

(0 Riipon = 1/ 47 | o)) UBAL — €Ty dy

= n,‘.(ni/n,{)*élnﬁ (V) 2R ehe T dy - (5-62)
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Recall from equation (5-14) that (#;/n,)* = n, 0, (T), which shows that the

2 K

spontaneous recombination rate depends on the product of the electron and
ion densities and a function of the temperature (which itself depends on
atomic properties through the cross-section).

The number of stimulated recombinations may be calculated by a similar
procedure; in T.E,,

(RN = 7~ 4n |7 o5 0)(9) ™ Be™ T dy (5-63)

To generalize this result for the non-LTE case, we {a) replace the equilibrium
radiation field B, by the actual value J,, and (b) use the actual ion density n,_:

(1R )i = nylnifn ¥4 [ () 0, PR dy (5:64)
The total number of recombinations is, therefore,

nh(RKI spon + Rm a.tlm) = nx(niffnk)*RKi

Ay W 0L 21 ‘
= n, (H) Ag f m( } ( 'n‘.\! i J ) e—kw.’cT dv
e v hy Cy -

(5-65)

The number of recombinations is sometimes expressed in terms of a4 recon-
bination coefficient app(T) defined such that total recombination rate as given
by equation (5-65} is nn,0pa (T ).

By comparison of equations (5-33) and (5-60) we see that in writing com-
plete rate equations we can systematize our notation and write all upward
radiative rates (i — J), for j bound or free, as mR, ; where

Ry =dn fm oy (v)(hv) "1, dv (5-66)

and, by comparison of equations (5-57) and (5-63), all downward radiative
rates (j — i) as njn/n;Y*R;; where

Ry = 4n [ o)) [@03e) + JJe™HT dy (5-67)

Note that in equilibrium, R¥ = R%.

COLLISIONAL RATES

The gas in stellar atmospheres is a plasma consisting of atoms, ions, and
electrons, among which a wide variety of collisions may occur and produce
excitations and ionizations. In cool stars, where the material is primarily
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neutral, collisions with neutral hydrogen a.torrlls are NUmerous anlcll- 1rlni§rt‘;1§;
As the material becomes apprecliably jonized, however, cc? 1;1?: Omomb.
charged particles predominate owing to t'h‘e long-range ngturg o Coulomb
interactions. Moreover, because the collision frequen;y is propo fioal o
the flux of impinging particles, and hence to the?r velocity, we n?;m n311 beed
to consider only collisions with ele?trons, folr in thermal ecilun 1'1;1 m thelr
velocities are a factor of (myAfm.)* = 434> larger than those o

. i tA- . v ' - .
at(;?lvlvce\;zf{ie the cross-section for p_roducing the trans1t19n ({ - j) (\ghfé:i
may be bound or free) by collisions with electrons of velocity v as g {v).

the total number of transitions is
n,Ciy = N J‘m (rij(u)j'(v)v do = mngi(T) (5-68)

where v is the velocity corresponding to Eq, the t‘hres.hc)l‘d ergergybgi :123
process—ie., imue? = Ey. The downward. rate (j — 1) c?n ti oelect[Orl
immediately on the basis of de‘taile_d—balgncmg argumentsf, 01;_ e‘ slectron
velocity distribution is the equilibrium (ie., Maxwellian) function;

must have

from which it fotlows that the number of downward transitions is
nCy = nj(nl-/nj)*cij = nj(ni/nj)*neqij(T) {(3-70)

As was the case for radiative transitions, it is somctimes_ulseful.to 1'ntrod1}§:e;
the net collisional bracket Y;jand write the net rate for collisions { = j{E; < £;

* mCyyYy; = nly — n,Cy = nCyll — (nj-/nj‘)(n;"/n,v)] (5-71)
SRR R i~

The actual cross-sections oj; required to compute rates .arelr fo;mcli :g;zr
experimentally ot by rather complicatt?d quantum-mechanical caleu ?n one ;
it would take us too far afield to describe th(?se methods he{re, SO We taimny
refer the interested reader to (410). There exists a vast hterdt.u're COcl)lf astmg,i
results (theoretical and experimental) for_a variety of Frans:im;)nsm faste-
physical interest, bibliographies of this 11teratu_re are 1s;sueb r{i e
time by the Information Center of the Jomi IHSUT:UtC for La ora} g:‘yﬂdards
physics of the University of Colorado and the National Bk}reau 4] l_d Com;
{This center also maintains current literature references in aln gnt— mewd "
puter.) As indicated by equation (5-68) we¢ are more §11rer:ctb y in eresdetaﬂ
rates for a given cross-section, so let. us examine qﬁ ; in a bit moiie BOhr.
Usually cross-sections are measured in umts_ of nay”, Wherﬁ, aod is he Bobt
radius; i.e., we write oy; = nae Qs Also, Q518 usually tabulated

" rel i
the energy of the exciting particle, so writmg 1mp® = E, and subsfituing
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equation (5-2) into (5-68), we find

ai(T) = CoT? fﬂ Qui(ukT)ue™ du (572

where u = E/kT, and Cy = may*(8k/mn)* = 5.5 x 1071, Writing x =
(u - tg), where uy = Eo/kT, we obtain

g AT} = C,T* eXp(_EO/kT)rij(T) (5-73)
where T AT} = fo”“’ OidEo + XKT)(x + uge™ dx (5-74)
Exercise 5-5:  Verify equations (5-72) through (5-74).

The advantage of writing the collision rate as in equation (5-73) 15 that the
principal sensitivity to the temperature has been factored out in the product
T# exp(— Eo/kT) while T';;(T) is a slowly-varying function of 7.

Of course the main problem in application is to obtain reliable values of
0;;. A characteristic difficulty for astrophysical work is that for many
transitions of interest, kT « E,, so that the rate depends extremely sensi-
tively upon values of Q;; near threshold. Unfortunately, for E =~ E; a great
computational effort is required to obtain accurate cross-sections because
the simplifying approximations that are valid for E » E; break down, and
because complicated variations of Q;; result from resonances in the collision
process. When values for @;; can be obtained, one typically fits them by
numerical procedures to simple analytical approximants, against which the
integration in equation (5-74) can be performed analytically.

For the astrophysically important spectra of H, He I, and He 11, accurate
experimental cross-sections exist for excitation and ionization from the
ground state. For transitions arising from excited states one must rely upon
theoretical calculations. For many atoms and ions of interest there may be
no detailed estimates whatever available, and one must have recourse to
rough methods to estimate rates. A very useful (though quite approximate)
expression for excitation rates in radiatively permitted transitions can be
written (639} in terms of the oscillator strength f;;, namely

Ci; = Cone Té'[l4.5ﬁ.f(IH/E0)2]u0 exp{ — tto) [ o{tto) (5-75)
where u, = Eo/kT, Iy is the lonization energy of hydrogen, and for ions
T.(uy) = max[g, 0.276 explug) £, (ug) ] {5-76)

The parameter g is about 0.7 for transitions of the form »/ — &/, and about
0.2 for transitions of the form nl — #'l, ® # n (95). For neutral atoms
T (ug) has a different form [see (47}]. It is worth stressing that equations
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(5-75) and (5-76) provide, at best, rough values and should be applied with
caution. In particular, collisions are #ot resiricted by the dipole transition
selection rules Al = +1, and cross-sections for other values of Al may be
as large as for Al = +1 despite f;; being zero in the dipole approximation.
TFor collisional ionizations there exists a4 semi-empirical formula (402)

o, E) = mag [2.50T/Eo)* | In(E/Eo)t] — b exp[ —c(E — Ey)/Eol}/(E/Eo)
(5-77)
which yields a rate

Cipo = C()”eT%[2'5C(IH/EO)2]1‘O[El(uo) - becuOEl(ul)/ul] (5-78)

where , b, and ¢ are empirical quantities fitted to individual atoms, and
u, = Uy + ¢ Al alternative approximate formula can be obtained by ex-
pressing the collisional ionization cross-section in terms of the photo-
ionization cross-section (73, 374) which yields a rate (334, 121)

C,. = 155 % 1013 1, T " 3go(vo) exp(—uq)/to (5-79)

where o{vo) is the threshold photoionization cross-section, and g; is of order
0.1, 0.2, and 0.3 for Z = 1,2, and >2, respectively (here Z is the charge on
the ion). The same caveats expressed about equation (5-75) apply to equations
{5-78) and (5-79) as well.

AUTOIONIZATION AND DIELECTRONIC RECOMBINATION

In complex atoms with several electrons, the ionization potential is
determined by the lowest energy Lo which a sequence of bound states with
only one excited electron converge (to the ground state of the ion plus a free
electron). If rwo electrons are excited within the atom, they will, in general,
give rise to states with energies both below and above the jonization potential
defined above. Subject to certain selection rules [(172, 371; 297, 173)] the
states above the ionization limit may autoionize to the ground state of the
ion plus a free electron. The inverse process is also possible and, if an ion
in the ground state suffers a collision with an electron of sufficiently great
energy, then a doubly excited state of the atom may be formed. In general,
this process will be of little interest because the compound state will imme-
diately autoionize again (typical autoionization transition probabilities 4,
are in the range 1013-10"*1), and its equilibrium population will be small.
In some cases, however, a stabilizing transition occurs in which one of the
two excited electrons (usually the one in the lower cuantum level) decays
radiatively to the lowest available quantum state, leaving a bound atom
with a single excited electron. This process can provide an efficient recom-
bination mechanism referred to as dielectronic recombination.
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In particular, for an ion of chemi i
’ ical species X ar :
processes of the type P and charge Z, we consider

XD, ) + e(E 1 + 1) 5 XY 00, 1+ 1507, 17) (5-80a)

followed by the stabilizing transition
X+(Z—1)(”r’ I + Is nu3 zu) N XHZ"“(H, 1,, T’l”, [H) + h\’ (5-80}3)

which leaves the ion (Z — 1) i i
Bt e anight e ( ) in a bound excited state. As an example, for

He'(1s) + e(E, " + 1) = HeQp; n'l")
He®(2p; w't") = He (1s; n"l") + hv

{Zlf Wf dgnc;jte the doubly excited state by d, the final bound state of the ion
- ) y b, and t‘th ground state of the 1on Z as i, then the number of
ielectronic recombinations to staie b from d can be written as n, R, = n,4
Where A, 15 the spontaneous transition probability for the stabflizd'b e
sion;toa good appro.ximation (particularly for large 0"y A, = A(w’ lligléljani_
tfgr thgﬁ 1{));1. In the 1'1m1t of low ra'diation fields, the rever;e processs in e’qLia-)
ion {5-80b} can be ignored, and if A, measures the transition probability

f()l’ ali[oi()”i_; a[iOH i3 i
, Ny can be written (73, 25 i c i ilibri
ati o ( N 8) in terms of its equthbrlum

iy = fAf(A, + Ag) (5-81)
Whel'e H:J}" = nrcne{gd/gic)clT_% Cxp( _de/kT) = nkne(bkd'(:r) (5_82)
Here y,, is the energy of state 4 above the ionization [imit.

th);c Jci)igii;i.lmDe:ch undtilon (5-82) by applying the Saha equation (5-14) between
& and bound slal ¢ ati
the cominuu ale b, and the Boltzmann equation (5-5) between

hUS fr Il ea(‘h (v d t [t §
I O : Sl d l 4] ach i i
W tate b we ha\de the Dunlbel Of lelGCtI onic

1Ry = n a0 (TYAANA, + A) {5-83)

As | jati inati
Elecltn th.e case of r.adlz.itwe recombinations, it is often useful to define a di-
oee ;i)mc {'ecombmatlon coefficient oy, such that n Ry = n.n,0pp. Note
j h - I it -
¢ ratio of numbers of dielectronic to radiative recombinatiicoilsbc?epends

only on the ratio apge/o is i
) or/trr, and hence is indepe i ;
function of temperature only. pendent of density and is a
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Dielectronic recombination plays an important role in stetlar atmospheres
in two contexts. First, we can calculate a total rate for dielectronic recom-
bination by summing over all states (n, [) and (1", I); as was shown ina
classic paper by Burgess (118), this process becomes extremely important at
high temperatures. For example, at temperatures T = 10° °K, the dielec-
tronic recombination rate for He* exceeds the radiative recombination rate
by a factor of 102 but drops below radiative recombination for T = 107 °K.
Burgess convincingly demonstrated that dictectronic recombination is the
dominant recombination process in the solar corona (where T & 2 x 10° °K
and n, ~ 10%), and that this mechanism establishes the coronal ionization
halance. In calculations for the total rate one must sum over vast numbers
of states, and the most important contributions come from states withn'' = o'
and I » | + 1. Jtis because these high states have large values of x4, that
high temperatures are required to overcome the exponeniial factor in
equation (5-82) and produce significant dielectronic recombination [ie,a
large value of kT is required for the electrons to have sufficient energy for
the reaction in equation (5-80a) to occur|. In the sum one encounters a
divergence problem at large n’, similar to that found for partition functions,
unless one includes both probabilities A, and A, in equation (5-83) and takes
into account the fact that A; will dominate A, for sufficiently large n". The
calculations of total rates require the estimation of large numbers of stahili-
sation transition probabilities and collision cross-sections (fo calculate A, by
detailed balancing arguments), and are at best difficult; an approximate
general formula that provides tolerably accurate values for most jons of
interest has been developed (119}

A further study (121) has shown that in the corona the effects of inverse
transitions in equation (5-80b) produced by incident photospheric radiation
are small, and that the doubly excited states can be destroyed by collisional
ionization if densities are sufficiently high, from which one concludes that
Jielectronic recombination does not play an important role in the deeper
Jayers of the atmosphere (e.g., in the solar chromosphere and photosphere).

A second situation where dielectronic recombinations are important arises
for some ions (e.g, C I and N III) that have low-lying double-excitation
states (yg < kT that feed free electrons into selected bound states. A
striking example is afforded by the 2s2p(* PY) 3d state of N 111, which lies
only 1.6 eV above the ionization potential to N 1V 252 1S, and which feeds
electrons directly into the N [11 25* 3d levels and thereby produces the
famous N 111 24634-40 (3d — 3p) emission lines in Of-stars (115; 429 440).
Tn such cases one finds that A, » A, so that iy is given by 1ts equilibrivm
value (relative to actual ion densities), equation (5-82); fustheymore one need
sum over only a few staies. On the other hand, these processes occur deep
enough in the atmosphere that one must account for the inverse transitions
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produced by the radiation field in the stabilizing transition. If state d is char-

acterized as (#, I', L") and state
\ > by ate b as (n ; .
recombination rate (n, [, L) we have the total dielectronic

n Ry = 1, Y Dy g
w= 3 QarnTIAC L LD+ /e ]

(5-84)

where J is the mean intensity i ilizi

re . y in the stabilizing transition. Ofi '
! . Often the do

fexc:}tattz.on st';llt(e 18 80 brqad_ {because of the very short lifetime against aui)le

10nzfa ion} that the radiation field used to compute J can be fixed tut}?-

continuum value. If the L' dependence of ¢, ;- ;- is small, then one can ZGﬁnz

A, Vs D =g, Yy L glL)AM, L, L
(Dn’{‘ tO Obtaln : ZL!L J( ) (n * l’ L > n: I; L) and l’eplaCe (Dn’l’L’ Witll

n Ry = mit, Y, @ (TVAW, U:n, D1 + (2hv3je?) T ]

w,r

{(5-85)
while the inverse (upward) rate b — 4 becomes

Ry = m, Z B¥(n, Iy i, [’)jn'l’

w, b

(5-86)

W] . % e Py = P T
here B¥(n, [; n', 1) = AMw, I'; n, D(gpc®/2hvig).

COMPLETE RATE EQUATIONS

Havi i :
e indi\:ilzﬁlzi(?:::sliitall of' the processes of interest, we may now assemble
{5-32) for each bound to a single complete equation of the form of equation
e e E alllte i o.i‘ cach ionization stage of each chemical species
bt becau:Se b at %la) ignore expl;cﬂ mention of dielectronic recom-
on pesuse L tr}ell ¢ has the same Jorm as for radiative recombination
e e that bo_th are included; and (b) assume that all ioniza_’
ound states of ion j go to the ground state only of ion j + 1

(g tl N1 < 5‘ -
bu 1

= > nedRyy + Co) + ”i[

i i
i< =i
[ 4

Y (e /Ry + Cp) + IZ Ry + Cii’)i|

K

= ¥ /e (Rys + Cip) = 0 (5-87)

i'>i
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where the radiative rates are defined by equations (5-66) and (5-67), the
collision rates by equation (5-68), and the LTE population ratios by equations
(5-5) and (5-14) for bound states, and bound and frec states, respectively. One
such equation may be written for each bound state. We have one more vari-
able (the ion density n,) than we have equations. If we wrote down an
jonization equation

z ni(Rix + Circ) — Z (”i/nx)*(in + CiK) =0 (5_88)

(<K Pw

we would find it to be redundant with the set (5-87).

Exeicise 5-7: Show that equation (3-88) resulls from sunuming equation (5-87)
over all bound states.

We therefore invoke an additional physical constraint to complete the system.
For an impurity species (Le., oy fogs < 1), we close the system by demanding
that the total number of atoms and ions {of all kinds) of the species equal
the correct fraction of the number of all hydrogen atoms {(including pro-
fons); L.e.,

}: Mg — (ot for) (2 Miu T ”p) =0 (5-89)

[

Alternatively, we can close the system by invoking charge conscrvation :

(saving the total number conservation for use clsewhere) and write

VY N+ on, = T (5-90)
ko

where N = 3 i The final system, for all levels of all ions of all species
is written in the general form

on = B (5-91)

where n denotes a vector that lists all occupation numbers (say A of them)
while o isan (A x A7) matrix and 48 is a vector in which only one element
is nonzero [from equation (5-89) or (5-90)}.

To make these considerations more definite, let us consider a case that 1s

simple enough to be manageable and complicated enough to be of general

applicability. Suppose we have an atmosphere composed entirely of hydro-

gen and helium (of abundance Y, by number, relative to hydrogen). We-

consider the helium to consist of a ladder of three jonization stages, He®,
He*, and He" 7, and we suppose that these ions have Lg. Lo, and 1 levels
respectively. Further we write My, = Ly + Ly + V118, My, is the total
number of helium states of all kinds. Similarly we consider Ly bound states
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of .hyd)r{(?gen, yielding My = Ly + 1 states in all (including protons). Then
using X’s to denote nonzero elements, the rate matrix .7 has the form ,

Row
Number
1 XxXx ' - X X 0
2 X x o . U
Ly Xx XX 0 0
Ly +1 X x - -
Cox | x
’ X X ’ 0
Ly + L, N 0
My, 111111 1] 1] —y—y —y| -y
M]le+1 0 x ¥ x
XX x x
My + Ly 0 x x
X x
My+My {0 0lti-- 12| 0 0 -+ 0} 1
1
Lo My, My, + My

Column Number

( ) +
3
glVe equdtl()n (5"8;) fOl” He s the MHE th Tow glVES the abundanCC eq llathll

{5-89), the next Ly rows gi i

, - s give equation (5-87) for H, and the last i

( : , St row '
charge conservation. The vector n consists of elements e

n = [n(He, ..., n (He), n(He™),..., n, (He")
a(He™ ™), ny(H), ..., 0y (H), n, )" (5-92)
and a9 =10,...,0,n)" (5-92)

or given values of n,, T, and the radiation field, equation (5-91) is a {inear sys-

-tem in n, and may be solved by standard numerical methods (526, Chapter 9)
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5.5 The Non-LTE Equation of State

From the results of the preceding sections, we sec that in LTE each occupa-
tion number at a specific point in the atmosphere is a function of only two
thermodynamic variables; ie,n = m(N, T)where T is the absolute tempera-

ture at that point. In contrast, in the non-LTE case, the full rate equations .

imply that 7, = ngN, T, J,) where J, denotes the frequency dependence of
the radiation field over the entire spectrum and T is now a kinetic temperature
describing only the particle velocity distribution function. We now have as
many new (fundamental!) thermodynamic variables as are required to specify
the distribution of radiation in frequency. [ Note that if we could simplify the
description of this distribution—e¢.g., if we could write J, = WB{T)—then
the situation would be vastly simplified; but in general we may need to
consider perhaps hundreds of new variables.] As was the case for the LTE

equation of state, the non-LTE statistical equilibrium equations are actually -
nonlinear in the electron density r., and we shall require a linearization .

procedure to solve for the occupation numbers; but now we shall have to-
extend the linearization to include changes in the radiation field as well. We
shall see in §7-5 that this approach provides a method for coupling the
transfer equations and statistical equilibrium equations together, and allows
us to determine the global response of the gas io the radiation field simul-
taneously with the reciprocal response of the radiation field to material
properties.

Before developing the linearization procedure required in the seneral case,
it is worthwhile to consider a few examples that illustrate clearly the essential
physical content of the statistical equilibrivm equations.

LIMITING CASES

Consider first an atom consisting of a single bound level that can ionize

{o its continuum. We then have one rate equation which states that (ignoring -

stimulated emissions)

(ny/n¥) = [47: f (o B, /vy dv + neqlx} / [cm f “ (o) dv o+ m,ql,c] (5-94)

We note first that, as the electron density becomes very Jarge, so that colli-
sional rates exceed the radiative rates, then

lim (”1/”?) = lim (]Tl).qlh'/”‘l’.ql}() =1

o™ % He— 0

ie, LTE is recovered. Further, at very large optical depth, J, — B, and

clearly ny/nf — 1518, if the radiation field is perfectly Planckian we rccover
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LTE_, as expected. Two comments are necessary here, however. (a) To
obtam.LTE in a multilevel atom J_ must equal B, in al,z' transitio;ns If any
transition is transparent, then L'TE will not be obtained (unless 'densi'ties are
50 high that. §ollisions dominate), not only for the particular levels involved
in the transition under consideration, but actually for afl other levels as well
because the radiation field in each transition influences the populations of
lg!.’ievels (see below). (b) We have left unanswered the question of how large
is “very large” optical depth. As we have indicated earlier, t, & 1 is not
sufﬁme_nt to guarantee J, — B,. Rather 7, must exceed a thermali‘zarion depth
for which precise estimates will be given in Chapters 7 and 11. In the low-,
density limit (¢.g., in a nebula), equation (5-94) reduces o .

(ny/n¥) = f “’ (1, B, /hv) dv / f “ (01,J v} dv (5-95)

which stat.es that, if the recombination rate exceeds the photoionization rate
the le\_r'el is overpopulated; and it is underpopulated if the reverse is true,
Equa}tmr} (5-95) is, of course, equivalent to equation (5-46) which is ofteﬁ
applied in nebular analyses. In the coronal case, we have T,( ~10% °K) =»
TR(~6(}00_°K), which implies that collisional ionizations e):ceed radiative
fsee cquation (5-44) and related discussion] while radiative plus dielecironic
recombinations, both of which proceed at a rate specified by T,, exceed
collisional recombinations. Then :

1.1 = Mllo{Orr T 2nr)
so that (me/m1) = Gyeflome + 2pr) = AT) (5-96)

That is, the coronal ionization balance depends only on temperature and is
11}11dependenl of the electron density, a fact that vastly simplifies analysis of
;[i ecp ;?L?:Sdi‘rf;d]i TtEe coronal and nebular situations represent extreme

Let us now consider some multilevel problems. Suppose we have a volume
ol pure hydrogen gas illuminated by a very dilute radiation field (ie. a
nebula). We anticipate that virtually all of the hydrogen will be in its gr(.n;nd
state, apd we assume that all the resonance lines are completely opague (and
henpe in detailed balance). Further, we assume that, after an atom is photo-
lonized .from the ground state, recombinations occ;ur to all states, but the
popqlatlons of the upper states are so small and the incident radiaéion field
so diluted thgl (a) we can ignore photoienization out of these states, and
b el;ctrops in any.excited state cascade downward at rates determinéd by
the‘ Emstem coefficients 4 ; without reabsorption upward {(i.c., the subordi-
nate lines are transparent). We further assume densities are so low that we
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may neglect collisions. Then we have an ionization eguation

I
m Ry = 02 Y, gl T) (5-97a)

i=1

and a number conservation equation

I
Y o+ R, =y (5-97b)

i=1

where ry, is the (given) hydrogen density, J is the total number of bound states
considered, and n, = n, (for purc hydrogen). Ry, 1s assumed given in terms
of J, = WB,(Tg), as in equation (5-40). For any subordinate state we can
calculate the population in terms of the branching ratios a; = Aj; /e A
and the cascade probabilities pj which are defined recursively as pivy, i =
Qyq.pand Py = a5 + Yzl ppn for (j =1+ 2,...,I). Then for level i

we find
I
n; z Ay = htopgll, T) + 2 Y
i<i 5
I
= Hez [kaR(ia T} + Z pjdeR(j, T)] (5_98)
Jj=1

Fixercise 5-8: (a) Verify the expressions for py given above and derive equation
(5-98). (HinT: Start with level T and work downward.) {b) Show that equations
(5-97) and (5-98) yield a quadratic equation in #, that allows the determination of
n,(ng, T), and hence all the n's. (c) Show that p;, = 1 (j > 1); interpret this

result physically.

From equation (5-98) we may estimate ratios of occupation numbers, and
hence ratios of line intensities along a series. For example we can compute
the relative intensities of the Balmer lines (the Balmer decrement) as

I(Hk)/I(Hj) = (”kAkthkz)/(”jA_;'zh"jz)

and compare the theoretical results with observation. The approach outlined
in equations (5-97) and (5-98) (with extensive elaboration and refinement!)
forms the basis for the analysis of nebulae [see (15, Chaps. 23-25; 10, Chap. 4;
415, pp. 40-110; and 350, Chaps. 1-3]

Finally, consider an atom that consists of three states (1,2, 3) in order of
increasing energy in a rarefied medium {neglect collisions) and a dilute radia-
tion field. A famous result regarding such a system is Rosseland’s theorem of
cycles, which states that the number of radiative transitions in the direction
1 — 3 = 2 — 1exceeds the number in the inverse direction 1 —» 2 = 3 = 1.
A consequence of this result is that energetic photons are systematically
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degraded from high energies (say far ultraviolet) to low (visible and infrared);
for example, in a nebula, Lyman continuum photons are degraded—e )
into Balmer continuum photons plus L photons (state 1 = 1s, state 2 = -28-:
state 3 = continuum). We may calculate the ratio R ’ /R "
quite ea.sﬂy. The number ofexcitations 1 — 3isn; B, Wlé(ﬁv?;)z af thz:_éizftgé
atoms in state 3,a fragtion Az2fids; + Asq) decays to state 2, and of the
atoms in state 2 afraction 4,,/[ 45, + By3WB(v,4)] decays to ;tate 1 (here
we have ignored stimulated emission). Thus

n B WB(vi3) 43,45,

MRz, =
(Asa + A31)[Azy + BayWB(va3)] (5-9)
By similar reasoning
miRiszm301 = B2 WB(V13) By WB(vz3)As, (5-100)
s0 that [Azl T B)_3WB(1)23)](A32 + A31)
Riamami/Rias—a-1

= W[B,3,B(v;3}/Aa1 |[B23B(v23)/As,] [A31/B13B(V13)] (5-101)

Bu.t using the ‘relat.ions among the Finstein coefficients and writing B, in the
Wien . approximation (hv/kT > 1) one finds [B;B(v;;)/A;:] = (n-/r:.)* so
equation (53-101)reduces to Ry .5 3. 1/R1 3551 = W‘}< l'r;vhich pjroiiesj the
theorem. The result clearly foliows from the fact that in tI;e cycle 1 = 3 —
2 — 1 the dilution factor enters only once, while in the reverse process it
enters z'rvice. In stellar atmospheres, Rosseland’s theorem is relevant because
at certain depths one may have resonance lines that are opaque (e, W = 1)
excmng.atoms to upper states, from which the subordinate lines ;;re trans-
parent; in such cases we anticipate a systematic photon degradation.

LINEARIZATION

_ As mentioned before, the general system .o/m = 28 can be solved as a
linear system for n if n,, T, and J, are all specified. But, in practice, we do not
know exact values for these variables in the course of a model-a’tmos here
computation (recall the discussion for the LTE equation of state) butphave
only current estimates in an overall irerative process. We expect all of these
vangbles to change by amounts én,, 8T, 0J,, etc. to satisfy better the con-
straints of energy and pressure balance, and must evaluate the res f
n to these changes, in the form e

K
n = (fn/dn,) on, + (B0/8T)YOT + . (6n/éJ) dJ, (5-102)

k=1
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Here J (k= 1,.... K) is the mean intensity at discrete frequencies that
sample the spectram. These frequencies are chosen such that all integrals
over [requency arc replaced by guadraiure stms—1.€.,

X

[Feydy = ¥ wFn) (5-103)

k=1

We obtain equation (3-102) by linearization of the original equations (3-91)
[and also can find parallel linearized equations that give, in essence, 8J (6T,
$n,, om) from the transfer equations; cf. §7-5]. Equations of the form {5-102)
are required in two confexts: (a) mode] atmosphere calculations where all
variables may change In an iteration cycle, and (b) multilevel statistical
equilibrinm calculations for a given model (n,. T, and total particle density
fixed). The procedure for case (b) will be deferred until Chapter 12, and we
shall consider only case (a) here. [ In case {b) one may use a special technique
motivated by consideration of the computational methods of solving transfer
equations, to be developed in Chapter 6.]

1f x denotes any variable, then by linearization of equation (5-91) we have

on 1 o aud
= —[—mn (5-104)
éx ox cx

where we have assumed that n is the solution of the current system c#m = @B
(we might introduce a subscript zero, or some similar device, but it would
become unwieldy). An extremely important featare of this approach is that
every derivative in equations (5-102}) and (5-104) can be written down
analytically (though the inverse .« ~! must be computed numerically); this
produces a system of high accuracy and refiability. To lustrate the proce-
dure, we shall write down some representative derivatives for the model
atoms discussed at the end of §5-4; more comprehensive collections of for-
mulae are given in (42) and {437). In what follows, we use the auxiliary vector
a = (0.0 [0x) - . Suppose we choose some frequency v, and wish to calculate
on/&J .. Except for the “special” rows of o that express abundance and charge
conservation, we will generally have

(B ] ); = —dawe ). U< i) {5-105a)

mmmm:mWw%{waa+2%mmwm%“Wﬂ
i j<i
(5-105b)

and (3.4 /01 )i; *[4T£wk0€fj("k)/hvk](”i/”j)’ke_hv“/”, (j> i) (5-105¢)

I
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from which we find

a; = [(8=4/8], ) n];

= (dawfhv) {Z o v — njlmgfn;yre AT

i

Jj<i

—Z%me—mmmwfmm} (5-106)
We then can construct

@n/ad,), = —Z Ala, (5-107)

1t is .p_artxculariy instructive to consider the case where only one {i — j)
transition can absorb at v., and all the other «,,(v,)’s are zero. ‘

Exeicise 3-9:  Show that, for the case just described, equation (3-108) is valid
pat _ -1 -
(en/dd,), = (chrj — Ay 1)[4H‘Vk0‘ij(vk)/h"k] {”i - ”j(”i/”f)*f_n‘lkﬁ(r]

| (5-108
This result, bgsides being simple, shows clearly that, because ./ ~* must i |
general be a full matrix, a change in the radiation ﬁ’eld at an}: fre uens "
causes a change in the occupation numbers of every level | eﬁen z}q ! .CY o
abs_olrb or emit photons of that frequency. Of course the eleinents o{/ f?’?”oé
</ may be small, and the coupling weak, but the basic phys;cﬁ'!li pf‘)iililt

rem 18 true. S fDl’ 1, a (1 l dare £ivelnl i € reere S
¢/jon, i) ’
all 1imila GSIIEIS (3/ ) ((/U ) g n h 11C
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Solution of the
Transfer Equation

actual stetlar spectra requires the calculation of thf: emerge;]n.t
flux from a model atmosphere by a solution of tl_le transferl equat;on. Iri Ji r;s
chapter we therefore turn attention to numer.lcal techmqﬁeg cclnrt }f;)t twg
transfer problems in terms of differential equations; We sh}? n hat b
extremely general, flexible, and powerful methods result when we i
the transfer equation as a two-point bou'ndary-value problem using ‘1[ rence
equations. Many methods exist for solving the transfer equation in ter

but these will not be discussed in depth in this book, as

integral equations, 4
g;ﬁ are adequately described elsewhere (18, Chap. 8) and as they do not lend

themselves so readily to the treatment of movigg atmospl-]eres (C?ap;esriol }2[
In the present chapter we shall restrict attention to st{atlc{) one-d 1r_r§ered .
plane-parallel atmospheres; TOIE genera_l problems will , t_alclonmtivations
Chapters 7 and 14. There are strong physwal and mathe_md-nccl mlo avons
for using the techniques presenteq in§ 6-3 {or their 1n“[[egra(§f%c;mes
analogues), which are specially designed to overcome cer kam el
that are characteristic of radjative transfer in optically t1l11cl 1?6' 1t e
presence of scattering terms. We sha1.1 try to develop 1nsig {t 1111'1 0t e
difficulties by considering other plausible, but useless, approaches 10

problem in §§6-1 and 6-2.

The analysis of
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6-1 Tteration: The Scattering Problem

One of the fundamental physical difficulties inherent in the solution of
transfer problems is the existence of scattering terms, which decouple the
radiation field from local sources and sinks, and involve global transport
of photons over large distances in the atmosphere. It is through these terms
that the presence of a free boundary makes itself felt even at great depth (7, »
1)in an atmosphere, and causes large departures of the mean intensity J, from
local values of the thermal source function B,. For ease of discussion we
consider a prototype source function that contains a thermal emission
component and a coherent isotropic scattering term—i.e.,

Sv - (K\'Bv + G-vJv)/(Kv + Gv) - (] - p\')Bv =+ pvJv (2_39)
where p, = a,f(xx, + ¢,). The solution of the standard transfer equation
.LL(@IV/EJTV) = Iv - S\’ (2_36)

can be written formally in terms of J, as [cf. Exercise (2-10)]
J\'(TV) = AT\)[SV] - ATV[BV] + Arv[p\’(J\' - BV)]

Il there were no scattering, p, = 0, then J, could be calculated, as a quadrature,
from B,; when p, = 0, we must solve an integral equation for J,. One of the
first methods that comes to mind to effect such a solution is iterarion. As we
know that J, — B, as 1, — oo, let us deal with (J, — B,). Suppose g, were
everywhere zero; then (J, — B,) would equal (B, — B,) where B,(1,) =
A, [B,]. If p, is not zero, we could regard this value as a first approximation
and write

(Jv - Bv)(l) = (Bv - B\:) + Afv{pu(‘]r - B\!)O]
= (E\' - Bv] + sz[Pu(Bv - Bu):l

~ (B, — B,) + AW (6-1)
Then by iteration, we find
(J, = B,)” = (B, — B,) + } A" {6-2)
i=1
where A® = A_ [ p, A" V. In practice we continue the iteration until some

convergence criterion—e.g, [|[A“/(J, — B,)"™|| < ¢, where ¢ « 1-—1is satisfied.
It is clear that, if ||p,{| « 1, the iteration procedure of equation (6-2) can be
expected to converge, for successive corrections A™ must be of order ||p,/|*
relative to (J, — B,), I, however, ||p,|| @ 1 over a large depth of the
atmosphere, the iteration method fails,
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The circumstance just mentionad actually occurs in stellar atmospheres,
and the thermal coupling parameter i, = 1 — p,maybevery small through-
out a large part of the atmosphere. For example, in very hot stars the principal
source of continuum opacity in the outer layers is electron scatiering, and
4, may be of order 10~ % very deep into the atmosphere (until fmally, as the
density rises, free—free thermal absorption overwhelms the electron scat-
tering). In cool stars of low metal abundance, the hydrogen is neutral in
the upper atmosphere and free electrons are scarce, so Rayleigh scattering
by H and H; dominates the H™ opacity, and p, is nearly unity until great
depth {at some point the hydrogen rather abruptly becomes excited and
ionized, and 2, suddenly rises to unity). For lines, the corresponding thermal
parameters may be very small, 2, ~ 108 (see Chapter 11).

The symptomatic behavior of the iteration method in these cases is that
the solution stabilizes, and although successive iterations differ fractionally
only by some small value, the A’s are monotonic, and are nearly equal in
iteration after iteration. In such cases, although the fractional change per
iteration is & (¢ « 1}, there is no gnarantee that, say, 1/e more iterations may
not actually be required o reach the final solution. The discussion thus far
has been couched in terms of integral equations using the A-operator, but
i{ should be stressed that the same difficulties would arise with a similar
iterative solution of the transfer equation asa differential equation (we shail,
in fact, refer to either procedure as «Ajteration” even when we do not
actually employ the A-operator). The faiture of A-iteration to converge is
a point of crucial impostance whose physical significance must be understood

completely; to this end we may consider the following simplified analysis.

Suppose that the depth-variation of the Planck function can be represented

with sufficient accuracy by a linear expansion
B\'(Tv) = Oy + bv’rv (6'3)

and that p, is constant with depth. The sero-order moment of the transfer
equation can be written, using equations (2-71) and (2-39)

(SH\/GT») = J\! - S\' = }"v(']\' - Bv) (6‘4)
while the first-order moment gives
(aKL/aTv) = Hv (6_5)

If we use the Eddington approximation K, = 1J, and substitute equation
(6-5) for H, into equation (6-4) we obtain

(@d,/002) = A, — B = [8%(J, — B.)or.”] (6-6)

il -
2| —
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where the second equality follows from th
: ¢ form of B i i
{6-3). The solution of equation (6-6) is o assumed’ n eduation

J, — B, = a,exp[ — (34,05, ] + B, exp[ + (34,1, ] (6-7)

As we delinand that J, - B, as 7, — oz, we must have i, = 0. To evaluate
, we make use of the boundary condition J,(0) = 3 HL(0) = (dJ,/dz, )/ /3
[the.sccond equality following from equation (6-5) in the Eddingto;l a \ go i

mation]. We thus find from equation (6-7) PRI

TA0) = o+ o = (@Jd0A3 = [~ (RPN (6

Hence we obtain finally

Je) = a + b, + (b, — V3a) exp[ -GV + GAF] (69)

Equation (6-9) reveals the essential physics of the problem. First, it sh
that _J » 1ay be markedly different from B, at the surface .For sim bl' 0"t)VS
consider an isothermal atmosphere—ie, b, = Oand B, = a. ;then atrp lil g
J.0) = 22l + 4%) — Z2BJ(1 + 2 Thus when 2, <« 1, then J, s
much smailer.than B, at the boundary. Second, we see ﬂ;at this depa tv .
extencltls de'ep into the atmosphere because the slow decay of the ex Olilcefl 'tu1 1Fel
term implies that J,(t,) — B,(z,) only at depths =, = (A,)7%; in vigw fltila
'small }r’EllHCS quotec} abgve, these are very large devpths irvldee:d. When .? ha:
i}ﬁpgﬁgf&g(;ifr\,eE;J;bitora)rﬂ_y%closellly, we say that the solution has Iherma!vized ;
e Chap{,e N ’?.,S Itljeartl}éefl f;{tlzzanon depth (a concept that will
N Wethay obtal.n an intuitive understanding of the thermalization depth
lom_ le lfollowmg phyg:c;al argument. The parameter 4, = x,/(x, + 5,)
fheally is just the probabzhty. that a photon is destroyed (i.e;., conzfert‘c,ed intvo
) ;;2?11 ;r:liiggi IS)ert 1scat;erltl)lgf, event. To assure thermal destruction, the

cattered about n = 1/, times. :

thrqugh the atmosphe;e bya random-wéllk processif \:r}il‘::h ilé:ﬁl}rger (;Jgart(;lsias
(wh1ch must be approximately unity), then the total optical thickness th 1T
Wh}ch it may pass without destruction is n* At = Atd, % ~ 4,7 % th(il;i*
e}rlmtted at greater depths are unlikely to escape witho‘;ut being: thérmalizeg
(hence J, — B,), while those emitted from shallower depths man t
escape and allow J, to fall below the thermal value (ie., B,) e
as\:ne iﬁﬁ\;llcali.u?derstand why Al—iter.ation fails Whei’l \;e adopt J, = B,
s an It deesa Tldte. ;‘Each successive iteration can propagate information
about the ¢ P tlhurt? 0‘ J, from B, only over an optical depth At ~ 1—1e,
3 mean erfga [Eeczll ‘tbaf E I(Av:). falls off as e~ **/At for Atz » 1]. Thus
pemus ph rm of order 4, 1terat1(_)ns to allow the effects of the boundary

ake themselves felt In the solution to a thermalization depth. When
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4, « 1 such a procedure becomes computationally prohibitive, and we
conclude that any useful method must account for the scattering terms in
the source function from the outset and provide a direct solution for such

terms.

6-2 Eigenvalue Methods

A characteristic mathematical difficulty that emerges in treating the transfer
equation as a differential equation arises from the nature of the boundary
conditions. Suppose we use the method of discrete ordinates, replace the
angular integral for J, by a gquadratuse sum, and attempt to integrate

numerically the system

l H
wdljde) = I — 5o 3 aly= (1= pB (= ke +r) (6-10)

i n

To effect the integration, we require starting values for I, for all values
of i; these are fixed by the boundary conditions. As described in Chap-
ter 2, the boundary conditions fall into two groups, namely 1,0} = 0,
_n), for incoming rays oD the range —1 < p; <0 and
(Tt = 9D le.g. gl = B, (i=1..-, n), for outgoing rays on the
range 0 < 1 < L. Here 7, tefers to the deepest point actnally treated
in a semi-infinite atmosphere. The problem is this: suppose w¢ wish to
start the integration at © = 0, and proceed step-by-step inward ; we cannot,
for we do not know the values of I,(0). Similarly at Tma WE lack values for
IJi(‘rmax)'

Thus we face an eigenvalue probiem of ovder n. We could, for example,
guess a set of values for I —i(Tmax) and use these to integrate toward the surface.
When the integration reaches the surface, we would in generalfind I {0y # 0.
[n principle, we could then adjust the values of I _(Tmax)» and by successive
trials find those values that forced I_;(0) = 0. In practice, however, this
method is strongly unstable and can work only if Tpay 18 DOU VETY large.
We can see this as follows. As we know from the grey problem, the discrete
ordinate method leads to exponential solutions of the form exp{+ k1) where
{he Kk’s are of order 1/p. In cases where the coefficients (such as p,) are depth-
variable, the solution 10 longer consists of pure exponentials, but, neverthe-
less, siill has an exponential character, perhaps f(7) exp( +- k1) where fis
4 weak function of 7. In a semi-infinite atmosphere we must suppress the
ascending exponentials. For the grey problem this can be done explicitly,
for we have an analytical form with which to work. But in the nongrey
variable-coefficient casc, the solution is known only numerically, and unless

exactly the right choice of starting values is made, it contains both the

(i=-1..-»
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ziciif)m\f' lelmgl descending exponentials. Therefore, in general the terms in
{ai o 1d e present; thege arc called parasites, and they .increase at a
rate o doer er expézkr) relative to the true solution. Thus if our starting

are wrong by an error &, the parasite will .

e , _ e will be of order ¢ exp{2kt ~
stious f}?n:par;ed to the true solution at the other boundar?/( angaxi)l is
at, unless our initial choice is ver ;

_ ery good (& « 1), the parasi i
oo _ ! , rasite will
p the true solution, which will then be lost. In fact, to retaif any vestige

of the rea i
1 solution, we must employ n & kt,,, significant figures. If several

gegllle—qgadrature points are used, some yu; « 1 and hence some k » 1

oven v;l ;?f&iercitstrjmx = 10 we will lose the solution on typical comput’e:;).
A e b con numt:n, T MY be ~ 10° to 10* in the lines, which
o e mbfiss 0 th1's approach. In summary, the mathematical
ety Tor thé) twoc_ali)r:) jiqigfsrtehai‘ w; employ a method that accounts
outset. We now turn to a discussion c(:f sfuceh ;);igzzy conditions from the

max

Exercise 6-1: (a) Solve equation (6-10) with p =
xereise & \ p =0 B-=_const for I, wi
;: éd . jéalil?lzgnthat d*Jdz? ='4(Jr - B) and write exact solutions foriJ ;th
and h;lc,i Bloulati g(:onstants of integration from boundary conditions, Sup,po;é
one fhad chosen ; Bﬂgx) =1 (1) = B; evaluate the (false) solution and show
(hat the b. xp.(—lrmx.) at the lower boundary amplifics to ¢ = B at
. (b} Generalize the discussion to the case where p # 0 {but constant)

6-3 The Transfer Equation as a Two-Point
Boundary Value Problem

In this section we shall deri
erive two very general, flexi
! : \ ible, and po
W}g)t;i'gaiklllestfor solving t_ransfer probilems. These approaches reszltwi?rf?ri
s f_ O?H trelljnsfer equation asa second-order differential equation subject
to twe Hll)portanf[)lggf)arybcol?dltlons. Most of the basic ideas were presented
er by Feautrier (209). These h

nan : . methods have proven to b
- E:)I}dt lf:sy to implement; each offers advantages in c‘,orflplemeutare

parameters that set the scale of the computational effort tg

solve a given problem.
SE -
COND-ORDER FORM OF THE EQUATION OF TRANSFER

In plane-parallel 1
' ' geometry we may write t i i
cutgoing and incoming radiation field L +u: o cduations governing the

+ulo1(z, £ v)oz) = 1z WS ) — Iz 0] (6-11)
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e symmetric
where we restrict g to the half-range 0 < ¢ < 1. We now define sy
and antisymmetric averages

! ) 6-12
M(Z, £ V) = § [1(25 s V) -+ I(Z: —H, ")] ( )

' 6-13
and iz, V) = %[I{z, vy — 1z, — i V] (6-13)

p 5 ¥-= = 1, 1.
Wh[(; I ave (o) eci e] a mean- Iltel”lSlt lke a d a

adding the two equations (6-1 1) to obtain
-14
ufav(z, . v)foz) = 1tz WISz, ¥ — ulz, p V)] (6-14)
and subtracting them io obtain 5
-1
W[ Bulz, g, v)fez) = —lm i ) (6-15)

i imi ) biain
Then substituting equation {6-15) into {6-14) we can eliminate v and 0
a single second-order system for u:

w0 [ : M] = u(z p,v) — Sz, V) (6-16)

e oz |z 8
defining dr, = dz(z v) = —z(z V) dz and abbreviating the notation,
or A » .
| -17
Hz(ézuuv/af\vz) = u;w - Sv (6 )

W 11 bC tl’\le fOIC I[lost Of thﬂ SQUYCC leﬂCthllS weE Sh.d'll COllSldGl - ’e.g., those ()i
1

the form

v

-18
S, = oy J.qbv"]u' dv' + ﬁv (6 1 )

or S, = o, jR(v', Wy dv 4 B (6-19)
i istribution i fe-dependent [in which case
not be true if the redistribution Js ang : : _ ase
l(:!)g[lerf?gchniques are required, cf. (460)] or if theré dre’mo‘uonrg allrf tlslfaid e
here (sec §14-1). In equations (6-18) and (6-19) t}}e oS esseh ’ Sy R
- ttering cloefﬁcients divided by the total opacity and the f ref ent
iﬁzrmal ltjermq Tt must be stressed that these choices Sc;fﬁSvd are Ii);:lr %Okmg
. ¢7.2 and 7-5) find sumlar-

. i the sense that we shall later (cf. 887 ' d i {
) atwe’t}llzti?r?vsolve the radiation field over the entire sp'e‘cn wm ‘(1mfposecrln lfﬁfti
terc? ;tive equilibrium constraint) or for the entire transition art c};;v 0;:;;

{:vél model atom. The analysis given below still applies in such cases.
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Note that in contrast to the moment equations, which do not close, equa-
tion (6-17) [first derived by Feautrier (209)] yields exact closure of the system
in terms of the angle-dependent symmetric average u,,. We shall see below
that it is sometimes advantageous to follow an intermediate course and to

use an approximate closure of the moment equations in terms of variable
Eddingtorn factors.

BOUNDARY CONDITIONS

Equation (6-17) must be solved subject to boundary conditions att = 0
and at t = 7,,, {which denotes the thickness {or half-thickness) of a finite
slab, or a great depth where the diffusion approximation applies for a semi-

infinite atmosphere]. Att = 0, (0, — 4, v) = 0 which implies that v,,(0) =
u,.(0} so that

u{augt\'/ar\')O = u,uv(o) (6_20)

At T = Tmax: WC SPECify I(Tmaxa +.u’ V) = IJr(P"':: V), and Write b‘pv(‘rmax) =
I+(1U": V) - u,uv(T'maXJ so that

p’(auuv/aT\'):mm = I+(Ju.1 V) - uuv(“:max) . (6'2])

If the diffusion approximation is valid at 1,,,,, then

1 |éB,
I(Tmﬂm i, V) = Bv(Tmax) + M (_ ~ - ) (6'22)
Xy} 0Z Trnax
so that uuv(rmax) = Bv(rmax): Ugv(Tnlax) = I—t(xvillan/aZ )rmax and

jal
Oy,

éB,

o
CZ

-

o1

v

1
=,Lt—~*

Exercise 60-2: (a) Generalize equation (6-20) when (0, —u, v} # 0. (b) Show
that for a symmetric slab (infinite in x and v), of finite thickness {in z) 1,,,,, the lower
boundary condition can be writien at © = §7,,, as (du,,/0t,) = (. This implies
that we need consider only half the slab: 0 < v < 4«

) (6-23)

17 tmax

max-

DIFFERENCE-EQUATION REPRESENTATION

We now convert the differential equation (6-17) into a set of difference
equations by discretization of all variables. Thus we choose a set of depth
points {75}, (d = 1,..., D) with 1, < 7, < -+ < 1,; 4 set of angle points
{nts (m = 1,..., M); and a set of frequency points {v, b, (n=1,..., N)
For any variable g, we write g(z;, tw, V) = Gaww. We replace intcgrals by
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quadrature sums—e.&, for equation (6-18) we write

N M
Sin = Oan z a’n(f)dn Z bmudmn + )Bdn (6'249*)

n=1 m=1

les and frequencies into a single serial set of values

Further, we group ang
m + (n — 1)M, and hence

subscripted i such that (g, Vi) = (itms Va) 81 i=
reduce (6-24a) to

I
S¢i = ai z wipgittar + Bai (i=1,....0 (6-24b}

=1

Similarly, for equation {6-19) we bave
I
Sdi = Ui Z ,ajgd‘ i',iumﬂ =+ ﬁdi (I = 1,. P I) (6'25)
i'=1

Note in passing that these source functions are independent of angle, and
hence this description contains redundant information (which can be re-
moved when we introduce variabte Eddington factors). Equation (6-24b) has
an additional redundancy because the scattering integral is independent
of v (or of i); we shall exploit this later in Rybicki’s method of solving the

equations.
Further, we replace derivatives by difference formulae, and write, €.8.,

(dX/dT)H% = (AXd+-,§/ATd+—.;-) = (Xar1 — Xofzarse — Ty) (6-26)

and (XA~ @X /Ay — (X[ ] / B (Atgey + ATH)]

{(6-27)
thus, defining
1
Atgesi = E(Xdil,i - Xdi)lzu’il - Zdl (6-28)
1
aﬂd A'Ed! i = ‘i (Afd_%! i + A'Ed_{.%’ i) (6'29)
we rewrite equation (6-17) as
2 2
L L 1 1
N s b TP + Ug,
(Afd%,i Aty i) Heai Aty (ATd—.;;, i ATguy i) &

2 .
M i=1....1)
L= U — g 6-30
- (Atd,iATd+%,f> YUgt1,i Uy di (d — 27' ..,D _ 1) ( )
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where Sﬂti has the form of equation (6-24) or (6-25), and indeed can be gener-
?]1z§d still furthe_r (to include, e.g., the entire spectrum; cf. §§7-2 and 7-5). As
indicated, there is one such equation for each angle-frequency point 1 at
each of D — 2 depth points. ,
If we now define the vector u,, of di i i

4, of dimension I, to consist of the angle—
frequency components at depth-point d—i.e, {(u,} = u,;—then equa:[éion
(6-30) can be written as a matrix equation I !

—Adud—l + Bdud — Cdud+l — Ld (6"31}

The (! x I ) matrices Ad. and Cd' are diagonal and contain the finite-difference
rejpresen.tatlon of the differential operator. B, is a full matrix that has the
dl[:fel'eiltlal operator down the diagonal plus off-diagonal terms that come
fgo;l1 the quadraturelsum representing the scaftering integrals in equations
(6-24) and (6—25). L; is a vector containing the thermal source terms. More
dcgurate _dlfference 1.representations than equation (6-30) may be written
gitn;ghzglge coltoc;tlon (1}3174), (442) or Hermite integration {ormulae (34)

o not change the general form of equati - ]
O became falhy quation {6-31) (though A, and

To complete the system, we use the b iti
, ound

oo complC ary conditions. At the surface

il — uli)/Afg,i = Uy (6-32)
which is only of first-order accuracy; second-order accuracy can be obtained

(30) from the Taylor’s expansion u, =
) . : a > = iy + Arg(du/d LA 2(d? 2
which, using equations (6-17} and (6—20)1 yieldsz( SRR

. . —_— . = 1
pilig; — uphAty ;o= uy; + (5 AT%,E/J“’A‘) (t9y — Sy {6-33)

or, in matrix form
Blul — C1u2 = LI {6'34)
Similarly, equation {6-21} at the lower boundary becomes
Wil — up 1 ) ATp 5 = - —1
D 1, i)/ ATp E Ip Up; (2 ATD—%, i/.ui) (Up: — Spi)

which, in matrix form s (6-35)

—Apup_; + Bpuy, = L, (6-36}
Note that A, = Oand Cp, = 0.

I
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Exercise 6-3.  Derive equations {6-33) and (6-33), specialize the latter to the dif-
fusion approximation using equation (6-23). :

THE FEAUTRIER SOLUTION

The set of equations (6-31), (6-34), and {6-36) have the overall structure

B, —C, ' w, L,
—A, B, -G u; L,
0 —A, BSH-C;'\\\\ u; |
\:AD;:\\BD—:\\—CD—i Up—y Ly,
—Ap B, Up Lp
{(6-37)

Each clement indicated is either an (I x I) matrix or a vector of length I; ~

the grand matrix has a block tridiagonal structure, ar_ad the solution proceeds
by an efficient forward-elimination and back-substitution procedure (2209).
In this scheme we in effect express cach uy in terms of wy and-substltute
into the following equation. Thus from equation (6-34) we can write

u, = B,71Cu, + By 'L =Dy v, (6-38)

Qubstituting equation (6-38) into equation (6-31) for d = 2 yields wy, =
Dou, + v; where Dy = (By — A,D)7IC,

and v, = (B, — ADy) MLy £ Agvy)
We therefore have in general

w = Doy, + vy (6-39)
where D, = By — AD;—1)'C; {6-40)
and v, = (B; — ADg_ ) MLy + Agvy_y) (6-41)

for d = 1,...,D. Starting at d = 1, we compute successive values for D,
and v, through d = D — L. At the last point, d = D C,=0, hel?ce
D, = 0, and u, = vp, [which still follows from eguatl.on {6-41)]_. Having
found u,, we then pertorm successive back-substitutions into equation (6-39)
tofindu, =D —1,....2 1). Having found Uy WE may then evalua}te
Jan = Y M_ | budigms and the source function, which involves frequency 1n-
tegrals of J,: €2, Sux = %an S Wolbawd an + Paw N

The forward-backward sweep described above accounis E:?(p}l(:lﬂy for
scattering terms and the two-point boundary conditions. Feautriers method
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has proven itself to be very stable, and has many desirable properties. Note,
for example, that at depth the system tends to become diagonal (the terms
in 1/At* — 0) and hence J, — S,, as expected: in fact, we find J - 8 +
(2(d?S/d=?), which recovers the diffusion approximation automatically. The
depth-discretization is commonly taken to give equally-spaced steps in
log 7, usually with 5 or 6 steps per decade of 7; such a choice has the advantage
that at different frequencies with widely differing opacities {e.g., a line-core
vs. nearby continuum) one has a reasonable distribution of depth-points.

We can estimate the amount of computing time required in a given prob-
lem by counting the number of multiplications needed to solve the system;
the solution of a linear system of order n requires O(n®) operations, so the
time required by Feautrier's method is Ty = ¢DI? = ¢cDM?N? where D is
the number of depth-points, M the number of angle-points, and N the num-
ber of frequency points. It is clear that one pays a penalty for any unnecessary
redundancy in the angle—frequency information, and that the representation
of these variables must be economized as much as possible. If we have a
coherent scattering problem, N = 1, M is generally small, and Feautrier’s
method is eptimum. However, in other problems the number of frequencies
can be large because we must satisfy the constraint of radiative equilibrium,
or statistical equilibrium in several transitions; but the angular information
is essentially unnecessary because only J,, not u,,, enters these constraints.
We therefore eliminate the angular information by introducing variable
Eddington factors f, = K, /J, (44).

By integration of equation (6-17) over u we obtain

e f et =, — 8, (6-42)

and the boundary conditions yield

[e(ﬁi‘]v)/atv:l{) = h\‘Jv(O) (6—43)
o1, B,
and ASIED)) 1(3- i ) (6-44)
oty 17 3 Av] €2 /T

where h, = H (0)/J (0). Equations (6-42) through (6-44) may be differenced
in the same way as the angle-dependent equations, but the solution of this
system requires a time of only T, = ¢DN°?, which represents a considerable
saving. To solve these equations we must know the depth-variation of f,
at all frequencies. We proceed as follows. (a) From any given S, (e.g.,
S, = B, as a first estimate) we can solve equation (6-17) for u,, one angle
and freguency at o time. In matrix form we have Ta; = S; where T is tri-
diagonal, and u; and S; represent the depth-variation of uy, and Sy, respectively.
Solution of a single tridiagonal system of order n requires O(n) operations, 50
the time required to evaluate the full angle-dependent radiation field for
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given 8,18 T, = SDMN.  (b) Given ug,, we then calculate

— 2
ﬁin - Z bmjum udmn/z bmudrnn
m

and h, = Y Byttt 1o &, Ponth e NOTE that even if the radiation field is
known only with modest accuracy. the Eddington factor may be determined
with substantially better precision (e.g., if u is in error by a scale-factor, [ is
still correct). (c) Now, given T We solve equations (6-42)—(6-44) for J,
using explicit expressions of the form of equations (6-24) and (6-25) for S,
(written in tesms of J,). We then re-evaluate S, using the new values for J,.
(d) Because S, found in step (c) differs from that used in step (a), we iferate
steps {a)—(c) to convergence. If L is the number of iterations the total com-
puting time is Tz = L(cDN?® + ¢DMN) « cDM 3N? for moderate L. Ex-
perience with this method for a very wide variety of physical regimes in
stellar atmospheres has always shown extremely rapid convergence (L
usually is 3 or 4), and substantial economies (about a factor of ten) are
achieved. Finally, we note that additional equations can be added to the
transfer equations at each depth-point d; these arise from other physical
constraints—e.g., statistical, hydrostatic, or radiative equilibrium (se¢ §7-5).
The basic form of equation (6-31) remains unaltered because these con-
straints involve information only at onc or two depth-points at a time.
Thus if we have C constraints the total computing time becomes Ty =
L[eD(N + CY + ¢DM N7; this result bears on the question of whether it
is advantageous to use Feautrier's solution or Rybicki’s solution, which we

shall discuss next.

Exercise 6-4: 'This exercise requires access to 2 digital computer {of small capa-
city). () Write a computer program to perform the formal solution of the
transfer equation with a given §, for u,,, one angle at a time as described above,
and to evaluate the variable Fddington factors at all depths. Use equally-spaced
steps in A log ¢ starting at T = 1073, uptor = 105 or 6 steps per decade), and
use a dauble-Gauss angle quadrature (4, 921); experiment with the number of
angle-points M to examine the sensitivity of the Eddington factors to the quadra-
ture. (b) Write a computer program to solve equations (6-42) through {(6-44)
with given Eddingion factors, assuming cohetent scattering—ie., S, = af, + B.
Integrate the two programs and study the convergence of the iteration process
in cascs with o« = (1 — &) =g &<« 1, starting with J, = 1, for & = 0.1,

001,107%

THE RYBICKI SOLUTION

As we have seen above, the Feautrier solution organizes the calculation
in such a way as to group all frequency information together at a given
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;ﬂl}zztiz}zgdiggzlvi depth,-b;/-de-pth; in that method we may treat a fully
‘ -dependent source funciion [e.g., equation (6.25 i
. T . . e - Wlth ‘t e
dz;]r; i{;utlmn, b];l’[ thel computing time scales as thecube of nu)r:ilbef of?fééfén]cf
Eomm.oﬂrfy 2onz?5ltlfi1l paperf Rybicki (543) pointed out that, in the mos{
_ ered case of complete redistribution, mu hi
: : _ fi: , much of this fi -
depen@_ent information is redundant, for to specify the sourceref?liecrtlicy
{3%1;?11?; (§—24)] we nee.d iny the.single quantity J = [ ¢,J, dv InOI;L
EZ re;;lgl;g az;]aiysmT ﬁiybxckl showed how the solution in thisv cvése.could
ized to yield a system of as great i
reo tzed _ power and general
original Feautrier method but with very favorable com uttf:r i IW_ o 'the
o puting time require-
Instez _ .
| :stgzdtgf ldgscrlbxng the frequency variation of the radiation field at a
ﬁescrib Itah ,del us 1nstlea_d teverse the grouping and work with vectors that
e the depth-variation at a given frequency. That is, we now define

U; = (g, Uag, - .-, Upy)" (6-45)
where i denotes a particular angle—frequency point. Similarly let
I=0.7,, ..., T" - (6-40)

Then at angle—frequenc s ,
system ¥ point i, equations (6-30), (6-33), and (6-33) yield a

T -+ Uplf = K, (i=1...,D (6-47)

where T i idi i

v [‘1—]: 'E,elsca (1? xUD). Iy u[za_gona!matrix representing the differential operator
a Cc; tteriy i, flﬁ is a dmgorjzal matrix containing the depth-variation of
(he scatter ng coeflicient '[ocdi in equation (6-24)], and K; is a vector that
oon S;lso : he detpth-vz(matlou of the thermal term at frequency 7. We have

equations (6-47) for each angle- i :
! ' gle—frequen iti
have D equations that define J,;, namely Aueney point. In addition we
I

2 Wittty — Ty =0, (d=1,...,D) (6-48)

i'=1

Considering the gr: I
grand matrix composed of all i
depths, we have for the overall structpure angle-frequencies and

T1 T Ul u 1' Kl
- 2\ U2 i, I{2
~
A
N - . =] .
AN (6‘49)
N, . .
N

TI U] llI Kl

Vi Va Vi E/\J P
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where the Vs are (D * D) diagonal matrices containing the depth variation
of the gquadrature weights and profiles ip equation {6-48). E would be the -
negative identity matrix and P would be void for equation (6-48) but, as
we shall see in §7-2, more gencral systems of the form of equation (6-49)
arise in the computation of LTE model atmospheres. Comparison of equa-
tions (6-49) and (6-37) reveals that, in essence, the inner and outer structure
of the equations has been interchanged.

The solution of system (6-49) is very efficient. We reduce each “row” of

the grand matrix by solving for

u, = (T, 1K) — (T,7'U)d =1 I {6-50)

Then, multiplying by V, and subtracting from the last “row” we cancel the
“element” in the ith column to ZeTo. Casrying out this procedure for all

values i we obtain a final system for J, namely WJ = Q where the full (D x D)
matrix W is
1
W=FE- ¥ VIl (6-51)
i=1

and the vector Q 18
I
Q = P - Z ViTiilKl' (6'52)
i=1

The final system for J is solved; this yields sufficient information to calculate
S (the run of the source function with depth). If desired, the full angle-
frequency variation of the radiation field may be reconsiructed using the
already-available quantities T; ™ K, and T,” 1U; in equation (6-30).

The solution of the I tridiagonal systems in equation (6-50) requires
0(D21) = O(D*MN) operations, and solution of the final system requires
0(D?) operations, sO the overall computing time becomes Tr = ¢cD*MN +
¢ D? (Notg: these &s are not numerically equal to those 1n the formulae
for Ty, Tg, eic). Uniike the Feautrier system, in which the computing time
scales as the cube of the number of angle—frequency points (Le., M 3N3),
Rybicki's method is linear in MN. 1t is obvious that Rybicki's method is
vastly more economical than Feautrier’s {even with variable Eddington
factors) when a large number of frequency-points is required. Recall, how-
ever, that Rybicki's method works only If' S, can be written in terms of a
single quantity 7 in the scattering integral, while Feautrier's method works
for general scattering integrals. In principle one could use variable Eddington
factors with Rybicki's method, but the advantage gained would likely be
small (if any) because iterations would then be required. It should also be
emphasized that Rybicld’s method is exactly equivalent to the integral
equation approach in which one writes u; = AT + M, where the A matrix
is generated by analytical integration of the kernel function against & set of
pasis functions representing 3. In fact, T, * is the A, matrix, and inversion

.
L
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;1; ;{‘,q ﬁoﬁgrkedly less costly than any other approach for generating A (34);

g way, one may use integral-equation techni 1 i ’
‘ : iques if one wishe

but one should do so by means of Rybicki’s method for generating A;. N

EEAE;E'ISE iSR Usmg a digital computer, write a program to solve the transfer
quation by Rybicki’s methed for a coherent scattering source function §,, = oJ

f for the same vglues of ¢ as were used in Exercise 6-4. Note that the R bi;k'_ ; { ti
does not show its advantage here because only one frequency-poil}lit is ilnrff]s;::d

F}inally,t lel? us meqtion the effects of constraints in Rybicki’s solution. For
za,; rczng raint thgi1 introduces essentially new information into the prol;lem
ne requires an additional new variable simi J ith 1 J
_ ilar to J, along with its defini

equations. For example, in a multi ’ ; conires & T

. iplei problem (see §12-3 i J
for each independent transiti i o

1on, and in problems whe i
the full set of statistical equilibri i IS ——
§ quilibrium equations by linearizati i
. : _ tion a new variabl
is required for each level of the m i, tion
: odel atom or every line in the transiti
array (see §12-4), If we have a total of C vari Y ibine the ¢ traints.
§ . variables describing th i
then each U matrix must consi i e b
: sist of C diagonal (D x D i i
side while each V matrix consi i e )
: sists of C diagonal (D x D) matri
_ atrices stacked

into ahcolumn, gmd E becomes a matrix of dimension (CD x CD). In this
case the computing time for a direct solution becomes .

Tp =c(D? M-N-C)+ ¢(DCP

g?rhf ;Zal f?is ﬂva]uet }TX(C;:CdS the corresponding value for Ty, and at first
g utrier’s method looks more attractive for deali wi

involving many constraints (which 1 e

s why we shall apply it in §7-5 for

7 _ §7- non-

tngfs HI;O?)(.)IkC.?‘HSU'uCUOH). Nevertheless, for statistical equilibrium calculz_

Ofci, ybicki’s melhod has be_en applied successfully even for large values
v using an iterative solution of the overall system (cf. §12-4)

COMPUTATION OF THE FLUX

ThisT;ﬁ;or;;ngen ewﬂlhao\?:ls;:;\;;tlgfns, we ?fl%ﬂ calculate the emergent flux.
: . a ways. eautrier’ I i
l\;ir;:ilellidjlg.gton factors, {1\, i‘s available, and herfcse nlj,t(}{l)g)dzls}f Uj e(c(l))\?;i
o (1).11 ESi e 7 irectly. If Rybicki’s methoed or the angle-dependentvFéautrier
ey haViarfc gsed, we can calculate H,(0) = Y, b,,1,u(0, 1, v). Alterna-
s ! " [g( ‘)ST‘) we can use Ifhe (I)—opﬁ:rator [equation (2-61)] to find
sdm = “?hic ;\S e, in lpr}ellcgce this operation is done using a quadrature
o ﬁux i mre(\ier;l choices are available [see, e.g., {141; 246; 8, 33)]. If
A :1 . at points internal to the atmosphere one may apply the
. to S,, or one may compute v(Ty. 1, i, V) ftom equation (6-15)

and find Hyo oy = 3o Bubial '
midpoints of the depth Eae:}‘?)}? é+1mn (n0te that this defines the fux af



Model Atmospheres

7.1 The Classical Model-Atmospheres Problem:

Assumptions and Restrictions

The model-atmospheres problen
models that provide a description ©
atmosphere and of its emergent spec
problem is one of enormous complexity,

mathematical difficulties that are beyond solution at

is therefore necessary t

abstractions are useful

whelming us with detail; yet it is import .
the restrictions we have imposed, not only because this helps to deﬁne Fhe
problem, but aisoas a reminder of the almost limitless numbers of fascinating

rescarch questions left to explore. The assum

o make a number of simplifications, and to deal with
idealized models that are rather high-order abstractions from reality. Such
inasmuch as they enhance our insight without over-
ant to state, at the outset, some of

into scveral broad categories:

(a) Geometry. We
GeEneous plane-parallel

assume that the atmosphere is
layers when the thickness of the

, refers to the construction of mathematical
¢ the physical structure of a stellar
rum. Tn its greatest generality, the
and presents both physical and

the present time. 1t

ptions used In our work fall -

composed of homo-
atmosphere is small
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compared to the radius of the star, or (in 7-6) homogeneous spherical shells
when the thickness is an appreciable fraction of the radius. The assumption
of homogeneity makes the problem one-dimensional and thus greatly sim-
plifies the analysis: but it excludes many interesting phenomena involved in
small-scale structures seen in the solar atmosphere. For the stars we have
almost no information about the homogeneity of the atmosphere [ sce, how-
ever, (261, Chap. 11)] and we can only hope that one-dimensional models
yield some kind of “average” (in an ill-defined sense) information. However,
because the “averaging” process is nonlinear, the question 18 really an open
one, and it is not at all clear whether such models always do yield meaningful
averages, (e.g. in chromospheres), although they may be satisfactory for
some cases. In particular, in the solar atmosphere many of the inhomo-
geneities arise from hydrodynamic phenomena driven, ultimately, by the
convection zone; for stars without strong convection zones, the atmospheres
may indeed be homogeneous. (Countercxample: the Ap stars, which show
gross variations of physical properties oves their surface, presumably asso-
ciated with the existence of strong magnetic fields).

(b) Steady state. We shall assume that the atmosphere is in a steady
siate, and shall avoid discussion of all time-dependent phenomena—e.g.,
stellar pulsations, shocks, transient expanding envelopes (novae, supernovae),
heating by a binary companion, variable magnetic fields, etc. In this chapter
we consider only static atmospheres; in Chapters 14 and 15 we extend the
theory to steady flows (expanding atmospheres). We shall assume that the
transfer equation is time-independent, and that level-populations are con-
stant in time and are specified by statistical equilibrium equations (a special
case being LTE} that equate the number of atoms leaving a level by all
microprocesses to the number that return.

(c) Momentum balance. Having specified a steady state, we shali consider
either hydrostatic equilibrium in which the static gas pressure distribution
just balances gravitational forces, or one-dimensional, laminar, steady flows.
Here we are ignoring the possibly large effects of magnetic forces: both
large-scale (as in the Ap stars) and small-scale {e.g, in sunspots ot in the
concentrated knots of the general solar magnetic field). We further ignore
the effects of small-scale motions such as waves, and larger scales such as
super-granulation flows, convective cells, etc., as well as major tidal dis-
tortions in close binaries,

(d) Energy Balance. Usually we shall assume that the atmosphere is in
radiative equilibrium, which again implies that it is static; in §7-3 we shall
consider the effects of convection, but only in the roughest terms. 1n Chapter
{5 we shall generalize to sieady flow and include one-dimensional hydro-
dynamic work terms. The existence of complicated motions in the solar
atmosphere is well documented observationally [see, e.g.. (694, Chaps. 9
and 10) or (244, Chap. 5)] and, although data for stars are less complete,
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there is little doubt that complex mass motions play an important role n
the atmospheres of many stars (&.2., supergiants). But in its present state
the theory is unequipped to handle with full consistency the details of energy
exchange betweetl the radiation field and hydrodynamic motions. Turbulent
dissipation i1 convection; wave generation, propagation, and dissipation;
effects of shear In rotating atmospheres; magnetic field effects; and a variety
of other phenomena are all essentially averlooked! These are vital phenom-
ena, for without them we cannot account for chromospheres and coronae
{in this book we shall approach these regions froma semiempirical diagnostic
view because we do not have an ab initio theoretical method). 1t remains
true that important limits on our understanding of stellar atmospheres are
imposed by our inability to handle the intricate interchange of energy
between radiative and nonradiative modes, and that development of 2
satisfactory theory to handle such interactions is probably the most vital
cesearch frontier in this field of astrophysics.

It should be said, however (lest the reader receive an unduly gloomy
picture of our offorts to date), that progress has been rapid, and conflnues
ai an accelerating rate, 80 that we may reasonably expect at least some of
the inadequacies of the present-day theory to be ameliorated in the near
future. Moreover, the framework imposed above does appear 10 yield many
successful predictions of continuum features and line profiles for many

(perhaps most) stars.

72 LTE Radiative-Equilibriom Models

In this section we develop the methods that can be used to construct planar,
static, radiative-equilibrium models assuming LTE; the results of such cal-
culations will be described in §7-4. As was discussed in Chapter 5, the assump-
tion of LTE vastly simplifies the computation (as one can see by comparing
the methods of this section with those of §7-5). We criticized the use of LTE
because it does not give an accurate description of the interactions of radia-
{ion apd matter stellar atmospheres, and is totally deficient in many
important conceptual points (especially regarding line-formation). But on
the pragmatic side, LTE models allows treatment of many effects (e.g.,
line-blanketing) that are of importance in the application of the results of
stellar atmospheres computations to the interpretation of photometric n-
dices, stellar temperatures and luminosities, eic., but that still lie beyond
the present capabilities of a non-LTE calculation. In a sense, then, the two
approaches are complementary: the non-LTE theory provides deep physical
insight while LTE allows a preliminary assessment of complexities in the
models. Of course the end goal will be to have non-LTE models that are as
“refined” as any LTE model can be.
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THE QPACITY AND EMISSIVITY
CONTINUA AND LINE-BLANKETING

The frequency variation of the opacity and emissivity In stellar atmo-
spheres p].ays a key rolc in determining the nature of the emergent s ecctru
For example, the sharp decrease in flux shortward of about /"‘3:6PSO Arﬁl
Ams.tarsl can be explained by the large jump in the opacity causec{ by photo
jonizations from the n = 2 state of hydrogen. Because the material %erc):ome;
more opaque, we sce less deeply into the atmosphere, and therefore receive
energy only from the outer, cooler, layers. We have alréady seen (Chapter 3
that we camiof reduce the problem of an atmosphere with a nongre (I; arc'Jt),
to the grey problem by any choice of average opacity, and we mu:jt tyheﬁefolg
make qilowance for the detailed frequency—dependence of thé z;bsor ti(r) ’
coefﬁc_wmlfrom the outset. At the very minimum we must treat the © ?1 'ln
variation m the contimmm, which accounts for the gross features g;ctlhy
energy distribution in the emergent spectrum; in more refined k .
must also include the effects of lines. J ned work v

Th; ppamty at any given frequency contains contributions from all possible
trapsitions (bound-bound, bound—free, free—free) of all chemicalps eCl
that can absorb photons at that frequency. From equations (5-53) andI()S-é‘(a;
we see that the direct absorption coefficient for process (i — J) from level
iis nie (V). Stimulated emissions return energy to the beam at a']ratc T T:
tional to I, hence (assuming identity of the emission and absorption proili)les-)
\,\l;e‘correct Fhe opacity by subtracting stimulated emissions from thel'jdbsor -
tivity. In view of equations (5-54) and (5-64), the correction is n -a--(v)G(Iz))
where G(v) = gifg; or G{v) = (/)" exp( —hv/kT) for bound—{agund ar
boun(.i—'free processes respectively. Let nft denote the LTE population of
state i computed from the usual Saha—Boltzmann formulae [equatim; (5-14}]

vusing the actual ion density. Then s i
. umming over all levels an C
we have the non-LTE opacity and processes

Ty — Z Z [”f - (Q'f/é‘_j)nj]%(") -+ Z (n; — ”?cf"_w”)a' (v}
- & - ix

+ ¥ (v THL = e MY 4 ong, (7-1)
vbvherz tl;)e four terms represent, respectively, the contributions of bound-
(cgm_, loun(_i-ffree, and free—free absorptions, and of electron scattering
other scattering terms—e.g., Rayleigh scattering—may also be added). To

calculate the spontaneous thermal emissi
: . t s th emission (non-LTE} we use the rate y
in equations (3-55) and {5-62) to write ) >derived

e = (211"3/62)[2 Y ny(gi/g o) + X o (vye T

P

" Z‘ Meh Do (Vs Tkﬁhﬁ“‘i\ (7-2)
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be bound-bound, bound—free, and frée—Iree

in deseri '
The three terms again ' : . cofree
processes Fmission from continuum scatiening terms will be writl D

arately in the transfer equations. Equatic_ms (7-1) and (7-2) apply in the non-
1.TE case; if we assume LTE they simplify to

7? = [Z Z ?1?0{1-1-(\’) + Z n}*oti,c(v) + Z nenxarcx(v: T)]
ioj=i i K
X (1 - e ") 4 no, (7-3)

3.2 ,— kT
and pi= (2h’fc*}e

x [Z S nFog{y) + Y o (v) + 3 (Vs T)] (7-4)

T
% x | the
Writing 1 = z¥ — nG, WE SeC that #¥ = x¥B., as expected from

i ation (2-6)].
Kivchhotf- Planck relation [equa - ) T
Tn LTE, the occupation numbers n¥ = n¥(N, T),‘hence ¥ 1 M\.‘(J‘i,req:
and —;f" (N, T), which simplifies the computation a;ng gl owi :T}Cle
: s of absorpii 185! gses to be included easily.
bers of absorption and emission Processe 1 casil
gli;lc free parameters that enter the calculation are those dcscrﬂzll_li“l?g thi
c;lemical composition of the material. In diﬁerer}t spectral types, di eil::e
absorbers will dominate, depending upon the ionization and CXCItasl()D;l ate
of the material. Thus for stars of solar temperature andfcoo}‘;er,tthe : toil f;o "
-pti 5¢8S 1 the H~ ion; for A-stars i
nd-free absorption process is from ion; for. s it is frot
ng?tral H: in the B-stars He I begins to make significant contrlbgtl?\lns, Slg
the O-star,s He 11 and numerous light-element ions (e.g., of C, lj , ie?; )
play an important role (101), (319). In the l.ater-tglif(:) ;;ﬁa(;ssa gﬁ € \;a;r(ﬁ 4}4)]
ivei d molecules contribute [{ , (73, Chap. 4), 1.
negative ions of atoms an B o oD
i evels may contribute;
neral literally hundreds or thousands o ° .
E‘ng can this much detail be handled, and even then extensive ionlIJUTatfr}l;
are required [sce, e.g. (504)]. Free—{ree absorption f;om fHe \ Irilteri%?l o
is 1 ant i _atars: for the A-stars the main free—iree co
is important in the O-stars; t ‘ e o,
i i it - and in the M-stars H, ~ free
is from H; in the sun 1t1s fromH™;an be ¥ _ rec abeo
i ignifi ttering is a major opacity _
tion becomes significant. Electron sca _ fNpsn
i i ing by Hand H, contributes to !
the O-stars, while Rayleigh scattering S i
j - termediate-temperature stars (speciral typ
in the atmospheres of interme - : el e
: hensive opacity calculations ba ‘
K). Very elaborate and compre 1 o
[t ¥ iel and Los Alamos, who have p
workexs of the groups at Kie e P !
E;yctensive graphs and tables of results [the reader should examine thes

Jamos
: 97, 181--199: 184)]. The bulk of the Los A _
careiullys = o o somle of the resulis are relevant to .

ns ar inieriors, but :
work pertains to stellar interiors, . ‘ ' ‘ °
steﬂarpatmospheres; a very compleic discussion of the techniques used 1

. a4 al-
these computations may be found in (14‘, Chap. 3). For cpnt.mﬁa the ¢
culations may be jaborious, but are straightforward in principic.
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In addition to continua, the opacity of stellar material contains contsibu-
tions from thousands to millions of spectral lines, both atomic and molecular.
Bound--bound opacities are significant for stars of all spectral types. For the
earliest spectral types the resonance lines of H, He I, He I1, and ions of light
elements dominate in the ultraviolet. For A-stars the hydrogen Lyman and
Balmer lines are important. For solar-type stars the important effects come
from lines of neutral and singly ionized metals and other atoms of moderate
atomic weight. In later types, molecular bands (CN, CO, H, O, etc.) dominate.
Again, the chemical composition of the gas is a fundamental parameter in
setting the line opacity. In addition, parameters that determine linewidths—
¢.g., macroscopic velocities in the atmosphere (the so-called “microturbu-
lence™; see §10-3)—also enter.

The effects of bound—bound absorptions upon a stellar atmosphere are
referred to as line-blanketing, and play a crucial role in determining both the
emergent energy distribution and the physical structure of the atmosphere.
The temperature gradient in the atmosphere implies that, in the opaque lines,
the layers from which we receive radiation will be cooeler, and hence radiate
less energy. The presence of numerous dark spectral lines within a given
photometric band (established, e.g., by a filter) obviously directly affects the
measured flux. This effect is called the blocking effect. Because the total flux
in the atmosphere must be conserved, the flux blocked by the lines must

emerge at other frequencies, and the energy emitted in the continuum bands
into which it is redistributed rises above the value it would have had in the
absence of lines. Furthermore, becanse the bandwidth of the spectrum in
which energy transport occurs readily is restricted by lines, steeper tempera-
ture gradients are necessary to drive the flux through; as a result, temper-
atures in underlying layers rise, leading to the backwarming effect. Finally,
the lines alter the temperature in the outermost layers of the atmosphere. We
shall study these effects further in §7-4; it is clear from what has been said
that it is impertant to mclude bound—bound opacities in the calculation,
and we ask here how this may be done.

The most straightforward method of treating lines is the direct approach
in which one includes enough frequency points in the calculation to describe
the profiles of the lines under consideration. The full frequency and depth-
variation of the absorption coefficient is faken into account by this method,
which may be applied when the spectrum is dominated by just a few lines.
The direct method suffers from the disadvantage that for many stars the
line spectrum {e.g., in molecular bands that contain millions of lines) is so
complex that a detailed description is prohibitively expensive in computing
time, and we must therefore consider alternatives, which we may categorize
as staristical methods. Here one attempts to replace the complicated fre-

quency variation of the finc opacity in a given band (see Figure 7-1) by a
small number of parameters. The simplest possible description is to reduce
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FIGURE 7-1

Schematic absorption coefficient of overlapping speclrum
lines. A very large number of frequency points would be
required to deseribe the detailed variation of the opacity.

all the information to a single number, given by a mequn opacity; in particular
we could consider either the Planck mean [cf. equation (3—:28)] or the R_osse-
land mean [cf. equation (3-26)]. As might be expe:ctec?, this approacl'x is not
really satisfactory (for precisely the same reasons it fails for the continuum).
For example, while it is quite adequate to use the Rofsse]and mean at depth
where the diffusion approximation holds (asis done to mcluc}e line absorpﬂgn
in steliar interiors opacities), this method tends to underestimate the opacity
near the surface and yields poor approximations to thfa act_ual. energy balance
there (126). The Planck mean fails to yield the diffusion timit for ‘the flux at
depth, and grossly overestimates the opacity at the surface; this leads to
substantial errors in predicted fluxes and temperature S_tructur_e of the model.

Recognizing the inadequacy of a single mean opacity we 1_nstead .repl_ace
¢he detailed spectrum by a smooth opacity distribution _ﬁmctagn (which is a
generalization of the classical picket-fence model described in §7-4), as 1
Figure 7-2. We consider a narrow enough band to assure that the exact
position of the line is not important (i.e., other properties such as the con-
tinugm opacity or Planck function do not vary much over the bzlmd). Wc
then could, for example, find the fraction of the band covered by_hnes wﬁh
opacity jlv) 2 some chosen value X, and plot a graph of th1§ fraction
against X;. The result is a smooth curve that can bg well ‘apprommate_d 'by
a small number of subintervals (possibly of differing widths) contaimng
constant opacities appropriate to the curve. This procedure may b'e carried
out for a mesh of temperatures and densities to produce a ‘d.escrlptlon of th.e
variation of the line opacity through the atmosphere. A f:l’ltlcal. study of this
approach (126) shows that opacity distribution functions yield excellent
cesults, and reproduce both the emergent fluxes an.d physical atmospheric
structure given by detailed direct calculations to satisfactory accuracy.
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FIGURE 7-2

Schemalic opacity distribution function of the specirum in
Figure 7-1. A relatively small number ol representative
opacitics suffice 1o describe this smooth distribution.

The main limitation of the opacity distribution function approach is that
it implicitly assumes that the positions of the lines (in frequency) do not
change markedly as a function of depth, measured in vnits of a photon
mean-free-path (i.e., unit optical depth in the continuum). It is crucial to the
transfer problem whether a iine in one layer of the atmosphere coincides in
frequency with a line or with a continuum band in an overlying layer, for
photons might freely escape in the latter case, but not the former. Marked
variations in the line spectrum, which invalidate the opacity distribution
function approach, can occur in a number of sitnations—for example, the
following. {a) Molecular bands of two species may overlap; one species may
show a rapid decrease or increase with depth relative to the other. Even
though the total opacity of the two bands together might not change, the
positions of the two sets of lines could be radically different. (b) A strong
shock in the atmosphere might produce an abrupt change in the excitation—
ionization state of the gas over a small distance. The line spectra through the
shock front might change radically. (c) Velocity shifts in expanding atmo-
sphetes systematically move lines away from their rest positions; this strongly
affects momentum and energy balance in the material {cf. §§14-1 and 15-4).
In such cases one must employ either the direct approach, or a generalization
of the statistical approach that in some way ailows for the changes in the
frequency positions of the lines. An alternative approach, called the opacity
sampling technique (based on a random-sampling procedure) has recently
been suggested (585); although this method appears computationally more
costly than the opacity distribution function method, it also appears that it

may pot suffer from the limitations just described, and should be tested
further.
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HYDROSTATIC EQUILIBRIUM

{a a static atmosphere, the weight of the overlying layers is supported by
the total pressure, and it is this balance, in essence, that determines the
density structure of the medinm. Thus

Vp = pg (7-5)

where the total pressure p = p, = Pr (dynes cm™?); the gas pressure
p, = NKT; the radiation pressure pgp = (dnjo) [K, dv; € is the surface
gravity (regarded as a fundamental parameter describing the atmosphere).
Here p is the mass density (gm cm %) which, using the notation of 5-2, can

be written
p = (N — n)mg Y Ay = (N — n,)m {7-6)
%

where iy is the mass of a hydrogen atom, and A is the atomic weight of
chemical species k with fractional abundance a. If we define the column
mass m (gm cm™ %) measured from the outer surface inward as our new In-

dependent variable—ie, _
dm = —pdz (7-7)

then we may rewrite equation (7-5) as dp/dm = g, which yields an exact
integral plm) = gm + C. It is obviously advantageous to be able to write
such a result, so we shall use m as the independent variable henceforih; the
choice of m instead of z has no significant effect on the transfer equation.
Using equation (2-77by) for the radiation pressure gradient we can rewriie
equation (7-5) in another useful form:

20

(dpjdm) = g — (je) [\ Guulp)H v (7-8)

which shows that radiation forces tend to cancel gravitational forces, and
lead to a smaller pressure gradient in the atmosphere. Put another way, the
material tends to “float” upen the radiation field. As was shown in Chapter 1,
the radiation force is related to the fux through the atmosphere, and we can
thus see that for a given T there will be some lower bound on g below
which radiation forces exceed gravity and blow the material away. Specil-
ically, Underhill (633) showed that gravity forces will exceed radiation
forces only if g = 65 (Tert/ 104* cm sec™ *. Clearly radiation pressure forces
are negligible for the sun (T = 6 x 10% g ~ 3 x 10%) but become very
important for an O-star (Ter = 4 x 10% g ~ 10*)and in supergiants where
g is quite low (and indeed approaches geq;r)- In fact, as we shall show in Chap-
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ter 15, for some O-stars the radiation forces on spectrum lines in stellar winds
exceed g and accelerate the material to very large velocities (~ 3000 km sec™ h.

Exercise 7-1:  Consider fully iomized slellar material of hydrogen and helivm
(abundai1ce V). (a) Show that n.o./p, which provides a lower bound on the
opacity, is g (1 + 2Y)/mu(l + 4Y). (b) Take advantage of ihe grey nature of
clectron scattering to show that, if gravity is Lo cxeeed radiation forces, then g
must be 2 gu Where g = aoll + 2Y Yoo T4/ [omp(l + 4Y)]. () Re-cxpress
this resuit to show that the luminosity J. of the star must be <L ~ 38 x 10
(/// J.” //@]I Eol

For computational purposes we can rewrite (7-5) as a difference equation
connecting the depths specified by column masses m; and m, , ;, namely

N

NdkTﬂ - Nd*lde*l + (47[/6) Z M"n(f;fnjdn - .){;!*],anfl,n) = g(n’ld - "nd—l)

n=1

{7-9)

Here K, is expressed in terms of the mean intensity and a variable Eddington
factor; ie., K, = f.J,. We can obtain a starting value from equation (7-8)
by assuming that the radiation force remains constant from the boundary
surface upward, and thus

leTI - rﬂl l:g - (471:/6) Z “""(X1.;1/P1)hnjl.n] (7'10)

H

Equations (7-5) through (7-10) are valid for both LTE and non-LTE atmo-
spheres.

Notice that, if we knew the temperature structure T(im), and could either
(a) ignore radiation forces or (b) estimate them, using equation (7-8), as
T/pHorT e/fc) where ¥ is a suitable mean opacity, then we immediately
could derive the density structure N{m). From this we could calculate
75N, T), n¥(N, T), solve the transfer equation, and thus determine all model
properties of interest. Of course in general we do not know the temperature
structure, and we must now address the issue of how it is to be determined.

RADIATIVE EQUILIBRIUM,
TEMPERATURE-CORRECTION PROCEDURES

For a given temperature distribution, the equation of hydrostatic equi-
librium can be integrated as described above, and opacitics and emissivities
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derived. The radiation field then follows from a solution of the LTE transfer
equation .

52(.](;»']1»)/81\;2 = ‘I\’ - (ﬂiﬁ + ”cf)’er)/Xf - (1 - H(,O'l,/fxi‘:‘)J‘, - (K\T/Zf)Bv
(7-11)

at all frequencies and depths using the techniques described in Chapter 6.
For an atmosphere in radiative equilibrium the total energy absorbed by
the material must equal that emitted, hence in LTE '

m [T = (g = neo)JJdv = 4 f(f 5B, — J)dv =0 (7-12)
or, in discrete form, (and allowing for departures from LTE),

4n Z Wn[nn - (Xn - ner"e)']n] =0 (7‘13)

In radiative equilibrivm the total flux 4nH = axT% = constant, and we
may choose it (o1 T} as another fundamental parameter characterizing
the model. Now in general we do not know the temperature distribution
that produces radiative equilibrium, and using our present estimate of T{m)
we will normalty find that the radiation field does not satisfy equation {7-12)
or (7-13). Tt is therefore necessary to adjust T(m) iteratively in such a way
that the radiation ficld does ultimately satisfy the requirement of energy
balance. The determination of T (m) is, in fact, the very heart of the problem
of constructing LTE models. There are basically two strategies we may use:
(a) temperature correction procedures, and (b) solution of the transfer equation
subject to a constraint of radiative equilibrium. In temperature cosrection pro-
cedures one attempts to use information about the radiation field calculated
from a given T (m) in an a posteriori fashion to estimate a change AT (m) that
will cancel out the errors found in the flux and in the flux derivative [equiva-
lent to equations (7-12) and (7-13); see equation {2-71Y]. In the second ap-
proach, one attempts from the outset to formulate the transfer equation in
such a way that the resulting radiation field will automatically satisfy radiative
equilibrium. The first approach (corrections) was historically the one orig-
inally used to solve the nongrey atmospheres problem, and the methods are
often quite ingeniously construcied. The second approach (constraints) 1s
more subtle and powerful, and overcomes inadequacies fatal to “correction”
procedures in the non-LTE case, thus allowing a deep penetration into
problems of considerable complexity. Tronically, the roots of the idea of
using “constraints” are to be found in the methods used to solve the grey
problem. We first consider temperature correction procedures.

The first, and most obvious, method is the so-called lambda-iteration pro-
cedure. Here we suppose that from a given run of To(m) we have, in effect,

7-2 LTE Radiative-Equilibrivim Models 173

compuied J, = A [B.(Tp)), hence the name of the method, and - that
equation (7-12) is not satisficd. We then assume that the run of T{m) that
does satisly the condition of radiative equilibrium s T (m) = Tolm) + AT(m)
and require that ’

[ wxBATy + AT)dv = N2 (7-14)

Expanding B.(T, + AT) = B,(To} + AT(EB,/0T) we find

*“ 3k oo ju o]
AT =~ J:) KH[J, — By(Ty)] civ/JO K¥BB,/OT g, dv {7-15)

Tt must be emphasized that J, in equation (7-15) denotes the value already
computed from B,(T,). If one carries through the process and recompuies a
new mode! with the new temperature distribution, some improvement in
satisfying equation (7-12) usually will be found. However, the procedure
suffers from several severe defects.

(a) Because J, = A, [BTo)] = B,(T,) + Ofe™™),itis clear that at depth
the temperature correction goes rapidly to zero, no matter how bad the
solution actually is at those points. We found a similar result in the grey
problem.

{b) Tf the frequency variation of 7 is such that the opacity is much larger
(say several orders of magnitude) at some frequencies than at others, the
method again fails. The reason is that in the opaque frequency bands the
contribution to the numerator vanishes as 7, — 1 while the contribution to
the denominator swamps that of all other bands. In effect the A-iteration
procedure is effective only over Az, ~ 1 for the most opaque frequencies.

(c) Equation (7-12) places a condition only on the flux derivatives; hence
we have no way of specifying the actual value of the flux to which the solution
converges (if it does).

(d) The real faiture of the A-iteration procedure is that it ignores the effect
Fhat AT, computed at some depth z, has on J,(7) at all other depths (i.e., J,
i presumed to be fixed). This oversight necessarily leads to spurious values
of AT. Actually J,(z) = A, BT + AT)], which means we should, m
reality, solve an integral equation for AT ; we shall return to this point later.

When the reasons for the failure of the A-iteration procedure were under-
stood, it was realized that methods were needed that made use of information
about errors in the flux itself (which gives direct information about the
temperature gradient at depth) as well as in the flux derivative. One method
of d.oing this was sugeested by Lucy (283, 93), who generalized the method
devised by Unsdld for the grey problem (sec §3-3) to the nongrey case. i
we use a Planck mean [equation (3-23}] optical depth scale dt = — i dz,
then exact frequency integrals of the moment equations (using quantities
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without subscripts to denofe frequency—integrated variables) are

(dHjd7) = (/)] — B (7-16)

and (dKjdt) = (yEfui)H (7-17)

where 7 is the absorption mean [equation (3-32)] and zf is the flux mean
[equation (3-21)]; note that the scattering coefficient is included in y§ but
not in the other means. Then relating K to J with the Eddington approxi-
mation, equations (7-16) and (7-17) are combined to give an expression for
B{x), which, treated as a perturbation equation for a correction AB(T) =

4o, T® AT/r gives finally

AB(r) = — dAH)dx -+ (k3/i) [3 fo (ykfict) AH(z) d7' + 2 AH(O)]
(7-18)

Here AH{1) = H - H (7). The first term on the righthand side of equafion '
(7-18) is the correction predicted by the A-iteration procedure; the other
terms introduce new information that gives nonnegligible values of AB at
depth and produces a 1¢SPONSE to flux errors at the surface. Experience has
shown the Unsdld-Lucy procedure to be quite effective in constructing LTE
radiative-equilibrium models (but it has no obvious generalization to the

non-LTE case).

Exercise 7-2: Derive equations (7-16) and (7-17) and, applying reasoning similar
1o that yielding equation (3-44). derive equation {7-18).

¢ useful method of calculating temperature
corrections was suggesied by Avrett and Krook (55), who introduce per-
turbations to both the temperature and the optical depth scale. That is, we
suppose that the current temperature distribution Tolt) is related to the
desired temperature distribution T(z) (which yields radiative equilibrium)
by a pair of celations: T = To + Trandz =+ Ty The transfer equation
is then expanded to first order in the perturbations T, and T,, and by taking
moments of the resulting first-order equation of the perturbation expansion,
equations are derived for 7, and T. These gquations [extended to allow for
scattering terms (421) and with an improved closure refation (351)] are

T+ Ty Uom L HO dv / J": 2 HE dv\
/

Another very clever and quit

o - aHY - 37l - BT dv/ |~ x.HSdv (7-19)
4] Q
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and

'Tl :%/(1 +Tl) J‘Or 11(1 ‘pv)[']vo AB\!(TO)] dv

31— AJHO) [ (1= p ) HLE d

+ 'Cll fO - [;{fv(l - p\) - X\‘pi] [J\‘O - BV(TO)] dv}/v[‘om Xv(l - pv)(an/aT)O dv
(720)

where the prime denotes the derivati
. rivative d/dt; quantities with i
subs_crlpltﬂzero dinote current values; H® = [ H.,° dv; y;ugz;ﬁpttgr
nominal flux (o7 /4n); and p, = 0.,/; ) ’ 9) s
. c i 1 , L v Kv - J‘./(TCV + Gv)' Equati{)n 7_19 i
i\g;earl ﬁrs.t-ord.er differential equation for ¢, that may be integrated s{traig)hj:
" fy j arting Wzth 7.{0) = 0; given values for t; and 1}, one then computes
: 1+ T 1:1 eEquatla_:)n (7-20} and hence obtains T{t) = T(f) + Ty(t} at <
1 =
L ptel r(gi.ﬂf :Sii:nci[edshc;\;lvs tﬁalt the =, correction leads to revisions of the
at depth, while T, is most import:
nper alc K portant at the surface.
Widelty a;}]ljeﬁeljn;c;lldhLucyb and the Avrett-Krook procedures have been
ave been proven quite successful i i
of LTE radiative-equilibrin i o lation, thoms metiiods
mmodels. With care in calculati
produce models with errors in |AF/F]| s
“/F| and |d In F/dz| of the ord
percent. But despite the fact that t e ires are
: emperature correction d
per ( : procedures are
tgai ;gnléii ES n:vgrkfffaltrlly well, they have a number of serious drawbacks
ineffective against non-LTE probl i
o, ' : 12ain _ problems. We shall describ
\:,l}i:isfhbrﬁ?g herg tfo moélvate the discussion of the constraint-type procedurez
, although first developed to attack the
tremely effective for LTE mod o e et
‘ els, and are now the [
: dels, preferred methods.
Vel};];"si;,t;eerip:ratlure—correctlon methods tend to stabilize rather than con
are large variations in the frequency d ity.
yoree ! ; i quency dependence of the opacity.
! ll';f;l?h;re i8 partlcglarly troublesome when we attempt to construct rlsiodlei/s
Lymm]lngms?ectral )11?63 or a major continuum jump (e.g, the hydrogen
ntinuum). In such cases temperat on pr
- perature correction procedures leav
fof fﬁ?ggigi sltructurlel: of the outermost layers essentially undeterminede
C CIC alance there is established entirely b ’
. . : _ y by these opaque transi-
Slgéf;f(t{hi lg)ptlcally thin regions already have radiation fields thl?atqare ﬁxecll)
Val—i&blé ! szemmneéh?cés tlac:lf‘;ly assume that the temperature is the éruciéi
\ annot deal effectively with cases where th iati i
' $ e radiation field
5 gﬁ gvieakiy coudpled to the local thermal pool-—e.g., in atmospheres whe;z
fering terms dominate or where non-LTE li mati
o et : - ing formation occu
o ! : rs (we shall
e \:gty tlg is 50 In §7-5 and Chapters 11 and 12). Finally, thesc Enethods
sufficiently accurate. Although errors of a tenth of a percent seem
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small, it must be realized that there is a close similarity in the requirements

of radiative equilibrium and statistical equilibrium, and that errors of this

size may be totally unacceptable in the latter context. Specifically, suppose
we consider a ground-state continaum that:dominates the opacity by orders
of magnitude. Then energy balance requires {7 o', dv = [t a,tB, dvwhile
the net radiative rate the statistical equilibrium calculation is of the form
7o by — B,Jv ! dv (where b, denotes n i of the ground state). 1f
b, = 1, these two criteria differ only by the (weak!) “profile” function v L
In the limit that fve/kT > 1 and both B, and J, have 4 characteristic fre-
guency variation of exp(—v/kT), both pairs of integrals are strongly
dominated by contributions from v &= Yo, and hence one of them becomes
essentially redundant. Thus an error of a few tenths of a percent in energy
palance implies a similar error in the net radiative rate; because the radiative
cates may exceed the collisional rates by orders of magnitude (recall the
discussion of §7-3), such errors may overwhelm all other terms in the rate
equation, and lead to false equilibration. We now turn to a discussion of
methods that treat the condition of radiative gquilibrium as a COnSIraing;
these overcome all of the shortcomings described above.

The essence of the constraint approach is to build the requirements of
radiative equilibrium directly into the transfer equation i such a way as to
solve both problems simultaneously. These methods deal directly with the
global nature of the radiation field ; ie., they account for the effect that a
temperature change at one point in the atmosphere produces upon the ra-
diation field at all other points, and vice versa. To simplify the discussion
in the remainder of this subsection we shall ignore scattering terms in the
source function. One such procedure was proposed by E. Boéhm-Vitense
(283, 99) who suggested that the integral equation for AT,

[ BT 4+ AT) v = [ ke A BT + AT (7-21)

be solved directly; we shall recast her discussion into slightly different terms
using current notation (see also 32). To solve an integral equation of this form
we first construct a matrix representation for the A-opevator; we infroduce a
discrete set of points {t, g, d=1..., D), at which we wish to determine
the solution, and we represent the variation of B{z,) anal ytically in terms of
interpolation (basis) functions on this mesh. The integral

1w = 5 B B (722

is then calculated anal ytically for these basis functions to produce the system

D
Jy = Y Ay, vBar v £ Mg, d=1..., D) (7-23)

d'=1
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where the M, , represent the contribution of the interval (tp, ., o0) to the
integral. Substituting equation (7-23) into (7-21), and (a) asélv;ming KF s
nnchanged by AT, (b) writing B,(T + AT) = B,(7) + (@B ./6T] AT. :md
{c) introducing a frequency quadrature {v,}, (= 1... IIJ) we ﬁn’d a set
of linear equations for the values of ATy T

n N
Z [Z WHKF’”(GB/(}T)d’r1(6dd' - Add’n)} ATd’

=1 |n=1

D
= Z 1.'.1’11?(:(}1":;1 l:Md'n + Z (A(id’n - (de-')Bd:"il, (d = 1, [P D) (7—24)

n =1

Exercise 7-3:  Verify equation {7-24}.

The solution of this system yields the change in the temperature consistent
With the_ global properties of the radiation field. Because our expansion of B
is only linear, the system has to be iterated to convergence by using the nev:f‘
temperat_ures to recaleulate B,, (8B,/6T), ¥, etc, and re-solving the
system; if assumption (a) is valid, we would expect quadratic convergence.
T her@ are some defects to this approach. (1) The computation of the A
matrix is cumbersome and costly, and (because w* really is a function of T
must be done again for each iteration. (2) It is possible to calculate the
response of the A matrix to changes in z, (arising from changes in k¥ caused
by the temperature change) but this again is extremely cumbersgme and
costl){ (also, there are problems of stability) [see, c.g., (347;575)]. The method
described in the final subsection of this section overcomes these difficulties
(3) As originally formulated, and as described thus far, the method does no'L
fo‘r‘ce comvergence to a prespecified flux. This may be done by applying the
diffusion approximation at the lower boundary and demanding the correct
fiux transport (32). Thus, we write for 7, > 7p

1 éB, |dT
BJz,) = BTy + i‘_C;; oT ‘dz (t, — TD,v) (7-25)
oB,|dT
i@ 10~ B{To) + Jcﬂ* aT Ldz (7-26)

Integrating against j, and over all frequencies, we find

1{pre 1 6B
H=- Ty
3 (fo i ot d\)

Which fixes dT/dz inleq_uat_ion (7-25), and introduces the flux into the guanti-
ties M, ,; note the similarity of this device Lo that used in the grey problem.

ilz
dz

{7-27)
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ing a piecewise linear-intet-
Exercise 74t (&) Evaiuate the elements Agy by assuming a plecewise linear-ix
p%}laiion for B,(r,) on a discrete grid; i.e., on
[t — -1
&7 Tat 1), set B(@) = [Bdtart — 1) 4+ Baralt EA T FICo 2

/i ing equations (7-23) and (7-27). . . )
Ef?) o "ﬂ: ‘;tz M dl?;ilngg aqdigital computer, program the solu’uo? of equaLtlon‘1 (';’ljli)
xercise 7-3: _ N ol
i ton: . = ko for{v < vg), Ky = g 0: T
2 city step function: i, = Ko - v ¢
fOf_:‘: ?}f pr)cj)blem in terms of the value of § = hvo kT o whu,.h dspem{;:l: O&;
;C;:;UEHC) of the step. Notice that the A matrix anEl M ve?or{ ar}e 1\11 ]ep;:;me A
1" 4 - . ; < v v }0 ;
r I diffierent) in the two ranges LV < Yok ‘
Fl etquficsyofftegof?egquency of B, and @B, /6T can be done analytically alLd expr;esls:t(i
i?m igrms of elementary functions [by using the known resuli< f;){ 1;jefocro(vp o
interval (0, oo) and appropriate expansions for (0, ve) when f bdi o S;\;Gra_l
1 hen f§ >>1 1] ot in terms of Debye integrals 4, 998). S.olv~e th.e pro Et:ﬁl o sovere
\:a]ucs of z and §, starting from the grey temperature distribution (on the

mean scale); compare your results with those in {128; 603; 38).

A second constraint procedure was sp.ggested by Feautrier ( 283, 108; 210).
Noting that radiative equilibrium implies that

5 By = 7-28
2 Wn]cjcnjdn/z, wnK;ianu =1 ( )

. ) ik
at all depths d, he solved the transfer problem [equation (6-30) o1 (6-42) ] wit
the source function

Sdn = Bdn ' (Z wn’K?px’Jdn’/Z Wn"lcfn'Bdn’> (7'29)

here the J's are regarded as unknowns. Note the conceptu?l mmﬂz:r;ts;
\getween this approach and that used to solve the grey prgb}em ! tIkI]‘Ll ((:joirsl \fery
to the integral operator approach described above, Feautrier's me é) e
Stsy to formulate and solve using the difference-equation prlofze uredtion
5 i * ing” i al in eque

i i thod the “scattering’ 1ntegr .
scribed in Chapter 6. In this me e ey the
i the entire frequency spectrum. 111 '
O o iation field at any frequency actually
i i tant fact that the radiation hie ‘
P on th Bi cies. Using current estimate of B,
on the field at all other frequencies.
diizlez*dsezlilations (7-29) and the discretized form of (6-;11l2jha1.fe sc;lve(;lfg{;rtié
3 e i ati - s solve
‘ d in equation (7-28), which 1 &
at alt depths. These values are used Juatior 8), which 8ot in
i t (linearizing, 10 principle, v 3
new temperature that satisfies 1 in; ' oth By and o
i i ties, etc., will be altere
of AT and iterating). Because 0pacities, £%.,

tefrtmhz changes in T, the whole process must be 1t_erated to conveéggnc(el. A
° In his original analysis Feautrier did not introduce the desire

. . ton -
explicitly into the problem; one may do so easily, however, by usmng equatio

(7-27) to fix |1/ dz| in the lower boundary condition [e.qugtion (6—44)].}15 (11}1;
sses Feautrier's method to golve the system, the cost 18 high because N,
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number of frequencies, must be large {the angles can be eliminated in terms
of variable Eddington factors); if radiative equilibrium is the only constraint
involved, it is cheaper to use Rybicki’s method, letting J denote the term in
the numerator of (7-28); this equation in effect, replaces equation {(6-48).
Feautrier applied his scheme with good results for both LTE and non-LTE
continuum models. The basic drawback of the method is that it is not clear

how to generalize it, as it focuses entirely on the temperarure correction (which
is not sufficient in general).

Exercise 7-6:

With the help of a computer, use the method just described to
solve

(a) the grey problem for g(t); start with ¢(z} = C and try several valucs for
C; (b} the opacity-step problem of Exercise 7-5 {cf. (128; 605; 38)]. In part
(a) use a quadrarure for the frequency integral (not the exact results—this would
make the problem trivial) and Rybicki’s method for solving the final system.

An alternative method that also uses second-order difference equations
for the transfer equation was proposed by Auer and Mihalas (38); this method
Is very easily generalized to extremely complicated problems, and forms the
basis of the methods described in the final subsection of this section and in
§7-5 for non-LTE problems. If the temperature structure T*(m) of the atmo-
sphere were precisely that which produced radiative equilibrium, and B¥
the corresponding Planck function, then the solution of the transfer equation

P )jert = J, - By (7-30)
with lower boundary condition [using equation (7-27)]

AL (H aBﬂ w 1 OB% \
o, (ici‘ a1 fo % 0T d"/ (7-31)

J

would automatically satisfy the condition of radiative equilibrium

Y owkE T = Y wack B, (7-32)

In practice we do not know T*(m) but only a current estimate T(in); we there-
fore supposc that T#(m) = T(m) + AT(m)and, ignoring changes in k¥, expand
Bf = B(T) + (6B,/¢TYAT and (6B¥/8T) = (8B,/6T) + (0*B,/éT*)AT in
equations (7-30) and (7-31), where AT must satisfy

ATy =3 waichi{Ja — Ba) / > w, (0B, /6T ) (7-33)

We now can follow two possible approaches. We could expand equations
(7-30) and (7-31) as described, eliminate AT using equation (7-33), and solve



180 Model Atmospheres

the system

aB Z Wn’K:E:'(Jdn’ - Bdﬂ')
=J w Bru 1A : L«T— 7-34
d 4 : (GT)d Z wn'K:ikn’(UBn’/é\T)d ( )

with the corresponding boundary condition, regarding J,, as unknown.

dt,?

FExercise 7-7:  Write out the perturbed boundary condition with AT eliminated.

Equation (7-34) closely resembles Feautrier’s system (6-42) plus {7-29), and
again involves the entire frequency spectrum; the same remarks about physi-
cal content apply. The solution of (7-34) satisfies both the {ransfer equation
and the radiative equilibrium constraint (to first order) simultaneously. After
the new intensities are found, the new temperature structure is evaluated
using equation {7-33). A gain if we wish Lo solve only for AT, it is more efficient
to use Rybicki’s method, letting AT be the constraint variable replacing J,
and using equation (7-33) to replace (6-48) (this is the approach used for LTE
atmospheres).

Both Feautrier’s constraint procedure and the linearization method pro-
vide the equivalent of direct solution of the integral equation (7-21) but are
simpler to implement than equation (7-24). Even though the linearization
method introduces a local perturbation AT, 1t defers knowledge of the mean
intensity until the system is solved; it thus yields global convergence and 1is
in no sense a lambda iteration. Further, the method is not inhibited by large
opacity variations, for these enter only as coeflicients of linear algebraic
equations, and insofar as the correct inverses of these equations are obtained,

we obtain the correct solution directly.

Exercise 7-8; Repeat Exercise 7-6 using the linearization method. Again check
against the references in the literature, and use Rybicki’s method to solve the system.

A LINEARIZATION METHOD

Let us now draw together the various elements of the above discussion,
and outline an efficient method for LTE model construction that experience
shows to be general, stable, and effective (35; 275). The basic thrust of the
method is to write the system of transfer equations pius the constraints of
hydrostatic and radiative equilibrium in terms of a current solution (which
satisfies the constraints only imperfectly} and a perturbation of the funda-
mental variables (T, N) which, when cvaluated, more nearly satisfies the
constraints. In each equation we allow for the change produced in all vari-
ables by these perturbations, and for the coupling of these changes from one
point in the atmosphere to another.

To begin, we need a starting solution for the structure of the atmosphere.
We adopt a temperature distribution THEp) = 2T 4[Tx + ¢fTx)] on a

7-2 LTE Radiative-Equilibrium Models 181

Ros_seland-m‘ean optical depth scale; we know that this is asymptotically the
corlept solution at dept}}. Here g(z) may be the grey solution or some other
function, based on previous results, which may differ from the grey value

?articularly at the surface. We then integrate the hydrosiatic equation (7-8)
in the approximate form

(([p_q/dm) =4 - (GRle'f/c)(?/:R/P) (7-35)

simultaneously with the definition of the optical-depth scale

dtg = (Zr/p) dm (7-36)

step—by—step on a mesh {m,}, (d =1 ...,D). This yields (N,, T,) at each
pomt‘on the mesh, and using the method described in §5-2 we Sd(;lvg the LTE
equation of state for », and pF(N, T) for all atomic and ionic levels. We then
calculate % and %, from equations (7-3) and (7-4) on a frequency ﬂlesh v}
and e-valuate the mean intensities J,, and Eddington factors f,, from a fo;n;ai
solution of Fhe transfer equation (6-30) with a given source flfriction S

. The starting solution provides enough information to evalnate thed?'.adia-
tion pressure gradient in equations (7-9) and (7-10), which we can therefore
integrate to find a new estimate of the run of the total number density N,
and new LTE occupation numbers #f. Further, knowing the variabldé
Eddington factors we can solve the discrete form of the transfer equations
{6-42) through (6-44), which in light of (7-27) we can write as

(er:J?.n - .fln‘jlu)/AT%, [ hn‘lln (7_373)

fa-1.nda—1 fa 1 1 fa
Jd—1.n L Jan .d-}—l,nJu'Jrl,n
ATd*é, . Afdn A’Cdn (Afd + ) Jdn + ATd+J_ A’Cd

—4.n '}—\‘TdJr%.n

a0, ¥
=11 = ¢, dY e _ ﬂ o
( e )Jd,i o d=2...,D~1) (7-37b)

and (at d = D),
(fDuJDn - fD* 1, HJD“' 1, n)/ATD—%‘ [
= H}CD;;_ l(an/aT)Du/Z MJII[XDP17 l(aB\'/GT)Dn] (7'37C)

H

1
h =
where Atysyu = 3 [Gtac 1. /0as ) + Glan/Panlltazr — M4l (7-38a}

Afdr! = (Afdfé, a T Ard +1, n} (7_38b)

b —

Flr_st—order boundary conditions have been written for simplicity; it 15 easy
to include second-order terms. ,
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i 1d find that the constraint of radiative
solved equations (7-37) we woul ‘ |
If';ygr?um quation (7-13), 1s not satisfied; we must thgrefore chan(;g_:l t]ie
ot raturf; T(m) in such a way as to moxe accurat.cly sat}sfy the condr ;{)1 s
te:fm fgiative equilibrium, and iterate. There are two difficulties: (a) gle.proliezn;
s)s Eonlinear and (b) the coupling 18 global. That 1s, any change 5 4 m(lipheme
1 . ’(from hydrostatic equilibrinmy} and theref(érie 5}«?, 07145 z;;i henee
i phere. To handle these probienis,
at all & and n throughout the atmosph : .
(n?;lde;rize the equations, replacing each vanabl; x by ;codf 5;;; ;n(i ;f;ta;laznéi
i 's. The power of this method 18
first-order terms 1D the o's : : : L
i i i raints, and (b} it produces Sy
: 0 a wide variety of constralits. : odv
3ﬁglxii%r the effects of a change inavariableatagiven polmtlm t}ii at?f;g;;;;
ari At all other points. In particular, 1ne inea
all other variables at all o ' ) tzed
lt‘lr%(g;fer equations describe fully how a change LE matltef.mi 5:25:;12ther
iati i soates and affects the solulio
ion field at any point propaga : ates
raqiiuWe may use the Jinearized transfer equations frequency by f??wdnr?i
fOIeli;rlinate the 6J°s from the constraint equations {radiative and hy
0

change 8N,

i ilibrinm), : u :
iiaifiaﬁl:rlltal” var)iables SN and 87. Thus, linearizing the transfer equation
11

i ¢ m the
{assuming the BEddington factors remain unchanged) we have, away {ro
boundaries, and at each frequency vu,

- o aFe
fa»t,néjdfl,n _ fan L + L ) + (l — ——df)] 0J
m Atgy \ATi-3.n Atgisn Lan

+ M + Qg 50)(;_ 1.n + bdn éwdﬂ + Can 5wd+1’ "
ATd+é. n ATdH

6~ n 5”[1» GeJdir
O e e
Lin

Kdn Han
= ﬁdn + Jdn - (ne,dae‘]dn -+ ﬂdn)/an (7'39)
‘ 7-40
where Udn = (fandan — fd—l.an—l,n)/(ATd—’Z—,n ATgn) ( )

7-41
Vin = (.f;fn']dn - fd +1, an +1, n)/(AI:.H—%, n ATdn) ( )

7-42)
Bd" = O(-dn + FJ)dn (

dg = [(xdn -+ 15 ﬁdn(ATd—%, ﬂ/‘ATdn)]/(a)d— 1,n + wdn) (7'43)

Can = [’})dn + % ABdn(ATd +4 n/ATdn}]/(wdn + W1, n] (7'44)

(7-45)
bdi’: = Uyn + Can

and Wy = Zdn/Pd

yielding a final system for the perturbations of the -

(7-46)
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Note that equations (7-39) through (7-46) apply both for LTE and non-L'TE
Cases. :

Exercise 7-91 () Derive equation (7-39). (b} Derive linearized expressions for
the upper and lower boundary conditions, equations (7-37a) and (7-37c). See
also (437).

In equation (7-39), assuming LTE, all material variations are expressed in
terms of N and 8T. Thus, from equations (7-6) and (7-3)

bpg = WON, — dn,. ) (7-47)
1, ¢

Sy, = (0/8T)y 8Ty + (Exa/ona)a On, a + 3 (0 /o)y onily (7-48)

with a similar expression for dn%; in equation (7-48), ¢/éT applies to the
explicit appearances of T in exp(—hv/kT), o.dv, T), etc, and similarly for
&/én,. Now from equation (5-35) we have relations of the form

dnFy = (OnF/@T)nla 6T, + (OF/2N)gls 6N, (7-49)

and similarly for dn, 4 so that the linearized values of p,,  ¥¥, and 3, can
ali be collapsed down to expressions of the form

. oyk OyE
éx:; B ( N”) 6T + (’\ n>
: oT Ml ¢ \ON /g

The end result is that equation (7-39) reduces to a formula involving the
perturbations at three adjacent points (d — 1,d, d + 1), of the general form

5N, (7-50)

d

d+1 d+1

d+1
Z Tddﬂn 5Jd’n —+ Z Udﬂ",n 5Nd’ + Z I/dd’,n 5Td’ = Kd (7_51)
d'=d—1 d'=d—-1 d'=d—1

Similarly, the linearized constraint of radiative equilibrium [equation (7-1 31}
is

Z Wn(xdn — ¥, ela?) 5‘]41': + Z wn(‘jdri 5Xdu - 5ndn - O-e']dn 5“-:‘.(1)

n

= Z 1"Vrrzl:r!l:hx - (an — H,, IIJE)‘Idﬂ] (7_52)

and hydrostatic equilibrium [equation (7-9)] yields

(47':1/{") Z wn{.ﬂin 5Jdn - .JCI— l.n 5']:17 i, n)

+ k(Ty 6Ny + Ng8T; — Ty_1 0N,y — Ny 6T 1)
= glmg — my_1) — NgkTy + Ny kT4
- (47[/6) Z "Vn(ft.fn']dn - jtllfl,n']d“l,n) (7_53)

n
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ced with expressions of the form (7-50). Fqua-

oo P 1 . ‘
In (:52) 01 40 . nforn ation only at one depth-point while {7-533) in-

tion (7-52) involves informa
volves two.

Exercise 7-100 () Verify equations (7-52) and (7-53). (b) Linearize the upper

boundary condition on hydrostatic equilibrium.

The whote system, for all depths and frequencies, can be organized into
a form suitable for a Rybicki-method solution. Thus let

83, = (01 0d2ms -+ I pl, (n=1,.... N) {7-54)
5Tp)" 7-55

T = (574,675, - -» 0Tp)" (7-55)
-56

SNE(6N1,5N21...,6ND)T (7 )

Then equations (7-39), (7-52) and (7-53) yield

Tl 0 s 0 Ul Vl BJL Kl‘
0 T, LU, Va3 K,
. - = . (7-57)

' U vaf o] K

.. vV N
0 : Ty Ux N N
W1 WZ o WN A B BN L
X, Xy X, € D 6T M

Each “clement” in equation {7-57) 1s |
first N “rows” represent {ransfer equations, the_: next-
radiative equilibrium, and the last, hydrostatic equi
V matrices are tridiagonal; : re di:
diagonal. The vectors K, L,and M give the errors 1n t
equations arising ‘ :

ture. and density. Equation (7-57) is solved l:iy pe
51 from the nth “row” into the last two “rows,” one

olve for .
" 8, + (T,7U,) oN + (T, V) 8T = T, 'K,

and eliminate 8J, to obtain a final system of the form

()= (o) 79)

) is a matrix of dimension (D x D); the
to-last “row” represents
librium. The T, U, anfi
W, A, and B are diagonal; X, C, and D are ‘px—
he transfer and constraint
with the curtent estimates of the radiation ﬁ_eld, tempera-
rforming eliminations of
frequency at a time. Thus

(7-58)
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where P=A-YWT,'U; Q=B-YWT, 'V,
R=C — ZXuTn_luﬂ; S=5bH — ZX”TH*lV”

n

F=1L — Z WnTpflK,i_; and G =M — ZXnTnﬁlKn

The final system (7-59) is solved for 8N and &T.

Using 8N and 8T to revise the density and temperature, we can at each
point m, solve for new values of all the n# ;s and n, , [using equations (5-27)
through (5-31) iterated to consistency| and hence new values of y%, and
ni, which are, in turn, used to obtain a formal sofution of the transfer
equation for new values of J, and f,, (d=1,...,D; n=1,...,N). We
use these new estimates to reconstruct equation (7-57), and iterate; as the
solution mmproves, K, L, and M all — 0, hence 8N and 8T — 0.

The computing time per iteration scales with N and D (the number of
frequencies and depths) as T = ¢(2N)D* + ¢(2D)?, which is linear in N
(so that many frequencies may be included—e.g., for line-blanketing).
Actually, experience has shown (35; 275) that the solution can be greatly
economized in most cases by assuming that the gas pressure p, will remain
unchanged during the linearization [as it will if the radiation-pressure
terms in (7-9) are negligibly small]. We then rewrite all expansions as
ox = (éx/éT), oT + (0x/dp,)y Op,, where

(@x/2T),, = (@x/8T)y + (@x/ON)H(ON/ET), ,

and then explicitly assume dp, = 0. This eliminates the last “row™ of system
(7-57), and we solve only for 6T the computing time then becomes T =
¢ND?* + ¢'D* The method just described has not yet been widely used,
but its advantages are manifest; it is likely to be the preferred method in
future work on L.TE model atmospheres.

7-3  Convection and Models for Late-Type Stars

The energy transport in a stellar atmosphere may proceed by radiative
transfer or by convection; the process that actually occurs is that which is
more efficient. In general terms, radiative equilibrium prevails in spectral
types A and earlier, while convection becomes important in the middle
F-stars and dominates in later types. The convective flow in stellar atmo-
spheres is turbulent [see, e.g., (90)] and consists of a complicated hierarchy
of “eddies” or “bubbles” moving and interacting in an extremely invelved
way. The situation poses many physical and mathematical problems of
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great complexity, and 2 definitive convection theory does not yet exist. We
shall, therefore, consider only the phenomenological mixing-length theory, ‘
which contains a aumber of the basic physical ingredients and provides a
framework for at least illustrating the efiects of convection.

THE SCHWARZSCHILD STABILITY CRITERION

Suppose we have an atmosphere in radiative equilibrium. We then ask
whether an element of material, when displaced from its original position,
experiences forces that tend to move it farther in the direction of its displace-

mosphere is unstable againsi mass motions, and convection

ment. If so, the at
will occur; if not, the motion will be damped and will die out, and radiative

equitibrivm will persist. The basic criterion for stability against convection
was established by K. Schwarzschild (416, 25).

Consider a small element of gas whose position 18 perturbed upward by a
distance Ar i the atmosphere. We suppose that (a) the movement is so slow
thas the element remains in pressure equilibrivm with its surroundings and
(b) the element does nol exchange energy with its surroundings (ie., the
process 1s adiabatic). Because the pressure drops as the element rises, the
gas expands, and the density decreases by an amount (Ap) = (dp/dria Ar;
the subscript E denotes “alement” and A denotes “adiabatic.” If, at its new
position, the density of the element is less than that of its surrounndings, it
experiences a buoyancy force and will continue to rise. That is, if (dp/dr)k
s the density gradient in the radiative surroundings, instability occurs if

(Ap) = (dpjdra br < (Bple = (dp/dr)r Ar (7-60)

(recall that dpjdr < 0). We may write equation (7-60) in a MOYE convenient
form. In the adiabatic element (which we shall momentarily assume is 2
perfect gas) the equation of state islnp =ynp+ C, while in the radiative
surroundings (again assumed to be a perfect gas) lnp=Inp+In T+ C.
Using these relations to compute (dp/dra and (dp/drg, and demanding
the pressure gradients be equal, we find from equation (7-60) that the

Sehwarzschild condition for instability s
[ty — yl(—dln pldi)g < (—dIn T/drir (7-61)

or Vi =(dIn T/dIn p)r > (v — Ly = (din T/dInp)s = v, (7-62)

In stellar atmospheres the gas is not perfect because of the effects of jonization
y generalizing ¥ to T

and radiation pressure; we may account for this b
{160, 37) and writing Va = T — b/l where T will not, in general, equal
its value for a perfect monatomic gas, namely 7 = (C,/C) = 3. Convenient
formulae for the catculation of T, allowing for radiation pressure and
ionization, have been given by several authors [ see, e.8. (638,556; 643364} ].
These elfects can be of major importance, and may drastically lower Va
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and hence the critical value of Vp at which convection occurs :
perfeit monatomic gas V, = 3/3 = 0.4, while for pure ragil;thi.o?lllal:eigtﬁrz
T =% so V, = 025 and for conditions where hydrogen is ionizing T
may be only 1.]. 50V, drops to 0.1! These results clearly suggest that we %n /
expect convection Lo occur in hydrogen lonization zones. Thié expectatio b
strengthened by noting that in the limit of the diffusion applz'oximatlilols
(—dT/dr) = (3nF7.)/(166, T%), which implies (from hydrostatic equilibrium)
Vxr = (3zF7ap)/(166,go T*). From this we see that large values of the opacit
require that the radiative gradient must be steep in order to drive the i)iux1 1{i
through th'(-: atmosphere. The opacity of stellar material becomes large wh
hydrogen 18 appreciably excited into its upper states; this happens agt ab 611
the same conditions where ionization occurs and CaL’ISES I' to decrease '191]:11
two cffects wor.k together and imply that the radiative gradient does iﬂf te
exceed Fhe adiabatic gradient in the hydrogen ionization zone ’so tE}ZCt’
convection occurs. The importance of these mechanisms and the ’existens C
of extgnswe hydrogen convection zomes in stellar envelope fi .
recognized by Unsold (636). pes wes Hre
In the earliest-type stars, hydrogen is essentially completel ionized
through_out the envelope, and radiative equilibrium prevails (tgin weak
convection zones.associated with He” and He ™ ionization exist, but tra,ns o t
only a tiny fraction of the flux). In the A-stars, thin hydrog:an conve E)'Or
zones begin to develop at shallow depths (z a 0.2). In the F-stars thecclon
vection zone starts somewhat deeper, and becomes thicker; by t ’ s FZO?—
F5 convection will transport essentially all of the flux at so;nc pg)]ililt with'0
the zone. For later and later types the zone extends cver deeper, and coilri
vecuop becom.es more efficient; in the M-stars the convective env’eIo e i
extensive that it determines the structure of the star as a whole (396)p o

MIXING-LENGTH THEORY

o The b2}51c physical picture us.ed in the mixing-length theory is that the
nsport in the unstable layer is effected by turbulent elements moving
Elcfward and dow.nward through a surrounding environment. The upward
relcgnwatrd) Elovmg elemfants have an excess (deficiency) of thermal energy
e ive to the :sgrroundmg material. At the end of some characteristic
Sioa;clzlel, tlkrli nglxmg-length,.one supposes that these elements “dissolve”
o absofbin 0 ane s&aréopndmgs, dqhvermg any excess energy they possess
tenrlpemtumg rad)if te. cg:ncy. A direct energy transport results, and the
o me%ha ent is ecreas'ed‘ below that which would occur if the oaly
ransport meche nism ‘Z?re radlatl-on. To c}}aracterize the process we intro-
o o 1?1)g gra‘ IE.“.DtS'. Vi is the rqdmtive gradient that would occur
T e b it of the sartoumdings
' ; is the “true” gradi i

in the final state where both radiation and coivect?grtlc;fr;}rlxzpsgg (;E{clcilontisl
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flux together. In general we will have |
Ve V2 V2V, {7-63)

Consider now a rising element of material. 1f6 T is the temperature_difference
between the element and its surroundings, the excess energy delivered per
unit volume when the element mMerges into the surroundings 18 p_C ,0T. The
temperature difference arises from the difference between .the gradients of the
element and the surroundings. Thus for elements travellmg over a distance
Ar with an average speed T, the energy flux transported is

7F e = PC00T = pcpﬁ[(#dT/dr) — (—dT/jdr)g] Ar {(7-64)

At a given level in the atmosphere we will find clements distributed at
random over their paths of travel; averaging over all elements, we set Ar = 12
where I is the mixing length. Further, using the hydrostatic equation (dp/dr) =

—pg, and introducing the pressure scale height H = (—dIn pidr)™t = pllgp) |

we can rewrite (7-64) as |
nFcom = %QCD@T(V - VE)U/H) (7_65)

To estimate 7, we calculate the work done by buoyan_t forges on an element
and equate this to its Kinetic energy. If 5p is the density d1ff§renpe between
the element and its surroundings, then the buoyant force is f, = —4 ap-
The equation of state yields Inp = Inp — InT + l'n Hs where p is now
considered to be variable 10 allow for effects of ionization and radiation
pressure. Thus we may write d(in p) = d(ln p) — Qd(ln T), where Q =

1 — (@ 1In /o In T)y, and, demanding pressure equilibrium (ép = 0}, we
have 8p = —Qp 8T/T. 50 that

1, = (gQp/TY 0T = (gQp/TH(—dT/dr) = (—-dT/dr)e) Ar  (7-66)

The buoyancy force is thus linear in the displacement; integrating over a
total displacement A, and setting A = [/2 to account for the average over

all elements passing the point under consideration, we obtain the average
work done on the elements

W= [0 A dan) = GQpH/BY Ve)(/H) (7-67)

We now suppose that about one-half of this work will be lost to “frictiqn”
in pushing aside other turbulent elements and the other .half will provide
the kinetic energy of the element (ie., 3p7° =~ 3W) from which we find

7 = (gQH/BHY — Vel (i/H) (7-68) -

and, therefore, from equation (7-65),

AF g = (QH/3ZF(pCTHY = Ve)i(/H)? (7-69)
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One of the uncertaintities of this approach lies in the question of how to
specify the mixing-length [; usually it is assumed that [ is simply some
multiple of H, say 1 or 2,

To complete the theory, we need another relation that will allow us to
express'V and Vg in terms of Vg and Vy; this may be done, following Unséld,
by considering the efficiency of the convective transport. As an element
rises, its temperature exceeds that of the surroundings (which accounts for
the energy transport); the temperature excess implies that it will lose some
energy to its surroundings by radiation. This energy loss will diminish the
excess energy content of the element and therefore decrease the energy yield
when the element “dissolves” at the end of its mixing length. We therefore
define the efficiency parameter as

excess energy content at time of dissolution

g =
’ energy lost by radiation during lifetime of element

(7-70)

The excess encrgy content of the element is proportional to (V — Vi) [cf.
equation (7-63)]; had the element moved adiabatically, the energy content
would have been proportional to (V — V,). Therefore the loss by radiation
is proportional to (V — V) — (V — Vi) = (Vg — V) 50 that

7= (V= Vg)(Ve — Vi) (7-71)

Alternatively, we may calculate the quantities in the numerator and denomi-
nator of equation (7-70) in terms of local variables. Thus for an element of
volume V, with excess temperature 5T, the excess energy content is pC, V' aT.
The radiative loss depends on whether the element is optically thin or thick.
In the thin limit the rate of encrgy loss will be 4x%7; AB, from a volume V,

over a lifetime (I/7). Assuming an average excess ol (67/2) over this lifetime,
we have

Jin = (pCoV ST [Anldor T>/m)8T/2)(7ZeV NI/T)]
— (pC,B)/(80,T7z,) (7-72)

where 7, denotes the optical thickness of the characteristic element size ,
1, = Fgpl- Equation (7-72) applies when z, « 1. At the opposite exireme,
1, » 1, we apply the diffusion approximation to determine the radiative
flux lost by an element of characteristic size £, with fluctuation 6 T, by writing

(—dT/dr) = (6T/). Assuming a surface arca A and the same lifetime as
before, we now have

e = (pC,V 8TY[(L6ax T 3T MST/MA/TY] = (pC,0/160xT*)37a(V/A)
(7-73)
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The choice of (V/A) is ambiguous and introduces another source of un-
certainty into the theory; if the elements are presumed to be spherical,

(V/A) = I/3 and .
Paniex = 3T PC 0/ (BarT") (7-74)
We interpolate between the two extreme cases by writing

v = [pC,mBar T [(1 + 3t )z] (7-75)

Combining equations {7-71) and (7-75), and substituiing equation (7-68) for
¥ we derive finally

Ve - Vi 164207 . _g (1-76)
v — Vet pCUgQE I/ (1 + 32.°)

The final requirement we place upon the theory is that the correct total flux

be transported by radiation and convection together—i.e.,
nF = nFrad + ﬂ:Fcanv = Ofr Tgff (7'77)

The mixing-length theory described above is the simplest (and most
widely used!) convection theory in astrophysics. Numerous _reﬁgements
have been proposed, attempting to introduce nonlocal information into the
theory; it would take us too far afield to attempt to describe these here, and
the interested reader should examine the literature. [ See, ¢.g., (594 595; 450,
237:479) and the references cited therein. |

CONVECTIVE MODEL ATMOSPHERES

The computation of convective model atmospheres is more complicated
than for radiative models (even assuming the mixing-length theory) because
there are two transport mechanisms that must be brought into a final balance
to satisfy equation (7-77). We may proceed as follows. Suppose We assume
some specification of the temperature distribution—e.g., the grey distribution
on a Rosseland-mean optical-depth scale. We then carry out a step-by-step
inte'gration of equations (7-35) and {7-36), as before. At each poipt we may
calculate Vg = Vi(T.p. pg)and V, = VAT, p, p,). If at some point we ﬁnd
that the instability criterion is satisfied, we must determine the true gradient
V, Vg 2 V = V,, which satisfies equation (7-77). If the instability occurs
deep enough for the diffusion approximation to be valid, then (Foq/f) =
(V/Vy), and equations (7-77) and (7-69) reduce to

AV — Vi = Vg — V {7-78)
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where A depends only on local variables. Adding (V — Vi) + (Vg — V,) to
hoth sides of equation (7-78) and using equation {7-76) to eliminate (Vg — V,},
we find a cubic equation for (V — Vg)¥ = x, namely '

AV — V) + (V= Vg + BV — V)t = (Vo = Vo (7-79)

which may be solved by standard methods for the root x,. We thus obtain
the true gradient V = V, + Bx, + x,°, and proceed with the integration,
pow regarding T as a function of p. If, at some point, convection ceases,
we revert to the original 7(%z) relation {adjusted to match the current values
of T and 7) and continue the integration into a radiative zone.

In the case that the material is presumed grey [or, for nongrey material,
the convection zone is really deep enough that the diffusion approximation
is correct, and the true nongrey temperature distribution is known near
the surface] the treatment described above is essentially exact. Using this
approach for grey atmospheres, Vitense (653) performed computations fora
wide range of effective temperatures and gravities; this work nicely delineates
the role of convection in stellar atmospheres over much of the H-R diagram.
Tn a general way, the outermost layers can always be expected to be in radia-
tive equilibrium because densities and opacities are small and radiative
transport is more efficient than convective. In deeper layers, the opacity and
density rise, ionization may occur, and cenvection may begin. Convection
will have its largest effects in stars of low effective temperatures (in which the
fiydrogen is essentially neutral in the outer layers) and high gravities (which
imply large densities and heat capacity, hence efficient thermal transport).
When convection is efficient, it will transport practically all the flux, and V
will be close to V,; indeed, in stellar interiors, convection (which it occurs)
is so efficient that one may set V=V, and dispense with the mixing-length
theory entirely. When convection is inefficient, the true gradient V will lie
close to Vg, and a substantial part of the flux may be carried by radiation;
in this regime the uncertainties of the mixing-length theory make themselves
felt fully.

When the convection zone lies close enough to the surface that the diffusion
approximation used to derive equation {7-78) is invalid, it is then necessary
to calculate F,, from the solution of the nongrey transfer equation, and
employ an iterative femperature-correction procedure. Inany such procedure
it is essential to account for changes in both F,,, and F,,, induced by the
proposed alteration of the temperature structure. Methods for constructing
convective models based on a generalization of the Avrett—Krook procedure
have been used to study F-type main-sequence stars (422), middle-type
supergiants (500), and M-stars (dwarfs through supergiants) (48). A detailed
description of a computer code that treats convection is given in (379). An ex-
tensive grid of nongrey models (4000°K < T < 50,000°K, 2 < log g <
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i i r iate and making allowantce for
‘neluding convection effects where appropriate an ; :
fi)rvlfl:l-lljlznllce‘{ing is available (247, 377). More limited grids f)f blanketed
convective models may be found in (512; 513;514), and eixtelpswi {:omkp;uf;
i iz ing for molecular line-blanketing,

(i M giants and supergiants, allowmg : :
zfens if\?ern inb{341' 342). The solar convection zone has been studied with
'oothg the mixing-length approximation (652) [sce also (479]]d‘a;1d r;(gle:-
detailed hydrodynamical theories {99; 100). Recently, methods for

puting convective models using a linearization procedure similar to that

described in §7-2 have been developed (274; 275; 479). Tl{f ijasic Cz?;;%fogl-
ion 1§ t i 7-77) as the energy balance € ;
formulation 1s to use equation ( : ;
Eﬁfroducing a discrete representation of the flux [cf el:quatlons {6-15) and
(6-26)}. On an angle-frequency mesh { pt;, vi} we can write
i ‘ . )
4n z Wf#iz(udﬂ,i — ) ATav g, nF canv\d-szL = ox e (7-80)
i=1
The convective flux can be regarded as Foond s Pys T, Y) [given theslf varég})tlie:‘?;
V. follows from equation (7-76)and F ., from eguatlon (7-69)].T eradia v
teErm may be linearized as before. In linearizmg th; convective term, the
total pressure 18 fixed, and the derivatives appearing i the expression

Fopne = Fowv T (8F.fp,) dpy + (6F eTyoT + (8F,jaV) 6V (7-81)

are computed numerically. Several approximatipns are introduced (27;!3' to

reduce this to an expression in 8T only, and practical pr;))ceilures for har;tslr;rgl
ic been developed (274; 275). Improveme

numerical problems have _ . 7 : !

convergence might be obtained by mcludmg.tcrm? in 6N as well as 87T,
¥ i ' is is inherently more cosily.

but, as described earlier, this 18 In sily.

At the present time, convection theory as applied in stellar atn?ospgelrrflss
analysis is only heyristic: improvements 10 the physical theor)‘f drlfa3 \(’,1 gi
actively pursued and, when more accurate treatments of convection e(_.l(irn;
available, our understanding of the atmospheres of late-type stars wi e

improved significanily.

7.4 Resulis of LTE Model-Atmosphere
Calculations for Early-Type Stars

The largest group of reliable model atmospheres available pertains tﬁ;gﬁ;
and ea;}ier spectral types; iherefore we shall confine attention pr mary
(o these stars. For later types, many difficult problems related ;0 mo e
line-blanketing and the hydrodynamic str.ucture of the atmosp ]f]rf]:g mulane_
overcome. There 1s now a very farge }1terature concermqi " 1,1 phere.
parallel, model stellar atmospheres, which cannot be described fully ;
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we shall merely give a few typical references and invite the reader to examine
these papers and the references cited therein, A comprehensive list, through
1965, can be found in (506); many of the models in that list use a grey tem-
perature distribution on a mean optical-depth scale. Extensive grids of
unblanketed, nongrey, radiative-equilibrium models can be found in (421;
608); models including hydrogen-tine blanketing by the “direct approach™
have been calculated for A- and B-type main-sequence stars and giants
(423; 357), and for white dwarfs (620; 412). Models for O- and B-stars,
allowing for blanketing by hydrogen lines and strong lines of abundant light
ions, by the direct approach, are given in (449; 7; 298, 105; 471). Major
improvements in the simulation of real atmospheres have been achieved by
including the blanketing of thousands to millions of lines, using various types
of opacity distribution functions. A preliminary model of Procyon (F5IV)
allowed for about 30,000 lines (612); extensive grids including hundreds of
thousands of lines semiempirically have been published in (247, 512; 513;
514); and recently these efforts have culminated in the publication of models
(331,516, 271) allowing for 1,760,000 lines on the range

8000°K < Ty < 50,000°K, 2 < logg < 5

(as well as a solar model). A few illustrative results from these calculations
will be described below.

EMERGENT ENERGY DISTRIBUTION

The ultimate goal of stellar atmospheres analyses is the construction of
mathematical models that describe the physical properties of the outer layers
of stars. Having computed detailed models on the basis of the theoretical
principles described in this chapter, one then compares predicted and ob-
served values for the distribution of radiation within the spectrum, and
attempts to associate a real star with a definite model. In this way values of
the parameters that deseribe the model, (T, log g, chemical composition),
can be assigned to the star. We shall concentrate here on the comparison of
observed and computed values of continuum features, deferring a discussion
of lines to the second half of this book. In early-type stars, spectroscopic
information about gravities comes mainty from profiles of the hydrogen lines
(for which the broadening mechanisms are density-sensitive) and about
abundances from an analysis of line-strengths; we shall therefore focus
mainly on the determination of T, and related parameters—e.g., the bolo-
metric correction. In fitting the continuum we may follow several approaches.

{a) A fit can be made to the entire spectrum. This assumes that a complete
energy distribution (perhaps including spectral regions inaccessible to ground-
based observations) is available. In most cases the comparison is based on
the relative distribution of energy in the spectrum—ie., F./F,,, where v,
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denotes some prechosen frequency. [n a few cases it is possible to make the
comparison in absolute energy units using fluxes in ergs cm 2 sec thz !
for both the star and model; here we obtain an enormously important check
on the validity of the whole theory.

(b) More limited information concerning a few outstanding features in the
flux distribution may be used. For example, in A- through O-stars the slope
of the Paschen continuuin (3650 A< ) <8205 A)is useful; the name is derived
from the fact that the dominant opacity source on this wavelength range in
early-type sfars is from photoionizations ofthe n = 3 level of hydrogen. Two

other important features are the Balmer jump,
Dy = 2.5 10g[Fv()LB650+}/F.,(/'L3650’)]
and the Paschen jump, Dp = 2.5 logl F (A82057)/F (18205 7)]. These param-

eters give measures of the effects of the onset of photoionization adges near

the wavelengths stipulated.
In particular, at the Balmer jump, towards shorter wavelengths the opacity

is large, owing to photoionizations from the n = 2 level of hydrogen, hence -

we receive radiation only from the upper, cooler layers; whereas towards
longer wavelengths, the material is much more transparent and we see deeper,
hotter, layers from which the flux is larger. The result is a fairly abrupt drop
in the flux across these frequency boundaries (actually the drop is not sharp
because of the opacity of overlapping lines of the series converging on the
continuum). The continuum slope can be observed and computed unam-
biguously, but one st be able to cogrect the observed values for interstellar
reddening effects, and must have a reliable absolute energy distribution
standard (see below). The “jumps” are pot as strongly affected by reddening
or calibration problems because they are defined over a very himited fre-
quency range. fJowever, although the flux ratio is obtained easity from
unblanketed models, this abstract guantity is not actually measureable,
owing to the confluence of lines near the series limit; hence one must use
blanketed models, and apply the same operational process to both observed
and computed distributions to obtain meaningful comparisons.

(c) Finally, we may employ colors measured with filters that isolate speci-
fied bands within the spectrurmt. Colors can be obtained easily and accurately
by standarized observational technigues, and such measures cas be extended

to very faint stars by use of broad-band filters. On the other hand, it is -

casjer to calibrate colors against theoretical models for narrow bandwidths,
for then ohe can account more accurately for line-blanketing effects in the
model. In practice a compromise must be struck, and a large number of
color systems with yarious properties exist, many of them measuring param-
cters that are specially designed to characterize the properties of particular
groups of stars [sce, e.g., the systems described in (516)]. A widely used
system that has been well-calibrated in terms of models is the Stromgrenl
uuby systemn.
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F AC{I comfa}rlrso_ns bt?twecn models and observations rest, in the end, on the
iﬁnthgsﬁ(e;l gnzd‘ltlt.)rz}non of glle energy distribution of a standard star (c’)r stars)
sky, it is impossible to overemphasize the im ' 1
: | Z portance of this basic
;.:tolnn_ectlc.)n between lha‘eory and observation [see also (516, 241)]. Becau;e
I ﬂ1ns;,.m pxac‘;lce, impossible to make an a priori determination of the absolute
efficiency o the telescope—spectrometey—receiver system, one proceeds by
cl(zmparmg astartoa standard blackbody source of known emissivity, usin
El Z Zafxgiob?esggtlonal zpparatus. It would take us too far afield to déscribi
he details of this procedure here; it is worth th !
! . ; 1t 18 e reader’s effort to study t
lzlg;raztglgf): ondthef subject [e.g., (261, Chap. 2; 484485 486 ; 285; 487'23?‘
; and references cited therein ]! For main nce B-stars, both the
| ’ : ! -sequence B-stars, both the
slope of the Paschen continuum and the Balmer jump depend strongly on
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Balm'er jumps computed from LTE model atmospheres, as a
functmn. of effective temperature and gravity. Ordinare" )
Balmer jump in magnitudes; abscissa: G = 5040/ T, .
Curves are labeled with log g. " "
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FIGURE 7-4
Comperison of the energy distribution of o Leo (BTV) as observed by

Hayes (285) with the model atmosphere (608) that best fits the Paschen

continuum, namely, with T = 13,000°K and log g = 4, Note that the
Ordinate: relative

computed and abserved Balmer jumps are consistent.

{jux in magnitudes; abscissa: 12 where 4 is in microns. From (285).

Until about 1968, a serious discrepancy existed between these two deter-
minations in the sensc that, if a fit was made to the Paschen continuuvm, the
observed Balmer jump was smaller than computed (or if the Balmer jump
was fitted, the slope of the observed Paschen continuum was too shallow);
the discrepancy In Teer amounted to 3000°K (the Balmer jump temperatures
being higher). The problem was resolved when a new calibration was made
at Lick Observatory by Hayes (285; 286), who showed that the original
calibration had too flat a Paschen continuum slope. With his calibration it
became possible to fit the observed spectrum very well (sec Figure 7-4), and
effective temperatures deduced from the two parameters were consistent
[see, e.g., Figure 3 0f{682)]; by this procedure, an offective-temperature scale
for the B-stars can be established (682;555). A second recalibration made at

Palomar (487} by Oke and Schild disagreed with the Hayes calibration {and
the models) below the Balmer jump; recent work by Hayes and Latham
(287 ;288),however,has shown conclusively that the source of the discrepancy
ion for the effects of atmospheric extinction in the Palomar

was a faulty correctl
data, and when this is removed, the Lick and Palomar results agree. A

comparison of the energy distribution of Vega with a line-blanketed model is
shown in Figure 7-5. In fitting relative encrgy distributions in spectral vegions
visible from the ground, it is important to allow for line-blanketing in spectral
types later than A. For example, in Figure 7-6 we s¢e that the blanketed model

of Procyon (612) i

mentioned at the beginning of this section fits the observed -
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Eompanson of coergy distribution of the fundamental standard Vega as measured by
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[T{nblanketesl and blanketed energy distributions for models with

Pe” = 6500°K .and log g = 4, compared with observations of
rocyon. C?I‘Fil!tflfe: relative flux in magnitude units; abscissa:

wavelength 4 in A, From (612}, by permission. -
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hereas the unblanketed model 18 much too -

bright. Blanketing effects are minor in the visible for B- and O-type stars but
become large in the ultraviolet; fits made to models ignoring w.v. line-
blanketing will be systematically in error (see below).

An entirely different approach to the derivation of effective temperatures

can be made using absolute fluxes. From the fundamental calibration one can

determine the actual energy output of a star at a particular wavelength;
specifically, for Vega (o LyT), which is the standard star, the average of the
Palomar and Mt. Hopkins work vields (287) a flux. at the garth. of f, =
150 % 10 2Cergsem” *sec” ! hz~ ! at 75556 A. For any other star we usc the
magnitude difference Am of the star relative o Vega (at this wavelength) to
scale the flux quoted above by 10044 As was discussed in §l-4, we can
convert fluxes measured at the earth to fluxes at the stellar surface if we know

the angular diameter of the star. Angular diameters have been measured (113)
for 32 stars on the spectral-type range 05 to F8; these may be used to con-
le. One could, for example, deduce the

struct an effective temperature sca
absolute stellar flux at some particular wavelength, and choose the model -
that yields the same flux to assign T BY comparing the total energy emis-

sion with that observable in the visible, one can then obtain the bolometric
correction.

Such an approach 1s vu
inadequate allowance is made
assign too-high values of T an

ultraviolet line-blanketing is illustrated
(449) allows for the strong lines of H, He, C, N, O, 8i, C}, Fe, etc. on the range

912 A < 7 < 1600 A by the “direct” approach. The effects of the blanketing
are quite dramatic. The integrated flux of the blanketed model corresponds to -
T = 21,900°K, but so much flux has been removed from the ultraviolet,
and redistributed to longer wavelengths, that the energy distribution there
most closely resembles an unblanketed model with Tere = 24.000°K. Had
we used unblanketed models to fit the visible energy distribution (whether
absolute flux values or the Paschen continuum slope), the derived effective
temperature would have been systematically too high by 2100°K'! In fact, :
“direct-approach” models provide, at best, alower bound on the total amount
of blanketing, and only the recent calculations (381) allowing for millions of
lines with opacity distribution functions provide reliable estimates of these

energy distribution quite well, w

Inerable, however, 0 serious systematic errors if .
for Lne-blanketing (190), and will tend to

d bolometric corrections. The nature of the -
in Figure 7-7. The blanketed model

effects.
In the face of these difficulties it is preferable to avoid direct reference to
ar diameters, visible energy distributions,

the models, and use known angul
and recent space observations in the ultraviolet to construct complete abso-,
lute energy distributions empirically {516, 221 169). In this procedure there-.-

ave nonirivial problems of ultraviolet calibrations and interstellar reddening..
effects but, with care, these can be overcome (96). From the integrated flux

O =021
()eff =023
B = 023

0

10

I il‘.‘./‘l/

FIGURE 7-7

Flux fi :
Out;uzoclzlr?;:n:stde‘d and unblanketed leE models (449). The blanketed model yields a total
ousput same 'E]m tlt;]eg t'o';';e” = 21,900°K (.Heff = 0.23}, but because the ultraviolet flux has g::rgy
visible, the flux there is much higher than that of an unblanketed model fnh
g el of the

sam i T = =
¢ temperature, and, in fact, matches an unblanketed model with 24,000°K (¢ 0.21)
eff » eff . i

From (449), by

L N z
ordinate: F, % 10° ergs cm ™2 sec™* hz ™%

Abscissa: 1/7, where £ is in microns;

permission.
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FIGURE 7-8
Comparison of cmpirical absolute epergy distribution of « Leo

(B7V) (316, 221) with & Tine-blanketed model (381) of the same
effcctive temperature {12,200°K). The agreement is excellent and
lends strong support to the model techniques. Ordinate: absoluie
flux 10° £, in ergs om 2 sec™! AT at the carth;  abscissd: Waves

length 4 in A.

the actual effective temperatnre is obtained; this value is essentially indepen-
dent of any model atmosphere. A comparison of the empirical absolute energy

distribution with that from a model that has the same (i.e., the empirical) Tore

is therefore extremely significant, for if provides a test of both the absolute

and relative flux predictions of the model. Such a confrontation is shown in

Figure 7-8 for the B7V star o Leo (516, 221) and a blanketed model (381) of
the same effective temperature. The agreement is excellent, and lends strong
support to the validity of the new models.

As an example of an exfreine case of line-blanketing effects, it is interesting
to consider the ultraviolet flux distribution in the Ap stars as observed by
OAQO-2. The Ap stars arc objects with anomalous abundances of certain
elements (e.g., Si, Mn, Cr, Eu, Sr) that are enhanced by factors of 10% to 10°.
These stars have strong magnetic fields and show spectral variations with
time: the observed variation of the field is well explained by an oblique rotator
model in which the magnetic axis is inclined to the rotation axis of the star,
while the spectral variations indicate concentrations of the elements into
definite zones or patches on ihe stellar surface | see, e.g., (522;125:194 y}. The

greatly enhanced heavy-clement abundances produce strong additionat
und in normal stars. The

effect is nicety illustrated 1n the peciﬂiar (Si 3995) star 0 Aur {see Figure 7-9),
le matches a normal star of the same
color, but in the ultraviolet (391) fits that of a cooler star. The effect of
enhancing the line opacities in models is shown in Figure 7-10, which repro-
duces the behavior seen in Figure 7-9 at least semiquantitatively. Note that

blanketing in the ultraviolet, over and above that fo

whose energy distribution in the visib

T i
~18F I ' i T [ I 1

— ig - OAO-2 data | Ground-based data
~12+
—1.0
—-08
—0.6
—-04
-02 H

0.0 *
+02

+04
+06( 8 Aur, AOp, B~ V = —0.08 .

sl — 134 Tau, B935V,B — V = —0.07

. 1'0 B == 2 UMa, AOV, B — I = (.00 N
| l | | | |

] i J | 1]

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Wavelength (&)

L

—25 log(F:/Faaa0)

FIGURE 7-9
Eompa?igz _c;f reialivc energy distribution of the peculiar (Si 3995) A-star # Aur with
ose of 134 Tau (B9.5V)and y U Ma {A0V) {391
. Fa . Because of th hanced i
bianketing arising from tl ; ) e
g e greater heavy-element abundances in i
nieting arisi ' the peculiar star, the
i;t‘lrln: SISt:ﬁmtlc-ml of 0 /;&u;' matches neither of the normal stars, but resembles th:e cooler
he ultraviolet and the hotler star in the visible.  Ordi i i :
ar in 2y . ; . rdinate. relalive i
magnitude units; abscissa: wavelength in A, From (391), by pcrmissivonﬁuX "

I
18} ! ‘ T w ‘ ‘
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FIGURE 7-10

Line-blanketed models (321) showi i
R owing effects of [00-fold enhanced heavy-c :
note strong resemblance to the effects shown in Figure 7-9 Ffom] 3(;;31)&1;)1}‘1;2;;2:“:;1; e
. . SI0N.
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VIGURE 7-11

Variation of the pecubiar (Si-Cr-Eu) A-star 22 CVn in UBV and
at 43317 A as measured from OAO-2.  From (464), by
permission,

the peculiar star has a lower T, than a normal star of the same visible color
(or energy distribution), and a total energy distribution that is distinct from
a normal star of the same T, A further effect is shown in the Ap (8i-Cr-Eu)
spectrum variable «CVn. The light variations in the visible are shown in
Figure 7-11 along with a near-ultraviolet band observed from OAQ-2 (464);
the far ultraviolet behavior is shown in Figure 7-12 where we see an antiphase
variation. These results are easily interpreted in terms of much-increased
ultraviolet line-blanketing at phase 0.0, which depresses the ultraviolet flux
and redistributes the energy into longer wavelength bands, thus forcing a
brightening in the visible; this interpretation is consistent with the fact that
the rare-earth lines reach maximum strength at this phase. In contrast, at
phase 0.5 we observe regions of the atmosphere where the rare-earth lines are
at a minimum, hence the ultraviolet blanketing is lowest; at these phases flux
emerges more freely in the uftraviolet (leading to a brightening there) and is

Digital counts relative to phase = 0.0 (in units of 10 percent}

| 1 ! | ]

FIGURE 7-12

0.2 04 0.6 0.8 a0
Phase

3317
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2945

2462

2386

1913

1554

1430

1332

Variation of #? CVn in ultraviclet as measured from OAO-2.

Curves are labeled with wavelengths {A) of filters. Note antiphase
variation of far ultraviolet flux relative to visible!

by pcrmission.

From (464),
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not redistributed into the visible regions, which, accordingly,. decrease in
brightness. The existence of a “null wavelength” near 2960, which shows no
variation, supports the differential line-blanketing interpretation and argues
against others involving, e.g., gross geometrical deformations of the stellar
surface.

For most stars we do not have detailed energy distributions, but only
much more limited information such as colors measured in a photometric
system. By suitable choices of filter combinations, colors can be obtained
that are sensitive to effective temperature, gravity, and metal abundance and
allow a determination of the amount of interstellar reddening. For example,
in the Strémgren uvby system for, say, A-G stars, the index (b — y) is a
good temperature indicator, ¢; = {# — v} — (v — b) is gravity-sensitive,
while m; = (v — b) — (b — ¥) is sensitive to metal abundance. To recover
the information available in these data the system must be calibrated against
model atmospheres. A first siep in the procedure is the determination of
normalizations between observed colors and those computed from the known
filter transmissions. If T,{2) denotes the filter transmission in color i, then

O

10,000 \!
050048500 00

9000

=
o0

0.6} _ -

04 2y .

0.2 ! | | | I
0.0 0.1 0.2 0.3 0.4

-3

FIGURE 7-13

Comparison of observed (dots) Strémgren {c,, # — y) indices for
main-sequence stars (which have log g = 4) [{516, 17; 516, 45)] with
calculated values from line-blanketed models [(381; 516, 271)]; note
good agreement in log g, which suggests that T, can be estimated
accurately.
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we have

(i — jlye = —2.51l0g [ fo“‘ TF(A) d) / fO“ (AL d/‘} + ki (7-82)

where the constant k;; accounts for the unknown telescope-photomeler
transmission and photomultiplier response. To determine k;;, the standard
approach is to use observed energy distributions F(1) of real stars, with known
colors (i — j)one, N equation (7-82), and to require agreement of the computed
and observed colors [see, e.g, (411; 488 516, 31;516, 45)]. The second step
is to apply equation (7-82), with known values of k;;, to model-atmosphere
flux distributions to obtain the “observed” colors of the models. Compari-
sons between stellar and model colors then allow the estimation of stellar
parameters; see Figure 7-13.

Once again line-blanketing plays an important role, (a) because of blocking
effects in individual filter bands, and (b) because the value of T, of the model
depends on the effects of line-blanketing. In later-type stars it is often neces-
sary to perform very detailed spectral synthesis studies [see, e.g., {80; 81;
82; 83;516, 319)] to evaluate the blocking effects, while models with very
complete opacity distribution functions such as in {381) are indispensible
for estimating T At present considerable effort is being devoted to the
development of opacity distribution functions for molecular line-blanketing;
when these become available, a reliable analysis of the energy distribution
of late-type stars should become possible.

TEMPERATURE STRUCTURE

In addition to emergent fluxes, model atmospheres give the variation of
the physical properties of the atmosphere with depth. In particular, we
obtain an estimate of the temperature structure of the atmosphere, which,
as mentioned in §7-2, 18 of central importance in LTE models. Let us now
congider how the temperature structure in a nongrey atmosphere differs
from the grey-body distribution determined in Chapter 3. We shall focus
attention on two features: (a) the ratio of boundary temperature to effective
temperature, 1o/ T, which has a value 0.811 for a grey atmosphere, and
{b) the effects of backwarming. To gain insight into the physics of the situa-
tion, we shall consider two idealized problems: (1) an opacity step in the
continuum, and {2) the “picket-fence” model for lines. Let us first ask guali-
tatively what the effects of an opacity jump or strong lines might be.

If the opacity is grey, y, = k, + o, and the emissivity is given by n, =
kB, + oJ,; then the condition of radiative equilibrium is

i, fo‘“’ BTy dv = K, fo“’ 7.% dy (7-83)
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Here the scattering term has cancelled out. From the Eddington—Barbier
relation, we expect that at the surface (e, 7, « 1), I D Bz, & 1), hence
J.0 x 4B,(T ). Substituting this result into equation (7-83) yields the usual
grey-body result Tp* = LT, Suppose now there is a large jump in opacity
(e.g., at the Lyman edge) at some critical frequency, so that k = &, forv < vy,
x = K, for v > vo. Then the atmosphere will equilibrate to some new sut-
face temperature T given by

v . . o . L Yo ) o
K, fo B(T}) dv + v, j BT dy = [0S, dv £ f “Jydv (7-84)

Assuming that for v < vy, Ju = 7.0 {ie., neglecting backwarming), and
noting that for v > v, the surface value of J, = +B(T}), equation (7-84)
can be rewritien as

Q
o w0 w1 . ,
-k, {’5 [ B+ | [5 B(Tesr) — B\.(To)] dv}
{7-85)

Both of the terms in the braces are positive; hence we conclude that 75 < T,
and that the amount of cooling is targer, the larger the value of v. This result
is not rigorous because we expect J, must, in fact, rise above J,° for v < vg;
but we shall see below that a rigorous analysis verifies the correctness of our
conclusion. Suppose we evaluate T'(z,) at some point inside the atmosphere
where 7, » 1 for v > v while 7, << 1 for v < v,. Then the mean intensities
in the square bracket of the second equality of equation (7-85) saturate (o
the tocal Planck function and the whole bracket vanishes, and T'(z,) equals
T, for the grey case; ie, the surfuce temperature drops only in those layers
where the opacity jump has become transparent.

Suppose now there are spectrum lines at frequencies {v;} that add to the
opacity, y, = K. + ¢ + Y L., and make both a thermal and scattering
contribution to the emissivity, n, = kB, + aJ, + Y [eB, + (1 — e ]
Then the condition of radiative equilibrium reduces to

K, fom BT, dv =, J': J0dv

- {Z L[ BATo) — I + 5. X f, (.0~ 7)) dv}
1 (7-86)
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where J; denotes [¢,J, dv for the ith line, and A, is the frequency band con-
tajning that line. Again both terms in the braces are positive, so T, must be
less than T,. There is the additional feature that the effect of the lines depends
on their thermal coupling coefficient &,. In LTE, ¢, = 1, J =~ 1B,(T}), and
for §; » x,, a large cooling term results; thus LTE line-blanketing ’must
dragigally lower the boundary temperature. If the lines merely scatter the
radiation (i.e., & — 0), then (just as is the case for continuum scattering!)
they have no effect upon the energy balance and the boundary temperature
is not changed markedly. We shall see that this conclusion is also supported
by the detailed analysis to which we now turn.

The qualitative results obtained above can be put on a quantitative footing
by consideration of the illuminating treatment of line-blanketing offered by
the picket-fence model proposed by Chandraskhar (150) and further devel-
oped by Miinch (474). In this model we assume (a) the continuum opacity is
frequency-independent, (ie., x, = x); (b) the lines have square profiles of
constant width and a constant opacity ratio § = l/x relative to the con-
tinuum; and (c) the lines are distributed at random uniformly throughout
the spectrum, such that within a given frequency hand a fraction w, contains
pure continuum, and a fraction w, = 1 — w; contains continuwm plus lines.
(Alternatively, the probability of finding line opacity at a specified frequency
is w,.) A pictorial representation of the problem is given in Figure 7-14
which shows why the name “picket-fence” is appropriate. (A shghtly differen‘E
interpretation of w, and w, allows treatment of an opacity step; see below.)
Adopting the continuum as the standard optical depth scale, we have for

B+ Ner — — _

W Vs

v
FIGURE 7-14

Picke(-lence model. Lines are assumed to be a factor of f more
opague than continvum, and to cccur with a probability

wy, = | — w; In any frequency band.
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frequencies in the continuum,

p(dI{do) = I — B, (7-87a) -
and, in the line :

pld1Pydzy = (L + BLY = (1 = gps — (1 + ep)B,  (7-87b)

Integrating over all frequencies (radiation quantities withqut a subscr.ip‘F v
denote integrated quantities) and accounting for the relative probabilities
that the band is covered by tine or continuum, we find

u(diWyjdzy = 1V — w, B (7-88a)
and pldrds) = (1 + BIP — (1= s — (1L + efyw,B (1-880)

These equations are to be solved simultaneously with a constraint of rgdlatlve
equilibrium, which is obtained by integrating over angle and demanding that
FO L F@ = constant, namely

JO (L4 TP = [wy + owo(l ep)|B {(7-89)

Consider now the case of LTE (ie, ¢ = 1), Let y; = land =1+ B.
Then equations (7-88) become .

w(d1Vdry = p(I" — wB), (=12) (7-90)
where, from equation (7-89),

2 2
B = Z ";’ijm/z, Wit (7-91)
i=1 1=1

To solve this system we use the discrete-ordinate approach, and choose
(k= =1, Ln, such that

JO = Z al? (7-92)
j=-n

b2l o—

Then, substituting equations (7-91) and (7-92) into (7-90), we have

- i (1=1,2
L dI(in o __L W (I-I[-m), .
;:_E—_ Ii 2Zrnwmym mzl,mj:zln i (l = i].,...,i"?’f.)
(7-93)
If we now assume a solution of the form
IEU = Cwle—h/(l + k,’.ii/'})]) (7-94)
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we find that k satisfies the characteristic equation

2 2 n

Z Witm = Z Wi Vi Z a'j/(1 - kzju'jz/ymz) (7_95)

m=1 m=1 i=1

This equation yields 2n — | nonzero roots for k? (bounded by poles at

oo, Y and % .00, v /i) and hence 4n — 2 values for & of
the form +k;. In addition, we see by inspection that k? = 0 is a root of the
characteristic equation; this root vields a particular solution of the form

IEIJ = bwl(r + Q + ﬂi/'})g) (7-96)

which may be verified by direct substitution into equation (7-93). The general
solution (7-93} is thus of the form

2n—1 — kgt Zr—1 Font
i Le ™ L e
I}”{r)-wb(ﬁ+Q++ ——+ ),
! Y1 a1 L+ iy azl 1 — kp:fy
(=12

(i==+1..., +n (7-97)

Demanding that the solution not diverge exponentially as ¢ — oo, we set
L_, = 0for all o Requiring that the total flux

F=2% % aulf (7-98)

3 2
we find b= (Z—l F)/ Y wy ! (7-99)
=1
The constant Q and the L,’s are determined from the surface boundary
conditions I”(0) = 0, which yield a linear system of 2n equations in 2n
unknowns:

2h—1 I

0~ () + 3 Lol = hatifp) = 0 L2)

Qo1 100

Using equations (7-99), (7-97), and (7-92), we find

3 2r-1 n
FFw

T = 5 Lebey 4 Y g
(r) Y Wolm (r + 0+ d; A€ j; TR (7-101)

and, from equation (7-91),

B(z) =

2n—1 2
F (T +0+ ) Laek"t)/ 2 Wodm ! (7-102)

w=1 m=1

Pl



210 Model Atmospheres

We shall see below that, for the picket-fence moldel, (K/fcR) =Y WY 31, S0
from equation (7-102) we see that the asymptotic solution for_B("c) 15.11.? Tis
as would be expected. The Rosseland mean scale Ty exceeds ©; in the hmlt_ of
infinitely strong lines (72 — ) 1p(7) = t/w; and we see from equatllon
(7-102) that the temperatures must be larger at depth. This is thg backwarming
effect, and clearly depends mainly upon the bandwidth available for con-

tinuum flux transport.

Exercise 7-11: (a) Veriiy that equation {7-96)isa particular solution of the transfer
equation. (b) Verify equations (7-99), (7-101}, and (7-102).

As was true for the grey problem, we may calculate the value of B(0)
explicitly. Define the function

Zn—1

Sixp=0 - x + 3 LAl — kx) (7-103)

The boundary conditions (7-100) show that S(x) = 0 at the 2n values '

x = p,;/y, Butif we clear equation (7-103) of fractions by multiplying throx}gh
by a function composed of the product of the 2n — 1 denominators [1._6.i
R(x) = ﬂfg‘ll (1 — k,x)], then the product R(x)S5(x) is clearly a polynomla
of order 2n in x. But we know 2n zeros of S(x), hence the polynomial must
be of the form R(x)S(x) = Clx — gy} -+~ (¢ — ol = fy) = (x — thaf7)-
If we equate the coefficients of the two terms in x" on the two sides ‘f)f
this equation we can evaluate Cas C = kiky -~ kyq . and hence obtain
finally

n

2 2n—1 ]
SGo) = ki kap [H 1T 6 — uf/m] / [T 0= k) (-109
t=11i=1 a=

which implies that
S(0) = kiky oo kaz-l.ulzlu'ZZ ey (7-1053)

Now consider the characteristic function

il

2 n 5 5
T(X) Z WiV [1 - z aj/(l - ﬂj /?m X)]

j=1

m=1

i Wl [1 - X i aj/(X - .ujz/ymz)]

m=1

2 n

= Z 1”‘}mry1nr|71 2 aj“jz [(.uj2/'ym2) - X]-l (7_106)

m=1 i=1

where X = 1/k*. We clear equation (7-106) of fractions'by mu]t_iply.ing
through by the product of the 2n denominators. The resulting function 18 &
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polynomial of order 2n — 1 in X; now we know that T{X) has 2n — 1

nonzera roots. X, = 1/k,% so the polynomial must be of the form

CX — X (X — X,,-1) To evaluate C we equate the coefficients of
the terms in X"~ ! to find

€ = (1P (T wn ™ T @) = (~ 1P 2 (L ™)

Thus we have

(mgi W,,,}’,,,l) klj1 s = X)/{ l:[i -fj1 [(“jl/?mZ) B X]}
(7-107)

From the middle equality of equation (7-106), we have T(0) = 3 w,7,: and
from equation (7-107), we have

T(X) =

L] —

1
T(O) = 5 (Z wm-ymil)/[(}ulz T nun2kl T an*l)/yn]z

Combining these two results we then find, from equation (7-105),

2 3 2 -1
S(0) = ( > wmvﬁ) (3 ¥ w,,;y,,,) (7-108)
m=1 m=1

But comparison of equations {(7-102) and (7-103) shows that

3
B(0) = 2 FS O/ Waym ) (7-109)
Hence we conclude that

[BOOVF] = (3O w X wop D] 72 (7-110)

This result may be restated in a form that reveals its physical content. The
Planck mean opacity is

%p= B! f:' B, dv = B Mc(w,B + wyyB) = (w, + wyy) (7-111)
while the Rosseland mean opacity 18
(Rg)"' = (dB/dT)" fo“’ x,” (dB,/dT) dv
= (dB/dT)™" 1™ \(w, + w,/y)dB/dT) (7-112)

o1 Kr = K(Wl + WZ/'J})_l (7_]13)
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(7-114)
(7-115)
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FIGURE 7-16

Ratio of boundary temperature T, to eflective temperature Ty as
a function of O, = 5040/T .. The break near 0 = 0.25 results
from inclusion of the Lyman continuum in the high-temperature
models. Upper line gives value of T/ T, for a grey atmosphere.

choose the values appropriate at T = T, As pointed out by Miinch
(261, 38), this assumption is crude; but we employ it because it simplifies
the analysis while retaining the essential physical content. Consider the
results shown in Figure 7-16 for the ratio T,/ T o from nongrey LTE model-
atmospheres calculations, For all § 2 0.25, the Lyman continuum has
been omitted. For the coolest models T/ . is near its grey value; this is
not surprising because the dominant opacity source is H ™, which is only
weakly [requency-dependent. At higher temperatures the effects of the Balmer
jump become important and T, drops below its grey value. At 0, = 0.23
the curve shows a sharp break caused by the effects of the Lyman continuum,
which is first included at that temperature. At higher values of T, hydrogen
becomes more strongly ionized, the size of the Lyman jump diminishes, and
the flux maximum moves beyond the jump, so T/ T rises toward the grey
value again. At still higher temperatures T/ T, drops again as a result of
the He T edge at 4504 A and the He II edge at /226 A.

We can estimate the drop in the boundary temperature caused by the
Lyman jump by applying equation (7-115). Assume that boundfree and
free—free absorption by hydrogen are the only sources of opacity. Using
equation (4-124) for the free—{free contribution, summing »fa, (b — f) over
all bound levels with u, = n *(x;,,/kT) < u = (hv/kT), using equations
{4-114) and (5-14), correcting for stimulated emission, and setting all Gaunt
factors to unity, we may writc the opacity coefficient in the form

Cu 31 —e™ [1 + > 2umn? exp(ul/nz)} (7-116)

uFu



Model Atmospheres

214

i racket accounts for free—free and the
where B¢ f‘tl)rSt 1:?3;: ;Sfojggii ‘gecause the Rosseland mean is a recip-
second o (')tu il be essentially unaltered whether the Lyman conpnuum
TO?aI o t. Thus we need caleulate only the Planck mean with aqd
1s_mcluded Oino -n continuum, and use these values 10 estlma‘te the rapo
without e ymt::1 o cases. We take the limits of the integral in equation
?7f fqlol)ffor bt: gsfnd\zo whereu, = u; when the Lyman continuum is excluded,

113 [P R ! —in—1
and Uy = 0 When it 18 .inChldﬁd. W rltmg B‘, = C'u’e 1(1 — ¢ ) R
0

-2
" —uo 3] — expl—uy + 1 “1):\}
Rplttg) = € {1 —en T g 2y P

— 913 x 023 x 136 = T2 1fug = &, the expo-
calt =y, it can be neglected unless

(7-117)

Now for 8 = 023, 1y .23
nential term is Zero identically, while 1f 1o

n = 1 because u; » 1. Thus

R p{oo)Rpluy) = (1 4+ 2y i ngg)/(l + 2uy n}::z n.3>

n=1

— (1 + 24u)/(1 + OAuy) (7-118)

Foru, = 7.2 We thus find ©p(o0)/Tpltty) = 4.7, hence

-4 0825 (7-119)

T,(Lyman cont.)/To(ne Lyman cont.) = 4.7
i lts without Lyman continuum to

i -16, extrapolation of the resu

0 Flg%r;; ields to To/Terr = 0.65, while To/Tegr & 0.56 when the L(y)’réigél

et = o hich gives a boundary temperature ratio of 0.865,

i is included, w Ty te of 0.

FOUUHSU-H:ZIglem with equation (7-1 19) (cons1de.r1ng all the approximations

1;1 gto Eavigbeen made). It should be noted that this temperature drop oceurs
A .

ntinuum becomes trans-
: allow depths where the Lyman co .
o it ;fjfg’ :iial depthéj of even 107 in the visible, the .Lyman (:()ntixv.lualj;’l1
Parega:que Ia)md temperatures in models with and without the Lym
is 0 ,
i are practically the same. . o
Conn?u?;;r illuztration of the cooling effects of L'TE contmua a-md hn¢sd 151
'A g e 7-17, which shows the temperature structure 1 a mo e
Biven o : log g = 4, consisting of hydrogen sche-

i = 15,000°K, ¢
aumosphere rg:\frel atom plus continuum (40). The transitions allowed

in this atom are Lo the Lyman and Balmer continua, and the free;fret:2
g;ntinuum. The temperature platean at_ T = .10,30001_( for — AL éﬁoi *; ;COH-
occurs where the Balmer continuum is opticalty thmolzgt t ef: . ydgreemer1t |
i i i “To” /T = 0.68,m Tair
i i k- this temperature grves 2 “Jo [ Serr . .
tl?UUfI?}S thlc’;’-,lti where the Lyman continuum 18 om}tted. Includmg thz
\Elth anligfletinuum drops Ty to 9400°K ; adding the Lo line (alone) produce
Y

matized as a two
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FIGURE 7-17

Temperature distribution for LTE and
non-LTE models with T, = 15,000°K
and log ¢ = 4. The atmospherc is composed
of hyvdrogen, which is represented by a
schematic model atom with two bound
levels and continuum. This model atom

10°

9 = _,-’i — NLTE, no lines accounts for the Lyman, Balmer, and
E, ,_,-’ --- LTE, no lines free- free continua, and the Lyman-« line.
F 5 NLTE, Ly From {40), by permission.

8 ;/“’ ----- LTE, Lz
A NN T NN A A A

-8 -7 —6 -5 —4 -3 -2 —1

afurther drop to 7800°K. Further lines would produce yet additional cooling:
the non-LTE results will be discussed in §7-5.

If we now consider scartering lines (¢ # 1), the results obtained above
change radically. Define 2 = (1 + gf) and o0 = (w; + Aw,)”!. Then equation
(7-89) becomes B = o(J" + 17¥) and equations (7-88) become

p(dIDdry = 1 — w,o(JH 5 AT@) (7-88a’)

and wdiPidzy = I — (v — wo)JP — w,elJ D (7-88b")

Applying the discrete-crdinate method, we obtain the characteristic equation
474)

I —woG — (1 — waly " VH + wie(l — iy HGH =0 (7-120)

H

>/l + k)

i=—n

where G

b —

(7-121a)

and H

| —

Z aif(1 + kpyfy) (7-121b)

Equation (7-120) has 2n — 1 positive roots k,. The solution for B(t) is

2n—1

3
B(T) - Z : (I - Q * Z Mﬂeﬂk&r)/z M)mym—l
a=1 m

(7-122)
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- } _ 1)~*] and where, in turn,
= oL G, — G.) Uy (A HAH, 1). ] an )
ggezrz ff ﬂi cor?star[lts }Ja and the constant Q are determined from the houndary.

conditions I (0) = 0, which imply

2n—1 _ )
Q + W171 2 th(l - Ga))l(l - kcxlui) ! = }uiu (1 = 1:' .- 7”)
w=1
(7-123a)
and
5 -1 L), =1,...,1)
Q + (VWZ)#I Z La(Hm - 1) (1 - kaﬂi/?) - (.u‘: r’» s ]
a=1
(7-123b)
Fxercise 7-12: Verily equations {7-120) through (7-123).
A solution obtained by Miinch for w, = 08, w, =02, 7= 10, and

¢ — 0isshown in Figure 7-15. Here one ﬁr}ds that the boundary temperaéu:e
l'ies only slightly below its grey value, with B(O)/F = 0.43”(.)8 C(})mpalérjmo :E
the grey result 0.4330. Thus lines, when formed E?y scattering, flf.ves pmost
ne influence upon the boundary temperaf?,g};e; that is, the eﬁ"ec]t of ine ’ }zne_
the boundary temperature depends Sgnsztwely Upon l_fhe mec mngsml oSe ne
formation. The backwarming effect Is, .of course, still prejsenc‘; Ieca;u ¢ the
frequency band for free-flowing ra(}latlpn has been restricte h I}ll acs,that
backwarming effect is almost identical in the two cases, .wf;qu;) g s] oz;vb hat
backwarming is determined mainly by t_he frequen.cy bandwidt ! ocke ! ftam
lines. and but little by details of the line-formation process. 1sd1mp ant
to réalize that LTE line-blanketing cools the surfgce layers (anh thOh uees
darker lines); but scattering lines‘ are also c}ark (cf. §10-2) e;fen W i:n there !

no cooling at the boundary. It is not valid to argue for owkva ue > ig
in a stellar atmosphere just because observed lines have dar zpregb ti,on
general, the lines may be decoupled from' the local te.mperature 1tsltr111 u tun;
and their central depths may have npthmg to c.lo w1th T,. We sha restin

to this point again in our work on line-formation. Fma}ly, it is 1.r1te:ref argl
to note that under certain circumstances the abrupt introduction o

opacity edge can cause local heating in the atmosphere [cf. (198)].

7-5 Non-LTE Radiative-Equilibrium Models
for Early-Type Stars

The methods and results described thus far in this chapter have been base(i
on the simplifying assumption of LTE. We now turn to the more genera
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problem of constructing models in which the populations of the atomic
levels and the radiation field are computed by self-consistent solutions of
the equations of transfer and of statistical equilibrium. To understand fully
some of the difficulties inherent in this problem, the student should, ideally,
already have mastered the material in Chapters 11 and 12; on the other hand,
some of the material presented here provides background for those chapters.
It is recommended, therefore, that this section be read again after Chapters 11
and [2 are studied. In this section we shall follow a somewhat “historical”
approach in developing methods that treat, first, continuum-formation alone,
and then, a final method that treats both continuum and lines. We shall
not describe the line spectrum here (cf. §12-4), but will discuss the effects
of lines mainly from the point of view of energy balance.

The fundamenia! difficulty in the solution of the non-LTE model-
atmospheres problem is that the occupation numbers in the outer layers
of the atmosphere are determined mainly by radiative rates. Thus the state of
the material is only weakly coupied to local conditions (e.g., temperature and
density) and is dominated by nonlocal information contained in the radiation
field, which responds to global properties of the atmosphere, including
boundary conditions. We shall see that the mathematical manifestation of
this physical circumstance is that the source functions implied by the equa-
tions of statistical equilibrivm contain dominant (noncoherent) scattering
terms. We have already seen (§6-1) that these terms introduce mathematical
difficulties into the solution of the transfer problem.

The first approaches to the non-LTE model atmospheres problem used
an iteration procedure, which was successful only for continua in which the
scattering terms were not large. Subsequent approaches attempted to solve
the transfer equations simultaneously with the rate equations by introducing
information from the latter explicitly into analytical expressions for the
source functions used in the transfer equations, Scattering terms reduce the
degree of the coupling of the material to the local thermal pool and hence
also tend to introduce nonlocal information into the energy-balance criterion.
Thus it becomes difficult to satisfy the requirement of radiative equilibrium.
As we noted earlier in our discussion of temperature correction procedures
{cf. 87-2), even small errors in energy balance may severely affect the solution
of the statistical equilibrium equations. It is thus necessary to find methods
that apply the constraint of radiative equilibrium in addition to the simul-
taneous solution of the transfer and rate equations. Initially this was done
by a linearization procedure for the temperature alone; this procedure works
when there is fairly direct coupling to the temperature structure (as there
is for continua via radiative recombinations) but fails for lines where neither
the emission nor absorption rates depend directly upon temperature. For
models including lings it becomes necessary to make a sweeping general-
1zation to a complete linearization procedure that places all physical variables
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of interest on an equal footing and accounts for the giobal interactions of
all variables throughout the atmosphere.

SOLUTION BY ITERATION:DETAILED BALANCE
IN THE LINES )

The first attempts to construct non-1.TE model atmospheres employed
an iteration procedure in which one (a) starts with estimated occupation
numbers (say from LTE, (b) uses these to compute the radiation field, and
then (c) uses this radiation field to compute radiative rates in the statistical
equilibrivm equations, which are then solved for a new estimate of the level
populations. In practice it was found that this lambda iteration procedure
failed (283, 217) when lines were included. The lines are very weakly coupled
to local conditions (see Chapter 12) and are very opaque; therefore the severe
problem of radiative control of the populations over a very large range of
optical depths is encountered. Just as described in §6-1 for the archetype
scattering problem of the transfer equation, the iterative process then
stabilizes to a spurious value without converging, and successive iterations
differ but slightly, even though the current estimate is far from the true
solution.

1t is therefore of interest to inquire whether it is possible to treat only
the continua and 1o ignore, or at least defer, treatment of the lines. The
continua are basically gimpler because (a) they are strongly coupled to local
thermal conditions (via recombinations), and (b) they are relatively transpar-
ent down to depths where densities are high enough fo assure domination by
cotlisions (and hence recovery of LTE). This means that the self-consistency
problem occurs in regions that are not optically thick, and hence that the
iteration procedure has a chance of working {these remarks do nof apply
in the Lyman continuui, which js as difficult to handle as the lines}). An
affirmative answer to the question posed above was given by Kalkofen
[(283, 175; 345 346); see also (424)], who showed that, for early-type stats,
the Lyman and Balmer lines are so opaque that, at depths where the visible
continuum is formed, they can be expected to bein radiative detailed balance.
In this case the bound—hound radiative rates upward and downward essen-
tially cancel each other. Tn particular, for Tegr ~ 104 °K,, it is found that the
detailed balance criterion is met for continuum optical depths Tso00 Z 1074
which implies that the continuum is already formed (ie., 1s optically thin)
before the lines go out of detailed balance; thus the continuum-formation
problem can be treated essentially independently (except for the Lyman
continuum, which is about as opaque as the lines). This result is valuable,
for it offers an opportunity to assess the importance of departures from LTE
from continuum observations alone.

Mathematically, radiative detailed balance implies that in the rate equa-

tions (5-87) we may analytically cancel out (or, equivalently, omit} all pairs
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of terms of the form [#,R;; — n,(n;/n,)*R;]; we thus eliminate the most
trou_bl(—:some terms from the equations at the outset. Physically, the approxi
mation proposed here recognizes that photons first “see” the ;ﬁrfacg Iijn th(;
most transparent regions of the spectrum (i.e., in the continuum), and that

... -free escape out of the atmosphere In these bands leads to departures from

L TE at the greatest geometrical depths in the star. The simplified continuum
onziy prob_lem leads, ltherefore, to the correct asymptotic behavior at depth-
ige g;?]jfcs a starting point for the solution of problems that include the
In prac.tlce, the iteration procedure treats the departures from LTE as a
perturbation away from the LTE state. Comparison of equations {7-2) and
(7-‘4) shows that with the line-terms omitted, departures from LTE do ‘ t
aﬂect_the expression for the emissivity [if by »f, the LTE populationn?)f
ievel i, Wle mean the value calculated from the Saha-Boltzmann equation
(5-14) using the actual (non-LTE) electron and ion densities]. Com([]aarison
of equations (7-1) and (7-3) shows that (again omitting lines) we can write
v = 75+ 8y, If we define b; = ny/n¥, then &y, = Y, dinfo,(v) where
d; = b, — 1. Now suppose that at any stage of the calc&lartircmmwe regard
as given both T(m) and either (a) the values of b; for all bound levels or
(b) the Vallues of all radiative continuum rates. Wé may then integrate th
hydrpgaﬂc _equation in the usoal way, and solve for the electrongand ior?
densities using either essentially the same formalism as in §5-2, but with
n¥ replace_d with b} throughout, or the linearization methold in’ §5-5 with
all terms in 6T and &8J, set to zero. The latter method yields a cbonsistent
c.urrel?t vglue for n, and n,,; the former does not, for it ignores the non-
linearity in #n, in the collision rates. In the work cited below where this

iteration methgd was employed, the former alternative was used, and the
whole process iterated to convergence. "
We next solve the transfer equation

Wdjdz) = — (5 + o)l + KEB, + no,J, (7-124)
or p‘(dfv./drv) = Iv - ‘EvBr - i:vJ\' (7_125)

Eflhere E, = KERYE + 8y,) and {, = no /(xF + Jy,), using any technique
at can handle _thf? electron scatiering term correctly. This yields new
values for the radiation field, which are used in the rate equations to solve

for new departure coefficients. ¥ i i
. For detailed balance in the lin
rate equations (5-87) reduce to © fines, the complete

o X T
¢4HLMMWW+ZCJ—Z%%
Ji

F#=i

=4 [T (B, — J)(1 ~ e Ta ) dv - (7-126)
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where [ denotes the last hound level and &, = (b, — 1). As before, we can
solve these linear equations for the dys if we regard n, and #y,, as fixed, or

we can iferate n, (o consistency.

Exercise 7-13: Verily squation (7-126); note that, unlike equation (5-87), both
upward and downward collision rates appear.

Further, temperature correction may be performed to epforce the requi're-
ment of relative equilibrium; in the papers cited below this was done_u.smg :
the Avrett—-Krook procedure [equations (7-1?) and (7'-20)], maodified t_1’1~Vlally
to use the generalized definitions of &, and {, in equation (7-125) (specifically,
g, 1 —=E&) With the new estimate of _tl}e _temperature structure _and
departure coefficients, the hydrostatic equﬂ]brlum and transfer equations
may be solved again and the whole process iterated to convergence.

A number of models of the type described above have bt_een constructed
to study the effects of departures from LTE in the continuum and the
observational implications of these departures [(28;’,, 217; 348; 610; 425;
426: 427; 452)]. In the carliest work, very substantial changes {(decreases)
in the Balmer jump were predicted and it was suggested (610) that these
effects might explain the then-existing dis‘crepancy between observed a_nd-
computed Balmer jumps (sec discussion in §7-4). Subseq_uent work using
move refined atomic models and better collision cross-sections showed thgt
departures from LTE have negligible effec.ts on the Balr}ner jump in mdin-
sequence B-stars (important effects remaining for supergionts and O-stars),
and ultimately the discrepancy was removed by a change in the fundamental
calibration of the energy distribution of Vega. Nevertheless, the ﬁrst papers .
were important, for they stimulated interest, and called attention te tl?e
possibility that departures from LTE could have observablp CONSSUences it
the continuum. We defer further discussion of the observational implications -:
to later in this section. .

Results for the departure coefficients d, of the first six 1ev§;ls of hydrogen
in a model with Toy = 10,000°K, log g = 3, are shown in Figure 7-18:
Here we see that the deviations are, in fact, fairly small at depths representa— :
tive of continuum formation. The n = 2 level is underpopulatgd, while levels :
with 1 = 3 are overpopulated. The values of d, dccrease _rapldly for large n |
because (a) the collisional ionization rates for hlghly excited levels becorpe_ .
large and force recovery of LTE, and (b) the radiation field at low frequencies .
is dominated by free—free processes—which are purely thermal, and again-
tend to force recovery of LTE. Then n = 2 level is underpopulated because, -
for that level at the temperafures prevalent in the model, hv,/kT » 1,and the

increase of temperature into the atmosphere implies that B, ~ exp(— hy/kT).
rises rapidly. Thus at the surface J, = $B(Tep) exceeds Bv(T-O), and the_.
level is preferentially photoionized as can be seen from equation (7-126).
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FIGURE 7-18

Non-LTE departure coefficients in the first 7 states of hydrogen for a model with
T = 10,000°K and log g = 3. Ordinate gives d, x 10%; curves are labeled with quantum
number of the level of the model atom. Note that level 2 is underpopulated while higher levels

are overpopulated. Levels 1 and 2 are locked together by the assumption of detailed balance
in the Lyman continuum.

On the other hand, for n = 3, hv/kT < 1, and the dilution factor of 4 in
J, outweighs the effects of the temperature gradient, so J, < B, and the
levels are overpopulated. In Figure 7-18 we have d, = d; because it was
assumed that the Lyman contineum was also in radiative detailed balance;
in this case the radiative rates in equation (7-126) for n = 1 cancel analyti-
cally, and we are left with d, Y-, Cy; = Y i, d,C,; which implies d; ~ d,
because C,, » Cy; for j > 2. Thus, collisional coupling of n = 1ton =2
allows the upper level to drive the same departure into the ground state
population. Closer to the surface, where the Lyman continuum comes out
of detailed balance, the n = | level becomes overpopulated (see below). At
higher temperatures, characteristic of the O-stars (i.e., T. 2 35,000°K), the
situation is different, for now n = 2 becomes cverpopulated, and the ground
state n = 1 becomes underpopulated at depths where the Lyman continoum
is formed. This would be expected on the basis of the scaling of hvg/kT 4
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mentioned above; these results may also be unde@tood (34§) in terms of
the anticipated variation of the flux with depth in the various C(ir?tuu;a
(recall that dH iz, = J, - §,). Finally, it should be emphamzcd that the
departure coefficients obtained from the procedure (%escnbed here cannot
be used to calculate line profiles, for they lead to. spurious resu.lts, as would
be expected because the level-popula_tions will be inconsistent with the values
they would have in the presence of lines (43).

FORMATION OF THE LYMAN CONTINUUM

The calculations described above assume that_ the Lyman continuum
is in radiative detailed balance. But at some point in the outer atmos_phere,
the Lyman continuum must begin to become traﬂspare?t, and significant
transfer effects occur that force nR; 10 depart from nRy;, and .het?ce 1§ad
to an uncoupling of the n = 1 state from the n = 2 siate. Thls situation
becomes most relevant at high values of Ty, where the high degree of

ionization of hydrogen implies that the Lyman continuum is weakened to -

the point of being only somewhat (rather th:em mzlirkedly) more opaque than
the visible continuum. Application of the iteration met}}od to the Lyrgan
continuum fails, and we can gain some important physpal underst_andmg
of the problem (and also a preview of the problems of line-formation) '};y
analyzing why this is the case. We shqll see that‘one must account f0¥ the
information in the statistical equilibrium equations by.mtrodgcmg 1hem‘
directly into the transfer ?quatiqns in such a way as to yield a simultaneous
i the two sets of equations.
Soggr?gic?efr the following simplified problem. Represent the model hydrogen
atom by two bound states and continuum, and assume .that departures
from LTE occur only in the ground state. Let Fhe Lyman continuum threshold
frequency be vo: consider only frequencies v > vg, and suppose that
hvo/kkT > 1 so that stimulated emission can be neglected. Ignoring electron

scattering and Gaunt factors, the ground-state, upper-state, and free—free -

opacities all have the same “profile” ¢, = (vo ). Writil-lg n, = bn}, we
then have v, = oy = by ¥E -+ 75, where the superscript * denotes LTE
values and the subscript 1 denotes the contribution of the upper-level and
free_free continua. Similarly, #, = (77 + N, = (¢ + 2)B.¢,. Let dig =
—yo dz be the optical depth at the coptinuum head. Then the transfer
eqﬁa’tion to be solved is

uldl, jdvo) = ¢.I, — S (7-127)

where S, = (¢ + DBt + 00 = {0 - nfb,] + riB,  (7-128)

and r= it + o) (7-129)
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The ratio r is generally much smaller than unity, and the essence of equation
{7-128) is that the Lyman continuum source function differs from its equi-
librjum value by a factor of 1/b,. We now assume that the opacity ratio r
is evaluated using the current value of b, (as is the optical depth scale 1),
but in equation {7-128) we substitute an analytical expression for (1/h,)
obtained from the ground-state statistical equilibrium eguation:

(1/h,) = [471 J:c: (o, /)T, dv + C:|/|:4n Jl: {oe,/hv)B, dv + C} (7-130)

where C = Cy, + C,,. Substituting equation (7-130) into {7-128) shows
that S, is of the form

S, = [@0,dv + o8, (7-131)

That is, the source function consists of a noncoherent scattering term (ie.,
intensities at all frequencies in the continuum are coupled) and a thermal
term (le, a term independent of the radiation field). By straightforward
numerical estimates [see, e.g., Table 5-1 and equation (5-44)] it is easy to
show that the thermal term is small compared to the scattering term.

To solve equations (7-127) with {7-131) correctly, it is necessary to perform
a direct solution (e.g., by the Feautrier or Rybicki methods}) altowing fully
for the scattering {erm. If equations (7-127) and (7-131) are solved directly,
we have in principle obtained a simultaneous solution of both the transfer
and the statistical equilibrium problems. Because the scattering term appears
explicitly in the transfer equation, the correct solution is obtained (for
a given run of the thermal term) over the entire range of optical depth in a
single step, and the slow convergence properties of lambda iteration are
avoided. In practice it is still necessary to iterate because the optical scale
and the overlap parameter r are evaluated at cach stage of the calculation
using current estimates of b,, but experience shows that this iteration
converges immediately. Calculations using an approach of this type (426)
for B-stars show that characteristically the ground state becomes over-
populated in the outer layers (though the results in the reference cited are
only schematic because the constraint of energy balance was not adequately
satisfied—we shall return to this point below).

We may gain considerable insight into the problem by noting that, for
hv/kT > 1, the frequency variation of J, and B, [roughly as exp(— hv/kT}]
shows so rapid a drop with increasing v that practically all of the contribution
to the photoionization and recombination rate integrals comes from v = v,
Therefore, we replace the integrals by dnwg(eg/hvg) and dawg(ag/hve) B,



