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where w, is an appropriate weight factor, and consider the transfer prob-

lem only at the continuum head, v = vo [see also (195)]. If we define

g = C/[4nwgloo/hve)By + (] then "
S, = {1 — nit —&Jo + eBy] + 7By = (1 — 8o + BBy (7-132)

where T = ¢ -+ r, and the transfer equation in the Eddington approximation is

LUyt = o~ Bo) 13y

Assuming ¥ is constant, and that the atmosphere is nearly isothermal so that
B, is roughly consiant, the solution of equation (7-133) can be written
immediately [cf. equation (6-9)] as

T = Bol® + 1 — exp[—/3E1J}A1 + &) (7-134) -

which shows that (a) the solution thermalizes only at depths z 1/2%, and
(b) the departure coeflicient at the surface is b,(0) = &% Because ¥ « 1,

the departure from LTE is large, and persists to great depths. The actual
value of # is a bit difficult to estimate if collisions dominate (ie, & > r), for -
the density, and hence &, increases exponentially into the atmosphere; on

the other hand, the parameter r is almost depth-independent, and often

dominates. For example, at T ~ 25,000°K, r ~ 1072 [see (633, 193)] and -
b, ~ 10, which is in agresment with calculation. In summary we see that .
it is important to use the information inherent in the statistical equilibrium :

equations directly in the transfer equation; further, given the dominant
scattering term, it is obvious that one must use carc in satisfying the constraint
of radiative equilibrium.

We now shall consider a partial linearization method that is fairly general, -
and provides a satisfactory means of solving the non-LTE continuum-

formation problem, with energy balance; the method fails, however, when.
lines are included, in which case one must use the complete linearization

method described in the next subsection. The basic idea in the method-

[cf. (40; 41)] is to incorporate the statistical equilibrinm equations into the
transfer equations by manipulating them analytically to obfain explicit
expressions for source functions, and to incorporate the coustraint of
radiative equilibrium into the transfer problem by linearization. Then, in

principle, one solves all three sets of equations: transfer, statistical and

radiative equilibrium, simultaneously.
The transfer equation is

dz(fv‘]v)/drvz = Jv - (‘V."v + neo-e‘]v)/XV = ‘Iv - S\: (7"135) ’
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where (omitting bound-bound transitions)
2o = Loy = e () + 3 nnan (v THI — ¢ ™) 4 g
; " ev e
_ (7-136)
mdm—QWWMW”hﬁ%M+ZMMMJJ
i K
= B, [Z nfog (v) + 3 Bt (v, T):| (1 — ™™y = y*B,

(7-137)

We now divide the spectrum into a series of characteristic frequency ranges
(1o € v < v;) upon which we assume the opacity and emissivity of a

~ particular continuum i — « is much larger than all others. For example we

might assume that the Lyman continuum dominates for all frequencies such

~that 4 < 912 A, the Balmer continuum dominates for 912 A < 1 < 3650 A
: the free—free continuum dominates for 1 = 4, the threshold 0? the last’
_ bOlllll(_i .level, etc. We then factor out the dominant terms from both the
« emissivity and the opacity, and write, for (v;, < v < v;,),

On/i) = [nf e, — npe™™FTNIEB, = £,Bu(b, — e™™HT) (7-138)

where the three quantities

&iv = [ln — nfe ™) ¥k /1) (7-139)

J.» and 7, are all evaluated using current values of the temperature and level
populatmn_s, whereas the term (b, — e ™*7) in equation (7-138) is to be
replaced with an analytical expression, involving the radiation field, to be

found' from the statistical equilibrium equations. The statistical equilibrium
equation for level i is [cf. equation (7-126)]

K I
bi (Ri": + Z Cij) = RKE + Circ + z bfcij (7-140)
i# i#i

where R, and R,; arc defined, as usual, by equati -
Solving for b, — ¢ ™*T we then have oy cauations (5-60) and -6

(bf - ehvfkT}fl —_ (Rix + Z CIJ)/':RM - 5’7}1“’[J(TRI-K

Jj#i

i#i

I
+ Y (b — e O, + il e_’“‘”‘TJ] (7-141)
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so that, defining {, = n,0,/7, (again using current values), the source function
¥ g ¥ - X
in equation (7-135) on the range (vp < v < v;y)can be written as

S = i (’:’)iv il (Div‘]" d‘l’ + Siva) + Cv‘jv (7-142)
where ., = dyo,{v)/hv
Tiv = Bv/Div
P (J"} (I)[\‘J“ d\’ + z Cfi)/Div (7-143)
i it

and D, is the term in square brackets in ‘Fhe denominator of qu;atut)}rll (7;1’;113%
In the evaluation of y;, and &, we again use current values }or : e jo !
other levels and for the terms in J, and T;1t 15 thus clear that a large am le

of information is lagged in this technique. Note that g;, contains an overlap

integral from those frequency ranges outside the presumed range of domi-

nance (v,o. v;;) of the transition i — «; usually t‘his i.ntegral is small_ cong$_:§§:§
to the term displayed explicitly in the sgattermg integral. Equa.tl?n 1
accounts for the most important terms directly, bpt because_ the in ormﬁ, ;gu_
involving other levels and in the nonlinear terms is lagged, 1J[Eerat10n wi

be required. Finally, discretizing, we have equations of the form

kit ’ . -
dz(.fkjk)/diZ = Jy — &u ("/ik Z wdyJ, + SiRBk> — §Je (7-144)

I=kig

| ¢ : ; ineated for the ith transition.
o the range (ko < k < k;;) delinea . _ o
° We mustg nowosolve the system (7-144) subject to the constramt of radiative

equilibrium which requires that
kit

K !
fw nldy — S dv = 2 Wil — Z 2 Wi i
o

k=1 i=1 k=ki

I=kin

kit :
X [éik (?irc Z w Dy, + gikBk) + ijkil =0 (7-145) -

We suppose that B,,
equilibri len L . e
(B,°/6T) AT. Substituting into equation (7-145) we fin

K

AT = ¥ wahid, — B, (7-146)

k=1

the value of the Planck function that does yields radia(‘five .
0 _ o
um. can be written in terms of the current value B,” as B, = B+
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where

I=kio (I: 1,,[)

ke . ko S k€ k)
= [Zk(l — b~ @y, Z WIXIGL‘Iyil:|/E21 (kio ' (7-147)
E, = (

wkxkcfikeikBkO) / E, (7-148)

¥
and Ey = 3 3 windutal0B°/0T), (7-149)
i=1 k=kig

:ki

Thus equation (7-144) becomes

P fidMdn® = (1 — §)J,

i=kin Panll

ki K
— & [”/uc z w®yJ; + Sik(aBo/aT)k Z Wk"xbk"]k’J
- fikﬁik[BkO - (BBO/aT)kEJ (7-150)

which is completed with boundary conditions given by equations {7-37a)
and (7-37¢) (the latter specifies the flux explicitly).

Equation {7-150) has the following important properties. (a) It incorpo-
rates both the equations of statistical equilibrium and radiative equilibrium
in terms of the new (i.e., as yet undetermined) radiation field; thus a solution
of the system satisfies both of these constraints automatically. (b) Cancella-
tion of large scattering terms is done analytically in the coefficients [ef.
espeially equation (7-147)] of the radiation field before the transfer equation
is solved; hence good control of the residual thermal terms is obtained.
{c}) The equations are of the standard Feautrier form [equation (6-31)] with
the frequency coupling spread over the entire spectrum, and can be solved
using the usual elimination scheme of equations (6-39) through (6-41). (Why
is the Feautrier method more efficient than the Rybicki scheme in this
problem, even though the number of frequencies is large?)

The whole solution proceeds iteratively. After solving equation (7-150)
for J,, the temperature distribution is revised via equation (7-146), the new
radiative rates are used to solve the statistical equilibrium equations for new
occupation numbers, new Eddington factors are then calculated from the
revised values of #, and y,, and the procedure starting with equation (7-139)
is repeated,

Methods of the type described above (which is related to the equivalent-
two-level-atom approach for line-formation problems; see §12-2) have been
developed by Feautrier (211) and Auer and Mihalas (40; 41). Feautrier’s
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FIGURE 7-19

Non-LTE depariure ceeflicients in the first two states of
hydrogen for a model with Ty = 15,000°K and log g = 4.
Dashed curves: Lyman, Balmer and frec—frec continua only;
full curves: Lo lin included.  The optical depth scale in the
ahscissa is measured just longward of the Balmer jump.
From (40), by permission.

formalism differs significantly in appearance from that displayed above, but
the physical content is about the same. These methods have been used
successfully to construct continuum models for B-stars, including the Lyman
continuum in cases where Jambda iteration would be utterly hopeless.
Characteristically the ground state of hydrogen becomes strongly overpopu-
lated in the outer layers; see Figure 7-19. This has important consequernces
for the temperature structure and emergent spectrum of the atmosphere, as
will be discussed below.

Attempts have been made (40; 41) to apply the techniques described above
to cases including line transitions. It is essential to include the lines because
(a) they drastically affect both occupation numbers and energy balance in
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the atmosphere, and (b) we obtain reliable level-populations that can be
used to compute line profiles (to be compared with observation) only if line
tran-s_lthns have been taken into account in the solution of the statistical
equilibrium equations. The importance of these effects is illustrated in
Figures 7-19 and 7-20. In Figure 7-19 we see that the effect of including Lo
is to drain the n = 2 level, which goes from being slightly overpopulated to
markedly underpopuiated. The drop in b, is caused by the drop in tempera-
ture; actual occupation numbers n; do not change much [see 40)]. In
Figure 7-20 we sce a similar effect for b, and b3 when Hu is taken into account.
If we h'flci computed the He profile with the continuum-only values (which
are similar to those of Figure 7-18) we would have found a spurious emission
core in the line {because n = 3 would have been too overpopulated relative

20

log z
FIGURE 7-20
Non-LTE departure coeflicients in the second and third level of
hydrogen in a model with Ty = 15,000°K and log g = 4. Dotted
curves: Lyman, Balmer, Paschen, and free—free continua only;  full
curves: Ho included. Optical depth scale as in Figure 7-19, Frdm
(41}, by permission.
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= 21 i f the line from the outset drains n = 3 into n = 2 agd
i)(i‘gd;cjs) ’amsi}fzsrllgnagsorption line (we shall compare with observations in
§12f1512$ aboye method does not work wgll for determini.ng Ehe tt}tlamtit:;ag;ei
structure when lines are included; thus in (49), the SOIHEOD or f— ¢ aid -
ture structure including Lo tendefi tq stabilize rather t ::11}11 conr\];ee %1 é nd in
(41) a solution including He (which is formed at about t'% 1s.a, e o iasom
the Lyman continuum) tended to bpcome strpngly unstal t he.d iy
for the failure can be traced to basic madequa_cles of thc rr%e od. D Many
of the terms in the equations are lagged, and }ntemmonsﬁlmo?g e
are treated only iteratively rather than.cglllec‘zlvzlytfggil I;[a :i t(;l)l ls: i.g @) The
ture dependence of many variaples {€.g., the o :
t;??ienrgarizatiog procedure.  (3) Most important, 1t‘ 1§1 gzz*es;u:l}f;i t?;;kt,ﬁf
temperature is, in SOMe $Ense, “the fundam_ental varia eth(')t arepcoupled
Such a presumption is adequate.for treating .conpnug t a e coup e
sirongly to the temperature ;f_ia radlitive ;Zign;zgzslit;inani ,aa{jssorption rates,
is totally unsatisfactory for lines, where ° on ates
rature structure. Let us now consider a n
?)rfegiz(;?ugp;r?grgggfl tal:ledtijrgaeer ¢hat overcomes these difficulties entirely.

THE COMPLETE LINEARIZATION METHOD

From a physical point of view, the ;olution of the I}OHTLTE steléz;uar‘;mg}
spheres problem entails the specification, at gach point in t eﬂrlr:: tempéra_
the distribution of the radiation1 ﬁel;l 2,:.1 a su;:f%?;;gi ff:;ci(e)nl;l:g% the tempore:

itv of the material, and the : .
tallllrzg?l(rilc? es?;te);. These distribution functions are to be determénelesn:; s(liceh
a way that the constraints of energy balance, moménturnlsti ane uﬂit;
hydrostatic equifibrium in the present wo.rk), steady-sta}eﬁstc‘li is eal ¢ ;qu g
rium, and charge and number conser\;atut)r: azzcsi)l; i?iaztést ‘;cv ! r};isic phy;ical
achi ired result, it is important to _ ]
;{;kilalrft‘s{? zgllfl (tissconstruct a generalized method in the hgdhthof thIeIm;Hl;‘l;z‘;,
no one variable is more “fundamental” tha_n any other, ff” t eyt ac 01; Lo O%
Thus we must regard the solution at a given depth-point m, to

the vector
W, =y e N, T, ne,nl,...,nL)T, d=1,....D {(7-151)

where D is the number of depth-points, K is thej number qf fre%uer;;:;i: fﬁﬁ
1, is the total number of bound levels (o.f all-kmds) congderc-a .t o e
there is, in principle, redundant informa_tlon in Wy, as Wlilltt?‘nfl e:ifdimation
the J's, the »;’s follow from the rate quatlons. However, all oft 1.f: 1 et
is of interest in practice, and hence will be retained.) The couplmg a g
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these variables is intricate and essentially complete. For example, we have
already seen in §5-5 that a change in the radiation field at any frequency
jmplies a change in the occupation numbers of all bound states [cf. equation
(5-108)]; further, any change in a radiation field implies a change in the local
temperature and density, and so on. Second, rhe variables interact globally
throughout the atmosphere, and a change in any variable at a given point implies
changes in all other variables at all other points. Thus, if we alter occupation
numbers locally, this changes the emissivity and opacity of the material, and
hence, via the transfer equation, the radiation field throughout the atmo-
sphere; when scattering terms dominate the source functions, information
propagates over large distances in the material, and the global nature of the
interaction 1 accentuated markedly. A truly adequate method must, there-
fore, put all variables on an equal footing, allow fully for all possible couplings
among the physical variables resulting from the imposed physical constraints,
and for the interaction of each variable with all others at every point in the
atmosphere via transter equations and requirements of energy and momen-
tum balance.

Ta determine the solutions |, we require a total of K + L 4+ 3 equations;
we may choose these to be K transfer equations (J,, k = 1, ..., K); the
equation of hydrostatic equilibrium (N}; the equation of radiative equilib-
rium (T); a total particle-number conservation condition (1,); and L statis-
tical equiltbrium equations specifying level-populations, total abundances
of chemical species, and total charge conservation {n,, ..., n;), exactly as
written in §5-4 [see equations (5-91) through (5-93)]. The essential difficulty
to be faced now is that these equations are nonlinear and must, in general,
be solved by some kind of iteration procedure. In particular, we suppose that
our desired {but as yet unknown} solution v, can be written in terms of the
current (but imperfect) solution y,° as , = ,° + 8\, We then choose
v, 50 as to satisfy all constraints more closely; e, if £,(§r;) = 0 represents
the entire system of constraints, we demand that f,(,° + 8y,) = 0, and
solve for 8y, by linearing the entire system:

A,
L) + ¥ =

i &:bd‘ i

If we express the transfer equations as difference equations, and the con-
straints in terms of quadrature sums, the f’s are coupled algebraic equations
and the linearized system reduces to the standard block tridiagonal form of
equation (6-31). In the step-by-step elimination scheme we account (con-
sistently to first order) for the interaction of variables at one depth-point
with all other depth-points, subject, ultimately, to the requirements of the

imposed boundary conditions. The global nature of the problem is thus
taken fully into account.

Ny ;=0 (7-152)
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The complete linearization proceduie described here is a gfenera‘lization of :
that described in §7-2, and treats an enlarged set of const.ramts as well as a
lareer set of basic physical variables (42). ‘As })efore, we introduce a depth.___
discretization {m,} and frequency discretization {v,}. We suppose thzft a
starting solution yold=1..., D), ha; already been obtained (assummg,._.
say, LTE). The transfer equations are agai equations (7-37a) through (7-37_(;):-_
and the lincarizations of these equations have already _been written ‘in.-
equations (7-39) through (7-47) and in _the results of Exercise 7-9. | See als
(437, 22-32)]. The essential difference is that we must now use the general -
formulae of equations (7-1) and (7-2) for y, and n,, and write

L
5an - (52”/6'1'")& 5Td + (@x"/anc)d 6?’1{,‘d + i;ZI (5xn/an])d 5nl,d (7'153)

and a similar expression for 61, [ detailed expressions for all these derivatives
may be found in (437, 51 —57)). Further, we 1o l_onger regard the !evel popula-
tions as functions of (N, T), but rather as mdependem variables whose
coupling to T, J,, etc. is specified by the raFe equaﬂqns. _

For the hydrostatic and radiative equilibi"mm equations we again use equa-
tions (7-9) and (7-13) as linearized in equatlons_ (7.—5 3)and (7:~52), respectweg,
employing equation (7-153) for dy4, and a mmﬂar_equat]on for ony,. The
equation of particle number conservation can be written as

L
Niy=touy+ 3 My (7-154)
i=1

3

If we assume the same hydrogen-helium mixture as described in §5-4 and et
¥ denote the (number) abundance of helium relative to hydrogen, we can
" rewrite equation (7-154) in a simpler form:

Ny=n.4+1+ Y)‘:npyd + {(7-153) .

which, when linearized, yields

Ln
SN, + n, 4+ (1L +Y) [O‘np!d + ;; dn;, d(H)}
L

=N;,—n.4— (L +7Y) [np,d + ‘; ni,d(H):\ {7-136)

Finally, the rate equations and charge-conservation equqtians are of the form .
given in §5-4, and their tinearized form [see equations (5-102) through
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(5-104)] is

K

81y — (enfon.), One g — (On/0T); 0Ty — Y. (Onf2])y 8Ty = 0 (7-157)

k=1
én 0B [Ood
= o LS S il
(5&) [é‘x ( Bx “ﬂ

for any variable x [see equations (5-105) through (5-108) and expressions in
(42) and (437, 38-47)]. Here we assume that n is already a solution of the
current system .e/n = .

The complete system is of the general form

where (7-158)

—Ay oy + Bydy — Cidy., = L, (7-159)

which may be solved by the standard Feautrier elimination scheme.

Exercise 7-14: (a) Sketch the form of the A, B, and C matrices, indicating nonzero
elements by x’s as was done in §5-4 for the rate cquations. Show that the A and C
matrices are void below the row specifying hydrostatic equilibrium, and differ for
that row [see (450, 130)]. (b) For typical problems, the number of depth-points
D ~ 70, the number of frequencies K ~ 100, and the number of constraints
L 4+ 3 ~ 15. Show that despite the size of K, i is more economical to use the
Feautrier elimination scheme than the Rybicki scheme.

In the system written above, L; is the residual error in the constraints
found when current values ,” are used; as 1, — 0, the corrections 8y, — 0.
We have already stressed the physical implications of the compleie lineariza-
tion. Mathematically, the equations are internally self-consistent, and are
equivalent to a generalized Newton-Raphson procedure; convergence, if
obtained, should therefore be quadratic. This is not achieved in practice
because, after each set of carrections 8§ have been determined and applied
to the solution, it is necessary to recompute the Eddington factors (which
were assumed fixed under linearization) from a formal solution using current
source functions, as was done in the LTE case as well. Nevertheless, an
order-of-magnitude reduction in the 8dr’s is often obtained from successive
iterations, and on the whole the procedure is stable and efficient, and it
easily handles physical preblems that defeat the other techniques described
above. It appears that at present the complete linearization method is the
best fechnique available for solving non-LTE stellar-atmosphere problems.
The method can handle multilevel, multiline, multispecies problems of great
generality, and treats all the physical constraints because the full interaction
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among all variables is allowed, and a priori assumptions about the depen-
dence of quantities upon only a restricted set of variables (e.g., T}y are avoided.

The complete linearization method has been used with good success to
construct models in the temperature range from A-stars (42; 43; 368; 224)
through O-stars (436;45). The early work, carried out before the introduction
of the variable Eddington factor technique (44) made uvse of the Eddington
approximation (ie., one angle-quadrature point) and has been supplanted by
the later calculations. An extensive grid of models for O- and B-stars is
available (430;432). In this work, departures from L TE are taken into account
for the first five levels of hydrogen, the first two levels of He [ and He II,
and for an “average light ion” (which represents C, N, and O) consisting of
five stages of ionization, each with a ground-state only. These models
typically aliow for six hydrogen-line transitions: Le, Lf§, Ly, He, Hf, and Pa
for the Q-stars, and Ha, HB, Hy, Pa, Pf3, and Bx for the B-stars (for which
the Lyman lines may be set in detailed balance), and yield results for the
physical structure of the atmosphere, continuum parameters, and H-line
profiles.

NON-LTE EFFECTS ON ENERGY DISTRIBUTIONS

Departures from LTE affect both the continuum and the line-spectrum -

from a stellar atmosphere; the discussion in this section focuses on the
continuum only. Enough results are available for models of early-type stars
to allow us to delineate the regions of the H-R diagram where departures
from LTE have important effects and where they can be ignored. At the
present time the non-LTE models do not include line-blanketing effects;
thus we compare LTE and non-LTE unblanketed models to determine
differential effects (which then, presumably, can be applied as corrections to
values of parameters obtained from blanketed LTE models). Extensive sets
of results for continuum jumps and Strdomgren-system colors are given in
(430 516, 241), and complete energy distributions are given in (432); we shall
summarize some of the principal results here, and we suggest the reader
examine the literature cited for further detail.

For the B-stars (15,000°K < T < 30,000°K)} the effects of departures
from LTE in the visible spectral regions are generally found to be negligible
for main-sequence stars, but become important for giants and supergiants
(low gravities). Non-LTE effects on colors are shown in Figure 7-21. There
we see that results for both LTE and non-LTE models at a given gravity lie
along the same curves, but the position of models with given T, is somewhat
different. Thus if we ignore departures from LTE, we introduce a systematic
error into estimates of T,;. For main-sequence (log ¢ = 4) stars the errors
can be neglected, whereas for log g = 3 the errors are about 200°K and at
log g = 2.5 they are about 500°K; these errors are small but systematic and
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FIGURE 7-21

Theoretical Stromgren-system celors for LTE and non-LTE models.
Ordinate: {u — b); abscissa: (b — ¥). LTE values are represented by open
circles and dashed curves; non-LTE values by solid dots and curves. Curves
are labeled with log g, and individual medels are labeled with 7 /10%.

could have significant consequences in certain applications. The effects of
departures from LTE upon the continuum jumps at the Lyman, Balmer, and
Paschen edges (D;, Dy, and D) are fairly substantial for B-stars. The Lyman
jump is increased by non-LTE effects for most B-stars because the ground-
state is overpopulated (b, > 1) and hence the flux for 4 < 912 A is reduced;
these changes are significant in making estimates of the far-ultraviolet energy
output of these stars. Balmer jumps are generally decreased by non-LTE

“effects in B-stars because b, < 1 while b; > 1, so the opacity contrast across
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the Balmer edge is reduced by departures from LTE. The Paschen jump is
only slightly affected because both by and by > 1, and the opacity ratio stays
about the same. In a plot of Dy vs (b — y){or some other Aux ratio), the LTE
and non-LTE models at a given gravity lie on the same curve, but slightly
shifted (recall Figure 7-21). If one assigns values of T,y to stars using such a
diagram, the departures from LTE again imply systematic errors in estimates
of T.,; these errors are negligible for main-sequence stars, are about 350°K
atlog g = 3, and are about 500°K at logg = 2.

From the point of view of obtaining direct observational evidence for
departures from LTE in the continuum, the results mentioned above are not
helpful because there is not a clear discrimination between the two cases.
Strom and Kalkofen (611) pointed out that the parameter ¢ = Dp/Dy
provides a sensitive observational indicator of non-LTE effects, as may be
seen in Figures 7-22 and 7-23. The LTE models predict values of ¢ of about
0.16 to 0.17, independent of gravity, whereas the non-LTE models predict
much larger values of ¢, increasing with decreasing gravity. This effect was
found observationally (383); the supergiants have systematically larger values
of ¢ than main-sequence stars with the same value of Dg. In the observational
system there were some difficulties of calibration, so only a differential com-
parison was possible; these difficulties should be surmountable with the
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FIGURE 7-22

Theoretical continuum-jump parameters for LTE and non-LTE models
of late B-type stars. Ordinate: ¢ = DpfDy;  abscissa: Balmer jump Dg.
Solid dots and curves: non-LTE values: open dols and dashed curves:
LTE vaiues. Curves are labeled with log ¢.
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FIGURE 7-23

Same as Figare 7-22 for middle B-type stars. Shaded area contains predictions of
LTE models at various values of g; curves (labeled with surface-gravity g) show
non-LTE values.

new Vega calibration. Further, departures from LTE have major effects on
the ultraviolet continua of A-stars (587; 588) for which it is found that the
ground-states of CI and SiT are strongly underpopulated, and the flux ob-
tained from LTE calculations is too low by very large factors. Only when the
non-LTE effects are taken into account is a satisfactory agreement with
space observations obtained for these stars.

For O-stars (T, 2 30,000°K) the effects of departures from LTE on
visible continuum parameters and colors are much more important. For
these stars, as described earlier, the ground state hydrogen becomes under-
populated, hence the flux below the Lyman limit incregses, and the Lyman
jump decreases. In contrast, at the 4227 A ground-state edge of He II, the
flux is decreased by non-LTE effects because n = 1 of He™ is overpopulated
[see (45; 432)]. These changes are of impostance in estimating the energy
output from O-stars into, say, nebulae or the interstellar medium. The most
significant change in the visible region is that the Balmer jump predicted by
the non-LTE models is about 0.07 mag larger (for log ¢ = 4) than that from
LTE models, and shows but little variation with gravity, whereas the LTE
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FIGURE 7-24
Theoretical Balmer jumps for O-stars.  Ordinate: D in magnitudes:  abscissa;
T./10°.  Solid symbols and curves: non-LTE models; open symbols and dashed
curves: LTE medels. Curves are tabeled with log ¢, From (@5), by permission.

models predict emission edges at low gravities {see Figure 7-24). The absolute
sizes of the non-LTE Balmer jumps are in excellent agreement with observa-
tions of O-stars if the Hayes calibration for Vega is adopted (as now seems
correct). Further, the differential behavior of low-gravity versus high-gravity
~non-LTE Balmer jumps agrees with observation while the LTE results do
not (405), and the same conclusion holds true for the differential behavior of
O-star versus BO-star D/’s (45); both of these results are independent of the
calibration and support strongly the non-LTE calculations. The fact that the
Balmer jump remains about constant in strength for the non-LTE models
but weakens markedly in the LTE models implies very large differences in the
computed colors [say (u — b)and (b — y)] of the two sets of models (516, 241).
At the highest temperatures, the discrepancy in T, for a given value of
(v — b)issome 15,000°K. Comparisons of T’ derived from colors with those
derived from helium-line strengths supports the non-LTE results. The
comparison could be much refined yet by using a large body of data, and
comparing the O-stars differentially with B-stars (thus eliminating calibration
problems) [see also discussion in (516, 241)].

In summary, departures from LTE have significant effects on the visible
continuum parameters of O-stars and B-type giants and supergiants, but are
negligible for B-type main-sequence stars. Deviations from LTE produce

7-5  Non-LTE Radiative- Equilibrium Models 239

very large changes in the ultraviolet fiux below the hydrogen Lyman edge,
and in the resonance continua of certain light ions such as CT and Sil. For
later-type stars one must examine departures from LTE in the H™ ion. With
present estimates of the relevant reaction rates (556 ; 188), the predicted effects
(607) are negligibly small for G and K main-sequence stars and giants
[see also (491; 492)]. Virtually nothing is known about the possible impor-
tance of departures from LTE in other types of stars (¢.g., M giants or super-
giants), and much work remains to be done to evaluate these effects. Finally,
the problem of accounting for non-LTE effects in line-blanketing remains
to be attacked.

TEMPERATURE STRUCTURE: THE CAYREL MECHANISM
AND LINE E¥FECTS

As we have seen in Chapter 3, the temperature in a grey atmosphere
decreases uniformly outward to a limiting value T,/T; = 0.811. Further,
for a nongrey atmosphere that has a large opacity jump or strong lines, under
the assumption of LTE the boundary temperature falls below the grey value
(exceptions: scattering lines leave the boundary temperature unchanged and,
in certain special cases, “new” absorbers can cause small temperature rises).
In sum, the basic prediction for LTE radiative-equilibrium atmospheres is
that the temperature distribution is a monotone decreasing function outward.
Often the temperature structure exhibits plaieaus where the then-dominant
transition (e.g., the Balmer continuum) has become optically thin while other
transitions (e.g., the Lyman continuum and Lyman lines) are completely
opague, followed by a series of drops as successively more opaque transitions
become optically thin in turn.

For non-L'TE atmospheres the situation is quite different, and typically
the temperature distribution passes through a minimum and then shows a
rise outward. The basic reason this occurs was pointed out by Cayrel (142;
283, 169}, who called attention to the similarity between the physical con-
ditions in the outer layers of a stellar atmosphere and those in a nebula
surrounding a star. Suppose the energy balance is completely determined
by absorption and emission from a single state {(c.g., the sole bound state
of H™, or the ground state of hydrogen). Then, in LTE, the condition of
radiative equilibrium can be written

wt [T 0B (To dv = ut f C o, dv = ntW f P B (T} dv (7-160)
Yo Yo Fo

where the last equality introduces a parametric representation of J in terms

of a dilutien factor W < 1 and a radiation temperature Th. As W < 1, it

is clear that T, < Tg;in particular, if W = $and T, = Ty, T, has essen-

tially the grey value. The result just obtained follows because we have forced
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LTE. But now suppose that we allow departures from LTE; then

HTJ“:aJifr&cw:zzan?JfﬂmJde::Jﬁnfwfﬁfc%Bgfﬁ)dv (7-161)
In the limit of low density the departure coefficient is determined by the
photoionization and recombination rates [cf. equation (5-95)], and

bl = J':: (O{VBV/J’?V) dlt'/‘r:: (0:‘.‘]‘_/]1\1) dv (7'162)

Hence combining (7-161) and (7-162) we have
I:J.m O‘\st(To) ch’/ﬁm OivBu(To)\fl dv]

—Dﬁ%&ﬁgh“?m&U@qu (7-163)

which shows that Ty = Tp, independent of the value of W! Thus we expect
typically the temperature will decline from T = Ty near T = 1, to a value
T,... approximately equal to the grey-body boundary-temperature, and
then rise to a value Ty, With T, < T4 £ Ty These results can also be
viewed in terms of the “quantity” and “quality” of the radiation field (239).
That is, in LTE, it is the erergy density (i.e. quantity) of the radiation that
fixes T,; in the non-LTE case, the energy density may be lower than ifs
equilibrium value, but each photon has an energy characteristic of T, and
hence can still ionize the material and deposit an excess energy, per ionization,
which is again characteristic of T [see also (240)].

For the sun, T, = 5900°K, and Cayrel estimated T, = T = 5600°K
~ compared to T, = 4800°K (grey value). From a detailed calculation of a
solar radiative equilibrium model, allowing for departures from LTE in the
H~ ion, Feautrier obtained (211) T, & 4700°K and T, ~ 5200°K. Similar
effects are found for O- and B-stars in which the main source of surface
heating is the Lyman continuum. For example, in Figure 7-17 we saw that
the LTE temperature structure of an atmosphere with T, = 15,000°K,
log g = 4, had a plateau at 10,400°K, where the Lyman continuum was
optically thick and all others were transparent, followed byadropto Ty =
0400°K when the Lyman continuum became transparent. In the non-LTE
model, the temperature for 107* < 7 £ 1077 lies below the LTE value
(because b, < 1 in the Balmer continuum and therefore the efficiency of
heating is reduced). The non-LTE temperature distribution shows a minimum
near 10,100°K and then a rise outward to Ty, & 10,350°K, which lies 1000°K
above the LTE surface value. The agreement of this value of T with the
LTE Balmer plateau temperature is probably fortuitous. In fact, it is hard
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to make an a priori estimate of an appropriate value of T}, in the Lyman
continuum, for it, unlike H™ which is nearly grey, shows a sharp fall-off in
opacity with increasing frequency, which implies that the surface radiation
at high frequencies emerged from deeper, hotter layers and is characterized
by larger values of Tj. The final result is established by some kind of average
of Tx over frequency. Similar results are obtained at other effective tem-
peratures {40; 211); detailed discussions of how particular transitions are
affected may be found in the references.

Let us now consider the effects of lines on energy balance in the non-LTE
case; here again it will repay the reader’s effort to reread this material after
Chapter 11 has been studied. A qualitative feeling for the results to be
expected follows immediately from the form of the non-LTE source function
for a collision-dominated line (cf. §11-2), namely

S; = {1 — &)J; + &B, (7-164)

where J denotes the average of J, against the line-profile ¢,. By an argument
(625) exactly analogous to that leading to equation (7-86), we find a result
that differs only trivially from that obtained there, even though the ling-
source function has a noncoherent rather than coherent scattering term.
We therefore reach the same conclusion as before: for LTE (¢ = 1) there is
a large drop in boundary temperature, but when ¢ « 1, the lines have prac-
tically no effect on the boundary temperature. The argument is verified by a
detailed picket-fence calculation (448} that allows the continuum to adjust
self-consistently. In this work the line-strength is assumed to remain un-
changed, which would be valid, say, for the resonance lines of the dominant
ion of a given species (e.g., Ca 1I in the solar atmosphere). '

A very detailed calculation of non-LTE line-blanketing effects in the solar
atmosphere (17) leads to the conclusion that a self-consistent model yields
T e & 4330°K, and that the outward temperature rise driven by the Cayrel
mechanism in the continuum is strongly resisted by the lines. In carly-type
stars the effects of lines upon the energy balance can be studied in non-LTE
models constructed with the complete-linearization technique (references
given above); several interesting results emerge. For example, in Figure 7-17
we see the effect of including Lu {only) in addition to the Lyman continuum.
In LTE the boundary temperature drops about 1600°K, from 9400°K to
7300°K; but in the non-LTE case the boundary temperature had risen to
T, = 10,350°K (owing to heating in the Lyman continuum), and inclusion
of Lo produces a temperature drop of only about one-third that obtained
in LTE, to 9800°K. This result is not surprising, for ¢ is « 1. The final tem-
perature structure is relatively complex in the non-LTE case.

An e¢ven more interesting example 18 shown in Figure 7-25, in which we
see the importance of the coupling between lines and continua. Here the
model hydrogen atom had three levels, and the formation of the first three
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continua, plus free—free, and the Ho line was treated (41); the Lyman lines
were omitted because they are formed in the very outermost-iayers, whereas
He is formed at about the same depth as the Lyman continuum and can
interact with it. In LTE, Ha decreases the boundary temperature from 1its
continnum-only vaiue of 9400°K to about 8900°K. In the non-LTE case,
however, inclusion of Ho raises the boundary tempe{cature f.rom about
10,500°K (the continuum-only value) to 11,200°K.; this is a decxdedl_y non-
classical result! The line itself makes a negative (1.e.n.0001111.g) contrlbut_lon
to the energy balance cquation. But at the same time it provides an efficient
channel for atoms to fall.into the n = 2 level, where the rach_atlop field
produces strong heating; thus the divect cooling. effect of the linc i out-
weighted by indirect effects of the line on continuum energy balance, a
possibility recognized by Cayrel (143). Addition .of higher Balmer and
Paschen-series lines (42) raises the temperature still further; tht_e effecjf of
Huy alone is about equalled by inclusion of Hf and Po:_, anc:_l yet-higher lines
lead to only a small additional rise. A final example in Figure 7-26 shows
the temperature structure in a model with _chf = 30,000°K, tog g= 4, (436)
including the Le, L, Ly, Ho, Hf, and Po lines. The temperature in the LTE
model decreases uniformly outward; that in the continuum-only non-LTE
model shows heating in the H Lyman and the He [ and He 1I ground—sta‘[e
continua; the non-LTE model with lines shows enhanced heating from the
Balmer lines followed by a drop produced by the Lyma.n lines. _

The variety and complexity of the effects just descn'bed emphasizes t.he
need for carrying out physically consistent anglyses w1t1r% great care. With
the exception of the sun, for which a fairly detailed analysis exists, the prob-
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Temperature distributions in models with
Tor = 30,000°K.  Ordinate: T/10%;
ahscissa: logarithm of column mass in
gmem 2 Solid curve: non-LTE model
including lines; dashed curve: non-LTE
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of transition indicated {those with ion
designations are ground-state continua).
From {436), by permission.
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lem of non-LTE line-blanketing in stellar atmospheres has barely been
approached, and a large amount of work remains to be done.

7-6 Extended Atmospheres

For all of the models discussed thus far, it has been assumed that the atmo-
sphere is stratified in plane-parallel layers; this is an excellent approximation
when the density scale-height in the atmosphere is small compared to the
radius of the star. However, many stars, in particular the supergiants and
Wolf-Rayet stars, have extended atmospheres whose thicknesses are an
appreciable fraction of a stellar radius; to a first approximation we suppose
that these atmospheres are spherically symmetric. Atmospheric extension has
important physical and observational implications. Thus stars with extended
envelopes show a continuum energy distribution that has an anomalously
low radiation temperature in comparison with the excitation temperature
inferred from spectral lines. Equivalently, the energy distributions are
“flatter”, as a function of frequency, than those of main-sequence stars (which
have compact, planar atmospheres) of the same spectral type, and show excess
emission in the infrared and a deficiency in the ultraviolet. Almost always
there are indications of rapid atmospheric expansion in stars with extended
envelopes, so that one should consider dynamical models that include the
effects of flow; we shall examine such models in Chapter 15, but for the
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moment will deal with the more limited problem of solving the transfer
equation in static extended envelopes. o 5

In an extended, tenuous atmosphere, the radiation ﬁe_ld at large dxfslan(;cs
from the undertying stellar disk becomes very dilute, and is confined prnparll_y
to a narrow solid angle (that subtended by the disk) around the radial di-
rection. These facts imply that the temperature structure of the atmosphere
must be quite different from that in a planar quel, and th_at mthemalLtlcal
complications introduced by the angular peaking of Fhe ulltensny will be
encountered. The equation of transfer to be solved (cf. §2-3) is

(@1, jon) + v — pPHeL/w) = ny — ks (7-165)
with moments (cf. §2-4}
P80 H, e ] = 1y — 2l (7-166)

and_ (BK‘,/a?‘) + ]‘_1(31{(1‘ - J\') = —XvHv (7-1673)

or [&{f,d,)/er] + P3N - D, =
It is obvious that these equations are moxe complicated and. more difﬁgult
to handle than their planar counterparts. For exampl'e, equation (7-16.5) isa
partial differential equation volving exp@iciﬂy tyvo mdepen_dent variables.
Similarly the moment equations do not yield a simple form if, for example,
we eliminate H, between equations (7-166) and (7-167) (though a trans-
formation will be described later that does allow a reduction o‘f the two
equations to a single combined moment equation of an att_ra.ctwe fn?rm).
The moment equations could be dealt with, at least approximately, if we
could relate K, and J, accurately, as is possible in the planqr case. But now,
even though f, — jat great depth where the radiation ﬁe}d is homqgex}eous,
f, = 1 near the surface [recall Exercise (1-12)], and a direct apphcatzpn of
the Eddington approximatios, which gives remarkably good results in the
planar case, will not be even roughly correct near thq sgrface..As was re-
cognized by Mc Crea {413) and Chandrasekbar (148), it is possible to con-
struct a consistent approximation scheme in a tenuous atmosphere? that
envelopes a parent star of radius r,,, by considering averages of the 1'ad2.1atzlczp
field computed on the range p, € 4 < 1 [where py = (1 —r,5/F ¥
separately from those computed on the range —1 < u < iy [sge also (403)].
But such a method is suitable only if r, can be chosen unaml?lg-uously;-for
extended photospheres of appreciable density and ra.onneghglble op.tl'cal
depth this method breaks down [see, however, (635)]. It is thus not surprising

. H, (7-167b)

that effective and general methods for treating transfer problems in spherical

seometry have been slow to develop. A general and flexible numericgl
technique giving a direct solution of equations (7-165) through (7—]67) will
be presented later in this section. To treat the grey problem, an approximate
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solution wilt be obtained merely by patching together asymptotic results for
the two limiting regimes mentioned above; this provides a good starting
point for estimation of extension effects on the emitted energy distribution.

SPHERICAL GREY ATMOSPHERIS

The problem of grey spherical atmospheres in LTE and radiative equi-
librium was analyzed approximately by Kosirev (360) and Chandrasekhar
(148); numerical results of high precision have recently been obtained by
Hummer and Rybicki (323). If we assume y, = 7, and integrate equations

(7-166) and (7-167) over all frequency, omitting the subscript v to denote
integrated quantities, we obtain

r o Hyor] = 0 {7-168)
and [e(fNjor] + v 3 — ) = —yH (7-169)
where in equation (7-168) we have demanded radiative equilibrium
J‘O& Hy dv = f; oy dv = ¥ (7-170)
Fquation (7-168) yields an integral for the total flux,
*H = Hy, = Lf167? (7-171)

where L is the luminosity of the star. Define the optical depth, measured
radiaily from an arbitrarily large outer radius R, to be '

() = f F ey dr’ (7-172)

Deep within the atmosphere (Le, r <« R, 1 » 1), we expect the radiation
field to become isotropic and f — 1; in this limit equation (7-169) becomes

(6Jjary = ~3yH = — 3y %H, {(7-173)
which yields the integral

J(z) = H, (3 fo P de c) (7-174)

If the usual Eddington-type boundary condition at ¢ = 0 could be applied,
then J(0) = 2H(0) = 2Hy/R* so that

J{r) = R *H, [3 fo (R*/rh) dr’ + 2} (7-175)
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a result obtained by Chandrasekhar (148). If, further, we impos.e the-assump-
tion of LTE, theny, = x.B, = xB, and from equation (7-170) it follows that
Jit) = B(‘C)!: ¢T*/x, which assigns a temperature structure to the atmo-
sphere. Equations {7-174) and (7-175) can be valid oqu at great depth. Nfaar
the surface, the free-flow regime occurs and f — 1, in which case equation
7-169) becomes

( [a@2D)fer] = — yr’H = —yH, {7-176)

hich yields
e J(x) = r *Hylz + O) (7-177)

In the limit / = 1, J(0) = H() = H,/R?, so equation (7-177) becomes
J@) = r P Hgle + 1) (7-178)

i i hent« 1, » = R
a result that is expected to be valid only w : , '
Considerable progress can now be made if we adopt a power-law opacity
(ie., ¥ = Cur™"), as was done in the earliest work (360; 148). As noted by

Kosisev, there is strong physical motivation for this choice in an expanding -

atmosphere, for the equation of continui.ty (see §15-1) demands t}}at ,_mljrz h:
constant, where p is the density, and v is the velocity of expansion ,hm the
limit of very rapid expansion, when v > Vescape {actually o_bzserved), t e ma-f
serial moves at practically constant velocity, so that p ~ ¥~ * The opamty 0
the material can be expected to vary as some power of the density (e.g.,
linearly for electron scattering or as the square for-freeffree) ‘and henci as
some power of 1/r. Substituting the above expression for y into equation
(7-172) and adopting, for simplicity, R = oo, we have

o) = Cp 7P fn — 1) (7-179)
Using equation (7-179), the limiting form for J{(t) {asr — 0, 7 » 1)is
J = [Bn - V/fn + DiHgr *c (7-180)

while equation (7-177), valid for 7 < 1, remains unchanged. it is therefgre
attractive (387) to interpolate between these two exiremes with an expression

the form
of the for 3Hn—1 —i—l n+1 (7-181)
J) = 2 n+1 ' 3hn — 1

Comparison with precise calculations demonstrates that eg};ation (7-181)
is quite accurate (323). Using the identity of J and B, and writing T', for the
temperature at t = 1, we can rewrite equation (7-181) as

T(1) = Tlrz‘”% r‘{[r m+ 13— DAL + (e + 130 - n*
(7-182)
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Equation (7-182} reveals an important characteristic difference between the
planar and spherical cases, namely T — 0 as ¢ — (¢ in an extended atmo-
sphere, rather than approaching a finite value. From this result we can see
that the contribution from the outer cool layers, which occupy a large volume,
will enhance the flux observed at longer wavelengths and lead to the dis-
tinctively flatter energy distribution mentioned above.

We may calculate the flux received by an observer at a great distance D
from the center of the star by using the (p, z) coordinate system shown in
Figure 7-27. The impact parameter p is the perpendicular distance of a ray
from a parallel ray passing through the center of the star; z is the distance
along the ray, measured from the plane through the center of the star per-
pendicular to the central ray. We shall take z to be positive towards the
observer and formally place the observer at z = oo for purposes of calculating
integrals. The coordinates (p, z) are related to polar coordinates (r, 8} as
follows:z = rcos 0, p=rsin6@andr = {(p* + z?)*. [f we choose a value of
p. then the equation of transfer along the ray in the direction of increasing = is

(¢L,/02) = n. — 21, (7-183)

which follows from first principles. The formal solution of equation (7-183)

for the intensity emerging at z = oo along the ray with impact parameter p
may be written immediately as

Wpe) = 7 BT(p 2] expl—(p xip. 2 dz (T-184)

where 7(p, z) is the optical depth measured from z = oo, inward along the ray.

O 9 % }— §> 2bi:r:§;

FIGURE 7-27

Coordinate systems for solution of transfer equation in spherical
geometry.
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Evercise 7-15: Calculate the operator {#/3z), and show that equation (7-183) is
exactly equivalent 1o equation (7-165). In the (p, z) coordinate system, the lines p =
constant arc the characteristic rays of the partial differential equation, which
reduces to an ordinary differential equation along these particular curves.

The total flux received by the observer per unit receiver area is

Following Kosirev (360) [see also (61, 165)] we change variables in equation
(7-184)to 0 = cos™ '(z/ryand write 7(p, z) = 7(p, 0) which, using a power-law
opacity, becomes 7(p, 6} = C,p~ "~ ", (0) where

WA0) = f;’ sin" =2 ¢ dé (7-186)

Then
I(p. o) = Cop™® D [ BLT(p, 6} exp[ —c(p, 6)] sin" 040 (7-187)

Substituting equation (7-187) into equation {7-185), and introducing suc-
cessive transformations from p = #sin & to z(r), the radial optical depth
given by equation (7-179), we obtain

2

£ = n{Ry/D) f:‘ B\.[T(z)]{("— 1)(13”(1) dt (7-188)
where R, is chosen as the radius at which ¢ = 1, and
O, c) = 2 fo exp[ —( — Dz s 0 (6)] sin6.d0  (7-189)
Exercise 7-16:  Derive equétious (7-186), (7-188), and (7-189).

Using the temperature law given by equation (7-182) in equation (7-188),
we may calculate the flux from a grey spherical atmosphere for a particular
choice of T, a characteristic temperature for the atmosphere, and the index
n, which determines the degree of extension (n — oo implies planar models;
n small yields large extent). Observationally, color temperatures T, are
assigned, at a wavelength 4., by measurements of colors in a filter-system,
or of the spectrophotometric gradient; both of these approaches, in effect,
measure the slope of the continunm. Van Blerkom (61, 165) has calculated
T. at 2, = 5000 A for various models with 7 = 30,000°K. He finds that,
atn— m. TJI0* — 5andatn = (10,5, 3,and 2), T,/10* = (43,3522,
and 1.2) respectively, which shows that increasing atmospheric extent pro-
duces effects that simulate lower atmospheric temperatures. Indeed, a model
with T, = 50,000°K and n = 3 has a flux distribution nearly identical to

/o = an‘zfom I(p, co)p dp (7-185)
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one with T, = 30,000°K and n = 5. On the basis of these results we can
understand why supergiants and WR stars have lower color temperatures
than main-sequence stars of the same spectral type; it is also evident that
atmospheric extension effects introduce ambiguities in the choice of a
structural model for a star because of the trade-off between temperature
and envelope-size in [itting the data. The frequency-variation of the flux
from an extended grey atmosphere is shown in Figure 7-28, where it is
compared to that from a Planck function at T, the color temperature of
the flux at 2, = 5000 A, and to a Planck function at T(t = 2)(the distribution
that would emerge from a planar atmosphere). Tt is ¢clear that the flux from
an extended atmosphere shows a pronounced wltraviolet deficiency and an
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FIGURE 7-28

Solid curve: emergent flux F, from spherical grey atmosphere with
Ty =3 x 107°K and n = 2. Dashed curve: black-body curve at
color temperature T, that matches slope of £, at 45000 A; note
ultraviolet and infrarcd excesses of F| relative to B,(T.). Dotred
curve: black-body curve at T = T(z = 2/3), the value characteristic
of a planar atmosphere.  Abscissa: /7, where 2 1s in microns.
From (61, 165), by permission.
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infrared excess relative to that from a planar atmosphere of the same char-

acteristic temperature. Relative to a Planck function at 1, the temperature
that would be assigned observationally, the flux distribution shows both an -
infrared and ultraviolet excess. These results emphasize the rather inhomo-
geneous nature of the radiation field from an extended atmosphere, arising .
from the greater variation of the temperature through the envelope. We.
shall consider more realistic nongrey and non-LTE models after developing -

a general method for solving the transfer equation.

SOLUTION OF THE TRANSFER EQUATION
IN SPHERICAL GEOMETRY

A variety of methods have been employed to solve the transfer equation
in spherical geometry. Both Kosirev (360) and Chandrasekhar (148) used

variants of the Eddington approximation. which, however, is not accurate

near the surface. Subsequent work (154; 679; 680) approximated the angular

behavior of the radiation by an expansion in spherical harmenics, but only

to second order. As demonstrated convincingly by Chapman (163), these

methods cannot be adequate because the radiation becomes very sharply

peaked in the outward direction ( fy — 1) at the surface [see (163, Fig. 1) or
(323, Fig. 6)]. Methods that employ direct differencing of both the angular |
and spatial derivatives in equation (7-165), [related to the S,-method (127)

of reactor physics] have been suggested (130; 255; 507), but these fail when
the discrete spherical shells become optically thick, and hence must be
supplemented by special techniques to be useful for siellar atmospheres
work.

The differential-equation technique to be described below, which is general,
stable, and efficient, uses a Feautrier solution along individual impact
‘parameters (tangent to discrete shells) to generate the angular information
required to evaluate variable Eddington factors (323) from an estimated

source function. Then, with known Eddington factors, it employs a Feautrier
scheme to solve a combined moment equation obtained by using the elegant .

transformation introduced by Auer (32). Alternatively, a direct solution can
be obtained with a Rybicki-type method, if the scattering integral in the
source function is frequency-independent (442); an equivalent integral-
equation method has also been developed (558).

Consider first the moment equations; regard all variables as functions of r
and v, and introduce the radial optical depth scale dv, = —y, dr. Then the
moment equations are

Sr2H )i, = 12(J, — S,) (7-190)

and Le(fJaen] — Gf, = DI Axn = H, (7-191)
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where S, 18 assumed to have a general form
S, = a, f R v, vy dv + B, (7-192)

For a pure continuum problem, we would have only a coherent scattering
term-and S, would be simpler. There are two essential difficulties with
equations (7-190) and (7-191). (a) Direct elimination of H does not yield
a simple equation, but rather a complicated one involving both first and
second derivatives. (b) The term In equation (7-191) in (z,#)"! tends to
diverge strongly at the surface (recall y. is opacity per unit volume and
hence varies with the particle number density over several orders of magni-
tude). This term destabilizes the system. Both of these difficulties can be
eliminated entirely by the introduction (32) of a sphericality factor g,
defined by

ingq) = [ [ — D] d + Inr? (7-193)

where #, 1s a “core radius” corresponding to the deepest point in the atmo-
sphere considered in the solution. It is obvious that g, is known if £, is known.
The factor g, allows equation (7-191) to be rewritten as

8(];@'\'"‘2']1‘)/87\‘ = qusz (7_194)
which, when substituled into equation (7-190), yields a combined moment
equation

3 [ 1 8(fg .0, :
I:_fwil = J‘Z(J\J — S (7-195)
4y ETy
or, introducing a new variable dX, = —q,7, dr = g, dz,,

Pl )jeX? = 4,70, — 8,) (7-196)

Exercise 7-17:  Verify that equation (7-193) allows the reduction of equations
{7-190) and (7-191) to (7-195).

To obtain an upper boundary condition we define

1 1
h, = ‘fo IR, 1, v d,u/fo KR, i, v) dp (7-197)

80 that from (7-194)

(o0 T)EX Jome = 17T Do (7-198)
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while at the lower boundary we apply a ptanar diffasion approximatien to
write

1 —_ fn}
Hv(rc) = E(Z» lloB\,/@r

Yo, (7-199)

and fix the gradient by demanding that the integral of H,(r.) over all fre-
quencies equal the correct integrated flux H, = L/(167%r,*). Then

r=re

[6(£,0 20 V6K Jyor, = 12H, [/ Y@B,/0T) / [0 k@B eT) fﬂ
{7-200}

The diffusion approximation, and hence equations (7-199) and (7-200), will
be valid when the photon mean free path z,”" « ¢R where & is some small
number; this criterion can always be met by choosing #, sufiiciently deep
in the atmosphere. For other physical situations (e.g., in a nebula), alternative
inner boundary conditions can be posed (374).

With the infroduction of a discrete radius mesh {r;}, (d=1,...,D),
where R =r, > #, > =+ > i = i, and a frequency mesh {vah (r=1,...,N),
we may replace derivatives with finite differences [perhaps using splines
(374; 442) or Hermite formulae (34)] and the frequency integral (il any) in
the source function with a quadrature formula. Equations (7-196), (7-198),
and {7-200} are then of the standard tridiagonal form of equation (6-31) and
can be solved with the usual Feautrier elimination scheme; the computing
time scales as T, = ¢ DN?, which is particularly economical if the source
function is purely thermal or has only a coherent scattering term (N = 1).
In the calculation just described, the scattering integral in the source function
appears explicitly, hence the correct global thermalization properties of the
solution are obtained. ‘

To carry out the computations described above, we require knowledge
of the Eddington factors f,; these can be found if we know the angular
behavior of the radiation field at each depth. To obtain the required infor-
mation we perform, at each frequency, a ray-by-ray solution along a grid
of impact parameters {p;}, chosen to be tangent to each discrete radial
shell, angmented by an additional set of C impact parameters, which are
chosen to intersect the core, and which include the ceniral ray. The geometry
of the situation is shown in Figure 7-29. The impact parameters arc labelled
with an index i, (i =1,...,I)where! = D + C; p, denotes the central
ray; p, the last ray inside the core (i€, p. < r); Pesq =t and py = R.
Each ray p; intersects all shells with r, = p;, and these intersections define
a mesh of z-points {z;}, (d=1,....D) Here D; = D + C + 1 — ifor
i=>C D,=Dlori< C and z;; = {(r,> — pH)t It is seen from the figure
that the ray p; intersects the radial shell r, at an angle whose cosine is
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Dscretle (p, z) mesh used in solution of spherical transfer equation, The impact parameters
Ip;} are chosen to be parallel to the central ray, and tangent to spherical shells chosen to
describe the depth-variation of physical properties of the envelope. The intersections of the
rays with the radial shells define a z-mesh along each ray.

g = g pi = (g — pP)frg = zg/ry. Hence if we first construct the
solution along all rays {p;}, and choose a particular value r,, then knowledge
of the variation of I.(zy, p;) (i = 1,. .., 1,)is equivalent to knowledge of the
p-variation of T, {rg, p) on the mesh {p,;}, (0= 1,....I,), which spans the
interval 1 = p » 0. Here I, = I + 1 — d. It is therefore clear that the ray-
by-ray solution described above will allow determination of the requisite
Eddington factors. The astute geometrical trick employed here to synthesize
the angular information from ray solutions is actually nontrivial and makes
direct use of the symmetry of the problem, which allows us to treat all points
on a given shell as equivalent; without strict spherical symmetry, the problem
is much more complex.

Consider now the ray specified by p,. The transfer equation along the ray is

+ [@Ii(z Pi \J)/aZ] = rl,(rﬁ V} - Z(F', V)Ii(Z, P V) (7"201)

where the + and — signs refer, respectively, 1o radiation flowing toward
and away from the external observer, and we have written r as the space
variable in 5 and y with the understanding that v = r(z, p;) = (p;* + z°)%
Defining the optical depth along the ray dt(z, p;, v) = —yx(r, v) dz, setting
S(r, v} = nir, v)/7(r, ¥) {assumed to be known values), and introducing the
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mean-intensity-like and fux-like variables

1 .
H(Za pia V) = 5 [I+(Z, pi: V) Jr I {Z, pi: 1’)] (7-202')

1 _
Ell'ld U(Z, Pis 1’) = 5 [I+(Z: D, V} - I (Zv pis 1”)] (7-203)

we obtain the second-order system
[qu(zv pi v)/a’[?‘(;/" Pi 1"‘)] = Li(Z, Pi V) - S[T(Z, pi): V] (7“204)

with an upper boundary condition

ﬁu(z, pfa v)f@r(z, Piv “!) o = a(zmaxa pia 'P') (7'205)

where z,.. = (R? — p)%. The inner boundary condition depends upon
whether the ray intersects the core, rp, = r,, or misses the core and infersects
the central plane at z = 0. In the former case we apply the diffusion approxi-

mation as was done to obtain equation (7-200); in the latter, symmetry -

considerations show that (0, p;, v} = 0, hence
dulz, iy V/ET(z, pi Vim0 = 0 (7-206)

Equations (7-204) through (7-206), when written as difference equatiogs,
yield (with known S) a single tridiagonal system of the standard Feautrier
form, and can be solved by the usual algorithm. The computing time
for N frequencies, C core-rays, and D radial depth-points scales as

Ty = ¢N[D- C + ¥ D;]= ¢ND? for D » C. Having calculated the com- -

plete solution wy, = u(zg p;, v,) We construct the moments, as described
above,

Ta
Jdn = Z We(i(i))udin (7'2’07)
i=1

14
and Koo = Y, Witg, (7-208)

i=1

and thus the Eddington factor f,, = K,,/J4. Here the ws are appropriate
quadrature weights, obtained analytically by integration of moments of a
piecewise polynomial representation of u(ry, ) on the mesh {x;}. generated

by the intersection of the rays {p;} with the radial shell r,. Using the new -
Eddington factors, the moment equations are re-solved and the process 1§ -

iterated to convergence; experience shows the convergence to be very rapid.

Fxercise 7-18: () Write difference approximations for cquations (7-204) through

{7-206). (b) Derive a second-crder accurate lower boundary condition by ex-
puh
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tending the difference equation for equation {7-204) beyvond the central plane
zp; = 0, and using symmetry of u,, about this plane.

In the case that the source function contains a single scattering integral
involving J (or J in a line), rather than a frequency-dependent scattering
term 1ivolving partial redistribution, we may avoid the iteration procedure
between ray equations and moment equations, and develop a direct solution
by a Rybicki-type scheme (442). Along each ray, for each frequency, we have
a tridiagonal system of the forin

0, == Uilij + Wif: (z - I’\I)
m=1,...,N)

T;, (7-209)
where J describes the depth-variation of J [cf. equation (6-46)] on the range
{d =1,..., D) and u, the variation of u(z, p;, v,) along the ray. This system
can be solved foru, = C,J + D,,, and this solution can be substituted into
the equation defining J [cf. equation (7-207)] to yield a final system for J; the
computing time for this solution scales as T, = ¢N D?* for D » C. Details
of this procedure, which 1s general, stable, and economical, can be found in

the reference cited.

EXTENDED MODELS FOR EARLY-TYPLE STARS

Nongrey spherical model atmospheres in L TE have been constructed
for the central stars of planetary nebulae (130; 131; 376) and for O and B
supergiants {136; 325; 376: 441: 442; 559; 516, 241), using a variety of.
techniques. Non-LTE models for both classes of objects are given in (376
441. 442; 516, 241). All of these models assume hydrostatic equilibrium, and
the extension effects are produced by a near-cancellation of gravity by radia-
tion forces on the material. In actuality, there is strong evidence that atmo-
spheric extension is almost always associated with large-scale expansion, and
static models can be expected to yield, at best, only gualitative information;
we shall discuss dynamical models, which are more difficult to construct, in
§15-4.
In an extended atmosphere, it is necessary to account for the variation of
the gravitational force with radius, and if .# is the mass of the star, the
equation of hydrostatic equilibrizm becomes

(dp,dr) = —(pG.it}r?) + (dnjc) fo " H, d (7-210)

Introducing the Rosseland mean opacity y, the integrated flux i =
L/1677r?), and the parameter

v = ()t [ H b (7-211)
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we have Ldp,/d(1/1)} = plGodt — (yLyr/4mcp)] L (7-212)

As was true for planar atmospheres, radiation forces lead to an increase in
the scale-height (and hence the extent) of the atmosphere. The parameter

= »ypL4ncG.4i p) measures the ratio of radiation te gravity forces. In
the limit of a pure electron-scattering opacity we find an upper bou}ld on the
critical ratio for (L/.4) at which radiation forces just balance gravity forces,
namely (L/ )i = 3.8 % 10* (Lo/.# o). (cf. Exercise 7-1). We shall depote
the value of T" obtained from pure electron scaitering as I',. Foran extendled
envelope, the meaning of the stellar “radius” (and hence of the ei’fect}ve
temperature) becomes ambiguous; typically one uses the value rs, at which
Tx = %, as a characteristic radius. _

The effects of radiation forces are quite important in the planetary nebula
stars, as estimates of L and .# for these objects (279) lead immediately
to values of T on the range 0.8 < I, < 0.93. Further, it can be shown
{442) that the absolure thickness of the atmosphere, Ar, is propornon.al
gzt = [(1 = D)G.#/R*}™1, which means that for a given gerr, the relative
thickness of the atmosphere, Ar/R, will be larger for stars of small radius,
such as the planetary ncbula stars. Thus several of the models in (130; 1;’:1)
have atmospheric thicknesses comparable to, or even larger than, the radius
of the “core” star (depths below t = 10}! The effect of gxtension in these stars
orcatly reduces the color temperature relative to the effective temperature;
at j. = 5000 A, T./Ty for some of the models is as small as 0.3. The
complete energy distribution shows the characteristic ﬂattening. degcrsbed
above for grey models [indeed in the visible, the nongsey energy distribution
can be fitted quite accurately by grey models with n = 3 to 4 (61, 165)]. The
flatter energy distributions predicted by these models strongly resembles
those of WR stars (though the model parameters L, .4, and R are not really
appropriate for such stars). .

For O-type supergiants and Of-stars, it is clear, from the failurc of planar
models to match the energy distribution [see (376)] and to produce the
observed emission lines, that the atmosphere must be extended. On the other
hand. stellar evolution tracks at plausible masses all yield values of I', < 0.5,
whicﬁ, taking into account the large radil of these stars, implies insignificant
atmospheric extension (136). But absorption in spectrum lines can greatly
increase the total force of the radiation on the material (102, 404) and indecd
it is precisely this mechanism that is thought to drive the winds from O-stars
(see §15-4). In several calculations (376; 441; 4_142; 516, 241), attempis were
made to simulate the effects of enhanced radiation forces by adopting ad hoc
values for the radiation-force multiplier y in equation (7-212), chosen so as to
¢aise the maximum value of T to values approaching unity (the most ¢xireme
case considered had T, = 0.995). Although such models become very
difficult to compute because of numerical instabilities, which directly reflect
the physical instabitity of the atmosphere, a number of solutions were

7-6  Extended Aimospheres 257

obtained using a complete linearization procedure, both assuming LTE and
taking into account departures from ETE. It should be stressed that, for such
exireme valaes of I', hydrostatic equilibrium is very unlikely to be possible,
and dynamical models are necessary; models such as these merely demon-
strate the effects of a greatly increased scale-height for the envelope. Extension
‘effects produce major changes in observable parameters such as colors, see
Figure 7-30, which show a strong reddening with increasing atmospheric
size. The colors for LTE and non-LTE models differ markedly because in
LTE a spurious emission edge occurs at the Balmer jump (caused by the
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Strémgren-svsiem (¢ — b) and (b — y) colors for models with .# = 60 .# g  Open symbols:
LTE models; fifled symbols: non-LTE models. Models with equal values of T, are joined
on curves, Curves are labeled with parameters deseribing radiation-force multiplier 7.
Circles: ¢ = 7y, labels give value of vy trivngles: v = 1 + 3, exp{—tx). labels give valuc of
vz From (376), by permission.
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Schuster mechanism-—see §10-2); detailed discussion of the overall properties
of the energy distributions can be found in the references cited above.

7-7  Semiempirical Solar Models

All of the discussion presented thus far in this hook has concerned the
development of methods that allow the analysis of a stellar spectrum, and
the inference of physical properties of the atmosphere, by a model-fitting
technique. Our information about stars, which we perceive as mere points
of light, is quite limited in quantity, quality, and scope, primarily because
of the low intensity of the radiation received. But for one star, the sun, we -
have unparalleled opportunities to obtain information at very high spatial,
temporal, and spectral resolution, over an eNOIMOUS range of energics, from
X-ray, ultraviolet, visible, infrared, and radio wavelengths. While stars are
anresolved, structures of the order of 150 km in size can be distinguished in
the solar atmosphere, and a wide variety of small-scale features can be seen.
Further, measurements of velocity fields and magnetic fields can be made.
The sun thus provides a unique testing ground for our theoretical methods,
and, because so much information can be obtained by semiempirical analyses
that rely only weakly upon theory, it offers guidance in seeing how to extend
the theory in those places where it is oversimplified. It is fair to say that most
(though not all) major advances in stellar atmospheres theory were motivated
by attempts to understand solar phenomena; time and again, the refined
confrontations possible between solar observations and the theory have
forced radical changes in our interpretive picture. And many enigmas remain,
so we may expect much further development yet.

There is no hope of summarizing adequately. in a few pages, the vast
amount of information known about the solar atmosphere, and the reader
should consult the many excellent references available, particularly (244,
694 11, Chaps. 9 and 10) for general information, (628; 19; 20) for detailed
information about the chromosphere, and (94; 20) for material about the
corona, The goal of the discussion below will be only to present a brief -
summary of some of the primary structural properties of the solar atmo-
sphere, in order to provide background and orientation for the development
of more realistic pictures of stars in general.

In terms of basic morphology, the solar atmosphere can be divided into
four major parts: (a) the photosphere, the opaque disk seen visually; (b} the
chromosphere, a region extending some 2500 km above the limb, showing the
characteristic emission spectrum of hydrogen; (¢} the corona, a tenuous, faint
outer envelope first seen at eclipses; and (d) the wind, a supersonically ex-
panding region that streams past the earth. The overall temperature structure
of the atmosphere is shown in Figure 7-31. In the photosphere the tempera-
ture decreases outward to a minimum of about 4200°K. At the relevant
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temperature (T ~ 5 X 103 °K) and gravity (g ~ 3 x 10%) the pressure scale-
height is about 120 km. This length subtends an angle of 0.15”, which lies -
well below the typical limit of resolution set by sceing effects in the earth’s -
atmosphere; as a result, the sun appears to have a crisply defined edge, which
occurs at height b =0 km on the scale of Figure 7-31. In the low and -
middle chromosphere the temperature rises to about 8000°K and then to a
platean of around 30,000°K. There is then a very thin fransition region in
which the temperature suddenly rises to coronal vaiues of about 1.5 x
10° °K. In the corona the scale-height is about 50,000 km, which is a signifi-
cant fraction of a solar radius, so the corona extends to large distances from '
the sun: indeed, even if the corona were static, it would envelope the earth
with a substantial density of particles. _
The temperature structure described above has been inferred mainly from -
analysis of the solar spectrum, which is strongly affected by the nature of
the temperature distribution. The features in each spectral region arise from
some characteristic range of height {see Figure 7-32) and, since it has become-
possibie to survey a wide range of wavelengths from space vehicles, our '
knowledge of the temperature structure has been greatly improved. In the
spectral range from 1685 A < 7 < 350 u the continuum originates in the
photosphere, and the lines have unit optical depth at heights that extend -
from the photosphere (in the line wings} into the chromosphere (at line
center). Observed on the disk, lines with wavelengths A = 1900 A are domi- -
nanily in absorption, and a transition to emission lines occurs in the range
1700 A < 2 < 1900 A. The continuum on the range 1525 A £ 1 £ 1685 A~
comes from the photosphere—chromosphere transition region, and for 4 <
1525 A is dominantly chromospheric. On the range 504 A < 1 5 912 A
the Lyman continuum is in emission; for 4 < 504 A the emission is from the
continuum of He 1. Chromospheric emission lines extend at least down to
288 A, through the resonance series of He IL. Coronal emission lines begin
to appear prominently at about 800 A, and extend down into the X-ray -
region, In the infrared, one sees most decply into the atmosphere near 1.6 1,
the minimum in the H™ opacity. At longer wavelengths, the temperature
minimum region is encountered near 300 u; and at radio wavelengths of
100 cm and beyond, the continuum emission is entirely coronal. (The corona
is completely transparent in the continuum at centimeter wavelengths and -
shortward.) Off the disk, the chromosphere and corona can be seen in strong
emission lines, by using special instrumentation, or in special circumstances
such as eclipses, from which an enormous wealth of data has been derived.
A variety of analytical techniques have been used to make estimates of
physical properties of the solar atmosphere from the data described above.
A very powerful tool is the analysis of limb-darkening data. As we saw in §3-3,
the Eddington—Barbier relation implies that the dominant contribution to
1,0, ) comes from S,(t, = p; hence by scanning from center to limb,
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0 < <1, we sample depths 0 < 7, 5 1. Suppose we assume-that the
soarce Emétion s the Planck function, and that we can write B,(z,)/1 L0 =

b,(z,). Then
() = 1,0, /L0, D] = [ by exp(—zip)dufp (-213)

If we now assume that b, can be represented by some analytical formula,
®. can be computed in terms of the expansion coefficients of the formula. By
ﬁtvting this calculated function to the observations of @,, one finds the coet-

ficients and hence b,. For example, if we take

b, = 3 at” (7-214)
k

d
then e fi O () = Y, apk! T (7-215)
k

Thus a fit of equation (7-215) to thq data yields the a;’s, heace b, and,lultl-
mately, if we know [ .(0, 1) we obtain B‘,(r'v), and hence T(tv). A veri aggc
body of limb-darkening data exists, extending from ultraviolet through radio
Wal‘”fifgiltl::dure outlined above encounters many practical ‘difﬁcultles. Télus;
even large-amplitude fluctuations iln the phym_cal propertles (.:lo 111;): E ecS
the observations if they occur in regions whose 11ne-.of-s1ght optica thic n_Ts
is «l; we thus remain in ignorance of any §uch mhomogel}eules. Sjlrr:;l ar
remarks apply to horizontal structures that lie below the 11.m1t of Feslo u t}on
set by the observing procedure. Mon?over,_ we giearly obtain but liftle 1;11 (E-
mation from depths with 7, > 1, while a hmlt is alfq set at small delfat ; 3;
seeing effects at the limb;a typical resolution of 1" implies a blulr of abou
(.001 solar radius, which corresponds to g =~ 0.05. lThus at any given wa;ff—
length we are confined t0 0.05 <1, 51 Fu'rther, Wlt_h data of hm_lted quality
the number of expansion coeflicients that yield real mforr'nanon in equatlor}
(7-214) or (7-215) is restricted. For examplg, for data with an accuracy oe
-+ 1%, at most three coefficients can be obtained (98), attempts 10 use mMOT

coefficients yield results that fit the observed values of @ (u) but show wild

oscillations in b.(t,). Numerical methods (such as the PI:OH}«‘ algorithm) exist
that automatically limit the coefficients to only those Justlﬁeq by the accuracy
of the data (669). One may choose a variety of fitting functions in equation

i ily well; in general these
7.214), cach of which fits the observed ®,{u) equa in g ] .
(yield c%iﬂ'erent values of b,(r,) and hence of T(z,). Among three-term solutions, _

discrepancies in the temperature of the order of +200°K are found; these

can be important in cerfain contexts. For example, in the solar atmosphere

the dominant ionization state of iron atoms is Fe*. Using the Sahz} egqahcl;n
it is easy to show that an efror of +200°K introduces an uncertainty in the
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occupation numbers of low-lying states of Fe I (7.9 eV below the ionization
limit) of about Atogn ~ +0.25, or about +60%,: thus even assuming that
every other step in the analysis of the spectrum were perfectly accurate,
significant errors are introduced into estimates of element abundances from
uncertainties in the model alone,

The range of depths available to analysis using limb-darkening data may
be extended by using different wavelengths. One then needs to map the
curves of T{r,) from one frequency to another, which can be done i we
know the frequency vartation of the absorption coefflicient—i.e., ¥(v)/7 (vya)-
Alternatively, we can demand that the different T(z,) curves correspond to
a unigue T (h) variation, and turn the procedure around to infer the frequency
profile of the absorption coefficient. Studies of this kind (e.g., 517) have shown
that the empirically-determined absorption coefficient is consistent with the
hypothesis that H™ is the primary opacity source (though additional sources,
mainly lines, are needed in the ultraviclet).

Another method that can be used to determine the temperature structure
is the analysis of disk-center absolute intensities as a function of frequency.
With the advent of precise absolute intensity measurements in the ultraviolet
from space vehicles, this method has surpassed limb-darkening analyses in
importance. An extensive compilation and discussion of existing data is
given in (646). The basic procedure employed is to construct models by (1)
assuming a temperature distribution, (2) integrating the equation of hydro-
static equilibrium, and {3) solving the coupled transfer and statistical equi-
librium equations for the relevant atoms (e.g., H, He, C, $i) to calculate
absolute emergent intensities. The assumed T (A} relation is then adjusted to
yield an optimum fit to all available data. A sequence of successively more
refined models have been constructed in this way, starting with the Utrecht
Reference Photosphere (283, 239), which was soon displaced by the Bilderberg
Continum Atmosphere (BCA) (248). Introduction of ultraviolet space obser-
vations led to the highly-successful Harvard-Smithsonian Reference Atmo-
sphere (HSRA) (summarized in Table 7-1) (249); subsequent work (645 ;646)
has produced a new model (“Model M”) that fits a very large body of data
extremely well. Improvements in these models are constantly being made,
and important advances will result when eclipse data are taken into account
and spectrum-line synthesis is pushed to its utmost. It should be recognized

that there are still many fundamental difficulties to be faced by these semi-
empirical models. One of the most worrisome is that observation reveals
that the layers under analysis contain a great deal of small-scale structure
and are far from hemogeneous. Seme difficult questions remain essentially
unanswered: To what extend does the value assigned to a physical variable
in any layer of a one-dimensional chromospheric model represent the average
property of that layer? How large is the fluctuation of any physical property
about its mean value? Are fluctuations in various properties correlated? It
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TABLE 7-1

Harsard—Smithsonian Reference A tmosphere™

Ts5000

1.00 — 8
200 — 8
316 — 8
631 — 8

1.00 —
200 —
3.16 —
631 —

1.00 —
2.00 —
316 —
6.31 —

1.0 —
200 —
3.16 —
6.31 —

1.00 —
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3.16 —
6.31 —

1.0C —
200 —
316 —
6.31 —
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316 —
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Adapted from (249), by pernussion.
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is imperative that we face these queries, for one-dimensional models arc the
hest we can hope to obtain for stellar chromospheres, and the validity of
such models will be supported or undermined, depending on the answers to
the questions posed above for the solar chromosphere,

n the corona, which is optically thin, the density structure can be inferred
from the brighiness of the light scattered by free electrons, after allowing for
the effects of integration along the line of sight [sce, e.g., (94)]. Coronal
density distributions have been tabulated for the equatorial and polar
directions, for varying conditions during the solar cycle @77); a typical
electron density near the base of the corona is of the order of 10% cm™ 3.
That the temperature of the corona must be very high was first recognized
by Grotrian, who suggested that two broad, faint absorption features scen
in the light scattered by the corona were the very strong Ca II H- and K-
lines of the solar spectrum, “washed out” by electron scattering at very high
temperatures. This idea was [urther supported by the identification, by Elden,
of coronal emission lings with transitions in highly ionized atoms—e.g.,
Fe X (76374) and | Fe X1V] (15303). Modern determinations of the temper-
ature in the corona are in agreement with one another and give a typical
temperature of about 1.5 x 10° “K, based on (a) thermal line-widths,
(b) lomization equilibria (including dielectronic recombination!), and
{c) radio-wavelength noise temperatures. X-ray observations reveal intensely
hot regions (several millions of degrees) near active regions. For more de-
tailed discussion sec (20) and (94).

The temperature distributions shown in Figures 7-31 and 7-32 cbviously
bear little resemblance to the classical predictions of radiative-convective
equilibrium models, and indicale a major breakdown in this approach in
the outer Jayers of the atmosphere. The classical models are adequate to
predict the structure of the photospheric layers where the visual continuum
and line wings (and very weak lines) are formed; but once the temperature
rises outward we must introduce new phenomena and an appropriate
heating mechanism (clearly the Cayrel mechanism is not the cause of the
rise, for T, becomes > T !} It was suggested by Biermann (89) and Sch-
warzschild (364} that acoustic waves would be generated in the solar con-
vection zone, propagate outward, steepen into shocks, and deposit energy
in the material, heating it to high temperatures. A specific mechanism for
the production of soundwaves was suggested by Lighthill (394). Subsequent
work has also called attention to the role of magnetohydrodynamic waves,
for the outer solar atmosphere has a significant magnetic field. In addition,
the discovery {393) that large regions on the solar surface oscillate with a
period of about 300° provided another source of nonradiative energy that
can be tapped to produce heating. The problems of wave generation, pro-
pagation, and dissipation are complex and difficult, and a tremendous
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amount of work has been done on the subject; an excellent review of the
field has been given by Stein and Leibacher (602) [see also (20)]. No fulty
consistent picture of the heating has yet emerged, but current work indicates
that the S-minute oscillations can indeed heat the upper chromosphere and
corona, while shorter periods are required to heat the lower chromosphere.
Estimates of the actual amount of mechanical energy input can be made by
comparing the semiempirical temperature distributions with radiative-
equilibrium models [e.g., (17) or {380)] and calculating the energy required to
produce the heating. Difficultics here are that at the temperature minimum (1)
T in the empirical models ies below T in the radiative models, and (2) small
errors in T (say +100°K) imply unacceptable errors in the energy input
estimates. Much work remains to be done to establish both the empirical
and theoretical temperatures to the required accuracy.

The presence of temperature plateaus followed by large jumps in temper-
ature can be understood in terms of thermal stability of the gas. In essence,
the gas is heated by mechanical input and cooled by radiative losses, which -
establish a balance [see (628) and (20)]. The losses arc largest just as some .
atom is becoming nearly completely ionized, and this tends fo provide a
thermostatic action that holds the gas near a definite temperature. Thus,
hydrogen provides the dominant cooling in the low chromosphere and keeps
the gas at about 7000°K to 8000°K.; after hydrogen becomes too strongly
jonized to be effective, losses from He T and He 11 dominate, and the tem-
perature jumps to about 20,000°K to 30,000°K; and, finally, after helinm is .
strongly ionized, losses from ions of C, N, O, Ne, Mg, and Si dominate,
yielding strong cooling rates at temperatures above 10° °K. In regions of
steep gradients, conductive energy transfer also becomes extremely important
and the final temperature profile is a result of all these mechanisms operating
together. '

Given that the sun is a typical G-dwarf, it is clear that we must conclude
that the chromosphere—corona—wind phenomenon must be a basic property of
stars in general. There is ample evidence that this is true. Thus, most stars
i1 which convection zones exist show chromospheric emission features in-
the Ca T1 H and K lines (cf. $12-2), with many stars that are younger than the
sun showing very active chromospheres. An extreme case is provided by the
T-Tauri stars where most of the prominent spectral features arise in a
“super-chromosphere” and very dense wind. Mass loss in stellar winds,
particularly in the early-type supergiants and WR stars (estimated rates up .
to 10761073 # o/year) is well established. These winds make the solar
wind (mass-loss rate = 107 14 # o /year) seem puny by comparison.

The solar atmosphere provides a kind of Rosetta stone that helps us first
understand a rich “literature” containing many dramatic stellar phenomena;
these phenomena, in tury, extend our knowledge over a broad range of
physical conditions. Further, by studying large numbers of stars, we cai
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hope to infer, from the behavior of the ensemble, the time-evolution of the
phenomena for an individual such as the sun, on otherwise inacessible time-
scales (billions of years). Work at the interface between solar and stellar
atmospheres is both active and richly rewarding [see, e.g. (344)]. and will
unquestionably be synergistic in the development of our concepts of stellar
atmospheres.
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The Line Spectrum :
An Overview

Superimposed upon the continuum of a star, we observe discrete spectrum
lines, either in absorption or emission. These lines arise from transitions
between bound states of atoms and ions in the star’s atmosphere. An ex-
tremely wide variety of lines is found, from a wide range of atomic and

ionic states, leading to very different-looking spectra for different classes of |

stars. A panoramic view of this variety is best obtained by inspection of
actual stellar spectra, particularly as shown in (5) and (465) [see also (261
Chap. 14;330, Chap. 1)]. One finds that lines in stellar spectra show enormou&;
ranges of strength and striking variations in profile. A close examination
shows that the spectra can be arranged into a two-dimensional scheme
reflecting primarily the effective temperature and luminosity of the star. Tt
would take us too far afield to describe here the details of this procedure—
developed to a high state of refinement by Morgan and his collaborators—or
the full implications of the results; therefore the references cited above should
be studied carefully. Suffice it to say, the spectrum lines contain a wealth
of information concerning the run of physical variables in the star and
therefore provide important diagnostic tools for inferring the state of the
atmosphere.
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Spectral Yines are much more opaque in the core than in the wing, and
hence can provide a sampling of a wide range of atmospheric depths, from
very high layers (seen in the core) to the deepest points dbscyvable (the
depth of continuum formation). Further, lines are narrow in frequency-width,
and hence are sensitive to the effects of velocity fields; they thus provide
the means by which motions of the material in stellar atmospheres can be
studied.

Moreover, it is clear that the strength of a given line must contain infor-
mation about the number of atoms absorbing photons along the line of
sight, and hence about the abundance of that chemical species in the atmo-
sphere. Thus, by a suitable interpretation, the line spectrum oflers the
opportunity to perform a quantitative chemical analysis of the material
of which stars are composed. This information, in turn, provides valuable
clues when we attempt to construct a coherent picture of the structure and
evolution of stars, the Galaxy, and the Universe as a whole.

Tt is, therefore, of prime importance to develop a theoretical framework
within which line profiles can be predicted and the desired physical infor-
mation can be inferred. A great deal of effort has been devoted by many
astronomers to this end, and considerable progress has been made. The
second part of this book will describe the theoretical techniques that now
exist to treat the problem of line-formation. In this chapter a few of the
basic aspects of the problem, and a summary of the kinds of information
required to solve it will be pointed out to orient our later work.

8-1 Observational Quantities

A line in a stellar spectrum is most completely characterized by its profile,
which is the observed distribution of energy as a function of frequency. For
all stars except the sun, we can observe only the flux integrated over the
entire disk of the star. We measure F, (the flux in the line) refative to F.
(the flux in the continuum) and describe the profile in terms of its absorption
depth

A, =1 — (FJF) (8-1)
ot residual flux

R, = (F,/F)=1— A, (8-2)

In the case of the sun, the frequency distribution of the radiation can be
observed at each point on the disk. We can then describe the profile in
terms of I,(0, i), the emergent specific intensity, in units of the nearby
continuum intensity 7.(0, p), and write

al@) =1 — [10, w10, p] (8-3)



270 The Line Spectrum : An Quverview

or rdu) = LO, WAL0, p) = 1 — a,(p) - (84

Information about the center-to-limb variation of a profile is extremely
valuable because it provides (via the Eddington—Barbier relation) an addi-
tional depth-resolution otherwise unavailable, and places important con-
straints on the theory. Such information is, of course, available only for the
solar spectrum, and is one of the reasons why the solar spectrum provides an
ideal testing-ground for proposed theories of line formation.

Often, because of the low light levels involved, it is not possible to measure
a stellar spectrum with sufficient resolution to determine a line-profile in
detail, and one must then substitute the integrated line strength-—the
equivalent width—in place of this more detailed information. For stars,
where we measure the flux from the disk, the equivalent width is defined as

mEJ?AJV (8-5)
in frequency units (hz), or, more usually, as
W;EﬁfAﬂm (3-6)

in wavelength units (A or mA). For the sun, where angular information is
available, we can define, in addition,

Wi = [ aw dv (87

or Wi = [, aw) di (8-8)

The equivalent width is clearly the width of a perfectly black line with the
same area under the continuum level as the line under study (hence the
name); obviously W gives a direct measure of the total energy in the con-
tinuum removed by the line (assuming that it is in absorption).

Tdeally, one attempts to obtain profiles rather than equivalent widths, for
they contain far more information. In particular, it is apparent that there
is an infinite number of radically different profiles (each with distinct impli-
cations for the structure of the atmosphere) that will produce a given equiv-
alent width. An inferpretation based on an equivalent width alone can
be misleading {the same remark holds even for profiles!). Nevertheless,
approaches exist that use equivalent width information from many lines
simultaneously {the curve of growth), and these can yield important and
reasonably unambiguous results. The actual measurement of the data re-
quires refined instrumental techniques; we shall not discuss these techniques
here as they lie beyond the scope of this book, but excellent discussions exist
clsewhere [see, e.g., (300, Chaps. 2, 4, and 13)]
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8-2 The Physical Ingredients of Line-Formation

As in the case of the continuum, the calculation of the flux in a line requires
the solution of a transfer problem, for the observed radiation originates
from a wide range of depths, over which the physical properties of the material
may vary more or less strongly. Let us inquire here what information is
needed to formulate and solve the transfer equation in a spectrum line.

Consider a frequency v, and suppose that we know the continuous absorp-
tion and scattering coefficients, x, and o, and the line absorption coeflicient
71, as a function of depth. We could then construct the line optical depth
scale

7= [ 0w ) 47 (89)
and continuum optical depth scale
q;fmm+mmz (8-10)

Then if, in addition, we knew the run of the source function S,, we could
immediately calculate

Fo=2 [ S dr, (8-11)

Fo=2 [} S ol de, (8-12)

and hence A, from equation (8-1), and W, from equation (8-6) if desired.
Of course, in practice, it is the source function that must be determined. Ouly
in the trivial case of LTE is S, known beforehand (namely S, = B,). As
was described in Chapters 2 and 7, in the general (non-LTE) situation, the
source function and optical depth depend explicitly upon the occupation
sumbers of the particular levels involved, but these, in turn, depend upon
the radiation field, and hence, ultimately, upon the source function. Thus
what is required, as was the case for the continuvum, is a simultaneous, self-
consistent solution of the coupled transfer and statistical equilibrium
gquations.

Before we attempt to do this, however, some insight into the kinds of
information that will be required to attack the problem can be gained from
the foflowing phenomenological arguments. Consider the propagation of
photons in a line with overlapping continuous absorption and scattering.
Some photons will interact with the continwum, others with the line opacity.
Some of the photons absorbed in the line will be scattered, and in general
will suffer redistribution in frequency and angle according to the redistri-
bution function R(Y,w'; v, n). Others may be destroyed by collisional de-
excitations or transitions to other levels. Photons may be introduced into
the line by collisional excitations or by transitions into the upper level from
other levels, with subsequent cascade to the lower level. A transfer equation
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accounting foyr these processes will be of the form
,u(é‘l‘/(?z) = r(Kv + o + XIqbv)Iv + ]Cva + O‘.J‘.
+ W 93 (deofdm) jow NI, RO, v, m) + EoBy (8-13)

Here the coupling coeflicients 5 and ¥ describe, respectively, the fraction of
the photons scattered, and those emitted by other processesat a characteristic
temperature T'r (not equal, in general, to the local electron temperature).

At this point we can see four important ingredients needed to compuie
line profiles theoretically.

(a) We must be able to calculate the absorption profile ¢,.. This will be
treated in Chapter 9.

(b) We must be able to specify the coupling between photons and the
material via the parameters 7 and . In general, the expressions for these
quantities may be very complicated and may contain both radiative and
coltisional rates from the levels giving rise to the line, as well as terms coupling
to other levels. The specification of § and 7 follows from the statistical equi-
librium equations for the atom as a whole. We shall examine this aspect of
the problem in Chapters 11 and 12.

(c) We must be able to calculate the redistribution function R(v, n'; v, n),
and to determine the effects of the details of photon scattering upon the
line profile. We shall consider these problems in Chapter 13.

(d) We must be able to solve the resulting transfer probler. Here we will
simply refer back to {he difference-equation methods discussed in Chapter 6.

In all four of the areas listed above, great strides forward have been made
recently. The greatest improvement in our understanding has come in
regards to points (b), (c), and (d). In early treatments of line-formation, the
question of redistribution was often evaded, and line-scattering was treated
as coherent. We know today that this is a poor approximation, and that,
in fact, a much better approximation is the opposite extreme assumption
of complete redistribution over the line. In the specification of the parameters
7 and Z, the classical approach was sketchy, and led to some serious mis-
conceptions. More modern treatments have brought to light the importance
of a clear understanding of these coefficients. In the area of actually solving
the transfer equation, important advances have been made possible by
application of high-speed, Jarge-capacity computers, using the recently-
developed, powerful, numerical techniques.

Finally, it, it should be noted that in equation (8-13} it has tacitly been
assumed that the atmosphere is static. The impostant effects of velocity
fields upon line-formation are discussed in Chapter 14 where several different
techniques for solving the transfer equation in moving media are described.
The role of lines in establishing the dynamical state of the atmosphere is
discussed in Chapter 15 in the soctions on radiatively-driven stellar winds.

9

The Line Absorption Profile

The profiles of lines in stellar spectra contain information about both the
physical conditions and the abundances of chemical elements in the stellar
atmosphere. Therefore they provide extremely valuable diagnostic tools and
must be exploited as fully as possible. To carry out an analysis of observed
line profiles one needs to know how the distribution of opacity with frequency
in the line—the line absorption profile—depends upon local conditions of
density, temperature, ¢tc. For an isolated atom with levels having essentially
infinite lifetimes, the spectral lines would be almost perfectly sharp; but in
reality there are several different mechanisms that produce an indefiniteness
in the energy levels of real atoms in a plasma, and thereby lead to line
broadening.

The first line-broadening mechaaism to be considered below is natural
(or radiation) damping, which refers to the line width produced by the finite
lifetime of the atomic levels set by their decay via the radiation process itself.
Natural damping occurs even for a solitary, isolated atom. If the atom is
imbedded in a plasma, then there will be an additional pressure broadening
of the line caused by perturbations of the radiated wavetrain through
collisions with other atoms, or charged patticles, in the gas.
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Classically, pressure broadening is described in terms of two. limiting
approximate theories. The first of these is known as impact theory. Here the
radiating atom is considered to be an oscillator that suffers a collision that
occurs essentially instantaneously, and that interrupts the radiation wave-
train with a sudden phase shift, or by inducing a transition. These collisions
thus cause the radiator to “start” and “stop” in intervals of finite duration,
leading thereby to a frequency spread in the radiated wavetrain, and to a
shift of the line away from its unperturbed frequency. The alternative
approach is the statistical theory in which we consider the atom to be
radiating in a field produced by an ensemble of perturbers. This field will
fluctuate statistically about some mean value as a result of motions of the
perturbers. At a given value of the field, the energy levels of the radiating
atom are shifted slightly, and, correspondingly, the frequency of the line is
altered. The intensity of the radiation at any specified frequency shift is
taken to be proportional to the probability with which a perturbation of the
appropriate field strength occurs.

The basic limits on the classical theories of pressure broadening are st
by their inability to account for the actual structure of the radiating atom,
or for transitions produced by the collisions with the perturbing particles.
Both of these defects are overcome in the quantum theory of pressure
broadening, which yields results in good agreement with experimental
determinations.

Finally, we must account for the fact that in a stellar atmosphere we
observe an ensemble of atoms moving with a velocity distribution along the
line of sight. The profile for each atom is Doppler shifted according to its
line-of-sight velocity, and the profile seen from the entire ensemble is a
superposition of these shifted atomic profiles, calculated by a convolution
with the velocity distribution.

The theory of line broadening has progressed enormously in the past
decade, and reliable calculations now exist for many profiles of fundamental
astrophysical interest. The quantum theory has become very refined, but
also quite complicated. As excellent treatises exist on the general subject
of line broadening [see particularly (264;268 ; 629)}, only a bricl summary
of the most important results will be presented in this chapter; for further
details one should consult the books just cited or the research literature, for
which references are compiled in (228;229;232).

9-1 The Natural Damping Profile

ENERGY SPECTRA, POWER SPECTRA, AND
THE AUTOCORRELATION FUNCTION

We first derive some basic relations that will be needed in later dis-
cussions. Consider a time-varying oscillation of amplitude f{(f). The Fourier
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transform F(w) is defined to be

F((j)) = f_com j‘(t)e—i(or dl . (9_1)
which satisfies the fundamental reciprocity relation
16 = o) f © Fle)e™ do (9-2)
The quantity
E{w) = 2r) " F¥w)F(w) (9-3)

1s called the energy spectrum of the oscillator. This designation derives from
the fact that

[7 Ee)do = oot |7 FrolFerdo = [ rofw de 04

which may be verified by direct calculation, using equation (9-1). If f(r) were
the voltage across a one-ohm resistor, then f*(r) /(1) would be the instan-
taneous power delivered to the resistor, and the integral over all time gives
the total energy. Thus, E(w) is a direct measure of the energy in the wavetrain
at frequency .

In many cases, the energy spectrum itself is not used, but rather the energy
delivered per unit time—i.e., the power spectrum I(w), which is defined as
2

Hw) = lim 2z7)7!

T—=;

(9-5)

[Fs S ar

-T2

However, for oscillations of finite duration (or with, say, an exponential
decay), the power spectrum will be zero because on the average over an
mfinite time interval, the finite total energy emitted yields zero power. In
these cases, which are of practical interest, we use the energy spectrum itself,
assuming that we observe an ensemble of oscillators created at a constant rate
with random phases; a finite power then results, with a frequency distribution
proportional to the energy spectrum of an individual oscillator.

In certain situations it is not possible to calculate the power spectrum
directly, using equation (9-5). It is then valuable to make use of the
autocorrelation function
T2
-T2

&) = lim T7!

T—oa

SRS+ s)dt (9-6)
from which the power spectrum is obtained by the relation

Ho) = 2r)~ ff“w B(sye™ ds (9-7)
as may be verified by direct calenlation, using a limiting procedure in the

integration over s. The autocorrelation function provides a powerful tool
for calculating power spectra of a radiating atom perturbed by collisions.
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THE DAMPLD CLASSICAL OSCILLATOR

The simplest picture one can construct of the process of emission.in a
line is to consider the atom to be a classical oscillator. In §4-2 it was shown
that the profile from a driven damped oscillator is Lorentzian, by a calculation
of the power emitted by the oscillator. We shall apply the techniques outlined
above to a decaying oscillator to show that the same profile is obtained. From
classical electromagnetic theory the equation of motion [cf. equation (4-27)]
for a radiating oscillator is

X = —wgix — p% (9-8)
where v is the classical damping constant
7 = (2e%wy* 3me?) (9-9)

The radiation damping term is numerically quite small, and may be estimated
using the undamped solution x = x, exp(iwyt), which yields

%= —(mwg? + iywe)x (9-10)
Neglecting terms in 7, the solution of equation (9-10) is
X = xpe @0l IZ (9-11)
which is an exponentially damped oscillation, Calculating the Fourier
transform, assuming the oscillation starts abruptly at r = 0, we find
Flw) = x, J:O e Mmoo gt = xoflilw — wy) + 4] (9-12)
The energy spectrum of the oscillator is then
E(w) = (x°/27) [0 — 0o + (£9)*]7" (9-13)

The power spectrum of an ensemble of such oscillators created continuously
with random phases is proportional to E(w), hence the profile, normalized
such that

f“ Ie) dw = 1 (9-14)
is f{w) = (7/27) [0 — o) + GyP] ! (9-15)
The damped classical oscillator thus yields a Lorentz profile with a full

half-intensity width y. In wavelength units this width is
AL, = Qreyjw®) = (@Are3me?) = 1.2 % 107+ A (9-16)

This width is much smaller than those observed in laboratory or stellar
spectra. We must therefore develop a more general picture of the radiation
process.
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QUANTUM MECHANICAL CALCULATICON

A quantum mechanical analogue of the damped oscillator is obtained
by assuming the radiation arises in transitions by an atom from an excited
state of finite lifetime to the ground state. Following Wigner and Weisskopf,
we write the probability of finding an atom in the excited state j as

Pyt) = ‘J’T‘/’je—n (9-17)

where I = A, the spontaneous emission rate. Then the time development
of the wave function of the state is

l/fj(l', I)efl'zfz —_ uj(r)efiijﬁre—l'tjz — uj(r)e—(fmﬁ%r)z (9—18)

Consistent with the uncertainty principle, we consider that the decaying
state j (with characteristic lifetime Af;) no longer has a perfectly defined
energy F;, but is, rather, a superposition of states with energies spread
about E; (with a characteristic width AE; ~ #/Az;). From the fundamental
reciprocity relations of quantum mechanics, the amplitude of the energy
distribution is given by the Fourier transform of the time dependence of the
wave function, and the probability distribution of energy states is given by
the square of the amplitude. Thus calculating the Fourier transform of
equation (9-18), it is clear that the result must be of the same form as that
derived from equation (9-11), and by analogous arguments we obtain finally

Hw) = (27 [(er — wo)® + GI)*]™* (9-19)

From equation (9-17) we see that I' is to be interpreted as the reciprocal
of the mean lifetime of the upper state. If several transitions out of the upper
state U are possible, then

Ty =3 Au (9-20)

i<U

1s the appropriate width of the state. Suppose the line under consideration
arises from a transition between two excited states, so that the lower state
L also has a width I'; given by an equation analogous to (9-20). The line
profile must, in general, reflect the width of both states. We assume that the
distribution of substates of each level around its nominal energy is given
by a Lorentz profile with the appropriate I'. Let 4 = /2 for either level,
and let x = {E — E;)/h be the frequency displacement of a particular substate
from the nominal energy E,. We assume that the probability of ending in a
particular substate x” of the lower level is independent of the substate x
of the upper level from which the transition starts; then the joint probability
of starting in substate x and ending in substate x' is

plx, x') = (0:0g/m) (¥ + 8" )x? + 6,.%)] 7 (9-21)
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If we restrict attention (O trapsitions producing radiation of a specific f_re~
quency , then x and x’ must be refated by mp + x — X = @, OF writing

XOE(DQC‘O(M

=X — Xg (9-22)
The total intensity at 18 obtained by summing over all upper substates X,
with x' fixed by equation (9-22), that is

1) = |7, ple.x = xo)dx

_ Gyos j‘co dx — ©-23)
T Jee (4 N (x —x0)” 01 ]

This integral may be evaluated by contour integra.t.ion using the resic_iue
theorem, taking into account the poles at z = i;ay and z = Xo + i,
Performing the integration one again finds I(w) 1s given by equation (9-19}
but now with the damping width given by

Fr=T.+Tyu (9-24)

Hence the profile is Lorentzian with a half-intensity width equal to the sum
of the half-intensity widths of both levels.

Exercise 9-1: Evaluate eguation {9-23) by contour integration and verify equation
(9-24).

The Lorentz profiles calculated above are, strictly speakiug,‘ emission
profiles. If, however, we assume detailed balancing, then the absgrpnon profile
will have the same form. To convert to absorption cross-sections per atom
we recall from equations (4-34) and (4-35) that

(7 odv = (metmalf 9-25)

Thus using a profile of the form of equation (9-19) and converting to ordinary
frequency units, the absorption cross-section 1s

ne’ (T'/4n*) 926
w (?E) F o =vr + W/ (-26)

Radiation damping is of primary importance for strong lim?s in lov\{-densny
media, for example Lo in interstellar space. I.n mosF cases of interest in s.tellal;
atmosphetes, however, the line is formfad in regions where the demsity ©

perturbing atoms, ions, and electrons is high enough that pressure broadening

is significant (ot dominant).
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9.2 Effects of Doppler Broadening:
The Voigt Function

When one observes a line in a stellar atmosphere (or a laboratory plasma),
one sees the combined effects of absorption by all atoms in the ensemble.
Fach atom will have a velocity along the line of sight, measured in the
observer’s frame, and the intrinsic profile of that atom will be Doppler-shifted
a corresponding amount in frequency. If the damping process producing
the intrinsic profile of each atom is uncorrelated with its velocity, then the
shifted profiles may be superimposed to yield the total absorption cross-
section by a simpte folding procedure.

Assuming the plasma is characterized by a kinetic temperature T, the
velocity distribution is Maxwellian, so that the probability of finding an
atom with a line-of-sight velocity £ on the range (¢, £ + d&)is

W(E) dé = (n¥¢) 7 exp(=&3/E0") dd (9-27)

where &, = (2kT/m)* = 12.85 (T/10* A)* km s~ %, where 4 is the atom’s
atomic weight. Then, if we observe at frequency v, an atom with velocity
component ¢ is absorbing at frequency v[1 — (£/c}] in its own frame, and
the absorption coefficient for that atom is a(v — {v/c). The total absorption
coefficient at frequency v is thus given by the convolution integral

0= [7 by - Sy de (9-28)

Equation (9-28) can be applied to any absorption profile to allow for the

effects of Doppler broadening, for the remainder of this section consideration

will be restricted to the case where the intrinsic profile is Lorentzian.
Substituting equations (9-26) and (9-27) into equation (9-28), and defining

v = (v — vp)/Avy (9-29)
y = (Av/Avp) = (£/C0) (9-30)
and a = ([/4r Avp) (9-31)

where Avy, is the Doppler width of the line

Avp = (£ovo/c) (9-32)
we find the absorption coeflicient can be written as
o, = (n¥e*f/me Avp) Hia, v) (9-33)
a fo e dy
her Hia, v} = — —_— -
where (a, ) . fﬂw P (9-34)
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is known as the Voigt fimetion. In deriving equation (9-34), the approximation
that vje = Evgfe (appropriate in a steliar atmosphere) was made. Extensive
tables of H(a, v) are given in (219) and (314).

General methods of computing the Voigt function are described in (314;
527; 528). The usual case of astrophysical interest is when a <« 1; in this
limit one can develop a convenient expression for H{a, v) as a power series
in the parameter « as follows. Using the Laplace transform of the cosine
function .

L e” % cos bx dx = afla® + b*) {9-35)
and the addition rule for cosines, the Voigt function can be written as

=8

Hia, ) = n~° fow dx e”* cos uxJ. _dy e”? cos xy (9-36)
But the cosine transformation of the Gaussian is
J‘:; e cos xydy = Jme ¥ (9-37)
from which we see that
H(a,v) =7 * J‘OL ¢TI TN cog gy dx (9-38)

Assuming that @ « 1, we can replace e”“* by ils power series, and inte-
grating term by term we find

Ha )= ¥ aH,() (9-39)
=0
where Hn = [(—1y/z*n!] J:G e cos vx dx (9-40)
From equation {9-37) it follows immediately that

Ho(v) = e (9-41)
Integrating by parts, the first odd-order term can be written as
3 = (—2/nt — o e gin ex dx A7
H.(v) = (—2/7%) (1 v .fo e sin ox d.x) (9-42)
and using the sine transform of the Gaussian

fom e sin 2oy dy = e job e dy = F(v) (9-43)

we have
H,(v) = 2/n)2vF (@) — 1] (9-44)
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The function F(z) 1s known as Dawson’s integral; efficient techniques for
computing F(v) are given in (170). The functions H,{v) are tabulated in
{281) and (11,325) for n < 4. :

Exercise 9-2:  {a) Show that the Voigt function has the normalization
fir Ha, ) de = ¢

(b} Prove the tefation H,(v) = —[d*H,_,(©)/dv*}/[nin — 1)] from which higher-
order terms can be generated by recursion from Hy(v) and H(v). () Write explicit
formulac for H,(v), H,(v), and H,. (v}, expressing H,(v) in terms of F{). (d) Show
that for (@ + v%) » 1, Hia, v) = (z"¥a)/(a® + v?).

In view of the result of Exercise 9-2(d), we see that for v » 1, H(a, v) =
a/(m*v?). Thus a schematic representation of the Voigt function is

H(a, v) ~ ™" + af(nv?) (9-45)

where the first term applies in the line core, v < v*, and the second in the
line wing, v = v*, the quantity #* being chosen such that the two terms are
equal. The line core is clearly dominated by Doppler broadening, while the
line wings are dominated by the damping profile.

9-3 Collision Broadening: Classical Impact Theory
THE WEISSKOPF APPROXTIMATION

The simplest classical impact theory has its origins in an analysis by
Lorentz. who considered the atom to be a radiating oscillator that suffers
changes in phase during encounters with perturbing particles. It is assumed
that the collisions occur between the radiating atom and a single perturber,
one at a time. The collisions are assumed to occur essentially instantaneously,
so that the wavetrain suffers an instantancous phase dislocation that, in
effect, terminates it. During the time between collisions the atom is assumed
to be unperturbed. Thus suppose that the time between two successive
collisions is T, and that in this interval the radiator emits a monochromatic
wavetrain f{1) = exp(iw,t). The Fourier transform of this finite wavetrain is

exp[iim — w)T] — 1
I(C{) — CU())

ﬂ@ﬂ:ﬁHWWM: (9-46)

The energy spectrum E(w, T) of this wavetrain is given by substitution of
Flw, T) into equation (9-3).

In general there is not a unique time interval between collisions; rather,
these intervals are distributed probabilistically about some mean value. If
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the collisions occur as a result of a random-walk process, and the mean time
hetween collisions is v, then the probability that the interval between two
successive collisions lies on the range (T, T + dT}is '

W(T)dT = e TdT/7) (9-47)

Hence averaging over all collision times T, we obtain a mean energy spectrum
E(w) = (E(w, Ty = 2m) " J‘Ow F¥e, TYF(w, TYW(T)YdT (9-48)
Computation of the integral, with normalization, yields

N
S P T

(I'/27)
(0 — wp)* + (I'/2)°

(9-49)

Exercise 9-3: Derive equation (9-49).

The collision broadening theory described above again yields a Lorentz
profile (a result of assuming that all the collisions are distinct), with a damping
parameter I' = 2/t. To complete the theory we must obtain an estimate of 7.
As was done for the radiation-damped oscillator, we take the profile of an
ensemble of randomly phased oscillators, continuously created, to be pro-
portional to the energy spectrum of a single oscillator [averaged over all
times, as given in equation (9-49)]. If both radiation and collision damping
occur, with widths I' and T’ respectively, and are assumed to be completely
uncorrelated, then the profile is a convolution of the two Lorentz profiles.
By an analysis similar to that leading to equation (9-24), one may readily
show that the combined profile is again Lorentzian with a total width
I’ = Ty + . The effects of Doppler broadening can be taken into account
as in §9-2, by using a Voigt profile with the appropriate total damping width.

We must ntow calculate the mean collision time <. If the radiating atoms
and perturbing particles have atomic weights 4, and A4, respectively, and
both have a Maxwellian velocity distribution at a temperature T, then their
average relative veloeity is

v = (™ = [BkT/mmg)(A,~ 1 + A, Y]* {9-30)

Assuming that the effective impact parameter of the collisions responsible
for the broadening is p,, we then have

-1

17! = mpy*No (9-51)

and I' = 2rpy*No (9-52)

where N is the perturber density. We must now determine p.
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Following Weisskopf (661) we assume that (a) the perturber is a classical
particle; (b) the perturber moves with constant velocity past the atom on a
straight-line path with impact parameter p; (¢} the fnteraction between atom
and perturber is described approximately by

Aw = C,/r* (9-33)
where #(t) = (p? + v”?)%, t = 0 occurring at the point of closest approach;
and (d) no transitions in the atom are produced by the action of the perturber.
The validity of these assumptions will be considered later. The form of the
interaction in equation (9-53) is only approximate but holds over a fairly
wide range of distances. The value of the exponent p depends upon the
nature of the interaction. Values of astrophysical interest and the interaction
they represent are as follows: p = 2, linear Stark effect (hydrogen + charged
particle); p = 3, resonance broadening (atom A + atom A); p = 4, quadratic
Stark effect (nonhydrogenic atom -+ charged particle); p = 6, van der Waals
force (atom A + atom B). The interaction constant C, must be calculated
from quantum theory or measured by experiment.

The phase shift induced by the perturbation Is

nw = [ deydr = ¢, [+ eyrrar 054

The total phase shift n(p) = n(t = o) is found directly to be
n(p) = Cplrpfup’™ (9-55)
where v, = L 5(p ~ D]/TGD) (9-56)

Here T denotes the usual gamma function; for p = (2,3, 4, 6) one finds
W, = (7 2, /2, 3n/8).

We now assume that only those collisions that produce a total phase shift
greater than some critical value 74 are effective in broadening the line. The
effective impact parameter for such collisions is thus

Po = (Cpll»"p/nov)”(p—l) (9-57)
and the corresponding value for the damping constant is
I = 2aNo(C i, fnopy? ™Y (9-58)

Weisskopf arbitrarily adopted 7, = 1 as the critical phase shift; with this
choice we obtain the Weisskopf radius py from equation (9-37) and the
Weisskopf damping parameter I'y from equation (9-38).
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If C, is given, the theory described above vields a definite value for T,
and the results are found to be of the right order of magnitude. Yet there
remain serious defects in it. (1) The choice y, = 1 is arbitrary, and there 18
no means of determining a priori the correct value of 17, to be used. (b} The
theory does not account for the collisions that produce small phase shifts
even though the number of such collisions increases as p?. (c) The theory
fails to predict the existence of a [ine shift; as will be shown below this failure
arises from the omission of weak collisions, as mentioned in (b).

THE LINDHOLM APPROXIMATION

A significant improvement in the classical impact theory was made by
Lindholm (397;398) and Foley (221). In this approach we consider the radia-
tor to have an instantaneous frequency w(ty which, because of perturbations,
differs from the nominal frequency @y by an amount Aw{t). Then we write

) = exp I:icuot + 1£m Aw(t') dr} = gilwot taw] (9-59)

where #{t) is the instantaneous phase of the oscillator. To obtain the line
profile, we calculate the autocorrelation function @(s) defined by equation
(9-6). Let ¢(s) be defined by ¢(s) = e~ @os@(s), which eliminates the unper-
turbed oscillation. Then from equation (9-6),

(f)(s) = lim T~ f —twos *x[mor+n(t)]ellmu(l+S)+rz(IT*)} dt
- T2

T—ox

- fim T f 1, e gy (9-60)

T—ec

Clearly ¢(s) is the time-averaged value of the additional phase shift occurring
in the time-interval s. For brevity, write

nlt, s) = it + 5) — (o) (9-61)
Then ¢(s) = Lexplin(t, )]>r (9-62)
Further, writing d(s) = ¢(s + ds) — $(s), we have

dp(s) = (™ e — Ly (9-63)

where 1 denotes the change in phase occurring in the time-interval ds as a
result of collisions that take place in that interval. The phase change cannot
be correlated with the current value of the phase if the collisions occur at
random. Thus the average of the product can be replaced by the product of
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the averages, i.e.,

dp(s) = "y {e" — 1oy = G(s)e™ — 1Dp (9-64)

Ifwe can calculate the average of ¢, we obtain a differential equation for ¢ (s).

By forming the average over a sufficiently long time interval T, the
randomly-occurring collisions will happen at all values of ¢ with an appro-
priate statistical frequency. We then invoke the ergodic hypothesis to replace
the average over time by the appropriate sum over impact parameters. The
number of impacts that occur on the range (p, p + dp) in time ds is just
(2mp dp)Nv ds, hence

(e = 13p - (O = 15 = 2nNv ds f;” [ — 1Tpdp (9-65)

The integral in equation (9-65) has both a real and imaginary part, so we write
(M 1y = — N ds(og — icy) (9-66)

where o = 2x fo “T1 — cos n(p)]p dp = 4= fo sin?[In(p)] pdp (9-67)
and 6, = 2n f sin 7(p)p dp (9-68)

Combining equations (9-64), (9-65), and (9-66) and solving the resulting
differential equation with the initial condition ¢({)) = 1 we find

$(s) = exp[ — No(ogls| — igs)] (9-69)

Finally, calculating the intensity from equation {9-7) and normalizing the
profile we obtain

(Nvog/n)

! =
@) {wr — wp — Nuvo)® + (Nuveg)?

9-70)

Exercise 9-4 . Verify equations (9-69) and (9-70).
Thus Lindholm theory yields a Lorentz profile with a damping width
I = 2Nugy, (9-71)
and a line shift Awy = Noa, (9-72)

The prediction of a shift is in agreement with experiment, where such shifts
are observed. Quantum theory yiclds a profile of the same form as equation
{9-70), and gives explicit expressions for I and Aw, in terms of matrix ele-
ments of the perturbing potential and fransitions within the atom. As we
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shall see below, Lindholm theory yields a unique value of I'/Aw, for each
choice of p; quantum theory shows that this ratio actually varies over a
moderate range as T’ and N vary, and is different for each line. The effects
of Doppler broadening are taken jnto account by using a Voigt profile with
the appropriate damping parameter and shifted from its rest frequency by
an amount Amg.

The dominant contributions 0 og and o; come from quite different ranges
of impact parameter p. From equation {9-55) we note that n{p) o p e,
Thus for (p/pw) > 1, the integrand of o5 rapidly drops to zero [sec (629, 16)
or (638, 305)], and the dominant contribution to the line broadening comes from
(strong) collisions inside the Weisskopf radius—i.e., (p/pw) < 1. In contrast,
for o;, the integrand for (p/pw) < 1fluctuates in sign, and averages to nearly
sero. Thus the dominant contribution 1o the line shift comes from (weak)
collisions outside the Weisskopf radius. It is easy to understand physically how
the shift arises. The very weak collisions (n « 1, p» py) arc extremely
numerous and occur at an essentially constant rate, yielding an average
phase change per unit time of

7 = 2uNo [~ n(p)p dp (9-73)

where p* is chosen to assure that 5(p*) <« L. Butas can be scen from equation
(9-59), the rate of change of phase is by definition a change Acy in the oscil-
lator’s frequency.

SPECIFIC CASES

Lindholm theory has been most widely applied in astrophysical work
for the cases p = 3,4,and 6. For these cases the integrals in equations (9-67)
and (9-68) can be evaluated explicitly to yield the values listed in Table 9-1
[sce (629, 14) for details]. The last line of the table gives the value of 1, that,
when inserted into the Weisskopf formula [equation (9-58)], gives the
Lindholm I'. As #, is always less than unity, it can be seen that the Weisskopf
formula always Jeads to too small a value of I

TALLE 9-1
Results of Lindhelm Theory

e

p 3 4 &
e
272 Ca N 11.37 .. 8.08 .,
r Tl } CovsN } Cgs SN
Ay 9.85 294
/AW, 116 275
He 0.64 0.64 0.61
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Resonance broadening, p = 3, is of importance mainly for collisions of

hydrogen atoms with one another. As the atmosphere must be hot enough

that hydrogen is excited to the n = 2state (to produce the observable Balmer

tines) but cool enough thatitisnot dominantly ionized, resonance broadening

effects are of interest for solar-type stars. The interaction constant C; in
equation (9-53) for level n is

Cy = (e*f1,/2mm ) (9-74)

[see (662; 112, 231)]. A quantum mechanical calculation gives a I slightly
different from the Lindholm value, namely

Ty = (1670, Ca/3) = (4nyef1,/3mv,,) (9-75)

For the hydrogen lines there is no shift Aw, because individual Stark com-
ponents split symmetrically about line center (see §9-4) and the shift is
identically zero. Resonance broadening is most significant for the lowest
members of a series where Stark broadening is the smallest. The effects of
resonance broadening have been shown to be important in the solar Ha line
but negligible for higher series members (146).

Quadratic Stark effect, p = 4, is important for the broadening of lines of
nonhydrogenic atoms and ions by impacts with charged particles {electrons),
and is the dominant pressure-broadening mechanism for these lines in the
atmospheres of early-type stars. In applications of the classical Lindholm
theory the interaction constant C, was typically estimated from experimental
measures of line shifts in electric fields or from time-independent perturba-
tion theory for the quadratic Stark effect [see (11, 319-320) or (638, 326-328)
for examples of this procedure]. The resulting damping widths are usually
much too small, however, because the Lindholm approximation assumes the
collisions are adiabatic (i.e., do not cause transitions in the radiating atom};
this assumption is frequently poor, and accurate quantum mechanical calcu-
lations including nonadiabatic effects (cf. $9-5) yield much larger line-widths.

Van der Waals interactions (p = 6) of non-hydrogenic atoms in collisions
with neutral hydrogen atoms is the major source of pressure broadening in
solar-type stars. The usual classical treatment accounts for the dipole—dipole
inferaction term in the potential, and yields [ cf. (629, 91-97; 638, 331-334)]

Aw = C/r® = ®nay*[R} — RA)/(hr®) (9-76)

where o is the polarizability of hydrogen and R? is the mean square radius
of the two levels. Quantum mechanical results are sometimes available for
R2: if not, hydrogenic estimates are used. Using Cy determined in this
manner, I can be computed from Lindholm theory. When this is done
(e.g., for lines of Fe I), it is found that the predicted values are much too small,
by factors of 5 to 30 (382). Quantum mechanical calculations that again




288 The Line Absorption Profile

employ only the dipole-dipole term do not lead to large increases in I’
[e.g., (264; 98; 86;599)], which points to the breakdown of the dipoiefdipole
approximation rather than other theoretical problems [see also (301; 302;
541)]. Calculations using the more realistic Lennard-Jones potential (303}
lead to significantly larger widths. Attempts have been made to include more
terms in the expansion of the interaction potential (233); this increases I,
but stilf falls short of the observed values. The expansion technique converges
slowly, and an alternate approach, applied to the lines of Fe I, evaluated the
exact expression for the interaction using scaled hydrogenic wave functions
(116} and showed reasonable agreement between predicted and measured I's.
Yet another method is based on the proposal that the dominant interaction
Jeading to the line broadening is between the perturber and the valence
electron (539; 540). One can then use a Smirnov potential (578) and obtain
an expression for the damping parameter. This approach has been used to
produce extensive tables (193) giving the parameters o and § in the formula
I' = NuT*, as functions of the effective quantum numbers #* of the lower
and upper levels, for s—p, p—d, and d-f transitions.

VALIDITY CRITERIA

{1) Aneflective impact time 7, can be defined such that 7, times the peak
value of Ae for a collision at the effective impact parameter, namely C,p, " 7,
yields the total phase shift given by equation (9-55). This gives

Ts = (ljlppﬂ/v) {9"77)

For impact theory to be valid, we demand that only one colliston at a time
oceur, so that 7, < T = 1/(Nnpo®s). Writing N = 3/(4nr,*) where r, is the
mean interparticle distance, we find (z,/7) = 31/,(po/ro)°. Thus impact theory
will be valid only when the density of particles is so low that the Weisskopfl
radius is small compared to the interparticle distance. .

(2) Ttis clear that, as p — oo, the effective impact time 7, becomes larger
and larger, and eventually exceeds 7, the mean time between collisions, so
that the collisions overlap. Thus from the very weak collisions there is an
essentially continuous perturbation of the atom, and here we expeet statistical
theory to begin to be valid. Indeed, we saw earlier that these weak collisions
produce the line shift, just as would be given by the application of a steady
perturbation. Even though Lindholm theory (an impact theory) treats the
weak collisions, the calculation is not strictly logicalty consistent.

(3) Impact theory fails for sufficiently large frequency displacements Acg
from line center, and statistical theory becomes valid. In impact theory, it
follows from the general properties of Fourier transforms that the charac-
teristic interruption time t corresponding to a frequency displacement Aw i
1 ~ 1/Aw. For sufficiently large Aw’s we will eventually have © « t,, and
impact theory breaks down. These values of Aw correspond to large phase
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shifts (i.c., Awt, > 1} and hence to the strong collisions that occur inside the
Weisskopfradius. It is difficult to construct a theory that makes the transition
from impact to statistical theory. A useful conceptualization 1s to suppose
that there is a “boundary” frequency Aw, inside of which impact theory holds
and beyond which statistical theory is valid. To a fair approximation [see
(637; 306}] Aw, ~ Awy where Amy denotes the frequency shift produced
by a perturber at the Weisskopf radius py.; 1e,,

Aary = (@/Cpp 7)1 5 (9-78)

Note that Awy, corresponds to a phase shift of unity. We shall sec in §9-4 that
equation (9-78) implies that broadening of the hvdrogen lines by ions follows
the statistical theory, while electron broadening is given by impact theory.

{4) Classical impact theory assumes that the collisions are adiabatic—i.e.,
transitions are not induced in the atom. A collision occurring in an impact
time 7, will have Fourier components of frequencies up to w, ~ 1/1,. To
guarantee that the collision is adiabatic, «w, should be much smaller than any
characteristic transition frequency c;;; i.c.,

wy = 1f1, « wy = |E; — E,|/k (9-79)

For nondegenerate levels, the energy separation is often large enough that
the condition stated above will be met. But for degenerate levels {(e.g., for
hydrogen}, the energy separation between levels will be proportional to the
perturbing field itseff; ie, |E; — Ej| & #C,/p? = h Aw(p). Then the condi-
tion for adiabaticity implies that Aw(p)r, = n{p) >» 1; that is, only collisions
inside the Weisskopf radius will be adiabatic. Tn the case of hydrogen, Awy,
for ions is very small, and for virtually the entire profile the statistical theoty
is valid, and the collisions causing the broadening occur inside the Weisskopf
radius. Thus the ion broadening will be adiabatic. Precisely the opposite is
true for electrons. Here Awy will be large, and almost the whole profile is
described by impact theory with the relevant collisions lying outside the
Weisskopf radius. The electron broadening is strongly nonadiabatic {and
hence must be described by quantum theory). When the adiabatic assumption
breaks down, much larger damping parameters than those predicted by
classical theory are found; for this reason the modern quantum mechanical
results are often drastically different from earlier classical work.

9-4  Collision Broadening: Statistical Theory

The basic picture in this theory is that the atom finds itself radiating in a
statistically fluctuating field produced by randomly distributed perturbers.
The motions of the perturbers is ignored; this is known as the guasi-siatic
approximation. (As we shall see later, this approximation is good for the




290 The Line Absorption Profile

slow-moving ions—e.g., protons—in the plasma.) A spef:ilﬁc distribution ¢_3f
perturbers produces a definite field; the relative probablhty of ﬁelnds of _c_hf—
ferent strengths is thus determined by the statistical frequency Wlth which
particle distributions producing the appropriate strengths ase reghze(.i. Fora
given value of the field, the oscillation frequency of the rad%ator is shifted by
a definite Aw. The intensity of the radiation at this Aw is assumed to be
proportional to the statistical frequency of occurrence of .tbe apprppﬂgte
field. Thus the central problem is to determine the probability distribution
of the perturbing fields. Once this is known, fine profiles can be comput;d.
The applications in this scction will be restrmt;d o quam—statlc broadeining
of hydrogen lines by linear Stark-effect interactions with protons (though the
theory is relevant in other contexts as well).

THE NEAREST-NEIGHBOR APPROXIMATION

As a first approximation, we assume that the main effect on the radiator
resulis from the strongest perturbation acting at any given instantélnamely,
that from the nearest neighbor——and that the effects of all other par_t1cles are
neglected. Then il W(r) dr is the probability that the nearest neighbor is
located on the range (r, ¥ + dr) from the radiator, the frequency spectrum 18

I(Aw) d{dw) o« W(H[dr/dAw)] d(Aw) (9-80)

where it is assumed that Aw is given by equation {(9-53); i'.e., Aw = C,/r".
To find W(r) we calculate the probability that a particle is located on the
range (r, r + dr), and that none is at a distance less than r. Then assuming a

uniform particle density N,  W(r) is given by
W) = |:1 — JZ Wix) dx:\ (dmriN) dr 9-81)
where the factor (47 r*N) dr is the relative probability of a particle lying in the

shell (r, ¥ + dr) while the term in square brackets is the probability that no
particle lies inside this shell. By differentiation we find -

d| wir) | _ 2 | W 9.37
drl;Em‘EN:\ = —lmN) AgrN (9-82)
and thus by integration and normalization,
4
W(r) = 4mr®N exp (—% m‘?’N) (9-83)

It is customary to adopt the mean interparticle distance vo = (3aN)* as tl.le
reference distance at which a perturber produces the normal frequency shift
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Ay = C,fre?. Then
(Aw/Awg) = (ro/r)* _ (9-84)

and equation (9-83) can be rewritten as
W(r) dr = exp[ —(Awg/Aw¥'?] d(Awq/Aw)>? (9-85)

For the case of linear Stark effect, the perturbing field is I' = (e/i*). Il we
define the normal field strength to be

4 N .,
Fo=(e/ry*) = ¢ (5 TCJN) = 2.5985eN* (9-86)

and measure F in units of Fy [Le, # = (F/F,)], then nearest-neighbor theory
yields

WA = 5 5 expl ) df 947

Clearly, as f — o0, W(f) — 3B~ %; hence statistical theory predicts that, in
the wings of a line broadened by linear Stark effect, the profile fails off as
Aw™%, in contrast with the prediction Aw ™2 given by impact theory.

The basic failing of this theory is that the profile is, of course, the result
of perturbations by all particles, not just the nearest neighbor. To obtain
accurate results a more elaboraie theory must be constructed.

HOLTSMARK THEORY

The effect of an ensemble of particles upon a radiator was determined by
Hoeltsmark (305), who calculated the net vector field, at the position of the
radiating atom, from the superposition of the field vectors of all perturbers.

' An elegant treatment of the problem was given by Chandrasekhar (151); this

paper should be consulted for the derivation of the results quoted here.
For an interaction of the form F = C,/#, the analysis yields

W(B) = /) [ exp(—y*n)y sin By dy (9-88)

Here § = F/Fg, the normal field strength F, now being defined as
Fo = yC NP3 (9-89)
where y = {2=*p)/[3(p + 3)T(3/p) sin(3x/2p}] 17 (9-90)

In particular, for linear Stark effect, p = 2, C, = ¢, and y = 2.6031 so
that F, = 2.6031eN?, which differs only inconsequentially from the normal
field strength given by nearest-neighbor theory.
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The integral in equation (3-88) cannot be evaluated exactly for p = 2,
and W(f) must be expressed in a series expansion. For small 8

B 4 o . 42 + 6 ﬂ(21+2)
wip) = (5) z (—1)r( ; )QH b 0-91)

=0

while for § 1 one finds an asymptotic expansion
W) = 14966 (1 + 5.1077% + 144373 + - ) (9-92)

the leading term of which is essentially the same as given by nearest-neighbor
theory. Tabulations of W(f) are given in (151} and (629, 28).

DEBYE SHIELDING AND LOWERING
OF THE IONIZATION POTENTIAL

In deriving the probability distributions described above, interactions
among the perturbers were ignored. In reality, the probability that a particle
is found in a volume dV is not just N dV, but depends also upon the electro-
static potential ¢ in dV. For example, if at some point ¢ > 0, electrons will
tend to migrate toward it while ions will tend to migrate away, and vice
versa if ¢ < 0. Following Ecker (203; 204; 205; 206), we may account for
these effects schematically by introducing a Boltzmann factor depending
on ¢y = {edp/kT). Thus for electrons and ions, respectively, we write

n, W, dV = n, exp(y) dV = n (1 + ) dV (9-93)
and AW dV = nexp(—Zah) dV = n(1 — Zap) dV (9-94)

where », and n; are the electron and ion densities, Z; is the ionic charge,
and it is assumed that ¢ « 1. As the plasma is electrically neutral over
sufficiently large volumes,

My = 3 2 (9-95)

We now calculate the potential around a particular ion under the sim-
plifying assumption that all particles can be smeared out into an equivalent
charge density. We then may use Poisson’s equation

Vg = —4nep (9-96)
to determine ¢, where p is given by

ep = —en,W, + ey ZnW, (9-97)
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In view of equations (9-93) through (9-95), this expression reduces to

ep = —ey (n(, + Zz,?ni> C(9-98)

Substituting equation (9-98) into (9-96), we may rewrite Poisson’s equation
as V¢ = (¢/D?) where

i
=

D = (kT/Are?y: |:ne + Z anl] 9-99)

is the Debye length. Solving for ¢ we find ¢ = r™'[Ae™ """ 4+ Be''”]. De-
manding that ¢ — Qasr — oo, weset B = 0. Further, to recover the potential
of the ion itself as r — 0, we set 4 = Z,e. Thus the potential produced by an
jon imbedded in a plasma is

¢(r) = [Ze exp(—r/D)]/r (9-100)

As is clear from equation (9-100), beyond the Debye length the field of an
ion is strongly shielded and rapidly vanishes. Physically this occurs because
a charged particle tends to polarize the plasma in its vicinity, and the
oppositely charged particles that cluster around it shield the field of the
original particle at large distances. Thus the Debye lengih sets an upper
limit on {(a) the distance over which two charged particles can effectively
interact, (b} the size of a region in which appreciable departures from charge
neutrality can occur, and (¢} the wavelength of electromagnetic radiation
that can propagate through the plasma without dissipating.

In most astrophysical applications we can assume a practically pure
hydrogen plasma; then Z; = 1, and n; = n,, and inserting numerical constants
into equation (9-99) we find

D = 4.8(T/n, ) cm (9-101)
Exercise 9-5: Compare Debye lengths in (a) a stellar photosphere with
T = 10* K, n, = 10™; (b) the solar corona T = 10°°K, »n, = 10%; (c) an
H I region, T = 10* °K, n, = 10%

To calculate the effect of shielding on W{) one can make the very simple
assumptions (205; 206) that the field of the perturber is unchanged for
r < D, but is identicaily zero for # > D. One then finds

W(B, 8) = (28 8%/n) fa ¢y sin(8% fy) dy (9-102)

3 ,
where o) =3 ﬁ (1 — 27! sin 7)z % dz (9-103)
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and & = 4xD?N, the number of particles contained in the Debye sphere.
As & — oo, one expects to recover the Holtsmark distribution;ie., W(§, oo__) =
W,(f). From equation {9-102) one can show that‘for. § - o0, W(B,0)=
Wal(f) + 8 *F(f) where F(f) is 2 bounded definite integral. Recovery gf
the Holtsmark distribution for large 6 can also be seen from the asymptotic

expansion

W(p,5) = 14965 (1 + 5.10787F — 612575872 + -+ (9-104)

which may be compared to equation (9-92). In prir}ciple, for sma}l 0 .the
theory should merge continuously into the nearest-neighbor apprommatlon,
but in practice, when & < 5, the assumptions employed (particularly that a
smeared-out charge distribution may be used) break down. A plot of W(p, 9)
for several values of § is shown in Figure 9-1 along with the nearest-neighbor

and Holismark distributions.
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FIGURE 9-1

Probability distribution of field strength at a test point, including
shiclding effcets; 4 is the number of charged particles within the
Debye sphere.  From (205), by permission.
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The treatment of perturber interactions given above is somewhat over-
simplified. Very precise calculations of the perturber field-strength distri-
butions have been made using cluster-expansion methods (65; 472; 515),
and numerical integrations using Monte Carlo techniques (308; 309; 310;
482). Most modern treatments of hydrogen-line broadening use these refined
distribution functions. In practice, the effects of shielding are often quite
important in laboratory plasmas, while in stellar atmospheres the densities
are so low that the number of particles in a Deybe sphere is large (& = 100),
and the departures from the Heltsmark distribution are not large.

The presence of nearby charges partly ncutralizes the effects of the nuclear
charge upon an orbital electron and thercby weakens the potential well in
which the electron is bound. The reduction in bindiag energy can be calcu-
lated, using the Debye potential in equation (9-100), as

AE = (Ze*/r)[exp(—r/D) — 1] =~ —Ze*/D (9-105)

for r « D. An electron in a state that, in the unperturbed atom, lies at an
energy Ay below the ionization limit, can be considered unbound if Ay < AE.
That is, the ionization potential of the atom is decreased by an amount

Ay = Ze*/D = (27.27Zay/DyeV = 3 x 107 %Zn T eV (9-106)

where use has been made of equation (9-101). This calculation of Ay is only
schematic. A discussion from several points of view of the lowering of
lonization potentials in a plasma is given in {178).

THE QUASI-STATIC TON BROADENING OF HYDROGEN LINES

In the absence of a perturbing field, cach level of hydrogen is degenerate
with 2n? sublevels. Analyses by K. Schwarzschild (563) and Epstein (208)
showed that, when an electric field is applied, these sublevels separate and,
because hydrogen has a permanent dipole moment, the energy shift is
directly proportional to the applied field strength F (linear Stark effect). If
no other broadening mechanisms are operative, the line profile will consist
of a number of Stark components, arising from transitions between the
sublevels of the lower and upper states. Each Stark component has a charac-
teristic relative intensity I, (561) and will be displaced from line center by
a characteristic shift

A2, = (Bhiln 8riemeZ)F = C.F {9-107)

where Z is the charge on the atom (=1 for hydrogen) and », is an integer.
The line that we observe will be a superposition of these components,
weighted by their relative intensities and the probability of being shifted to
the appropriate wave-leagth position.
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The Stark pattern of a hydrogen line is symmetric dbout line center with
identical components at +k with I = I, C_y = Gy ['see, e.g., (638, 320;
629, 73)]. Assuming that the intensities are normalized §uch that Zk. I,=1
(where the sum extends over all components), then the line profile will be

HAD) d(A) = 3 LW(F/F)dF/Fy)

= 3. LWIAACFo) dAL)/CFy {9-108)
k&

It is customary to define the parameter « as

2 = AiJF, (9-109)

where F, is the normal field strength Fy = 2.60eN %, Then the line profile
is given by a function S(e),

S(o) doe = ¥ LW(e/C)de/C) (9-110)

which is normalized on the range (—aoo, o) for «. The absorption cross-
section per atom can be written as

0, (A2) = (me?me)f S(ALJF ()32 /cF o) (9-111) -

Extensive tables of C,, I, and S{z) for numerous hydrogen lint?s are given
in (634). The largest C; for a line of upper quantum number # increases as
n?, and recalling that for § > 1, W(p) oc i~ %, we see from equation (9-108)
or (9-110) that the Stark widths of lines rise rapidly up a series, roughly as
3

! Let us now consider when the quasi-static profiles are applicable. Let
o=, La/> I, the sum being taken over positive \{alues ounly. Then,
writing Aw = C,/r? and F = ¢/r’, it follows from equation (9-107) that

C, = (3hmj4nm) = 17387, (9-112)
with 7, ~ +a(n — 1) for n » 1. From equation (9-78) the wavelepgth shift
delimiting the transition between the impact and statistical theories is (for

p=? Ady = 022727 cC,) (5-113)
Notice that Ay oc v, and thus Ay (electron) ~ 10° Aiy(proton). Usin'g '
equations (9-112) and (9-50), we obtain the results listed in Table 9-2. It is
obvious that the ion broadening is very well described by the quast-static
theory (especially when we note that Doppler motions wil.l domipate in the
core). The electrons, however, are in the impact-broadening regime except
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TABLE 9-2

Transition Wavelength Al (A) berween
Statistical and Impact Broadening for
Hydrogen Lines

T
Line  Perturber 2.5 x 10*“K 10% *K.
Hy Electrons 580.0 230.0
Protons 0.63 0.25
Hf Electrons 120.0 48.0
Protens 0.i3 0.05
Hy Electrons 48.0 19.0
Protons 0.05 0.02
Hé Electrons 320 130
Protons 0.03 0.01

at very large displacements from line center and, as mentioned in §9-3, are
nonadiabatic. The complete profile consists of the effects of both ions and
electrons and, as we shall see in §9-5, the latter increase the line-broadening
markedly. The functions S{x) for ions alone seriously underestimate the
hydrogen-line widths, and a satisfactory theoretical description of stellar
hydrogen-line profiles became possible only after the development of the
quantum mechanical line-broadening theory.

9-5 Quantum Theory of Line Broadening

Quantum mechanical calculations yield precise profiles for pressure-
broadened lines. The development of this theory brought about a major
improvement in one of the most important (and difficult) applications of
atomic physics in the analysis of stellar spectra. Excellent discussions of
the general theory can be found in (62; 63; 64; 73, Chap. 13; 179; 264,
Chap. 4; 268; 582); only a brief outline will be presented here. We shall
focus attention on the case where the atom suffers impact broadening from
electrons and quasi-static broadening by the ions.

THE LINE PROFILE

As was shown in Chapter 4, the power radiated by an isolated atom in a
transition from an upper state j to a lower state i is [cf. equation (4-62)]

P = (do*/3¢%)| ] i 2 (9-114)
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where d is the atomic dipole moment. The total emission, summed over all
possible substates contributing to a line is

Plo) = 40*3¢) Y pdlo — o,)| )i [? 9-115)

Here p; is the probability that an atom is in the upper state j; in thermo-
dynamic equilibrium

p; = {Jpli> = exp(— Ej/kT)/U(T) (9-116)

where U{T) is the partition function.

To calculate the broadening of lines emitted by an atom in a plasma, we
consider the radiating system to consist of atom plus perturbers, and gen-
gralize the meaning of states |i> and |j» to include perturbers also. The
profile of the line is then written as

Hoy =} polo — wy)|Kd] > (9-117)

Now g; refers to the probability of & particular state of atom and perturber.
If the plasma is in thermal equilibrium, p; is proportional to

e—ka'I' — e—(HA-FHp-PV)/kT (9-118)
where H is the total Hamiltonian of the system, H, and H, are the Hamil-
tonians of the atom and perturber alone, respectively, and V is the interaction

Hamiltonian.
It is easiest to account for collisions using the Fourler transform

h(t) = fm Iw)e'™ do = 2 p e
i

— 30

Adij>pP o (9-119)

which is analogous to the classical autocorrelation function [see (72, 498)].
The effects of collisions at a specific impact parameter upon the autocorrela-
tion function (and statistical averages over all possible perturber paths) can
be calculated directly. The intensity profile then follows from the inverse
Fourier transform [cf. equation (9-7}].

The problem at hand is to obtain an expression for ¢(7). To do this we must
find the change with time of the eigenstates [i> and |j» under the effects of
perturbing collisions in terms of a fime-development operator T(t, 0). This
aperator is defined such that a state of the system at time # 18 related to the
state at time t = 0 by

o, £ = T{(t, O)jer, O (9-120)
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Now |, 1) satisfies the Schrddinger equation

H

o, £y = ihid

o, tH/dt) o (9-121)

Substituting equation (9-120) into (9-121) we can derive a Schrodinger
equation for Tz, 0). Noting that {«, 0) is fixed in time, we find

HT{t, 0) = i[dT(t, 0ydi] (9-122)

which has the solution
T(r, 0) = 7' (9-123)

where the exponential is to be understood as an operator. We may now
rewritc equation (9-119) in terms of time-development operators, including
perturbations; we have

(o)

Z pjei(Ej-—E,-)t,ﬂh‘<r-id!j>|2
i J

2 o e B et
i

2 2 AT AT > (9-124)

But the expansion rule, relative to a complete set of states

¥, I8
Calfy =3 Calyd<yiBy (9-125)
7

so we see that equation (9-124) can be rewritten as

o) = Z p L JdTdTTj> = tr(p dT dTT) (9-126)

J

The trace inciudes both atomic and perturber states. This expression is
quite general; the detailed form of ¢ depends upon the form of T.

THE CLASSICAL PATH APPROXIMATION

Let us now consider the calculation of T in more detail. Let the wave
function  describing the solution of the complete system of atom plus
perturber be the solution of the equation

(dy/dn = (Hy + Hp + Vi (9-127)

Note that H, is independent of perturber coordinates, /5, is independent of
atomic coordinates, while ¥ depends on both. Further, because the atom
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is in a static ionic field of strength F, H, = Ha(F). Tor brevity, F will
be suppressed here but inciuded explicitly in the final result. ' -

To make progress, we now assume that the perturber follows its classical
path—ie., a straight line past a neutral atom and a hyperbola arqund an
ion. This assumption wiil be valid when the deBroglie wavelength. is small
compared to the jmpact parameier for those collisions that dominate thp
broadening. That is, we must have p » 2 = (hfmp) or mup > h. But mvp 18
just the angular momentum of the perturber (= h}; the criterion just stated
is equivalent to the requirement that the quantum number [ be much larger
than unity. Under such circumstances the classical-particle picture would
be expected to be valid on the basis of the correspondgnce_ principle. Thc
validity of the approximation must always be checked in line-broadening
calculations; in most cases of astrophysical interest it is found to hold.
Some perturbers that violate the condition can al\f\fays be expected,.but the
approximation remains useful if they do not dominate the broadem.ng Lsee
also (73, 498 ff.)]. A theory thaf does not use the classical path approximation
is given in (64}. _

The wave function for the system of atom plus perturber 18 assumed to be
separable;ie., Wlt) = a()m{t), where o(t) and =(f) are the atomic and perturber
wave functions. We further suppose the perturber path to be fixed and to
be independent of the state of the atom with which tlhe interlactwn takes
place. [n this way the effect of the perturber on the atom is taken mto.accgunt,
but the back-reaction of the atom on the perturber is ignored. This will be
valid if the energy gained or lost by the perturber (of order AT, whete I’ %s
the linewidth) is much less than its kinetic energy (kT), a co‘nditio'n that 1s
almost always satisfied. A few collisions will alwaysi oceur in wlpch large
energy exchanges fake place, but again these will not invalidate the
assumption if they do not dominate the broadening.

Under the assumptions made above, z(t) is the solution of

ih[dr(t)/dt] = Hpnlt) (9-128)
and the time-development operator for the perturber is
Tplt, 0) = ¢ (9-129)

Now consider the Schrédinger equation for the atom alone. To obtain it,
we multiply equations {9-127) and (9-128) by =™, integrate over perturber
coordinates, and subtract to find

i du(t)/dt] = (HA + jn* Vn drp) (1) (9-130)

1 the perturber wave packets are indeed narrow enough that the perturbers -
can be considered to be classical particles on classical paths, then we can
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make the identification

f (m* V) drp — Vo(0) (9-131)

where V(1) is the classical interaction potential; this is the essence of the
classical path approximation. The Schrodinger equation for the atom’s
time-development operator then becomes

ih[dT,(t, 0)dt] = [Ha + Va()]T4(1, 0) (9-132)
and the time-development operator for the complete system is
T(, 0) = Talt, 75t 0) = Tz, 07" (9-133)

Finally, we write the probability-density matrix p as p = pspe where py
refers to atomic states only, and pp refers to perturber states only and is
diagonal in the perturber coordinates. Again, this may be done if the back-
reaction of the atom on the perturber can be neglected.

When these expressions for p and T are inserted into equation (9-126)
for ¢(r), and the separated form of ¥ is recalled, we find

bty = trip, 4T, AT} (9-134)

The trace over perturber states has reduced merely to a thermal average

over all perturbers (denoted by braces) and trace is now carried out over
atomic states only.

THE IMPACT APPROXIMATION

To calculate ¢(t) as given by equation (9-134) we assume that both the
initial state @ and the final state b consist of several substatcs, denoted by
w and f, respectively, and that dipole transitions exist only beiween substates
of g and b, but that radiative transitions among the substates of a or b can
be ignored. On the other hand, we ignore collision-induced transitions
between states @ and b, and assume that collisions can result only in transi-
tions among substates of @ or b. That is, we have <aldja’> = 0, (/> = O,
and {« T, o[> = 0. Then writing out the trace in equation (9-134) we find

6@ =p, 3 Ladpy Bl > BT TE e b6 (9-135)

a0 BB

Here we have neglected the variation of p, among the upper substates and
have noted that only the time-development operators can depend upon the
statistical averages.
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It is convenient to replace the complete time-development operater T by
U/, the time-development operator in the interaction representation, defined as

Uz, 0) = e#~T(1, 0) (9-136)

This definition factors out the time-behavior of an eigenstate and isolates
the perturbation effects; for an unperturbed eigenstate U(z, 0) = 1. By
substitution into equation (9-135) we have

b) = pa L <dlpy <Pl (o <Blem T (U U

o, aly B B

|
{9-137)
Substituting equation (9-136) into (9-132) we obtain a Schrodinger equation

for Ult, 0),
AU, 0)fdi] = eH 1 ()T U(L 0) = V(U 0) (9-138)

We solve this equation by iteration, starting with U(z, 0) = 1 as a first
approximation, to obtain a solution of the form
3 - : ’ fz ’ .
UG 0) = 1+ (0 Vit de + @77 [ doVide) [ dnvat) +
(9-139)
Now consider the calculation of the statistical average (U U} We pro-
ceed in a way analogous to that used in Lindholm theory. That is, we wnite
the change in {U,U¥}, caused by a specific collision (treated as an impact),
in some time Ar as A{U U} = {Uy{t + AL Ao + Af,. t). - 1}'{UbU3=},
where again we argue that the changes in (£, ¢ + At) are statistically indepen-
dent of the current values, so that we can replace the average of the product
by the product of the averages. Then using equation (9-139) on the interval
(t,t + At) one obtains an explicit expression for { Ut + At, YU -+ At 1) — 1}
[sce, e.g., (264, 70; 268, 37)] of the form

(Ut + AYUEE + Ar) — e (1 At)e " HHe T HaE (G140
We thus obtain a differential equation for {U,U}}, namely
A{UUE) = e~ Hailhy o~ 8~ HU ] T Ag (9-141)
whose solution is
(UL, O UNE 0)) = i@~ Hatit gxpl i(H, — H)i/h + @ut] (9-142)
Now, substituting into equation (9-137), we obtain

By = pa L CldIBY B> o<l Sl (9-143)

o, af, B, B
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Then performing the inverse Fourier transformation, and reintroducing the
quasi-static ion field F, we obtain the intensity profile

o

Ho, F) =2 e ( Zﬁ i {ald|f><fd

%)

7
i

x <af<H| [ico — @uF)— £ [HulF)— Hb(F)]} _ |a'>|ﬁ’>) (6-144)

where use has been made of the fact that @,,(F) is found to have a negative
real part. If W(F) is the probability of an ion field of strength F, the final
profile, averaged over all ion fields is

d

1(@):% ﬁ)‘” W(F) 94%( Y Laldlpy{play

ayal, B8
x (oK [xw ~ @y (F) — ©[HF) - Hb(F)]] |oc’>|/3’>) dF

(9-145)

Equation (3-145) is quite general, and has been used in most quantum
mechanical calculations of Stark-broadened line profites. The result is valid
if (1} the interval Af in equation (9-140) can be chosen to include a complete
collision; {2) when the collisions overlap, they are weak enough that their
contributions to the iterative solution for U are simply additive; and (3} the
perturbers can be treated as classical particles. These validity criteria must
be checked in each case.

APPLICATION TO HYDROGEN

One of the most important applications of the theory outlined above has
been to the calculation of the effects of electron impacts upon the broadening
of hydrogen lines. The theory has reached a very refined state, and the
theoretically predicted profiles arc in excellent agreement with laboratory
measurements (671) and provide satisfying fits to observed stellar profiles
(see Figure 10-4).

The impact theory outlined above has been intensively applied by Griem
and his collaborators {263; 265; 270; 271). Although the evaluation of @,
is straightforward in principle, it is complicated in practice, for it entails
cutofls both at small and large impact parameters, the former arising from
strong collisions inside the Weisskopf radius (which are no longer correctly
described by the iterative series development for U, the time-development
operator) and the latter to account for Debye shielding effects. Further cutoff
procedures are required to allow for the transition of the electrons from the
impact- to statistical-broadening regimes. This work culminated in the publi-
cation of extensive tables (353; 356) for the first four members of the Lyman
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Stark profiles for He at i, = 3.16 % 104 cm™3, T = 10% °K. Dorted curve: Holtsmark
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convalved with therma! Doppler distribution of atoms. Notice that th.e hr-xcwcore is d.ommated
by Doppler effects, and that the absorption cross-section in the line wing 13 substantially
larger when electron broadening is included,
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and Balmer series lines. These tables give S(¢), analogous to the profile
described by equations (9-109) through (9-111), but including the effects of
electron impacts. An alternative approach developed by Cooper, Smith, and
Vidal (581; 647; 648; 649) uses a unified theory that accounts automatically
for the transition of cleetrons from the impact to quasi-static regimes. Exten-
sive tables of results based on this theory have been published (650) for the
first four members of the Lyman and Balmer series in temperature-density
ranges appropriate to stellar atmospheres. These tables include the convolu-
tion of the Stark profile with a thermal velocity distribution of the hydrogen
atoms. Figure 9-2 compares the profile of Hé from the unified theory
(including both electron and ion broadening) with the quasi-static theory for
ions only. For higher series members one may use an approximate theory
(262), after corrections to some of the matrix elements are made (265) [see
also (45)].

In astrophysical applications, the hydrogen lines are significantly affected
by broadening mechanisms other than the Stark effect. The core of the line
is dominated by Doppler broadening. The eflects of radiation and resonance
damping may be important in the wings at low electron densities. Assuming
these mechanisms are all uncorrelated, we may account for their combined
effects by a convolution procedure. Folding the Doppler profile with the
Lorentz profiles from radiation and resonance damping gives a Voigt profile,
Hia, v),wherea = (I’ + [)/dn Avp,and v = (Av/Avy). This Voigt profile
is then convolved {numerically) with the Stark profile S(x), vielding the
cross-section

a(Av) = (miedime)f f O SHAY + v AvpH(a o) dv (9-146)

where $* is S(o) converted to frequency units.

HYDROGENIC TONS

Hydrogenic ions (of charge Z) have Stark paiterns identical to those
of hydrogen, though the energies are, of course, different. The profile from
ion-broadening alone is

S{x) = Z°Sos(Z°0) (9-147)

where S is the quasi-static hydrogen profile given in (634). Note that on
a wavelength scale the ion lines are narrower by a factor of 1/2°. Indeed,
because the Stark widths decrease for ions while the radiative transition
probabilities increase, there comes a point where Stark broadening can be
neglected compared to Iy

The eflects of electron broadening for hydrogenic ions are similar to those
for hydrogen, though the expression for @,, changes because now the
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perturber moves on a hyperbola around the positively charged ion inste: OTHER LIGHT ELEMENTS

of a straight-line path. Early caiculations of the broadening of the lines He 11
13203, 14686 (prominent in O-star spectra) are given in (272), and muchs
improved calculations for He II 22256, 304, 10835, 1216, 1640, 4686, and 3203
are given in (354;355). Unified theory (238; 260) calculations for He TI 1'3()4
are given in (259). Unfortunately, precise calculations for the astrophysically
important Pickering series lines (4 — 1} (e.g,, AA10124, 5412, 4542, 4200, sty
are nol yet available, and only an approximate theory exists (262; 265: 45

Electron collisions broaden the lines of other elements observed in
stellar spectra. .Widths and shifts for these lines may be calculated using
techniques similar to those employed for He I [see (268, §11.3c, 11.3d)].
Extensive results for neutral atoms are given in {264, 454527 268, Appendix
1V: 84). For charged ions, the Coulomb interaction between radiator and
perturber implies a hyperbolic path for the latter (110; 111}, and lne-widths
i © calculated allowing for this are substantially larger than those calculated
with a straight-line path. Extensive results of detailed calculations for ions
are given in (268, Appendix V; 111; 548; 167, 549; 550). Convenient approx-
imate formulae for estimating Stark-widths are given in (267; 183; 549).

NEUTRAL HELIUM LINES

The lines of He I are prominent in the spectra of B-stars. Here the
electron impact broadening and quasi-static ion broadening act by quadra
Stark effect, and for isolated lines yield profiles ol the form 3

AN W(F) dF
Ap) = | — — -.
I( (J) (ﬂ) J‘o (A(J) —d - C4F2/€2)2 T wl (9-148:

where W(F) is the probability of a field of strength F, w is the electo
impact width of the line, and d is the line shift. Note that because F ent
as F?, the ionic fields always skew the line components i one direction an
thus lead to an asymmetric profile. i

Explicit expressions for w and d are given in {269; 264, §1-86; 268, §I]._'3”
180 for isolated lines; tables allowing the calculation of the profile in ter
of convenient dimensionless units are given in (269). Detailed numetl
results for w and d for several lines are given in (269), and improved rest
are given in (180) and (67). A much more interesting (and difficult) case
presented by the diffuse series lines (22P-nD), (2'P-n'D)forn = 4. As
first recognized by Struve (614; 615), the (2°P-4°D) He 1 24471 line show
“forbidden” component {23 P—4°F) at ;4470. The other diffuse series lines a
show these components which arise from the mixing of the (*D, *F)
(1D, 'F) states in the presence of the electric fields in the plasma. As-
diffuse-serics lines are among the best observed in stellar spectra, a relia
theory for them is of great interest. The first attempts at constructing suc
broadening theories (66; 245; 266) were not too successful, for they o
“forbidden” components that were too narrow and too intense. Compal
to observed stellar profiles the theoretical predictions showed too m
contrast between the “forbidden” absorption component and the gap betw
it and the allowed component; the theory also disagreed with gxperimer
measurements (122; 123; 124). A comprehensive new theory was then:
veloped for the He 1 44471 (68) and 24921 (2! P—4* D) lines (69); predicti
based on this theory are in excellent agreement with observed stellar spet
(438 439).
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Classical Treatments of
Line Transfer

In this chapter we discuss sOme of the carly approaches to the line-formation
problem; these provide background for the more modern treatments to be
presented 1n following chapters. A fuller discussion of these older methods
and of their application to stellar spectra can be found in (684, Chap. 7; 638,
Chaps. 15-17; 15, Chaps. 12-16; 11, Chap. 8; 256, Chaps. 14-16). 1t is
essential o be familiar with such methods because of the large body of
literature based upon them. More important, one must understand the
physical basis of the classical treatments in order to evaluate the reliability
of spectroscopic diagnostics derived from them, and to realize the conceptual
differences inherent in recent work.

10-1 Characterization of the Problem

In the usual classical approach one notes, at the outset, the existence of two
different line-formation processes: scatiering and absorption. We have dis-
cussed these two categories in Chapter 2, and described these the physical
differences between them. It is usually supposed that a fraction (1 — &) of the
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photons absorbed are simply scatiered so that the excited electron returns
directly to its original lower level, and normally it is assumed that the scat-
tering is isotropic and cohevent (actually complete redistribution is a much
better approximation). Then the scatiering contribution to the emission
coefficient is

n' = — audd, _ (10-1)
where 1= (m‘-’z/fnff)ﬁj[”i - (Qi/gj)”j] (10-2)

is the line absorption coefficient in the transition between levels i and J. The
remaining fraction ¢ of the photons is assumed to be destroyed and converted
to thermal energy by various processes (cf. §2-1). One then argues that this
loss into the thermal pool must be balanced exactly by thermal emission,
which contributes to the total emission coefficient an amount

f?vt = SZI(P\JB\'(T) {10'3)

In the limit of strict LTE, ¢ = 1, and all the emission is thermal.

In addition, there are contributions to the opacity and emissivity from
continuum thermal processes and electron scattering. Thus the transfer
equation is

Ju(afv/az) = _(KC +0+ xld)v)‘[v + Kch + G‘Iv + SZI(PUB\' + (1 - S)%Id)v‘lv
(10-4)

We have ignored the v-dependence of «, and ¢ because most lines are so
narrow that these coefficients vary only negligibly over the line in comparison
with the swift variation of ¢,. If we write dr, = —(x, + 0 + 1¢,) dz and let
p = of(x, + o), and

B = ub /i + 0) (10-5)

we have

wel,jor) = I, — {[(0 = p) + 6B 1B, + [p + (1 — 8)f, 30 AL + B

(10-6)
Or, defining
o= [0 — o)+ eBJAL+ B (10-7)
the transfer equation becomes
u@l fer)y =1, — AB, — (1 — 4/, {10-8)

E. A. Milne and A. S. Eddington developed equation (10-8) as an approxima-
tion to the line-transfer problem, and customarily it bears their name.
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Fxcellent discussions of the physical implications of this equation have been
given by Milne (416, p. 1691} and Strémgren (613). _

From a physical point of view, equation {10-8) provides a rather severe
idealization of line formation and may be criticized on several counts. (1)
Line-scattering is not, in fact, coherent. This inadequacy is overcome if we
write, instead of equation (10-8),

al, . od, (1 — g)f,
N, — B, - . R, W, dv (109
“@J B T g d RO (10-9)

where R(v, v} is an appropriate redistribution function (cf. §2-1 and Chap. 1 3.
(2) To solve equations (10-8) or {10-9), both the parameter ¢ and the occupa-
tion numbers #; and n; must be known. In classical treatments it is often
assumed that LTE holds, so that ¢ = | and »; = #ff, n; = n}. It must be
stressed, however, that this merely an assumption and, as will be seen in
Chapters 11 and 12, the assumption is often unjustified and may yield results
seriously in error. In many treatments, an ad hoc value is chosen {or ¢, but
the occupation numbers are still assumed to have their LTE values. Such an
approach is internally inconsistent, for when scattering occurs in a line, the
level-populations depend upon the radiation field via the equations of
statistical equilibrium.  (3) An equation of the form of (10-8) was derived by
Milne for a strict two-level atom, and his analysis vields a unique (and correct}
value for the parameter ¢ (416, pp. 172-178). However, as mentioned above,
coherent scattering is aot an accurate approximation. More important,
analysis of the equations of statistical equilibrium for general (i.e., multilevel)
atomic models shows (cf. Chapters 11 and 12) that other kinds of terms appear
in the source [unction; these may depend upon the radiation fields in other
transitions (continua and lines), and thus in principle couple all the lines in
the spectrum together. In short, both equations (10-8) and (10-9) are sertously
incomplete from a physical point of view, and this should be borne in mind
during the discussion that follows in this chapter.

10-2 The Milne-Eddington Model

DEFINITION

Let us now consider the Milne—Eddington equation [equation (10-8)]
under the simplifying assumptions that 4,, ¢, and p are all constant with
depth, and that the Planck function B, is a lincar function on the continuum
optical depth scale 7;ie.,

B,=a+bt=a+ b, 1 +5)]=a+pr (10-10)
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Under these conditions an exact solution may be obtained {158) but this
differs only slightly from the approximate solution derived below.
Taking the zero-order moment of equation (10-8) we find

(dH\'./dTr) = ‘]\' - (1 - ;“\')J\' - )"\'Bv = )Vv(']\‘ - Bv) (10_11)

Aside from the definition of 1,, equation (10-11) is the same as equation {6-4),
and from the analysis in §6-1 we know that the solution, in the Eddington
approximation, is

Jo=a+ pr, + (p — 3a)exp[ (343 + BA)F] (10-12)

and the emergent flux is
. 1 , -
H,(0) = (37,0 = 3 [py + 347al/1l + 4,%) (10-13)

Equation (10-12) shows that thermalization{J, — B,) occurs only at depths
of the order of A, %. Recalling the definition of 1,, we see that this depth is
(1 — p)"* in the continuum (f, = 0), and ¢~ % in a strong line (8, — w). In
both cases thermalization occurs at a depth p~2, where p is the probability
that a photon is destroyed and converted to thermal energy each time it
interacts with the material; these results are compatible with the random-
walk arguments given in Chapter 6. Note that these results apply only for
coherent scattering (cf. Chapter 11).

Equation (10-13) may be used to compute the profile of a line in a stellar
atmosphere. In the continuum, . = 0;then A, = (1 — p), and the continuum

flux 1s

HO) =16+ a3~ o)1+ (L o] (014

Thus the residual flux in the line is, by equation (8-2),

R, = [p" i (3%2)5“}[ i pf—} (10-15)
L+ 47 b + a/3(1 = p)

There are four important results that can be derived from this classical theory,
which provided the conceptual orientation of much of the early work on line
formation. Let us now examine these briefly.

SCATTERING LINES

Consider the case where p = 0, so that there is no scattering in the
continuum. Further, suppose that & = 0,so that there is pure scattering in the




312 Clussical Trearments of Line Transfer

lines. Then 4, = (1 + f,) ! and the residual flux in the line is

b 3N L N\ e
R‘—2[ﬂ+ (ﬁ?ﬂ[(l . m) (ia + b)} (10-16)

If we consider the case of a very strong line and take the limit §, — oo, we
obtain R, = H,(0)/H.(0} = 0, which shows that the core of a very strong line
formed by scattering can be completely dark ; this result is in contrast to the
case of a line formed by absorption, as is shown below.

Fxercise 10-1:  Writing B, = floH{a, v). where H denotes the usual Voigt function,
plot residual flux profiles from equation (10-16) for scattering lines with i, = 1,10,
100, 1000, 10%, and (bfa) = 1,2, and 3, assuming a = 1073

Exercise 10-2:  In the Schuster—Schwarzschild model, the lines are assumed to be
confined to a finite layer {the “reversing layer”) of thickness <., illuminated from
below by an incident intensity o, In the roversing layer the continuum opacity
is zero, and the lines are pure scatferers. Using the two-stream approximation
I=i"lor0sp<sly I=1 for —1 < p <0;and g = +% in the transfer
equation) show that (a) H, = (1,7 — 1,7) = constant = ¥, /(1 + 7,), and
By J,) = H(1 +2t), 0<1, <1

ABSORPTION LINES
Again assume p = 0,but nowsets = 1{LTE in theline); then A, = 1,and

R, = [3a + b1 + B,)7 V3¢ + b) (10-17)

In this case, as 8, — oo, the flux in the line does not go to zeto, but approaches
a finite value

Ro=Rie=1 f,— ) =[1+ B3] (10-18)

This is to be expected, for as §, — oo, only the surface layers of the star are
seen, and the emergent flux is then determined by the surface value of the
Planck function, which will be nonzero. In contrast, in the scattering case,
photons are constantly diverted out of the pencil of radiation, and in the
limit B, — o0, none survive to emerge at the surface.

Exercise 10-3: Repeat exercise 10-1 for an absorption line, using equation {10-17).

It is convenient to re-express equations (10-17) and (10-18} in terms of the
Planck function and its gradient. Assume that on a mean optical depth scale,

B,(¥) = B,(T,) + (8B,/07)eT = Bo + BT (10-19)
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Using the Eddington-approximation result for the grey temperature distribu-
tion, namely T* = To*(1 + 37). it is easy to show that

3
By = ¢ XoBy (10-20)
where Xo = up/(l — e™™) (10-21)

and ug = (h/kT,). Thus the parameters in equation (10-10) are: a = By,

b= gxogo(m) (10-22)
and P = % XoBolk/w)(l + B,) (10-23)

where © and x are the mean opacity, and the monochromatic continuum
opacity at the line wavelength, respectively. Then equation (10-18) becomes

Ry = {1 + [\3X(k/K)/8T} " (10-24)

Exercise 10-4:  Derive cquations (10-20} through (10-23).

Forthesun, T, ~ 4800°K from a grey model, and if we choose 1 = 5000 A,
then g ~ 6, X, ~ 6, and x & R, so that equation (10-24) predicts

3 . —1
Ry = (1 + Zi\/3) = 0.44 {10-25)

This value is in fair agreement with the depths of many of the stronger lines
observed in that region of the solar spectrum. Some lines, however, are much
deeper, particularly resonance lines such as the sodium D-lines; this fact fed
to the conceptual identification of resonance lines as “scattering” lines and
subordinate lines (e.g., Hu) as “absorption” lines, It was believed that the
central intensities of the latter group reflected information about the surface
temperature of the atmosphere. Such a division of lines inte two groups i3
intuitively not unreasonable, for we expect that in a resonance line the most
probable route of exit from the upper state is, in fact, a direct decay to the
lower state. In contrast, for subordinate lines a large number of possibilities
will, in general, exist, and the photons may effectively be removed from the
line and destroyed. It must be emphasized, however, that this characterization
is only schematic and often does violence to the actual physics of fine-
formation. For example, we shall find in Chapter 11 that the boundary value
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of the source function of the Ha line (a subordinate line} has essentially
nothing to do with the temperature of the outer atmospheric layers.

CENTER-TO-LIMB VARIATION
The specific intensity emergent at frequency v, on the disk at an angle

0 — cos~* y from disk center, is given by

101 = [ Sie)e M d

~ {08, + (= A, B exp(—nn dv (1026)

where the form of S, has been taken from equation {10-8). Substituting from
equation (10-12) we find

—

(p, — 3l — A)
P v o all — A 10-27
100, u) = (@ + pud) + L@U + \/Z)u + \/3/1‘.,[1)} ( :

In the continuum, B, = 0, and again taking p = 0,

LO, ) = a+ by (10-28)
The residual intensity r{p) = 1,(0, w)/1,(0, wy and the absorption depth
afmy=1—r(w follow immediately from equations (10-27) and (10-28).
Consider first a pure absorption line, for which ¢ = 1 and 4, = 1. Then
() = [+ (Bl + POV + Blaju] (10-29)
Here we see that as the limb is approached {i.e., as p— 0), I, = I,, and the
line vanishes. This is compatible with the physical picture sketched above, for
as the limb is reached, only the very gurface can be seen at any frequency.
Fore¢ = 1, the same source function (the surface value of the Planck function)
is observed throughout the profile, and the contrast between line and con-
tinuum disappears. On the other hand, if ¢ = 0 (a pure scattering line),
sy= 1+ B U and taking the limit as §, — o0, equation {10-27) reduces
to 1,(0, p) = 0 for all us; thus the cores of pure scattering lines always
remain dark, even at the limb, and there is a clear distinction between the
center-to-limb behavior of absorption and scattering lines. A few representa-
tive values of the variation of line-depth with disk-position are given in
Table 10-1 for several values of & and 3,. In this table (h/a) = 3; negative
values imply emission, and are an artifact of the approximations made in
solving the fransfer equation.

TABLE 10-1

Cenier-to-Limb Variation in the Milne—Eddington Maodel

adp)

A,

£ B w=1 0.5 0.3 0 {(Flux}
1.0 0.01 0.007 0.006 0.005 0.000 0.006
0.1 0.068 0.055 0.043 0.000 0.058

1.0 0.375 0.300 0.237 0.000 0317

10.0 0.682 (.545 0431 0.000 0.576

100.0 0.743 0.594 0.469 0.000 0.628

o0 0.750 0.600 0.474 0.000 0.634

0.01 0.007 0.005 0.004 —0.002 0.006

0.1 0.066 0.051 0.037 —0.019 0.034

0.3 1.0 0.378 0.306 0.246 0.026 0.322
10.0 0.723 0.633 0.565 0.334 0.653

1000 0.798 013 0.648 0.438 0.731

o 0.808 0.723 0.659 0.452 0741

0.01 0.007 0.005 0.004 —0.003 0.006

0.1 0.066 0.049 0.035 —0.024 0.053

0.1 1.0 0.379 0.308 0.250 0.035 0.324
100 0.751 0.687 0.638 0.483 0.700

100.0 0.847 0.799 0.765 0.658 {809

o) 0.860 0.815 0.783 0.684 0.324

0.01 0.007 0.005 (.003 —0.004 0.000

0.1 0.066 0.049 0.034 —0.027 0.053

0.0 1.0 0.379 0.310 0.252 0.039 0.325
10.0 0.778 0.732 0.693 0.589 0.742

1000 0.931 0.820 0.912 {.885 0922

o 1.000 1.000 1.000 1.000 1.000
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In the solar spectrum, some lines do weaken towards the limb while others

do not, or weaken only slightly. This observed behavior again led to the
classification of lines into “absorption” or “gcattering” categories, though in
some cases the categorization made on the basis of limb-darkening was in
conflict with that based on central intensities. Furthermore, some studies
[e.g., that by Houtgast, reviewed in (596)] have shown that neither category
is adequate because in some lines the effects of noncoherent scattering
dominate. In short, the approach described here is quite schematic, and one
must recognize that it simply does not contain much of the essential physics.

SCHUSTER MECHANISM

I the above discussion, the continuum has been assumed to be purely
thermal. When continuum scattering is taken into account, several interesting
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effects are found; these were first discussed by Schuster in one of the funda-
mental papers of radiative transfer theory (562). To emphasize the role of
continuum scattering, set p = 1 (a realistic value for, say, O-stars); then
2, = ef, /(1 + f,)and equation {10-15) becomes '

1 a\/ 3B, \* R 1030
R“=[1+ﬁ\-+(5>(l+ﬁvﬂ[l+<1+B\)] (100

First, consider the case with & = 0; then R, = 1/(1 + f,), and the lipe s a
pure absorption feature. This occurs because both the lines. anc_l continuum
are formed by scattering, and the scattering length in the lm_xe is larger. On
the other hand, suppose & = 1; then it is obvious from equation (10-30} th.at
in the line core, as fi, = 0, Ry = (\/éa/Zb). Thus the line can appear in
absorption or emission depending on the ratio (a/b); the more shgllow t.hf:
temperature gradient (i.c., the smaller the value .oflh), the brighter is the line
compared to the continuum. The reason for this is that because & = 1, t.he
source function in the line is everywhere equal to the thermal value while,
in the continuum, scattering causes J, (and thus §,) to drop below B,.

1f (a/b) is greater than the critical value (a/b) = 2/\5, the line is ip emission
for all values of f, (ic., at all frequencies in the profile). If (a/b) just equals
the critical value, then both the extreme wing (8, — 0) and the very core pf
the line (§, — o) lie at the level of the continuum, and all other points m
the profile are in emission. If (a/b) is less than the critical value the .hne may
have weak emission wings and a central reversal into an absorption core.
1f (a/b) < 1 /\/737, the line is everywhere in absorption. ‘ . .

This interplay of scattering and absorption, which gives rise (0 elthe?r
absorption or emission lines depending on the temperature gradlen.t, 18
known as the Schuster mechanism: a thorough discussion of the va-rlous
possible cases was given by Schuster himself (562). From time to ltinge it .has
been suggested that this mechanism could be responsible for emission }i_rles
observed in certain early-type spectra, but on the basis of recent critical
discussions (238; 280) this seems unlikely.

10-3 The Theoretical Curve of Growth

Using equation (10-15} one could, in principle, compute thel, proﬁl.e of a
spectrurm line and, by integration over frequency, determn.le its equivalent
width. Such a procedure is laborious, however, and requires the use of a
computer. It is instructive, therefore, to consider a simple. model that allows
the equivalent width to be computed analytically. In this way we can con-

struct what is known as a curve of growth, which gives the equivalent wileth N
directly in terms of the number of absorbing atoms that produce the line.
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To begin with, we assume that the line formation occurs in a layer to
which we can assign a unique temperature and electron pressure. This
assumption is normally valid in laboratory work, but in the stellar-atmo-
spheres situation there are usually sirong gradients in both temperature and
pressure. Thus the choice of an appropriate temperature and pressure is
difficult and, at best, can refer only to some ill-defined mean value in the line-
forming region. Having made this choice, we can compute (assuming LTE)
the populations of the atomic levels and, hence, the continuous opacity x,
and the line opacity in a transition (i — j),

1) = (mefme) (1 — e” ™G, = b, (10-31)

The line profile is assumed to be given by the Voigt function [equation (9-34)]
H(a, v) = (a/n) f I () ) R

where v = Av/Avp, a = I'{d4n Avy), and Avy = v&y/c; here &, is the most
probable velocity of the atoms in the material. We then write y;;(v) =
yoH(a, vy where yo = y;;/(* Avp). We assume that both Avy, and the param-
eter a are fixed in the region of line-formation, and employ the Milne—
Eddington model in which the ratio f, = y;;(v)/x, is independent of depth.
(The assumption of depth-independent f, is actually a fairly good approxi-
mation for some spectrum lines; ¢.g., Mg Il 14481 and Si IT A44128, 4131.
Indeed for these lines both ¥, and x, may vary over orders of magnitude in
the atmosphere while their ratio remains nearly constant,) Finally, we assume

the line is formed by absorption processes in LTE; the flux is then easily
computed as

F, =2 fo BJT)IE, [ f;(l + B dr} (1+g)dt  (10-32)

As before, we adopt B,[T(1)] = By + B:t, where 7 is the continuum
optical depth. Then, having taken j, to be constant with depth, we have

i

Fo=2 [ (Bo + BE(l + BJ7)1 + ) ds
2
= By + 3 Bl + B,) (10-33)

From equation (10-33) the continuum flux is clearly F, = B, + 2B, so that
the line-depth in the flux profile is

A, = [BAL+ B [1 + 2(50/31)]_1 (10-34)
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It is convenient to work in terms of the parameter 4, the central depth of

an infinitely opaque line. Taking the limit of equation (10-34) as f8, — €*

we find .
Ag = [1 + %(Bo/Bl)} (10-35)

which is essentiaily the result stated in equation (10-18). Then equation (10-34)
may be rewritten

A\' = AOﬁ\‘/(l + ﬁv] (10'36) '

The equivalent width may now be computed by integration of the line-depth
over frequency to obtain

W, = 7 A,y = 200 A BT+ p] Mo (10:30)

where it has been assumed that the line is symmetrical about its center. But
Bv) = (xo/r)H(a, v) = BoH(a, v), and if we define the reduced equivalent
widith W* = W/(24, Avp), we have

W(a, fo) = f;" BoH(a, )1 + PoHia, o}] ™" du (10-38)

Before we attempt to evaluate this integral, let us consider qualitatively
how the line develops as more and more atoms absorb. At the start, with
only a few absorbers, cach will be able to remove photons from the radiati‘on
field, and the line strength should be proportional to the number of absorbing
atoms. Only the Doppler core (where the opacity is highest) will contribute
to the line strength; the line wings will be transparent and will not reduce
the emitted flux. As yet more atoms absorb in the line, the core, at some
point, becomes completely opaque, and the intensity there reaches its
limiting value given by equation (10-35). Now, essentially all the phot-ons
that can be absorbed in the core already have been, and so long as the hne-
wings remain transparent, the addition of more absorbers does little to
increase the equivaleni width of the line, which is said to be saturated.
Finally, when enough absorbers are present, the opacity in the wings be.-
comes apprectable, and the equivalent width again increases as the COﬂtI:I—
bution of the line wings grows. These different behaviors are shown m
Figure 10-1. On the basis of the above discussion, we see that there are three
basically distinct regimes in the curve of growth; these will be treated
individually.

The Voigt profile can be represented schematically [equation (9-45)] as
Hia,v) ~ e * + n fav™?; here it is assumed that the first term apphe‘:bs
only in the core for v < v¥, and the second only in the wings for v = v¥,
where v* is chosen as the transition point where the two terms are equal.
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L1GURE 10-1

Development of a spectrum line with increasing number of atoms along the line of sight. The
line is assumed to be formed in pure absorption, For £, < 1, the line strength is directly
proportional to the number of absorbers. For 30 5 g, < 10 the line is saturated, but the

wings have not yet begun to develop. For fi; = 10* the line wings are strong and contribute
most of the equivalent width.

Consider now the contribution from the core only, and write f(v) = Boe ™",
assuming that ff, < 1. Then eguation (10-38) becomes

W = BO fom e*ul[l 4+ Boefvz]fl dv

= o [T = BT o (10-39)

or W = %ﬁ‘ﬁo[l — (Bo/N2) + (B2 /N3 — -] (10-40)

For small values of 8, (weak lines) the linear term dominates, and the equi-
valent width of the line is directly proportional to the number of absorbers
present. This is known as the lnear part of the curve of growth. Note that
B, varies as Avy,~ !, as does W*, hence the equivalent width W is independent
of Avy, on the linear part of the curve.

In the saturation part of the curve of growth, #, is so large that the line
core has reached its limiting depth, but not yet large enough that the line
wings contribute to the equivalent width. Again B(v) = fee™"", and if we
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let 4 = v2, then dv = u ™ * du, and equation (10-38) becomes

% 1 > - -my—1,,—%
W :Efo Boe (1 + foe ™ tut du

_ %ﬁj’ (1 + ety du (10-41)

where we have set §, = ¢ This integral may be rewritten [ see (160, 389)] as

_ o [l + 0Y]% dt (ol — 0] di
2WF = fo w rdu + o J’IO L T4 o — J‘O T {16-42)

Following Sommerfeld, one may replace the upper limit in the third integral
by oo (because & > 1) and expand [w(1 + ) }? as a power series in tfaround
¢ = 0. The results may be written in closed form in terms of the Riemann
zeta function, and one obtains finally the asymptotic expression

W~ JIn foil — [n2/24(In B2} — [7n*/384(In o)’} — -+ (10-43)

The above expansion is only semiconvergent and must always be truncated
after a finite number of terms; in practice, the series is useful for f, = 55.
From equation {10-43) we can see clearly that on the saturation, or flat, part
of the curve of growth, the equivalent width grows extremely slowly with
increasing numbers of absorbers, namely W* oc \/In f,. The weak depen-
dence of W* on f, implies that W on this part of the curve is essentially
proportional to Avy. It is easy to understand why this should be so: the
depth of the line profile is fixed at 4,, hence the integrated absorption must
be proportional to the linewidth; ie., to Avp (cf. Figure 10-1). Similarly the
dependence of W on ff, can be understood by recognizing that to produce
a significant depression in the continuum, the optical depth in the line must
exceed unity before the continuum reaches unit optical depth. This occurs
at frequencies v < v, Where Boe” ™" x 1; clearly vy, which measures the
width of the dark core {(and hence determines W¥}, varies as /In f;.

Finally, for very large numbers of absorbers, the line wings become opaque
enough to provide the dominant contribution to the equivalent width. Here
we adopt H{a, v) ~ af(m*v?), and writing C = fan™ ¥ we find from equation
(10-38)

W — ﬁf (1 4 v%C) " dv = %n\/é = %(mﬁo)% (10-44)

Thus W ot ¢, giving rise to what is calted the damping or square-root part
of the curve of growth. Again, note that both a and f, each contain a factor
of Avy,: hence W is independent of Av, on this part of the curve.

The entire curve of growth is shown in Figure 10-2. Notice that the larger
the value of the damping parameter g, the sooner the wings dominate |74
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Curves of growth for pure absorption lines. Nole that the larger the
value of «, the sooner the square-root part of the curve riscs away
from the flat part.

and hence the sooner the damping part of the curve rises away from the flat
part. Numerous curves of growth have been computed by various authors.
A particularly useful set has been published by Wrubel for a wide range of
the temperature-distribution parameters B, and B, and under different
assumptions concerning the atmospheric model (ie., Milne-Eddington or
Schuster—Schwarzschild) and the transfer problem (ie., absorption or
scattering lines); sce (687 ; 688 ; 689).

10-4 The Empirical Curve of Growth

The curve of growth has long been one of the astronomer’s favorite tools
for performing an analysis of a stellar atmosphere, and the literature of the
varions applications of this approach is enormous. The reasons for the
popularity of the curve of growth arc that it provides estimates of several
key parameters with speed and ease, and that it makes use of equivalent
widths alone, which can be well-determined observationally even for faint
stars where profiles would be impossible to measure accurately.

As described in §10-3, the theoretical curve of growth gives log(W,/Avy) =
log(W,/Adp) = log(Wic/A&y) as a fanction of log ;. Here &, is the total
ranidom velocity of the atoms forming the line, and

A2 ES —hvikT L2 3

70 mref \ nfyll — e ) nie i %,
=Y - = 10-45
fo K, (mc AVD) k(1 — g™y me (/4 Eok, ( )
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Here k_, the continuum opacity uncorrected for stimulated emissions, has
been introduced for conventence (and continuum scattering has been
ignored). The population nfy, of excitation-state i, of ionization-stage j, of
chemical species &, is assumed to be given by the Boltzmann-Saha equations
as described in §5-1.

In a stellar spectrum one can usually observe lines from several multiplets
of a given ion, and one or more ionization stages of a given element, for each
of several elements. Let us first consider only lines from a definite ion of a
single element. Because of the factor exp(—y;,/kT) in the Boltzmann ex-
citation formula, each multiplet has its own curve of growth. In view of
equation (5-8) we may write

log By = loglgipf7) — i + log Cy (10-46)
where 8 = 5040/7, yisexpressed in eV, and
Cy = [Njk/Ujk(T)](ﬂi-ez/nlc)(éokc)71 {10-47)

Clearly the value of f§, will be affected by the choice for the temperature (6)
in the atmosphere, and will be different for each multiplet (because of
differences in #;;,), and for each line {because of differences in f-values).

To construct an empirical curve of growth, we plot the value of log(W; /1)
versus log(g f4) for each line. Now if we assume that there is a unique relation
between i, and W, we attempt to force all points for the different lines to
define a single curve as nearly as possible. To do this, we adjust 8, and choose
the value that minimizes the scatter around a mean curve. This value is
called the excitation temperature, 0., and is considered to be the charac-
teristic temperature of the line-forming region. 1t should be realized that it
may not always be possible to derive a meaningful excitation temperature,
for different lines will actually be formed in different regions of the atmo-
sphere. For example, one would expect that lines from levels with high
excitation potentials will be formed deeper in the aimosphere where tem-
peratures are higher. Similarly, we would expect the average excitation
temperature to be higher for higher stages of ionization. Such refinements
can be taken into account by more elaborate calculations that use model
atmospheres, but they are normally ignored in curve-of-growth work.

There are other complications that arise in practice: there are errors both

in the values of W, and f, and these introduce scatter into the curve. Also, ..
fines arising from only a limited range of excitation potentials may be.

observable, and @, may not be very well determined over this short baseline.

Once the empirical curve, corrected for excitation effects, has been estab-
lished, it may be compared with theoretical curves. To superimpose the two
curves, a shift (both in abscissa and ordinate) of the empirical curve relative
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to the theoretical is normally required. From this fitting procedure we- can
deduce three essential bits of information.

(1) The ordinate of the empirical curve is log(W,/4), while that of the
theoretical curve is log{W,/Alp) = log(W,/A) — log(és/c). Thus when the
two curves are superimposed, the difference in the ordinates yields log(£,/c),
and thus the velocity parameter £o. The value derived can be compared with
the most probable thermal velocity at the excitation temperature T,
namely &y oo = (2kT oo/ Amy)t where A is the atomic weight of the element.
It is usually found that &, as inferred from the curve of growth exceeds
Enerms SOmMetimes by a large factor. To explain this difference, it has been
customary to postulate the existence of additional nonthermal motions of
the stellar material, which are usually referred to as microturbulence. It is
assumed that these motions occur on scales that are small compared to a
photon mean-free-path and hence constitute, in effect, an additional source
of line-broadening. If these small-scale mass motions have a Gaussian dis-
tribution around some most probable speed &2, then

o = [2hT e/ Amu) + E]? (10-48)

“Turbulent” velocities have been derived for many stars by this method of
analysis; the most dramatic results are obtamed for supergiants where
velocities in excess of the sound speed in the gas have been obtained. It
should be realized, however, that such diagnoses are not on entirely firm
ground because the introduction of a velocity field drastically affects the
details of line formation (¢f. Chapter 14). Indeed, with the high velocities
sometimes derived, one must inquire whether the excitation state of the gas
is affected by interchange of energy between mass motions and the internal
energy of the material. Very little work has been done on this difficult
problem, and our knowledge about small-scale stellar velocity fields re-
mains rudimentary, almost to the point of merely recognizing their existence.

(2) The difference between the abscissae of the empirical and theoretical
curves of growth yields

log C = log fy — [log(gf 1) — Oucex] (10-49)

To proceed further, we need an estimate of the electron density. This is
derived from a theoretical model of the atmosphere. Once we know n,, we
may compute k., and as we already know &, we find N, the number of
atoms of chemical species k in lonization stage j directly from C, via equation
{10-47). Then by use of the Saha ionization formula we can convert N, to
N,, the number of atoms of chemical species k in all ionization states. More
precisely, we obtain the abundance , = (N,/Ny), as k, is usually dominated
by hydrogen or H™, and thus is proportional to Ny. In short, the horizontal
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shift belween the two curves of growth yields the abundance of the element.
This method of anatysis has been applied to a wide variety of stars, and has
shown that certain stars (8.8, Population II stars and peculiar stars) have
abundances that differ markedly from solar values, which, in turn, are fairly
typical of Population I stars. The uncertainties in a curve of growth abun-
dance analysis should be clear: it has been assumed that the Saha—Boltzmann
relations are valid; depth variations of the relevant parameters (called sirati-
fication effects) have been ignored; and a schematic solution of the transfer
problem has been employed. The accuracy of the results is, therefore, limited.

(3) The horizontal and vertical shifts described above make use of the

linear and flat parts of the curve respectively. For a given set of theoretical
curves, a comparison between the observed and computed damping parts
determines the value of @ = T'/(4n Avp), and hence T'; this in tum may be
compared with the value predicted by line-broadening theory.

et us now turn to a brief discussion of a few typical results. The solar
spectrum has been analyzed extensively with curve-of-growth techniques;
one of the most outstanding early treatments was by H. N. Russell (542),
who derived element abundances (from eye-estimates of line-strengths!) that
are in remarkably good agreement with current estimates. A very interesting
study using curves of growth was carried out by K. O. Wright (686) who
analyzed the Sun and three other solar-type stars. This study is by no means
the most recent available [see, .8, (182)], but it is a classic example of the
procedure, so we shall consider it here. From an extensive set of equivalent-
width measurements and laboratory f-values, an empirical curve of growth
was constructed using lines of Fe I and Ti I. In all, some 75 lines of Fe 1
arising from states with 0 < 3 < 1.6¢V,and 137 lines of TiI with 0 < y <
2.5 eV, were used to obtain the curve shown in Figure 10-3. Slightly different
excitation temperatures were found for the two atoms, pamely T.. =
4850°K & 150°K for Fe I and T, = 4550°K + 150°K for Ti 1. These
values are about what we would expect for a radiative-equilibrium model
atmosphere. As can be seen, the curve is well defined, though it is true that
the linear part is defined mainly by Ti 1 lines and the damping past by Fe 1
lines. It would be more satisfactory if lines of each atom were found in both
ihe linear and damping portions of the curve.

The vertical shift of the empirical curve, relative to a theoretical curve
by Menzel, yields a velocity parameter £o = 1.6 km s7*. As the thermal
velocity for these atoms in the solar atmosphere is about 1.2 km s~ 7, this
implies a microturbulent velocity of about 1.0 kms™'. By afit to the damping
part of the theoretical curves, log a = — 1.4 was obtained. Adopting an
average wavelength of 4500 A for the fines, this yields I' = 1.7 % 107 s 14,
which is very nearly a factor of 10 larger than the classical damping constant
[.. It is clear that the main source of the line broadening must be collisions,
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From (686).

Empirical curve of growth for solar Fe I and Ti I lines. Abscissa is based on laboratory Jf-values.
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and because hydrogen is mostly un-ionized in the solar photosphere, the
most likely process is van der Waals interactions betwpen hydrggen and the
radiating atom. An approximate re§u§t for [ was obtained previously [e%ua-
tion (9-71)], namely T & 8.1 Cg*t* Ny where Cg =~ [13.6/(1i0n — 2:)]7 %
10732 [equation (9-76)]. For a typical value (Yion — 7§f) =6 er7 Céj
52 % 10732; typical values for v and Ny are 10% cm s 1_alnd 107 em ™",
so Iy =~ 10%, which is in basic agreement with the empirical -valu(_a. Thﬁ:
damping part of the empirical curve is found to ha\fe a glope (og a 1ogar1thmlc
scale) closer to 0.6 than 0.5, The likely explanation is that lines of widely
differing strengths are formed in different layftrs, 30 that the parameters
describing them (e.g., damping widths) are not identical, as was assumed in
constructing the curve of growth. : '

Many other analyses of the solar spectrum have been mad_e. An improve-
ment over the basic curve of growth method is obtained by using a safuration
function (505) that accounts for the fact that the line cor.es-and wings are
actually formed in different layers of the atmosphere. Thl; is ccl)nveme.nﬂy
done in the method of weighting functions, which is descrlbeq in detail in
(261, Chap. 4), and which has been applied in one of the classic abundance
analyses of the solar spectrum (252). S ‘

An important application of the solar curve of growth is in differential
ubuidance analyses of stars with respect to the Sun. Excellept examples of
this approach for G-type subdwarfs (extr_emely metal-deficient st'ars) and
for Population 11 K-giants can be found in (13) and (29_4) respectively. An
advantage of this approach Is that oscillator strengths, which are often poorly
known, cancel out of the analysis to first order. Also, because the templeratures
of these stars are close to the solar value, one might hope that_ tl}eur atmo-
spheric structures are at teast roughly similar to the Sun’s. If this is the case,
then other effects, such as line-blending, stratification, departures from LTE,
etc. might also cancel out to first order. -

The fundamental assumption made i a differential analysis is that the
stellar curve of growth, log(We/AEo)* versus log B, is identical to the solar
curve, 10g(Wc/A§O)© versus log 5. In practice we do not know BE or &5,
and thus we cannot construct the stellar curve directly. What is‘ known for
cach fine is log{W/Ay* and the value of log ¢ for that line frorn.lts observed
solar equivalent width. From the definition of §, [see equation (10-43)],

we have

@ NG . EjkEU*
log (—0*) = log (—%{) + 10 — 050 + log (él—c?—(fé {10-50)

Jis 3

If we define [X] = log(X®/X*) for any quantity X, then equation (10-50)

may be rewritten as

[Bol = [Njl + 2ine AD — [&] — [k] — U] (10-51) -
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Thus, if we plot log(W/2)* for lines of a given ion, say Fe I, versus log 5
instead of log f%, lines of different excitation potentials will scatter around
a mean curve if there is a difference in excitation temperature between the
star and the sun. Therefore, we plot log(W/2)* versus (log 85 — ;4 A#) and
choose Afl to minimize the scatter. For the G-subdwarfs it is found (13) that
Af 5 0.05, while for Population II K-giants A# is about 0.25 to .35 {294).
After the effect of Af is eliminated, the empirical curve for the star is super-
imposed upon the solar curve, in which log{We/A&,)? is plotted versus log 8§ -
The vertical shift gives directly [&,] while the horizontal shift yields the
average value of § = [N ] — [&ok U] for the ion under consideration. For
the G-subdwarfs &, is found to correspond closely to a pure thermal value
(no turbulence), while for the K-giants there is appreciable turbulence. As
the temperatures of these stars are fairly close to the solar value, the partition-
funetion ratic is usually set to unity, and the value of § depends primarily
upon abundances, and upon differences in ionization and continuous opacity.
Because H ™ is the main contributor to %, in the temperature range under
consideration, the value of [k, ] will essentially equal [n, ]. We can determine
[#1,] from an analysis of the ionization equilibrium using information from
two stages of ionization of the same element k. If we have observations for
two stages of ionization (say “0” and “1”), we may write

5j.’c = [—Njk] - [éokcl (i=01) (10-52)
Using these two values of § we can derive

A =0y — 0o = [lec] - {ch]
= log(N§/NG) — log(NH/Nip) (10-53)

As log(NS./NG,) is known, the observed value of A yields log(N¥,/N¥.). But
il we assume that the temperature is specified by 8%, (which is known), then
Saha’s equation gives log(N}.n¥/N¥%.); hence we may determine log ny and
[n.]. Estimates of [n,] can be obtained from several different elements,
and a mean value taken. Knowledge of [n,] allows us to evaluate [k | and
log(N%/N¥). Hence finally we can calculate the ratio of the abundance of
the element in the star to its abundance in the Sun as

log(NP /N§) = log(NZ/NZ) + 1og(N%/N¥) + log(NR/N%)
= log(NZ/N3) + log(N3/N{) + & + [&k U] (10-54)

because all four terms on the righthand side of the second equality are now
known.

The results of the two analyses mentioned above lead to the striking
conclusion that the abundances of the heavy elements in Population 11
stars are lower than their abundances in the Sun by a factor of the order
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of 1021 This is a fact of tremendous significance for the construction of a
picture of the evolution of the Galaxy, and it implies that the heavy elements
in Population I stars such as the Sun are the result of nucleosynthesis in
earlier generations of stars. The errors in abundances derived from curve-
of-growth studics are typically of the order of a factor-of-two uncertainty;
although such errors are serious, and motivate the development of more
precise methods, they do not change the qualitative results for Population
11 stars mentioned above.

10-5 LTE Spectrum Synthesis
with Model Atmospheres

The curve of growth approach introduces a large number of simplifying
approximations, which seriously limit the accuracy of the results obtained
Considerable improvement is achieved if the physical assumption of LTE
is retained, but now a model atmosphere 1s employed to represent the depth-
variation of all physical parameters. Given such a model, one may compute
both %, and y,¢, as functions of depth, allowing fully for the variation of the
femperature, jonization-excitation equilibrium, Doppler widths, damping
parameters, etc. It is then possible to compute the optical depth

0@ = [ k) + 0o 7 (10-55)
and hence the emergeat flux in a line at frequency v
F, =2 [ BITE)EG) de, (10-56)

by direct numerical quadrature, with as much mathematical accuracy as
desired.

The first step in this method is to select the model atmosphere that most
closely resembles the stellar atmosphere to be analyzed. This choice is made
by comparing observed and computed values of certain key features in the
spectrum. Typically the comparison is made for (1) continuum features
such as the overall energy distribution, the Balmer jump Dy, or a color such
as (b — y): (2) line profiles of the hydrogen lines (which are density-
sensitive); (3) ratios of line-strengths for lines of two ionization stages of
a given element. For example, in B-stars, the continuum parameters deter-
mine mainly the effective temperature T the hydrogen lines determine
mainly log g; the ratio of, say, Si TIT 44552 to Si IT 14128, 31 is a function
of both T,;; and log g {the ratio is insensitive to the element abundance).
Examples of fits of compuied and observed energy distributions are shown
in Figures 7-4 through 7-6 and in Figure 7-8. Figure 10-4 shows a fit to the
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Hydrogen Balmer-line profiles in Veza.  Solid dots: observed profiles from (509).
Crosses: observed profiles from (71).  Abscissa: A2 in A, Curves are computed
profiles [rom a model with Ty = 9650°K and log g = 4.05. From (555), by
permission.

observed hydrogen line profiles in the standard star Vega (555). Often a
plot is made, in a diagram of T, versus log g, of the loci of (T, g) values
for which the computed value of a given parameter [say D or W(Hy)] equals
the observed value. The loci for different criteria will intersect, and thus
define an optimum value of (T4, g). Ideally the curves would intersect at
a single point; in practice they will intersect within a small arca, which
introduces an uncertainty into both T and g. Examples of this procedure
for the normal B-star v Peg and the He star HD 184927 are given in (308)
and (299), respectively.

Having chosen a model atmosphere, it becomes possible to carry out an
abundance analysis. One now replaces the curve of growth by a computation
of the equivalent width, of each line under consideration, as a function of
element-abundance relative to hydrogen. Knowledge of the observed equiv-
alent width of each line thus leads to an estimate of the element abundance;
these estimates may be suitably weighted and averaged over all lines (o
yield a final abundance estimate.

Although the choice of the model atmosphere used in the abundance
analysis is based on continuum and hydrogen-line criteria, there is usually
some ambiguity in (T, log g). Often the results of the abundance analyses
for several elements can be used to narrow the range of uncertainty in
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(T, log g), and to choose a more refined model, much in the same way

as atmospheric properties may be inferred from a curve-of-growth analysis.

For example, after the analysis is completed, the derived abundances for
many lines may be examined to see if they show a correlation with excitation
potential; such a correlation would be expected if the temperatures in the
atmosphere are incogrectly chosen. The elimination of any such correlations
may, therefore, lead to an improved choice of T for the model. Similarly,
for a given element, identical abundances should be derived from all ioniza-
tion stages. Differences that are found between ionization stages contain
information about errors in the choice of temperatures and pressures, and
thus about T,; and log ¢ for the model. Finally, one can examine the derived
abundances to see if they show a correlation with equivalent width. If, for
example, stronger lines systematically lead to larger abundances, the velocity
parameter may have been underestimated, and thus information about
turbulent velocities to be included in the model can be derived. (As we shall
see in Chapter 11, however, departures from LTE must also be considered
when a determination of the velocity parameter from strong lines is at-
tempted.) Naturally, errors in the observed equivalent widths, in f-values,
and in other atomic parameters will introduce scatter; hence the procedure
outlined above may not be completely unambiguous. Nevertheless, exam-
ination of the correlations just mentioned can often lead to a significantly
better choice for the model. Finally, if the derived abundances are very
different from those used in construction of the model (as they might be
for, say, Ap stars), it may be necessary to recompute models with appropriate
abundances, re-derive T and log g, and perform the analysis over.

An example of the model-atmosphere method of abundance analysis is
that for the two bright A-stars Vega and Sirius in (609). The results of this
work show that Vega has very nearly solar abundances of the heavy elements,
while Sirius has abundances a factor of 4 to 10 higher. In many respects
Sirius mildly resembles the group of A-stars called metallic-line A-stars (Am
stars) because of the strength of the metal lines in their spectra. The present
literature of abundance analyses (and estimates of atmospheric parameters
such as T,y and log g) by both curve-of-growth and model-atmosphere
techniques is vast; extensive lists of references to research papers on the
subject for both normal and peculiar stars can be found in (12; 70, 57--204;
144 ; 450, 157-237;493; 523; 552; 560; 658). The work thus far described
makes use primarily of equivalent widths. For some stars, for which very
high-quality spectroscopic data are available, a detailed point-by-point syn-
thesis of the spectrum is possible. An example of such a synthesis for the
Sun (338) is shown in Figure 10-5. Analyses of this kind can lead to accurate
abundances and to the identification of hitherto unnoticed weak blends in
the spectrum; applications of spectrum synthesis to the calibration of photo-
metric systems were described in §7-4.
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Spectrum synthesis for solar Fe, Cr, and Ni lines. Curve:
observed intensity: open civeles: computed intensity.  Ordinate;
cmergent specific intensity at disk-center relative to continuum;
abscissa: wavelength in A, From {538) by permission.

All of the methods described in this chapter make the assumption of LTE.
As we shall see in Chapters 11 and 12, however, this assumption is often a
poor description of the physics of line-formation, and can lead to results
containing serious systematic errors. Let us now, therefore, turn to the
problem of solving the combined equations of radiative transfer and atomic
statistical equilibrium fully consistently.
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Non-LTE Line Transfer:
The Two-Level Atom

Much of the progress in understanding the physics of line-formation has
come from a study of solutions of the combined transfer and statistical
equilibrium equations: the so-called non-LTE approach. In this chapter we
shall consider some schematic line-formation problems that are simple
enough to be solved readily, but which, nevertheless, provide a good
description of the physically important processes—and yield considerable
insight. It will be obvious that some of the assumptions made are over-
simplifications, and are not valid in actual stellar atmospheres, for which
claborate numerical calculations are required to yield accurate results. On
the other hand, the real goal is to understand the answers, not merely obtain
them. This can be done only with a clear grasp of the prototype cases dis-
cussed in this chapter, which provide a conceptual framework of great use-
fulness for the interpretation of results from computations with complicated
model atoms and detailed model atmospheres.

11-1 Diffusion, Destruction, Escape,
and Thermalization

The most important difference between the LTE and non-LTE treatments of
line-formation is the way in which the coupling between the gas and radiation
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is handled. In the LTE approach, it is assumed that the local values of two
thermodynamic variables (T and N) are sufficient to determine completely
the excitation and ionization state of the gas (and hence transfer quantities
such as y,, n,, and §,), independently of the state of the gas at other points.
(This remark is strictly true only when the temperature structure is given;
if it is determined by the conditien of radiative equilibrium, then there is a
coupling among different points in the atmosphere—see §7-2—but not in
the sense we are concerned with here.) It has been emphasized in previous
chapters that the excitation and ionization state of the gas is, In fact, strongly
influenced by the radiation ficld, which, in turn, is determined by the state
of the gas throughout large volumes of the atmosphere, via the transfer
equation. In actaality the two problems of radiative transfer and statistical
equilibrium are inextricably coupled, and must be considered simultaneously.

Mauch of the basic physics of line-formation can be understood by con-
sideration of the characteristic lengths for photon diffusion, destruction, and
thermalization, which are related to photon escape and destruction prob-
abilities. For simplicity we shall suppose that the atom consists of a ground
state (denoted [} and a single excited state (denoted u). The distance over
which a line photon will, on the average, move in the atmosphere between
successive interactions with the material (absorptions) can be represented
by the average mean-free-path I. The mean-free-path for a photon emitted
at a given frequency is the distance interval whose optical thickness at that
frequency is about unity—ie, I, = 1/y, = (g, + x.)” ! where ¥, and ¥,
are the line and overlapping continuuwm opacities, and ¢, is the line profile.
For complete redistribution, the probability of emission at frequency v is ¢,,
sol = (> = {lL¢,dv. It is obvious that photons emitted in the core travel
relatively small distances, while those in the wings can travel much greater
distances, up to a distance corresponding to unit optical thickness in the
continuum.

When a photon is absorbed in the line and excites an atom to the upper
state, it is usually re-emitted in a radiative de-excitation and travels another
mean-free-path. This process may occur again and again before the photon
is ultimately destroyed, and has its energy deposited into the thermal pool,
either by a collisional de-excitation or by an absorption in the overlapping
continuum. Thus there exists a characteristic length L, the destruction length,
over which a photon may travel before it is destroyed. The destruction tength
has a more basic physical significance than the mean-free-path, for it mea-
sures the distance over which a photon emitted at a given point retains its
identity and hence can “communicate” information about conditions at that
point to another. Thus L determines an interaction region: the volume con-
taining those points that can influence one another via photon exchange.

The relative sizes of L and | depend upon the photon destruction prob-
ability P, which gives the average probability that the photon is destroyed
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when it next interacts with the material. The probability for photon destruc-
tion by collisions following absorption in the line is C,,/(A4,;, + C,;) where C,, is
the rate of collisional de-excitation and A,, is the spontaneous emission rdte:
now C,; o€ n,, so that it is clear that the contribution by collisions to the
total destruction probability becomes large (ie., approaches unity} in the
deeper, denser regions of a stellar atmosphere, and can be quite small in the
uppermost layers. If we assume that all photons absorbed in the continuum
are destroyed thermally, the contribution of continuum processes to P, is
the average of /(. + x.) over the line profile. The continuum sets an
upper bound on both [ and L because a photon cannot travel more than a
unit optical depth in the continuum before it is absorbed—and when it is,
it is also destroyed.

At great depths in the atmosphere, P, approaches unity because of large
densities (and hence collision rates) and because of the strength of the
overlapping continuum. Then L — /, for the photon is almost surely de-
stroyed when it is next absorbed. Assuming that the continuum is already
optically thick, it is clear that the radiation field becomes very strongly
coupled to local conditions and thermalizes to its local thermodynamic
equilibrium value. In contrast, when the destruction probability is very small,
L » I, and the interaction region may become enormous compared to the
volume over which a photon can diffuse in a single flight. In this case, the
radiation field is dominated by nonlocal influences, and represents the result
of physical conditions that may be quite inhomogeneous. For example,
within the volume there may be large variations of the kinetic temperature
that imply strong variations of thermodynamic properties and of the Planck
function. The radiation ficld may then depart markedly from its local equilib-
rium value, and this departure will extend throughout the entire interaction
region. '

The importance of these notions becomes manifest when we consider a
sequence of test points approaching the surface of the atmosphere. At
the deepest points we obtain equilibrium. But as we approach the surface, the
distance L grows, and eventually the interaction volume contains the
boundary itself {(more precisely, extends above the depth at which t = 1
anywhere in the line). Then a new phenomenon enters the picture: photons
escape from the medium into space. It follows that the radiation field, at
test points whose interaction regions extend into space beyond the surface,
must be depressed below the value it would have had if there were no bound-
ary, for no radiation is emitted in the region void of material, and photon
escapes are therefore uncompensated. This effect leads to a deficiency in the
radiation throughout an entire interaction volume, and hence extends to
depths at least of the order of L. But of course the radiation field at these
points influences that at points that lic yet another destruction length L
deeper, and therefore there is a “compounding” of the effect, which leads to
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a departure of the radiation field from its equilitbrium value at positions far
below the surface.

The depth at which the radiation field (or source function) ultimately
approaches closely its equilibrium value is the thermalization depth A this
coneept, introduced by Jefferies (333), has proven to be extremely fruitful.
To obtain a quantitative estimate of A we define the escape probability P.(t)
as the probability, averaged over the ling, that a photon emitted at line optical
depth 7 escapes from the medium before being absorbed along its path of
flight. The mechanism competing with photon escape is photon destruction;
the former induces a departure from equilibrium while the Jatter leads to
coupling to the local thermal pool. We therefore compare P, with P, Deep
within the atmosphere where P,{1) « P,, photons are surely thermalized
before they can cscape, hence S — B; at the surface where P,(7) » Py,
photons escape freely before thermalization, hence S will depart from B.
It is therefore reasonable, on physical grounds, to identify the thermalization
depth A as that point at which P {A) = P,. Defined in this way, A is essen-
tially the greatest depth from which photons have a significant chance to
escape before being destroyed.

Now the escape probability (and hence A) depends sensitively (a) upon
the nature of photon redistribution over the line profile upon emission,
and (b) upon the amount of background continuum absorption. The prob-
ability for photon absorption is highest at line center. If photons are emitted
coherently, then those absorbed at line center will be re-emitted there, and
hence will tend to be trapped by the large line-core optical depth up to the
very uppermost layers, where the line finally becomes optically thin; this
will tend to prevent serious departures of the line-core radiation field (which
contributes heavily to the total photoexcitation rate) from its equilibrium
value up to the shallowest layers of the atmosphere, In contrast, if photons
arc completely redistributed over the line profile, then there is a significant
chance that after a number of scatterings a photon absorbed at line-center
will be emitted in the line-wing where the opacity is low, and the probability
of escape is high. Photons that would have been trapped, if emitted co-
herently, now freely escape from the atmosphere, depressing the line-core
mtensity (and photoexcitation rate) in much deeper layers in the atmosphere.
The radiation field in the line as a whole now responds to the fact that the
boundary lies within a mean-free-path at some frequencies, even if not at
others. The role of the continuum is obviously important in the case of
complete redistribution, for it sets a lower bound on the total opacity, and
hence an upper bound on the depth from which escapes become possibie
at any frequency, no matter how far out in the fine-wing. [t is thus clear that
we should expect the thermalization depth to be much larger, and the surface
departures from equilibrium larger, when the scattering process is non-
coherent instead of coherent; further, we expect the magnitude of these
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effects to be larger, the more highly developed the line-wings are relative to
the core. We shall find these expectations are fulfilled by the detailed andlysxs
given below.

It has been possible to extract practically all of the physical flavor of the
problem using the qualitative arguments given above. Let us now turn fo a
mathematical discussion to obtain quantitative results, and to extend the
analysis to cases where such heuristic discussion becomes less effective.

11-2  The Two-Level Atom without Continuum
THE SOURCE FUNCTION

Consider a schematic atomic model consisting of only two fevels, | and u,
between which radiative and collisional transitions can occur, This model is
obviously very incomplete, but it nevertheless provides a fairly good de-
scription of the real situation for some lines. In particular, resonance lines
arising from the ground state are well described by this model when the
coupling of the lower and upper levels to the continuum (and of the upper
level to other levels) is weak. For the present, assume that the onl 'y sources
of opacity and emission at the line frequency are from the line itself; then
the transfer equation is

I[l(dl‘,/dZ) = [7”1'8151-'1‘; + r"u(AuI + BulI\'):ld)\J(hv/‘]'n) (11_1)

Here we have assumed complete redistribution so that the absorption and
emission profiles are identical, Define the optical depth scale in terms of the
frequency-integrated line opacity (which characterizes the average opacity in

the ling as a whole), dt = —y,, dz where
A — (”'IBIH - n“Bu!)(hv/47r} = (Rez/’nc)ﬁu[nl - (gi/gu)nu] (11_2)
Then uldjdty = @ (I, — 8) (11-3)

where SI = nuAul/(n[Blu - nuBuZ) = (2}]1’3/C2)[(ng"/."t“g1) - 1]_1 (11'4)

the second equality following from application of the Finstein relations
[cf. equations (4-8) and (4-9)]. As the factor v* varies only negligibly over the
sharply peaked profile ¢,, S, is called the frequency-independent source
function; when the emission profile differs from the absorption profile, §,
becomes explicitly frequency-dependent (see §2-1 and §13-4). Equation (11-4)
is an implicit form for the source function because the level-populations
depend upon the radiation field; this dependence can be displayed explicitly
by incorporating information from the equations of statistical equilibrium
that determine m; and &,
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The statistical equilibrium equation for level [ is

1 (Bﬂu j‘(pv']v d‘/‘ + C!zl) = Ry (AHI + Bul (/‘)\-J\' dU + Cul) (11-5)

This equation can be used to write an expression for {m/n,). Upon substituting
this expression into equation (11-4), making use of the detailed-balance result
that G, = (n,/m)*C,, and using the Einstein relations, we obtain quite
directly

S, = [ f ¢, J, dv + S’BVJ / (1+&)=(1 - e, + B, (11-6)

i

where ¢ = Cy(l — e ™™ )14, (11-7)
and e=¢&/1 + &) {11-8}
Exercise 11-1: Derive equation (11-6) in detail,

Each of the terms in equation (11-6) admits a straightforward physical
interpretation. The source function contains a noncoherent scattering term J
and a thermal source term ¢'B,. The thermal source term represents photons
that are created by collisional excitation, followed by radiative de-excitation.
The term & 1n the denominator is a sink term that represents those photons
that are destroyed by a collisional de-excitation following a photoexcitation.
These two terms describe completely the coupling of the radiation field to
the local thermal state of the gas. The scattering term may be viewed as a
reservoir term that represents the end result of the cumulative contributions
of the source and sink terms over the entire interaction region.

It is clear that, if densities are made sufficiently large, then the collision
rate C,, may eventually exceed 4, so that & becomes » [ ; then S; — B,(T),
and LTE is recovered. However, in virtually all situations of astrophysical
interest, ¢’ « 1 in regions of line-formation, and, in general, the source
function cannot be expected to have a value close to the Planck function.
This state of affairs was partially recognized in the classical theory by the
division of lines into the categories of “absorption™ and “scattering” lines;
this division, however, was largely ad hoc, and the thermal coupling param-
eter had to be guessed from heuristic arguments. In the present analysis
the coupling parameter follows directly, and uniquely, from the statistical
equilibrium equation. Further, in the classical treatments of “pure” scattering
lines, it was sometimes incorrectly argued that the small thermal terms could
be discarded. The important point to bear in mind is that, even if the thermal
term &' B is small compared to the scattering term J locally, when integrated
over the entire interaction region it accumulates to a value of importance;
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moreover, at depths greater than the thermalization depth the intensity-must

ultimately couple to the thermal pool. Indeed, if the thermal terms are dis-

carded, the transfer equation becomes homogeneous in the radiation field
and the scale of the solution is unknown; this scale is, in fact, fixed by the
(small) thermal terms at the point of thermalization.

SOLUTION OF THE TRANSFER EQUATION

Having obiained an expression for the source function, let us now con-
sider the solution of the transfer equation. It is convenient to work with the
dimensionless frequency-variable x, measured from line center in units of
Doppler widths (or damping widths for Lorentz profiles). In terms of this
variable we shall write Doppler profiles as

$¢{x) = n7=e™™ (11-9a)
Voigt profiles as
plx) = an " ? fio R [ L Al (11-9b)
and Lorentz profiles as
o(x) = (I/mAT + x?) (11-9¢)
which are all normalized such that
f_wm glx)dx = 1 (11-10)

We will absorb a factor of Avy, [or (I'/4x) for a Lorentz profile] into the
definition of y and write dt = —y(z) dz, where now ¥, = 7, /Avp, ¥
being given by equation {11-2). Then

S(t) = [1 — &(7}] JG:C (z, x)J (1, x) dx + &(c}B(z) (11-11)
and the transfer equation becomes
pldlz, x)jde] = ¢z, ) 1(z, x) — S)(x)] (11-12)

We now introduce discrete angle and frequency meshes {u,} and {v,}.
and replace integrals with quadrature sums;

S dx > Y a,f(x,) (11-13a)

n=—N
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and [ 1wde— Y bofim) (11-13b)

m=—M

where the points are chosen symmetrically—ie, x , = —x,and y_,, = — 1,
(also a_, = a, and b_,, = b,,). Then the source function can be written in
the same discretized form as was used in Chapter 6 [cf. equation (6-24a)],

Sd = (1 - ‘qd) Z iy Z bmudmn + SdBd (11"14)

n m

and the transfer equation can be reduced to the siandard second-order
differential equation form:

#rnz(clzuyli:x/titz) = (]5n2(unm - S) (11-{5)

where u, = 3[I{+n) + I,(—w)]. Equation {11-15) can be discretized on a
mesh {7,}, and solved numerically using either the Feautrier or Rybicki
schemes discussed in §6-3. All of the relevant parameters (g, B, and ¢) may
be depth-dependent without causing any difficulty in the calculation.

Alternatively, the transfer equation can be written in integral equation
form. The formal solution of equation {11-12} is

iz, %) = % f 7 S(OE, f "o, x) de| Bt x) di (11-16)

For a depth-dependent profile, the argument of the £, function will depend
upon both t and ¢; this greatly complicates the analysis, so we shall consider
only the case of a depth-independent profile, in which case only the dis-
placement (f — 1) enters:

1 a
Jex) = 5600 [ Si0E, | - D) dr (11-17)

Substituting this expression for J into equation (11-11) yields an integral
gquation for §;,

Siz) = [1 — ()] J;OC S{(OK, |t — 1| dr + &(v)Bi) (11-18)
where the kernel function K, 1s given by

1 o jral
Ky =5 |7 Ei@9o2 dx = [ Eguig, 2 dx  (11-19)
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Exercise 11-2+  Fill in the missing steps in the derivation of equation (11-18).
Exercise 11-3: (a) Show that the normalization of K,(s) is [ K (s)ds = L.

(b} Using the result in {a), show that, for 7 — oo, where S;(r)must be a slowly-varying '

function and hence can be removed from the integral, S/(t) — B.

Numerical methods for solving equations of the form of (11-18) are dis-
cussed in detail in (52) and (18, Chap. 8); in most respects these resemble
the Rybicki method of solving the differential equations, though Rybicki’s
method is simpler to apply when the profile is depth-dependent. In essence
the solution is obtained by introducing a functional representation of S(z)
on a discrete grid {7,}; these functions are integrated analytically against
the kernel to construct a final matrix system of the form

§=KS+ L (11-20)

where S = (Sq,...,Ss ..., Sp)" represents the depth-variation of the
source-function. The system is then solved by standard numerical techniques.

One of the advantages of the integral-equation formulation is that it
displays explicitly the intimate dependence of the source function upon the
mathematical behavior of the kernel function, and considerable insight can
be gained by analytical study of the kernel. In particular, the asymptqtic
form of K (s), for s » 1, shows that a characteristic feature of line-formation
problems with noncoherent scattering is an extremely long-range interaction
of one part of the atmosphere with another. Recall that {or coherent scattering
the appropriate kernel function in the formal solution is E; |t — 1| .[cf.
equation (2-57) and Exercise 2-101. This kernel decays very rapidly, faliing
off as exp(—|t — )/Jf — 1z, thereby limiting severely the range of depth-
points that are directly coupled together in the scattering process. In contrast,
the asymptotic behavior of K (s) is found to be (53, P:ppendix T} K(s) ~
1/{4s*[In(s/z*)]*} for Doppler profiles, K,({s) ~ a*/(6s7) for Voigt profiles,
and K,(s) ~ 1/(6s%) for Lorentz profiles. Clearly the range of these kernel
functions is very large compared to that for coherent scattering, and this
implies that the radiation fields at widely separated points in the medium
become mutually interdependent.

The physical reason for the long range of the noncoherent kernel functions
is, of course, the redistribution of photons into the transparent line-wings.
In the coherent case, any photon absorbed in the core will be re-emitted
there, and hence always encounters high opacity and remains trapped. In
the noncoherent case it has a probability of being emitted in the wings where,
because of the lower opacity, it can trave] over a large geometrical distance,
and a correspondingly large integrated line optical depth, before it is again
absorbed.
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THE THERMALIZATION DEPTH

Let us now consider the behavior of the source function in an atmosphere
in which ¢ and B are constant with depth. Naturally this is a very schematic
case, but it provides useful insight. One of the most important characteristics
of the problem to be determined is the thermalization depth at which the
line source function approaches closely the Planck function B. Expressions
for the thermalization depth can be derived by a wide variety of methods
including (a} analysis of the asymptotic behavior of the solution of the
integral equation {11-18) (53); (b) calculation of the distribution of the
distances photons can travel from their points of creation to their places
of destruction (545; 322); and (c) calculations of the probability distri-
butions for photon escape from a given point of origin in the medium
(214; 215; 216). One of the simplest and most appealing derivations can be
made on the basis of the physical arguments given in §11-1: that the ther-
malization depth A must be near that point in the atmosphere where the
probability of photon escape, P,(A), following a given scattering event is
equal to P, the probability of photon destruction (28).

For the strict two-level atom with no overlapping continuum opacity, the
probability of destruction per scattering event is just

Py=Cufldy + Cu)=¢ (11-21)

where ¢ Is as defined by equations (11-7) and (11-8) (ignoring stimulated
emission for simplicity). The escape probability can be calculated by summing
exp(— ¢, /), the probability of escape at frequency x along a ray at angle
cos™ ! p to the normal, over all angles and frequencies, with weight ¢, (the
probability for emission at frequency x within the profile):

P(7) = %fw dx ¢, fol e~ gy = %J: dx &, ff‘ e 0y~ 2 gy

~ %ffu Eo(vh, )b, dx (11-22)

Forz » 1, the exponential integral is approximately zero for |x| < x,, where
P(x;)r = 1, and unity for [x| > x;. Physically this states that photons are
trapped in the core, where 7¢, > 1, but in the wing where t¢, < 1, they
escape {reely. We may thus approximate P,(z) as

P = f: &(x) dx (11-23)
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The above integral is easy to evaluate for x, » 1 {which it will be when
7 » 1). By direct substitution of equations {11-9) we find

P.(t) = %erfc(xl) ~ " (2rtx) {Doppler) {11-24a)

P{t) ~ aflmxy) (Voigt}) (11-24b)
P.(7) = 1/(mxy) (Lorentz) {11-24¢)

In deriving equation (11-24b), use was made of the asymptotic form of the
Voigt function [cf. equation (9-45}]. Now the condition ¢(x,)r = 1 implies

x; = [In(z/z*)]*  (Doppler) (11-25a)
x, = (at/n)* {Voigt) (11-25b)
x; = (t/m)? (Lorentz) {11-25¢)

Hence, substituting equations (11-25) into (11-24), setting P,(A) = P, = ¢,
and solving for A we find

A=l (Doppler) {11-264)
A = afe? (Voigt) (11-26b)
A = 1/ (Lorentz) (11-26¢)

where ¢ is a number of order unity that depends implicitly upon &; other
factors of order unity have been suppressed.

Exercise 11-4: Show that for a profile with asymptotic form ¢(x} ~ ¢x™% with
z > 1, the thermalization depth varies as A ~ ¢~ # where f§ = o/ — 1).

The striking feature of the results given by equations (11-26) is that the
thermalization depih for a line with small ¢ is enormous. Recall that for
coherent scattering the thermalization depth ~&~* (cf. §6-1 and 10-2). It is
clear that the effects of noncoherence, with their attendant increase of photon
diffusion in the line wings, greatly increase the depth in the atmosphere over
which the scurce function can depart from the local Planck function. In fact,
intercomparison of equations (11-26a) through (11-26¢) shows immediately
that an increase in the relative importance of the line-wing within the profile
leads directly to an increase in the thermalization depth. It is worth stressing,
however, that the above results do explicitly depend upon the assumptions of
(a) no background opacity and (b) complete redistribution. We shall sce later
in this section that the effect of a background opacity can greatly reduce A.
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[n Chapter 13 we shall find that in the case of resonance lines, the scattering
in strong radiation-damping wings is nearly coherent, and A is better approx-
imated by equation (11-26a) than (11-26b), '

From a mathematical point of view, equations (11-26) show that any
iterative solution of the transfer equation starting from LTE is futile for
small ¢ (much more so than the cases already discussed in §6-11), and only
direct solutions of the transfer equation will yield correct values.

BOUNDARY-VALUE AND DHPTH-VARIATION
OF THE SOURCE FUNCTION

Having shown above that the source function may be decoupled from
the Planck function over great depths in the atmosphere, let us now inquire
what value the source function attains near the boundary of a semi-infinite
atmosphere. If ¢ and B are taken to be constant with depth, the transfer
equation (11-12} is easily solved by the method of discrete ordinates (53;
476). Writing 4, = 1/¢(x,) we have the coupled system of equations

M
dp Y byl —eB {11-27)

-N = —-M

1=

1
)'n#m(dlnm/d'r) = Imu - E(]- - 8)

u

Considering first the homogeneous equation (B = () and seeking a solution
of the form 1, = g,., exp{— k7) one finds that

Ly = (1 + kd,p,) " te™™ {11-28)

where the constants k are roots of the characteristic equation

N M

6~ Y a, Y bl — KEL207 = 1 (11-29)

n=1 m=1

Exercise 11-5: {a) Yerify equation (11-28). (b) Show that equation (11-29) is the
appropriate characteristic equation for the system {11-27).

For ¢ = 0, the root k* = 0 is a solution. For & > 0, k? must be greater
than zero. As in our earlier use of the discrete-ordinate method (§3-3, §7-4)
we may delimit the roots by the poles at k* = 172,72, and if we label these
poles in the order of decreasing values of (4,u,,) we may write

0 <k < Q)72 < ko < <l < () > (11-30)

which shows that the roots may be determined rapidly by a systematic search
on appropriate finite intervals. As can be seen, it is convenient to label the
roots with a subscript ¢, 1 < o < MN. By an analysis of the characteristic
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equation similar to that used in deriving equation (3-65) one may readily

show that
MN

H (k'o:zmum)z =8 (11'31)
az=1
We shall use this result below. For B = constant, a particular selution of
equation (11-27) is I, = B. Thus the general solution must have the form

MN
Iow = B l:l + Y, Le 5 (1 + kal,,,um)ljl (11-32}
a=1

where the ascending exponentials have been discarded to keep the solution
bounded at infinity. The surface boundary condition is, as usual, /,,,(— s} =
0. Tf we define

MN
F)=1+ Y Ll — k)™ (11-33)

=1

then the surface boundary condition may be expressed as ¥(2,u,,) = 0 for
(m=1,...,M)and (n=1,..., N). This set of lincar equations may be
solved numerically for the L,’s. Substituting equation {11-32} into the ex-
pression for §; on the right-hand side of equation (11-27), and making use
of the characteristic equation (11-29) one finds

MN
Sty =B (1 + 3 Lae‘k“f) {11-34)
=1
In particular, at the surface,
MN
S,(0)= B (1 + 3. Lﬁ) = B#(0) (11-35)
a=1

Now, by an analysis similar to that used to derive equations (3-70) and
(7-104) one may show that

F(x) = [ﬁ k, ﬁ ﬁ by — x):l / 11‘[ 1 kx)  (11-36)

n=1m=1 =1

from which it follows, using equation {11-31) that

MN

y(o} = n (koz';“n”m) - 8% (11—37)

a=1

Exercise 11-6:  (a) Derive equation (11-31). (b} Derive equation (11-34).  (c) De-
rive equation (11-36). :
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By substitution of equation (11-37) into (11-35), we obtain finally the
extremely important result

S{0) = &*B (11-38)

This result is independent of the order of the quadrature sum and the form
of the profile, and hence is general. The basic physical content of the results
obtained thus far is contained in equations (11-38) and (11-26). It may be
summarized in words as follows: when the coupling of the line-emission
process to the termal pool is weak (& <« 1), the source function can depart
drastically from the thermal values, and this departure can extend to great
depth in the atmosphere. Note that the surface value of the source function
exceeds the local creation rate by a factor of 1/e2. This implies that 5,(0)
is controlled primarily by photons fed in from the line wings. These photons
originated deep in the atmosphere where S,(t} > $,(0); it is therefore clear
that the surface value of S, has little to do with the local thermal source terin
but is dominated by nonlocal effects.

Numerical solutions (53) for the full depth-variation of S,(1) are shown in
Figures {1-1 and 11-2. The cases in Figure 11-1 are for a semi-infinite atmo-
sphere, constant Planck function (B = 1), a Doppler profile (a = 0), and
various values of & It can be seen that in each case S,(0) = &, and that
Sy — Bat t ~ l/e The results shown in Figure 11-2 are for lines with ¢ =
107% and for Voigt profiles ranging from a pure Doppler profile to a pure

log £

FIGURE 11-1

Line source functions in & semi-infinite atmosphere with B = 1,
for a line with a purc Doppler profile (a = 0), and various values
of &. From (53), by permission.
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Line source functions in a semi-infinite atmosphere with B = 1, for lines with 2 = 1074, and

Voigt profiles ranging from a pure Doppler profile (¢« = 0) to a pure Lorentz prefile (a = o).
From (53), by permission.

Lorentz profile (a = o). The increase in thermalization depth from ¢!

to £~ 2 is shown plainly. The source functions in both Figures 11-1 and 11-2
will yield absorption lines with dark cores; in contrast, the L'TE solution,
with §; = B, would yield no line whatever. This difference can be attributed
to the effects of scattering, and indeed the classical theory would also have
predicted a line of the same central depth for the same &. However there re-
main two important differences.  (a) Both the upper- and lower-state occu-
pation numbers differ from their LTE values; in many earlier “scattering”
calculations LTE populations were (incorrectly) assumed. {b) The dark
portion of the non-LTE profiles, where noncoherent scattering Is assumed,
are wider. The Eddington—-Barbier relation implies that I,(0) ~ Sj{t, = 1),
hence the lines will be dark for |x| < x; where A¢(x,) = 1. Because A is
so much larger for noncoherent scattering (¢~ to ¢~ 2 instead of &~ %), the
corresponding values of x; will also be larger; we shall return to this point
in §11-5. Finally, it must be remarked that the solutions obtained here are
Jully consistent solutions of both the transfer and statistical equilibrium
equations; any approach that falls short of this level of consistency is
unsatisfactory.

FINITE SLABS

The finite slab atmosphere of total thickness T is a case of astrophysical
importance; it can be used to represent nebulae, or limited zones in an
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atmosphere to which a particular ion is confined owing to changes in the
ionization balance (e.g., chromospheric lines of, say, He IT are limited to
fayers bounded above by the corona and below by the photosphere). In
finite atmospheres two physically distinct behaviors are found, depending
on whether the atmosphere is effectively thick or effectively thin. If T » A,
then photons from the slab center will not escape before they thermalize;
in this case S;(0) will attain its semi-infinite atmosphere value for the corre-
sponding value of &, and will approach B at depths = A from the surfaces.
If, however, T « A, then the solution never thermalizes, and §,(z) becomes
proportional to the local creation rate—ie., S,(t) = ¢Bf(x) where f(z} is
independent of ¢ for a given T.

An estimate of S, at slab-center can be obtained as follows [see also (28)].
The ratio of the rotal number of emissions along a column through the slab
to those thermally created must be equal to the mean number of times,
(N>, a photon is scattered before it escapes or is destroved, ie.,

Ny = [ dvtaning,) [ S0 do / |2, aviaming,) [ e Blo) de
- J‘or 5i(7) dr/f; e(7) B(z) dt - (11-39)

Here we have used the definition , = 3.5, and noted that S, is frequency-
independent. For a finite slab the dominant photon loss-mechanism is
escape, hence (N ~ [P(T)} '; at slab center P(T) ~ [2P,(3 T}].., where
the subscript denotes the escape probability from the indicated depth in a
semi-infinite slab, and the factor of two accounts for losses through both
faces. To obtain an order-of-magnitude estimate from equation (11-39), we
replace S;(7) with S, = SET) and assume £B is constant so that (N> ~
Smax/®B). Then, using (11-24) and (11-25) to calculate P{T), and again
ignoring numerical factors of order unity, we find

Soex & T TPB  (Doppler) (11-40a)
S ~ #(T/0)B (Voigt) {11-40b)
and S = eTEB (Lorentz) {11-40¢)

The behavior described above is seen very clearly in the numerical results
(53) shown in Figure 11-3, which gives S;(t) for lines with Doppler profiles
(¢ = 0), for various values of ¢, in an atmosphere with T = 10*. The dashed
curve gives the solution for a semi-infinite atmosphere with ¢ = 1074 It
can be seen that for ¢ > 107* the solutions closely resemble semi-infinite
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FIGURE 11-3

Line source functions in finite atmospheres
with {total thickness) T" = 10* and B = 1, for
a line with a pure Doppler profile (a = 0).
Dashed curve corresponds to the semi-infinite
atmosphere solution with ¢ = 10~ Note that
Sy{z) is symmetric about T/2 (not shown owing
to use of a logarithmic scale for abscissa.
From (53}, by permission.

atmosphere solutions at the corresponding &, while for ¢ < 10~ % the atmo-
sphere becomes effectively thin and S, falls below the corresponding semi-
infinite-case curve, and, in fact, scales linearly with ¢ Emergent intensities
(83) are shown in Figure 11-4 for lines with ¢ = 10™#, and for various
values of g and T For T = oo, an absorption line is obtained in every case,
with central intensity independent of . In finite atmospheres, emission lines
are obtained, for the line wing becomes completely transparent for suffi-
ciently large x, and the intensity must go to zero. At smaller x the intensity
rises rapidly, and, for effectively thick atmospheres, saturates to the semi-
infinite atmosphere value. Finally, in the line core, scattering leads to a
self-reversal. The profiles shown in Figure 11-4 strongly resemble those
from laboratory emission sources with saturated lines, and from hot
chromospheric layers above a relatively cool photosphere.

log I

FIGURE 1]-4

Emergent intensity from (inite and semi-infinite atmospheres in Doppler and Voigt profiles with

From (53), by permission.

g = 10"%
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THE EFFECTS OF AN OVERLAPPING CONTINUUM

All of the discussion presented thus far in this section has been based
on the assumption that the only opacity source is the line itself. In virtually
all situations of astrophysical interest, however, the line will be superposed
on a background continuum arising from bound—free absorption by other
levels of the atom, or by other atomic species. As was noted in §11-1, the
presence of a background continuum affects the destruction probability
P,, and sets an upper bound on the photon mean-free-path and destruction
length. We therefore expect the thermalization depth to have an upper
bound set by continuum processes. Furthermore, the continuum provides
an additional source of emission into the line. A detailed study of the line-
formation problem with a background continuum has been presented in
(315) for idealized problems similar to those considered above in the no-
continuum case; we shall summarize some of the results of this work in the
following paragraphs.

For simplicity we shall consider a semi-infinite atmosphere, and assume
depth-independence for the line and continuum opacities y, and y, the line
profile ¢, the line thermalization parameter ¢, and the Planck-function B
(all of these assumptions may be dropped if numerical techniques such as
the Feautrier or Rybicki methods are employed). The transfer equation is

pdljdz) = =G + ndHa + 1Sy + 2.8 (11-41)
Defining the optical depth in terms of the line opacity, dt = —, dz, which

implies that the continuum is regarded as a perturbation, and writing
7 = y./7. equation(11-41) becomes

uldl Jdz) = (¢, + NI, = S,) (11-42)
{1 — & (a(bx + 1}
where S, = ¢ 1) f o T ((i’x ) B
= - éx)ffw by dX' + C.B (11-43)
and £ = (e + Mfide + 1) (11-44)

It is easy to see that &, is the total destruction probability for a photon at
frequency x, for it is the sum of  (a) the probability that a photon is absorbed
in the line, ¢ /¢, + #), multiplied by &, the probability that a line photon
is destroyed by COHISIOHS and (b) the probability that the photon is
absorbed in the continuum, 7/(¢, + r), multiplied by unit probability of
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destruction. The formal solution of the transfer equation (11-42) yields

U SJOE, [t — Dy + A (ds + 1) dr

W, + 1) dt

-1 @ «
=5 4. fo S(OEy it — 9, + )l de + 378 [ E, |

(11-45)

The soluticn given by equation (11-45) could be substituted into (11-43)
to produce an integral equation for the total source function S.(r), but
the resulting equation would be two-dimensional (r and x), and would be
impractical to solve. Alternatively we can write an equation for S,(t); if the
line source function is known, we can compute S_(7) = [¢,.S,(x) + B}/ (¢, + 1)
as desired. To obtain the equation for (), the integral | ¢,.J, dxis calculated
from equation (11-45) and the result substituted into equation (11-11) to give

St =(1 — &)1 — &) f(j S(DK, |t — t|dt -+ (1 — &) 0B fo“' Ly |t —|di + B

(11-46)

where S=v f T b + 1y dx (11-47)
Ky 9 = 51— 0 U7 B + 1519, dx (11-48)

and Ly (s) = %r 51 f_””m E (¢ + )], dx (11-49)

The particular choice of coeflicients in front of the integrals defining the two
kernel functions was made to assure normalization of the kernels.

Exercise 11-7: (a) Derive equation (11-46). (b) Show that lim,_, (8/r) = oo,
lim,.q (1 — &) =1, and hence lim._, L, {r) = 0 and lim.., K; (7)) = K(1)
where K,(7) is defined by equation (11-19). (c) Show that K, , and L; , are
normalized such that [§ K, {t)dr = fand [§ L, (t}dc = 5. (d) In view of (c),
show that, for © — oo, where S(1) is slowly varying and hence can be removed
from the integral, S;(t) — B.

The physical significance of equation (11-46) becomes clear if we introduce
the average destruction probability

g = fi b lodx =5 + ol — &) (11-50)
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for then (1 — &) = {1 — &){I — &) and we can rewrite cquation (11-46) as

S = (1~ 8 [ SOKy,ft—2[di+ C = 9B [7 L |t~ o] dr + 2B

1-2 J.Ow SUOK, |t — 7| dr + EBela) (11-51)

In the first form of equation (11-51}, the first term obviously represents
scattering in the line, with a total photon destruction probability given by
&. The second term represents photons fed into the line from the continuum,
and the third term represents photons created by collisional processes. As
in the pure-line case, the depth-variation of the source function will be
determined by the properties of the kernel functions, and thermalization
properties of §; can be derived from a mathematical analysis of the asymptotic
formsof K, ,and L, ,(315). On the other hand, the second form of equation
(11-51) shows that the problem with a continuum is of the same form as the
pure-line case, except that the coupling constant between the radiation and
the thermal pool is & not & Indeed, exploiting the same line of reasoning
as before, but using & for P,, one finds that the thermalization depth is again
given by equations (11-26), but with ¢ replaced by €. Values of € and A, for
¢ = 107% and for various values of r and 4, are presented in Table 11-1.
The striking result seen there is that € can greatly exceed ¢, even when r < ¢,
with a consequent dramatic decrease in A. These results show that by
inhibiting photon transfer in the line wings, the continuum can dominate
Jine thermalization. Note also that whenever r = &, then & is already suffi-
ciently large to assure that A < r” ! as il must be, because we know from
physical considerations than over distances grealer than »~ ' thermalization

TABLE 11-1
Average Photon Destruction Probabitity € and Thermalization Depili A for a Line
with Overfapping Contingum (¢ = 1079

I

0 w3 e

e
s

r I3 A 5 A

0 107° 1 x 10° 10-° 10° i0°® 104°

077 179 x 107 56 x 10° 187 % 107% 29 % 10% 570 x 107 31 x 107

1076 826 x 107% 12 x 10° 572 x 107% 21 x 105 1,78 « 107* 32 x 10°
K
X
b

1077 669 x 1077 15 x 10* B85S x 10T* 29 % 10* 563 x 107F 32 x 10¢
107% 585 x 107* 17 x 10 784 x 107% 16 x 107 183 x 107% 3.0 x 10°
107 498 x 1073 20 x 10% 523 % 107 37 x 100 725 x 1073 19 x 10?

Source:  (315), by permission.
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in the continuum will occur; equations (11-26) with & replaced by Z are
thus consistent.

To estimate the source function at the surface we can again use the
similarity of equation (11-51) to (11-18) to infer that there exists a relation
of the form

' S0y = Z By (11-32)

where B, is an appropriate average of B, (z) over a thermalization length.
It is apparent from the discussion given above thal whenever £ exceeds &
(either because r > & or because extensive line wings assure that £ > ¢ even
though r < ¢), then both the destruction and creation terms (Le., B} are
dominated by the continuum, and the ling is said to be continuum controlled.
This implies that 5,(0), in particular, is set by the continaum even though the
lire opacity and line source function in the line core exceed the continuum
terms. This is yet another manifestation of the fact, noted earlier, that the
surface value of the source function is controlled by the line wings.
Numerical solutions for 5,(7), in a semi-infinite atmosphere with B = 1
and ¢ = 107°, obtained using the method of discrete ordinates (315), are
shown in Figures 11-53 and [1-6. It is easily seen that even modest values of

log S,(t)

logt
IGURE 11-3
Line source functions in a semi-infinite atmosphere for a
two-level atom with s = 107% and a pure Doppler profile
{a = 0), with an overlapping continuum having various values
of . From (315), by permission.
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¥IGURE 11-6

Line source functions in a semi-infinite atmosphere for a two-level
atom with ¢ = 107% and an overlapping continuum with various
values of r, showing clfects of different line profiles.  From (315),

by permission.

r produce major changes in the source functiqn; the effects are even more
striking in finite slabs (315). The resgits‘in Figure 11-_5 pertain Lo & pure
Doppler profile; the vertical arrows indicate the predicted thgmahzatmﬂ
depths listed in Table 11-1, and the horigontal AITOWS show &z, the -value
of 8,(0) if B,y = 1. For Voigt profiles (Figure 11-6) a fairly good estimate
for §,{0) is obtained if one adopts :

Bur = (o) ! 7 Bulr) (1-53)

with & chosen to be a little larger than 3; this choice allows for the strong
decrease in the true weighting function with depth. F or‘_ﬁm're slabs, a_ﬁrst
approximation to S, at slab center is giv-en by equatlons. (11-40) with =
replaced by &; this accounts for photons emitted by the contmuum.

In real stellar atmospheres the elfects of a background continuum on
line-formation and thermalization are usually majos. For early-type stars
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only the strongest lines have values of r as small as 107* or 1072, and
continuum terms therefore are generally dominant. On the other hand, the
H and K lines of Ca 1l in the solar spectrum have r ~ 107°, and hence

their thermalization is essentially independent of the overfapping continuum.

EFFECTS OF DLEPTH-VARIABLE THERMALIZATION
PARAMETERS AND LINE PROFILES

In the idealized problems considered thus far in this section it has been
assumed, for the sake of simplicity, that all of the quantities B, r, &, and ¢,
are independent of depth, whereas in real stellar atmospheres they may all
be strong functions of depth. These variations can, of course, markedly
affect the ling-formation process, the behavior of the source function, and
computed line profiles. To account for these complications in attempts to
model accurately real stellar spectra, recoursa must be had to direct numerical
methods such as those described earlier in this chapter. But physical insight
can be gained from a study of simple parameterizations of the variations of
some of the quantities mentioned above. A discussion of the extremely
important effects of Planck function variations will be deferred to §11-3,
where line-formation in the presence of a chromospheric temperature rise
will be described. Variations in the parameter r can be important, but are
not easy to summarize in a few words; see (18, Chap. 3) for further discussion.
We shall concentrate here on the effects of depth-variations of ¢ and ¢,.

The collisional de-excitation parameter ¢ is proportional to the electron
density, and hence must reffect the rise of the density with depth in the
atmosphere. If the atmosphere is supposed to be essentially isothermal, then
hydrostatic equilibrium implies that the total density increases linearly with
m, the column-mass; if further we suppose that (y/p) is essentially constant,
then 7 is also proportional to m. Then in an early-type star where the material
is appreciably ionized, we expect #, to be proportional to ; in a later-type
star the material may be neutral in the outer layers and may then abruptly
ionize at some depth, in which case a much more sudden rise in n, (and &)
may occur. Even though an actual numerical solution is required to deter-
mine S;(¢) with precision when ¢ is variable, it is reasonable on physical
grounds that we should still expect thermalization to occur at a depth A
where P,(A) & P,{(A). To illustrate the usefulness of this idea, suppose a
rapid rise in & occurs, from some value &, to higher value &,, at a particular
depth 7, in an atmosphere with r, B, and ¢ all constant. Then if 7, > 1/g,
(for a Doppler profile) it is clear that the line will already have thermalized,
and hence the rise in ¢ has no effect. In this case S,(0) will equal £,%B. Con-
versely, suppose that 1, < 1/g;. Then the line source function thermalization
will have been delayed by the low value of @ at the surface to a predicted
depth of 1/e;; but at that depth ¢ already equals &, > &,. Hence the line will
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FIGURE [1-7
{a) Variation of ¢ with depth: curves are labeled with log Ty, and
ity = 107°[1 — 099 exp({—1t/tp)]. (b) Line source function in a semi-
infinite atmesphere with B = 1, for a line with a pure Doppler profile and
a(t) as shown in (a). Curves labeled “a™ and “b™ correspond to constant
values of ¢ of 1077 and 1072 respectively.  From (284, 101).

behave as if & were constant at & = ¢,, and 5,0y will equal £,*B. These
qualitative expectations are confirmed by detailed calculations (284, 101)
such as those shown in Figure 11-7 where ¢ is assumed to have the form
&(r) = 10 °[1 — 0.99 exp(—1/z,)]. Notice that, when 7, > 10°, S, behaves
asife = 107°, whereas if 1, < 10% S, behaves as ifs = 10~ 3,

A change in the form of the line profile alters the way photons get redis-
tributed into the line wings, and their probability of escape. Numerical
studies (320; I8, 51) have revealed a number of interesting effects of profile
depth-variations upon the line source function, Suppose, for example, the
Doppler width rises sharply near the surface in an atmosphere with B =
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FIGURE 11-§
Line source functions in a semi-infinite atmosphere with B = 1, for a
linewithe = 107%, r =107% a = 1073 and a depth-variable

Doppler width. (a) Doppler width rising toward surface,

Avp{t) = 1 + 2exp(—ur).  (b) Doppler width decreasing toward
surface, Avplz) = 3 — 2 exp( —zt,). Curves arc labeled with parameter
x. Curves labeled “0” have constant Doppler width.  Ordinates:
Left-hand scale and sefid curves give log(S,/B); right-hand scale and
dashed curves give Ay, From {18, 52), by permission.

constant (see Figure 11-8a). Then we find that the surface value S,(0) is
increased markedly because the broader line-wings can now intercept radia-
tion from deeper layers. As the position of the rise in Avp moves deeper in
the atmosphere, the surface effect diminishes, basically because the surface
layer becomes more and more opaque in the wings, and the bright underlying
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continuum radiation becomes more attenuated. At the same time, the source
function at great depth also increases, basically because the higher opacity
in the line-wings in the surface layer impedes the escape of radiation from
below; this is sometimes referred to as the reflector effect. The effect at depth
is greater, the thicker the upper layer (until, of course, the rise Hes below the
point of thermalization). Notice in Figure 11-8a that when o = 10° the upper
layer is optically thin, and thus there is essentially no reflector effect even
though the surface rise is largest.

When the Doppler width decreases sharply at the surface, the value of
$,(0) drops because the narrower profile no longer intercepts bright radiation
in its wings, Radiation trapping is also reduced in lower layers, and hence
S, decreases there as well. At very great depth, however, the effect is the
opposite, and §; actually rises a little above its value for constant Avj,
because now the decrcased bandwidth available to the lines implies a de-
creased escape probability.

It must also be noted that, in addition to changing $,(z), variations in the
absorption profile change the run of optical depth, at a given frequency, with
physical depth. In view of the Eddington—Barbier relation, it is obvious that
this implies a change in the “mapping” of S, into I {0), and hence in the
emergent intensity distribution in the line profile, and its center-to-imb
behavior [see, c.g., (26)].

11-3  The Two-Level Atom with Continuum

THE SOURCE FUNCTION

The discussion given in the preceding sections of this chapter is based on
a very schematic and admittedly restrictive atomic model. Naturally the
true situation for any real atom is more complicated. To introduce some of
the physically important effects while retaining analytical simplicity, let us
now consider an atomic model consisting of two bound states and a con-
tinuum. This model provides at least a rough representation of reality for
resonance lines and also for subordinate lines when the resonance lines are
in radiative detailed balance. The addition of the continuum greatly increases
the number of processes that may take place. In the strict two-level case,
the only processes that can occur are photoexcitations or collisional excita-
tions from the lower to upper state, and their inverses. Now there are, in
addition, photoionizations and collisional ionizations from the bound levels
to the continuum, and radiative and collisional three-body recombinations
to each bound level. Tt is clear that this is a much more general model, and
we shall find that the additional physics has major implications for the line-
formation process.
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As before, assume complele redistribution, so that S, is given by equation
{11-4). The statistical equilibrium equations now are

iy (Biu f¢vJv dv + Cl’u + RIK + CI}()

= h, (Au! + Bui f(ibv']\' d".’ + Cul) + HI*(RKI + Cll\’} (11'54)

Ell'ld n, (Au! + Bui fd)\'J\' dl’ + Cu! + Rmc + Clu{)

- nl (Blu J‘(/)v‘]r dV + Cm) + n:f(RKII + Cm() (11'55)

for the lower and upper levels, respectively. The photoionization and re-
combination rates are given by equations (3-060) and (5-67). Solving equations
(11-54) and (11-55) for (m,/n,), substituting into equation (11-4), and making
use of the Einstein relations we obtain

S, = U G dv + eB(T) + 0}/{1 et (11-56)

where ¢ is given by equation (11-7),

(Rmc + Cux)nf(ch.’ + Clk) - gI(RlK -+ Ch«:)n:f(qu + Cu:c)./gu
A:JI[”E:‘{RM + CIK) + n:::(Rmz + Cruc)]

i R R e
and 8 = (2]1‘) )(ﬁf)’l_) ( I + Clk)rlu( K + Cua)w__ (11-58)

C2 guAul I:n?:(RKI + CIK) + }If(R}c:; + Cmc):l

(11-57)

Ho=

Equation (11-56) was first derived by Thomas (622) as an extension of earlier
work by Milne (416, 159--164) and Strémgren (613), and was studied exten-
sively in an important series of papers by Jefferies and Thomas (335; 336;
623; 337).

Exercise 11-8 . Derive equations (11-56) through (11-58) in detail.

Despite the apparent complexity of these expressions, each term admits
a simple interpretation. Consider the numerator of equation (11-36). The
first term again represents the scattering reservoir. The second term is the
thermal source, giving the rate at which photons are created by collisional
excitation; note that this term depends upon the local value of T,, the
electron kinetic temperature. The third term is proportional to the total rate
at which electrons are ionized from the ground state to the continuum,
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times the fraction that recombines to the upper state and thus becomes
available for emission into the line by radiative decay to the ground state.
Similarly, in the denominator, the second term accounts for photons de-
stroyed by collisional de-excitation of the upper state. The third term is a
new sink term that is proportional to the total ionization rate from the upper
state times the fractional recombination rate to the lower state; this term
clearly accounts for the destruction of potential line photons via the con-
tinuum processes. We thus find all of the basic physics of the situation
represented clearly in the source function.
Further insight follows from rewriting ¢ as nB*, where B* is found to be

, 2N (g [(Rue + Cud(Ry + C !
c g (R!K + Clx)(RKu + Cmc)

Exercise 11-9:  Verify equation (11-59).

It is clear that B* bears a formal resemblance to the Planck function, and,
in [act, we can think ofitas B* = B,(T,), where T, is a characteristic radiation
temperature whose value is set by the photoionization and recombination
rates in the two bound-[ree coatinua. This radiation temperature can, in
general, be quite different from T',. At great depth in the atmosphere where
the continua are optically thick, J, — B,(T,); then R,, — Rf, = R¥, and
R, — Rj. = RY, so that B* - B(T,), as expected, and S, —» B,(T,). But
near the surface, the continua may become transparent (while the line
remains optically thick) and the continuum radiative rates become essentially
fixed. Depending on the relation of the radiation temperature (which char-
acterizes J, emerging from 7, ~ 1) to the local electron temperature, quite
distinct situations emerge. For example, suppose that collisions are negligible,
and that R, > R, while R, > R, (ie, suppose that a relatively cool
medium is irradiated by a “hot” radiation field in the ground-state con-
tinuum). Then 1t is clear that B* > B,(T,), and that §, will be larger than the
value it wouid have had by coupling to the thermal pool; the excess emission
comes from a preferential depopulation of the lower state into the upper via
the continuum, followed by radiative de-excitation in the line. I the line is an
absorption line, an increase in §; tends to wegken it; taken to the extreme limit,
this is the mechanism that produces the photoionization—recombination—
cascade emission spectrum in a nebula. If the inequalities posed above are
reversed, then the upper state is selectively depopulated into the lower, and
S, decreases; if the line Is an absorption line, it will sirengthen.

The two essential points that have emerged from the above analysis are
the following. (a) The source function for a given line contains terms in
other transitions (the two coatinua for the present model). This result is
quite generally true and carries over to the multilevel case (sec §12-1).  (b) The
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new terms do not couple S, to the local thermal pool, characterized by T,
as do collisions, but rather to a radiation temperature that may be markedly
hotter or cooler than the local kinetic temperature.

CLASSIFICATION OF LINES

In view of the fundamentally differing natures of the various source and
sink terms that appear, we may expect that line-transfer problems may show
substantially different characteristics depending on which terms provide the
dominant contributions to §;. Thomas has suggesied (622; 626, 174) a
classification of lines into broad categories by consideration of which terms
are the largest for different atoms in typical stellar-atmosphere regimes.
For example, if ¢ > n and B, > 7B¥, the line is called collision dominated;
here §, couples to T,. On the other hand, if # > ¢ and #B* > ¢B, the line is
photoionization dominated, and the line couples to a characteristic T, # T..
Intermediate cases where, say, ¢ > # but #8% > £B, or vice versa, are called
mixed domination lines. The recognition of these classes of lines represents a
considerable advance over the rather ill-defined classical division of lines
into “absorption” and “scattering” categories, and has led to important
insights about line-formation. In particular, the emergent profiles for lines
in these classes are quite different when a chromospheric temperature rise
occurs in the outer layers of the atmosphere.

The category to which any particular line belongs depends (via the atomic
cross-sections involved) upon the structure of the ion from which it arises,
and upon the structure of the atmosphere (because of the dependence of
the relevant rates upon atmospheric parameters such as temperature, density,
and incident radiation fields). Different lines of the same ion will, in general,
fall into different classes, and a comprehensive a priori classification is not
possible; rather, cach case must be examined in turn, Broad groupings of
lines in a solar-type atmosphere have been suggested by Thomas; these are
displayed in Table 11-2, and can be understood qualitatively as follows. The
resonance lines of the singly ionized metals are collision dominated because
the excitation energy is only a few electron volts (compared to a thermal

TABLE 11-2
Categories of Line Sowrce Functions in a Solar-Type Atmosphere

Collision dominated Photoionization dominated
Resenance lings of singly ionized Resonance lines of neutral
metals (Mg¥, Ca™, Sr™, etc) metals

Resonance lines of H and other Hydrogen Balmer lines

nonmetals (C, N, O, etc.)

Source: Adapted [rom (623; 626, 174).
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energy of aboul 0.5-1 eV), while the ionization energies are 11-15eV: recall-
ing that both the collision and photoionization rates scale as exp(— Eq/kT),
it is plausible that the collisions should prevail. Even for hydrogen, where
E, in L is 10 eV, the collision rates dominate because the solar wv. radiation
is weak and the photoionization rate is small. In contrast, for the hydrogen
Balmer lines and the neutral metals, the relevant photoionization edges lie
in regions where the solar radiation field is intense, and the photolonization
rates prevail over collision rates. The sodium D-lines are an exception
because of an unusually large collision cross-section (284, 333; 284, 347);
this example serves as a warning that the broad classes listed are illustrative,
and detailed analysis is needed in each case. In a higher temperature regime
{e.g.. in an O-star) some of the remarks just made are no longer valid, and
lines switch categories. For example, the radiation field in the Lyman con-
tinuum becomes extremely intense {the hydrogen is virtually completely
ionized}, and the hydrogen Lyman lines become photoionization dominated.
The higher subordinate lines now have energies E, < kT (~3 eV at O-star
temperatures), and are relatively weak, hence are formed in deeper, denser
layers; this tends to lead to collision domination of the subordinate series.

LINE-FORMATION EN THE PRESENCE OF A CHROMOSPHERE

The great physical importance of the division of lines into the two broad
categories described above becomes strikingly apparent when we consider
the nature of the source function variation, and emergent line profile, in an
atmosphere with a chromospheric temperature rise outward. The basic
point is that collision-dominated lines are linked to the local electron kinetic
temperature, while photoionization-dominated lines are not. The latter couple
instead to a radiation temperature characteristic of the energy distribution
(emitted at some other point in the atmosphere) in the continua of the upper
and lower levels. We therefore expect collision-dominated lines to be at
least partly responsive to the local temperature, and to exhibit, m their
profiles, features atiributable to the outward temperature rise. On the other
hand, we expect photoicnization-dominated line-profiles to be insensitive
to variations in local parameters (in particular, to variations in T,). The
strong dichotomy of behavior just described was clearly demonstrated in
the pioneering work of Jefferies and Thomas (336). They showed that these
considerations explained the observed presence of emission cores in lines
such as the H and K lines of Ca™ (and the analogous lines of Mg ™), and their
simultancous abseace in the hydrogen Balmer lines.

In their work Jefferies and Thomas adopted a schematic continaum source
function of the form '

S{t) = BAT,) = Sy(1 + oz, + fe™7™) {11-60)
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which provides an approximate representation of a temperature distribution
that has: a uniform gradient in the photosphere; a plateau at a minimum
temperature at seme characteristic depth (they used T_;, = 4000°K at 7, &

10~ 2); and then a steep outward gradient mimicking the sharp chromospheric
rise. The transfer equation was solved in the Eddington approximation:

%(dsz/d‘fz) =g, + S, — @y + DTS, + )] (1161

using the method of discrete ordinates, for a Doppler profile and for typical
values of r, &, 5, and B*.

Results for a collision-dominated line (y = 0) with & = 1074, » = 1074,
and various choices for the continuum source function are shown in Figure
11-9. Note that at great depth S, thermalizes to S, but as the wings begin to
become transparent (r, < 1), §; drops below S_. Procecding outward, S,
rises very steeply at 7, & 1072 The line source function tries to follow this
rise through collisional coupling, and actually does increase cutward, but
ultimately the effects of scattering dominate, and, at the surface, S, lies about
three orders of magnitude below B,(T,). It follows from the Eddington—
Barbier relation that the depth-variation of S,(z) should be reflected in the
frequency-variation of the emergent intensity. The computed emergent

In §/§,

FIGURE [1-9

Line source functions for a collision-dominated line
in 3 semi-infinite atmosphere with a chromospheric
temperature rise, Upper curves show continuuin
source function 5, and lower curves show
corresponding line source functions 5. In all cases
g=10"*and r = 107* From (336) by permission.
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FIGURE [1-10

Line profiles for a collision-dominated line in a semi-infinite atmosphere with a
chromospheric temperature rise. Curves are coded to correspend to those in
Figure 11-9.  From (336), by permission.

intensity is shown in Figure 11-10; only half of the profile (which is symmetric
about Hne-center) is shown. Note that the lines show an emission peak near
+ 1.5 Doppler widths, with a central absorption reversal; lines of this form
are called doubly reversed. The overall vartation of intensity within the ling
is in good gualitative agreement with the observed behavior in the solar
Ca IT H- and K-lines and the corresponding lines of Mg 1I. Numerous other
calculations, with a chromospheric temperature rise, for other choices
(sometimes including depth-variations) of e, a, r, ¢,, and different para-
meterizations of B,(t) can be found in the literature [see, e.g., (284, 101;
26; 27: 18, 45-48)]. All show the same kind of behavior as that shown in
Figure 11-10, and some yield semiquantitative agreement with the solar
data; excellent quantitative fits to the observations are obtained when multi-
level calculations, using realistic atmospheric models and atomic models for
Ca™, are employed (see §12-1).

The behavior of photoionization-dominated lines, for the same assumed
Planck function, contrasts strongly with that of collision dominated lines.
Results for a line withe = 0, # = 10" %, and ¥ = 10~ *are shown in Figure
11-11. At very great depth, S, — S, when the line thermalizes in the con-
tinuum. Proceeding outward, S, remains fixed at the value set by B*, and at
a line optical depth of order 1/x, shows a strong drop outward, characteristic
of scattering, to a value equal to n?B*, The source function shows no response
whatever to the variation of B,(T,). Note that proceeding outward, S, first
lies above S, (because B* has a radiation temperature set in the continua in
deeper, hotter layers), and then, near the surface, lies below S, (which rises
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rapidly to its chromospheric value). The line profile is a pure absorption
feature with no hint of central emission reversal. This behavior 1s precisely
what is observed for the Balmer lines and, in fact, the run of S; correlates
well with the empirical source function deduced by Athay and Thomas (29).

The recognition that the Ca IT H- and K-lines have source functions that
couple partially to the local Planck function variation led to the realization
that the emission features often observed in the cores of these lines in stellar
spectra contain valuable information about the temperature distribution in
stellar chromospheres. If suitably analyzed, these lines provide unique diag-
nostic tools for the determination of the physical structure of the outer layers
of solar-type stars. It is known that the intensity of the emission correlates
with stellar age (675;677), and this fact offers the possibility that by combining
accurate chromospheric diagnostics with a reliable theory of stetlar evolution,
we may be able to infer the time-cvolution of the solar chromosphere. One
of the most fascinating empirical results relating to chromospheric Ca Il H
and K-line emission is known as the Wilson—Bappu effect (676), which shows
that the hali-intensity-width of the emission components correlates closely
with steflar luminosity, over a range of 10° in L. Several theoretical sug-
gestions have been made to explain this observation, but, as was early
emphasized by Jefferies and Thomas (337), an understanding of the phe-
nomenon must be based on an accurate physical picture of line-formation.
Their work, and more recent efforts, have elucidated the dependence of the
emission intensity and width upen the form of T,(r} (amplitude and depth
of rise) and upon the functions ¢, v, and ¢,.

Some useful insight concerning the basic properties of chromospheric
emission lines can be gained from approximate scaling rules [(24; 18, 46)]
such as those summarized in Table 11-3. These give estimates of the surface
value, §,(0), and peak value, S)(max), of the source function in a chromo-
spheric slab, with a Planck-function variation given by equation (11-60)
with §; set to unity. The rules are based on the assumption that the Doppler
width is independent of depth; Doppler width variations alter the results
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TABLE [1-3
Sculing Rules for Line Source Funetion in Finite
Chromospheric Slabs

Doppler profile Voigt profile
(o < ¢ e<<a=<l

Chromespheric

thickness S:0) S(max) M) 5y(max)
Optically thin
Gt <1 & 4 911 B
Effectively thin
1<) <A O I ER(yra) EB(yra)y
Ellectively thick
A< (7! &g i &t B

SouRcE: Adapted from (18, 46), by permission.

somewhat (24) and, more importantly, strongly affect the emergent line-
profile for a given Si{t). The parameters of interest for describing the run
of B(T,) are f3, the amplitude of the rise (assumed to be »1), and y 7!, the
continuum depth at which the rise occurs [the corresponding line depth is
()" '] I (3177 « A (the thermalization depth), then S, will respond only
weakly to the chromospheric temperature rise; but if the inequality is re-
versed, a strong effect will occur. If the slab is effectively thick [ie., (yr) ™! > A,
where A = &% or aZ * for Doppler and Voigt profiles, respectively, and &
15 the total destruction probability given by equation (11-50)], then S,
saturates to f§ at depth and falls by a factor of & at the surface. If the slab
18 optically thin, then S, just equals the local creation term &5, If the slab is
effectively thin, the maximum value of S, is given by equations (11-40) with
T = (yr)~ . Note that the quoted results for the Voigt profile presume that
a(yr)™! > 1;if ais so small that this is not true, the line wings are negligible
and the results listed for a Doppler profile apply instead. The surface value
of §; can be derived by recognizing that if S, oc Ef{N (where (N gives
the mean number of scatterings needed to escape), then from random-walk
arguments we expect §,(0) cc EF{N>* Note that the effectively-thin results
merge smoothly with the effectively-thick results when (yr)™! = A, and with
the optically-thin results when (yr) " = 1.

From the results of Table 11-3 we see that, with a given chromospheric
structure, some collision dominated lines will respond strongly to the
temperature rise, while others may not, depending on the values of ¢, r, and «
appropriate to them. For example, for the Ca IT lines in the solar chromo-
sphere we have (to order of magnitude only!): a ~ 1073, » ~ 1079,
g~ 3 x 107% and y ~ 10°; therefore A ~ 10* while (9)™* ~ 107, so the
lines are effectively thin. Furthermore a(yr) ™! ~ 1,80 (Spae/B) ~ e(yra)™* ~
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0.3, and ihus the coupling of the Ca 11 lines to the temperature rise is relatively
inefficient. In contrast, for the Mg II resonance lines, r is about a factor of
10 smaller (because Mg is about 10 times more abundant than Ca), and the
other parameters are about the same; in this case we obtain a much stronger
coupling to the rise and much brighter emission, as observed. It should be
noted that the arguments given about are meant only to be gualitative, for
the depth-variation of the parameters is actually fairly complicated, and not
well-represented everywhere by the values chosen; in particular, equation
{11-60) provides a relatively poor fit to the actual run of B (z). Detailed
analyses of Ca Il line-formation in stellar chromospheres have been per-
formed using realistic atomic and atmospheric models (56; 58), and a
physically plausible explaration of the Wilson—Bappu effect has begun to
emerge (57).

11-4 Static Extended Atmospheres

Aswas described In §7-6, many stars have extended atmospheres whose thick-
ncsses are comparabie to the radius of the star. We shall suppose that, to a
first approximation, these atmospheres are spherically symmetric. For the
purposes of the present discussion we shall consider the stellar radius r, to
be that of the surface on which 7, & 3. We imagine that this “photospheric
core” is surrounded by an envelope of large size, within which unit optical
deptl in the most opaque spectral regions (i.e., line centers) is encountered
at radii R » 7. In reality, virtvally all stars with very extended atmospheres
also have large-scale velocity fields (usually overall atmospheric expansion)
that strongly affect—indeed dominate—transfer in the lines, so that the
assumption of a static atmosphere is physically less useful in an analysis of
ling-formation than it was for the continuum. Nevertheless, there are some
extremely important eflfects of a fundamentally geometric origin that enter;
it is worthwhile to examine these here, and to defer a discussion of velocity-
field effects until Chapter 14.

As seen by an outside observer, the size of the emitting surface where
7, = 1 at the more opaque frequencies, in particular the cores of spectral
lines, can be much [arger than that of the continuum. Then the line has a
larger effective emitiing area, and if we assume LTE and supposc that the
envelope is essentially isothermal, it is clear that the line will appear In
emission relative to the continuum, This behavior contrasts with the result
for an isothermal planar atmosphere where the line is neither in absorption
or emission. In fact, the basic geometric effect just described is actually the
primary mechanism that produccs the extremely intense emission in very
opaque spectral lines observed—e.g., in Wolf-Rayet spectra. The assumption
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that the atmosphere is essentially isothermal tmplies a nonradiative source
of energy input, for we have seen in §7-6 that in radiative equilibrium (in
LTE), J ~ B ~ r~2 in an extended atmosphere; thus the situation just
described may be a bit extreme (though we have no strong physical reason
to prefer radiative equilibrium—recall the solar coronal), Also, if the line
source function has a scattering term, we expect S,{t) to decrease outward
(in fact the drop is enhanced by extension effects; see below). However, it is
clear that, for any given §,(z), the change in effective emttting area from line
core to wing will always tend to increase the core emission, relative to the
continuum, compared to the value it would have had in a planar atmosphere.
Absorption lines will tend to weaken, and emission lines will tend to grow
brighter, as atmospheric size increases.

A second effect of atmospheric extension is a systematic increase of the
escape probability at a given (radial} optical depth. It is obvious from ele-
mentary geometric considerations that along all rays, except the single ray
at u = +1, the optical path-length from the test point to the surface is
smaller in a spherically symmetric atmosphere than in a plane-parallel semi-
infinite atmosphere of identical properties (i.e., same run of physical variables
along the radial direction in the two cases). Thus, in view of equation (11-22),
P,(7) increases, and we expect §,(t) to decrease accordingly.

A third effect, which also increases the effective probability of escape, is
the systematic hias toward lorger radii in the scattering, Suppose that the
scattering process is isofropic and that the material is homogeneous, so that
the photon mean-free-path is the same in all directions, and that [ = 1 de-
fines a spherical volume around the test point. Then, from the basic geometry
of the situation, it is easy to see that, in a spherical atmosphere, more photons
end their flights at larger radii (hence closer to the surface); in contrast, in a
planar atmosphere the probabilities that the photon ends its flight at a
greater or smaller depth {by a given amount) are equal. If the material has
an opacity that decreases strongly outward, the bias 1s enormously enhanced
[see Table II and Fig. 2 of (374}]. This bias implies that the net chance of
escape is enhanced even further.

The transfer ecquation for the two-level-atom line-formation problem
[ie., S; given by an equation of the form of (11-56}] in spherical geometry is
easily solved by the methods described in §7-6 [see equations (7-190) through
(7-208) and related discussion]. Calculations for idealized models (374)
similar to those emploved earlier in this chapter provide illustrations of the
coneepts outlined above. We characterize the atmosphere by its outer radius
R (in units of the core radius r, = 1), a total line optical depth T}, a continuum
optical depth T, and opacities , oc ¥ 2and 7, oc #~* We set ¢ = constant,
and B = 1. Source functions for an envelope with no background continuum,
surrounding an empty core (Le., a nebula) are shown in Figure 11-12. The two
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FIGURE 11-12
Linc source functions in a spherical atmosphere of outer radius R
(inunitsof r, = 1}, B =1, ¢ = constant, T,=0, T, = 10°%, and

opacity ¥, « r” % Curves are labeled with R, and results for lwo values
of &, corresponding to effectively thick and effectively thin media, are
shown. From (374), by permission.

values of & chosen yield effectively thick and effectively thin media. The major
effects of increased photon escape in decreasing §; are readily apparent. Note
that, for the effectively thick medium, the thermalization depth (A =~ 10%) is
scarcely affected by sphericity. Emergent flux profiles for these source func-
tions are shown in Figure 11-13. There we sce that the central reversal, which
is a prominent feature in the planar limit (note log scale), vanishes for very




370

—10 | | i

FIGURE 11-13
Emergent flux profiles from spherical atmospheres with same properties
as used in Figure 11-12,  From (374}, by permission.

extended atmospheres; this is a manifestation of the greater effective emitting
area in the line core. Analogous results for atmospheres with T, = 2 and
& = 2 x 1073 and otherwise identical to those mentioned above, are shown
in Figures 14-11 (source functions; note only curves with .. = O)and 11-14
(line profiles). Again, the source functions are dramatically reduced by in-
creased escapes, and the line profile transforms from a pure absorption line
to an emission line with a central reversal {the reversal results only because
S, has decreased so much at = = 1; if §; remained unchanged, the whole
line would come into emission).

Lo N4

0.6 -
0.4 -

0.2 R =3 4

FGURE 11-14

Emergent flux profiles from spherical atmospheres with B = 1,
£=2x 1077 T, =2 T,=10%andy e r % The source
[uzrctions in these atmospheres arc shown in Figure 14-11.

11-5 Comments on LTE Diagnostics

From the developments presented in the preceeding sections of this chapter
we have obtained a very different, and physically a far more satisfying,
picture of line-formation from that based on the assumption of LTE. The
full multilevel problem must be solved before close quantitative agreement
with observation can be obtained. It is, nevertheless, worthwhile to con-
solidate some of the changes in perspective inherent in the new conceptual
framework fashioned above, by summarizing here a few of the important
differences between the LTE and non-LTE methods of analysis, and by
stressing the implications of these differences for the reliability of diagnoses
of physical conditions in a stellar atmosphere. An extended discussion of
many of these points can be found in (626).

In LTE line-formation theory, the source function is linked uniquely to
the electron temperature T, and the line profile reflects the depth-variation
of the Planck function, to within the limits of resolution set by photon
diffusion over a single mean-free-path. In contrast, in the non-LTE theory
Sdt) is no longer tied to T,{z}; instead, it is fixed by the scattering term,
which results from the interplay of the rates of photon escape, destruction,
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and creation, by all mechanisms. Of these, only collisions coupte the creation
and destruction events to the focal value of T,. The other photon sources and
sinks (which may far overshadow the collisional terms) couple to radiation
fields in spectral regions outside of the line. Thus far, only continuum fields
have been considered; but, as will be seen in Chapter 12, all lines in the entire
transition array of the atom are, in principle, involved. To be sure, in the
classical theory there was some flexibility implicit in the division of lines into
“absorption™ and “scattering” lines. But this division was ad hoc, and actually
misleading, for we have seen that all line source functions have scattering
terms, and that the important question is, “What are the sources and sinks
that dominate in fixing the level of the scattering term ?” The classical theory
did not clearly recognize the photoionization category, and was essentially
unprepared to cope with the mutual interaction of several lines.

One of the important implications of the above-mentioned changes in the
theoretical structure is that, if 5; is no longer uniquely specified by the run
of T {z) {and, in fact, it may be totally unconnected with T}, then it is clear
that we cannot hope to infer T,(7) from the emergent intensity I{z = 0, v).
In particular, we have repeatedly found that §,(0), and hence the central
intensity of the line, are almost completely unrelated to the “boundary
temperature” Ty, but are determined by transfer over an entire thermalization
length, by photons fed into the line wings. Thus the literature containing
estimates of stellar boundary temperatures, obtained from line-core intensi-
ties using an LTE theory, is little more than a collection of elaborate “maps”
of nonexistent “territory.”

Extending this conclusion, we notice that with an LTE theory, to explain
the observed emission cores in the Ca Il H- and K-lines we would have to
propose a nonmeonotone temperature distribution T#(z), which first de-
creases outward, then rises, then drops again. Not only would this be in-
consistent with the distribution T,(z) inferred from (LTE!) methods using
infrared and continuum data [ which show a photospheric drop to a minimum

platean, followed by the chromospheric-coronal rise—cf. Figs. 7-31 and

7-32], but also the particular distribution inferred from the Ca I lines would
not yvield a fit to other lines (e.g., of Mg IT) showing similar reversals. Worse,
the use of such a temperature profile would produce emission reversals in
all lines of sufficiently great strength, even those where none are observed
(e.g., He). The entire problem vanishes when we discriminate between the
collision-dominated and photoionization-dominated classes; and farther,
the new approach allows us to understand the varying degree of the effective-
ness of the coupling of §; to T, for different collision-dominated lines. In
short, the non-LTE analysis leads to an enormous improvement in our
conceptualization of the physical situation.

One of the primary applications of LTE line-formation theory has been
the estimation of stellar abundances. As we have seen, the depth-variation of
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Si{7) is often markedly different from B(T); thus the emergent intensity
within the line (and hence its equivalent width) must differ from its LTE value.
In a general way, the central depths of collision-dominated lines are increased
by departures from LTE, and the equivalent width is increased (which im-
plies that the abundance required to fit an observed width will decrease).
For photoionization-dominated lines, non-LTE effects may either increase
or decrease the linestrength; a useful summary of expected consequences of
departures from LTE on abundances is given in {225).

Until recently the question “Do departures from LTE actually lead to
significant errors in stellar abundance analyses?” remained open, and was
the subject of vigorous and lengthy debate in the literature. As we shall see
in §12-4, the question can now be answered in the affirmative in many
important cases [see also (435)]. This is not to say that LTE abundance
estimates are always in error; in many cases they are not, It is, however,
apparent that it must be shown, and not merely assioned, that the application
of LTE provides an adequate approximation to reality for any case in
guestion,

Another parameter often inferred from curve-of-growth analyses is the
characteristic “microturbulent” velocity in the atmosphere. Leaving aside
the questions raised about whether a simple curve of growth adequately
describes the complex problem of line-formation in a turbulent medium
(discussed in §14-1), it Is important to note that the diagnosis of this particular
parameter is especially vulncrable to error from non-LTE effects. The
position of the flat part of the curve of growth depends sensitively upon the
way, and the distance over which, the line saturates to its thermal value, for
these characteristics of the solution determine the depth and width of the
line. For example, as remarked earlier in §11-2, even though coherent scat-
tering may produce a line of the same depth as noncoherent scattering (with
the same value of ¢), the line will be wider in the latter case, and therefore
the equivalent width larger. Calculations, for idealized model atmospheres
and two-level atoms, have shown important effects of departures from LTE
upon the flat part of the curve of growth (25), and recently {cf. §14-1) non-
LTE theortes that include stochastic velocity fields in the line transfer have
been developed. Although there is little doubt that mass motions do exist
in stellar atmospheres, the accuracy of the actual values assigned will remain
in doubt until internally-consistent analytical methods are employed.

We now turn attention to the problem of attempting to match observed
stellar spectra, using realistic muftilevel model atoms and detailed model
atmospheres, in a physically self-consistent solution of the full transfer and
statistical equilibrium equations.
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Non-LTE Line Transfer:
The Multilevel Atom

The discussion presented in the previous chapter, based on the use of a
highly simplified atomic model in idealized atmospheres, affords deep insight
into much of the physics of spectrum line-formation., But to analyze real
stellar spectra, it is now necessary (1) to consider much more realistic atomic
models, having many levels (perhaps spread over a sequence of ionization
stages), giving rise to a multiline transition array; and (2) to solve the com-
bined transfer and statistical equilibrium equations for such atomic models,
in fairly elaborate atmospheric models that attempt to describe the physical
structure of the star with a high degree of realism. Throughout the discussion
we shall assume that we are dealing with an “impurity” species (i.e., other
than hydrogen) that has no significant influence on the structure of the
atmosphere, and shall therefore regard the atmospheric model as given and
fixed. Tt is obvious that with a larger number of levels, the number of transi-
tions and interactions that are possible increases greatly, and both the
physical and mathematical nature of the problem become more complex.
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Moreover, 1t is essential (o realize that this increased complexity is not
merely one of having to treat larger systems of equations, but that there are
extremely Important new physical effects involved. In particular, we shall
now find that the radiation field in any one transition may affect that in every
ether transition in the atom, and that in many cases these effects are of over-
whelming importance. Furthermore, the way in which the eflects manifest
themselves is often very subtle, being the result of extremely complicated
chains of interactions. This mutual interaction of line radiation fields (and
source functions) is referred to as interlocking, and the successful treatment
of interlocking effects poses the central obstacle to the solution of multilevel
transfer problems.

The most straightforward approach to the multilevel problem proceeds
from a rather direct extension of the techniques employed in the previous
chapter for a two-level atom, Here one writes analytical expressions for the
source function in each line in such a way as to isolate explicitly the radiation
ficld in that ling, and solves the corresponding transfer equation holding all
other terms fixed. This is the equivaleni-two-level atom approach, in which
only one line at a time is considered in the solution of the transfer equation,
and the interactions among lines are treated by iteration. In the method just
described, one has tacitly assumed that the coupling between lines is fairly
weak in some sense; but often this is not the case, and the equivalent-two-
level-atom approach then becomes unsatisfactory. For exampie, the indi-
vidual line components of multiplets usually have, as their initial and/or final
states, closely-spaced levels that can interact physically, very strongly. In
such situations, photons may switch from one line to another in the multiplet,
and the radiation fields in the lines become strongly interlocked. More
generally, in chains of transitions within a complicated transition array,
conditions often arise under which photons are rather freely converted from
one transition, with its corresponding spectral region, to another. In effect,
the photon no longer belongs uniquely to a specific line, but, to a certain
extent, belongs to the ensemble of radiation fields of the entire set of transitions
of the atom. The profound importance of this point was recognized and
emphasized by Jefferies (334, Chap. 8;284, 177), who advanced the appealing
picture that the photons should be considered to be interchangeable members
of a collective pool. Viewed in this light, it is apparent that it is essential to
treat all of the lines and their interactions simultancously, to a high degree
of consistency. This may be done quite directly in special cases (e.g., in mul-
tiplets with a common lower state). In the general case, strict consistency
can be achieved by the complete linearization wmethod; this scheme allows
fully for all interlocking effects from the outset, and may be considered as the
mathematical realization of Jefferies’s physical conception of the collective
pheton pool.
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12-1 The Equivalent-Two-Level-Atom Approach

FORMULATION

In our study of the two-level atom, we made usc of the statistical equilib-
rium equations to eliminate analytically the population ratio appearing in
the line source function, and thus to obtain an expression of the general form

- (fqb‘,.fv dv + cx)/(l + A (12-1)

where o and f§ describe the possible ways of creating or destroying a photon.
In writing eqoation (12-1), explicit use is made of the fact that for a strict
two-level atom, there is only one line, hence only one radiation field of
relevance. Indeed, we saw that if the atom also has a continuum, then the
radiation fields in the two bound-{ree transitions appear in the terms o and §.
Because the line is usually much more opaque than the continua, the latter
will often be transparent at the depth of line-formation, and the continuum
rates then will be fixed (though this is not always the case). If other levels and
other lines arc included, it is to be expected that the radiation fields in these
transitions will also appear in the terms ¢ and §, and, in addition, that these
terms will vary (i.e, cannot be fixed a priori) in the region of line formation.
Nevertheless, it is obvious that, however strong the coupling of a given line
to other lines may be, the line must always at least respond to the collisional
rate coupling the two levels in question, and to the continuum rates from these
levels. This suggests that, as a computational strategy, one might attempt to
write a mathematical expression for the source function in which the line-
scattering, collisional interaction, and continuum radiative and collisional
rates from the two levels forming the line appear as direci rates, while all
other rates are grouped analytically into net rates; one hopes in this way to
minimize the effect of interlocking at cach stage of the calculation.

Consider a line formed between levels [ and u. The rate equation for the
lower level is

(Bm J‘(]BvJv dv + (‘!u + Z Aleh + Z Cl} ij + err + C!J\)

i=i t<jsu

l(AMI + Bu{ (f)v‘]v dv + Cui)

= iRy + Cy) + Z Azl + Z mnCy Yy (12-2)

I<j#u i<i
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and for the upper level we have

(Au! + Bul rd) ‘] d\’ + Cu! + z Alu ui + Z Cqu!u + Rld'k - C )

w=i#] w<j

- n (Blu f¢vjv dv + Ciu)

(qu + Cmc + Z ”] _}'M Ju a Z niCiuYiu (12_3)

u<j u=i#i

In equations (12-2) and (12-3} we have used the net radiative bracket Z;
defined by equation (5-58), the net collisional bracket Y;; defined by equation
{(5-71), and the radiative ionization and recombination rates defined by
equations (5-66) and (5-67); further n¥ denotes the LTE population of level i,
given by equation (3-14), at the actual value of the ion density.

If we solve equations (12-2) and (12-3) for the ratio (ng,/n,g,), substitute
the result into the relation S, = (2hv?*/e))](mg./mg,) — 1] ', and make use
of the Einstein relations among the transition probabilities, we find

S = D b J dv + (& + O)B\,(Tc,):| / (1 +e +m (12-4)

where & 1s defined as in equation {11-7), while

n = [axas — (g/g)a1a4)/[ Aulay + a4)] {12-5)
and 0 = [nFajalfl — e " ) /[nEAdas + aq)] (12-6)
where, in turn,
a; = Ry + Cp + Z ApZy + Z Ci; Yy, (12-7)
i<l 1<ju
ty = nf:(RKI + CIK) + Z ileleﬂ + Z J’chigifiz (12-8)
i<jtu i<l
dy = Rux =+ Cuh + Z Aul ut + 2 Cujxtj (12_9)
u>iFl u<j

ay = iRy, + Co) + ¥ mdpZy, + 3 nC Y, (12-10)

u<j u=iFl

Exercise {2-1:  Verify equations (12-4}-(12-10).
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It is clear that the terms «;, and a, represent, respectively, the loss rate
from level / to all levels other than wu, and the number of electrons fed into
level [ from all levels other than u:; a; and g, denote similar quan[itiés for
level u.

The resemblance of equation (12-4) to the two-level form is obvious. Note
that the populations of all other levels appear in the terms a, and a,. This
occurs because we have used only two of the entire set of rate equations, and
hence can eliminate only n; and n,. It is possible, in principle, to obtain an
expression for the source function S, that does not involve any of the occupa-
tior numbers explicitly; here the full set of rate equations «/n = 48 is
manipulated to give analytical expressions for the quantities « and 8, in
equation (12-1), in terms of the cofactors of .o [ see (333;284, 187)]. However,
the algebra in such a procedure quickly becomes hopelessly unmanageable:
and, more important, it is not at all obvious that anything is gained, for the
resulting source function then is nonlinear in the radiation fields of all other
transitions. Moreover, these radiation fields depend upon the occupation
numbets in the appropriate levels, hence S, will still depend implicitly upon
them’s, (i # I, 1 # u).

If we write y, for the contintium opacity and

T — (B.!uhv/q'n)[ni - (gi/‘gu)”u]

for the line opacity, then the transfer equation at each frequency in the line
can be written as

.u(dlv/‘dz) = k(:{r + Zld)v)jv + XCSC + X1¢sz (12_1])

where S, denotes the continuum source function (which is not necessarily the
Planck function). Writing dt, = —(z, + x¢,) dz, and substituting for §,
from equation (12-4), equation {12-11) can be rewritten as

wldljdr) = I, — a, f ¢.J, dv — b, (12-12)

which can be recast into a second-order form, and solved by the standard
Feautrier or Rybicki methods described in Chapter 6. A calculation of this
typeis carried out for each line of the entire transition array considered. Note
that to compute y,, and hence 7, a,, and b, in equation (12-12), it is necessary
to have actual values for m, and n,; as these quantities are known only
approximately at any stage of the calculation, it is clear that an iteration
procedure is required, in which successively more accurate values of the
occupation numbers are employed. This iteration may be carried out simul-
taneously with the more basic iteration required to obtain estimates of the
radiative rates in all lines.

12-1 The Eguivaleni-Two-Level-Atom Approach 379

In a calculation designed te simuiate conditions in a real atmosphere, 1t 18,
in general, necessary to account for the variation in the ionization state of
the particuiar atomic species under consideration {perhaps over a sequence
of several different ionization stages). Although continua arising from excited
states of “impurity” species will generally be transparent (compared to the
dominant absorption and emission ferms from H and He), so that the radia-
tion field may be considered to be fixed, this situation will not usually be
true for ground state continua, which normally will be opaque enough to
determine their own radiation fields, Thus it is necessary to supplement the
line transler equations (12-12) with corresponding continuum equations, as
described in the discussion of the formation of the Lyman continuum in
§7-5 [see equations (7-127) through (7-131) and (7-135) through (7-144)].
The complete set of rate equations for a particular impurity species will be
composed of as many equations as there are bound levels (over all stages
of ionization taken into account), plus a final equation setting the sum of all
occupation numbers equal to #,,.,., the total number density of the species.
For a given abundance of the element, relative to hydrogen, #,., 18 & pre-
specified function of depth. In overall form these equations are similar to
the first My, lines of the matrix displayed, in §5-4, between equations (5-91)
and (5-92).

The iteration procedure required to obtain the solution (which consists
of the run of the occupation numbers of all the levels with depth) is fairly
straightforward in principle, though often complicated in practice. If one
starts with an initial estimate of m(z} for all atomic levels i, say from LTE
relations, then provisional optical depth scales can be constructed. By re-
garding y, and #, as known | via equations (7-1) and (7-2}], an estimate of the
radiation field in each transition may be obtained by a formal solution of
the transfer equation (ie., Sy is regarded as given). One may use this estimate
to compute continuum photoionization and recombination rates. A transfer
equation of the form {12-12) for each line (and opaque continuum) is then
solved in sequence, supposing, mitially, that all the net brackets Z;; and
Y;; appearing in equations (12-7) through (12-10), and their continuum
analogues, may be set identically to zero. This sequence of calculations pro-
duces radiative rates R;; in all lines and opaque continua. The rate equations
s/n = 48 are then re-solved, at each depth, to obtain an improved estimate
of all the occupation numbers n. All Z ;s and ¥;'s, and hence # and 6 for each
line can now be evaluated via equations (12-5) through (12-10) because all
of the required rates and level-populations are known. Equations (12-12)
are then re-solved, using the new values for t,, , and ¢ and one obtains,
thereby, new estimates of J,, and §,, in every line (and continuum). The rate
equations are again re-solved, and the process is iterated to convergence.
Once a converged solution is obtained, all the line source functions are
known, and line profiles may be calculated for each line.
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As mentioned above, the practical implementation of a successful iter-
ation procedure using the equivalent-two-level-atom formalism is often quite
complicated, for the ratc of convergence (or lack thereof!) may be strongly
affected by technical details, such as the way the net rates are computed,
source functions are evaluated, and many others. Careful discussions of these
points can be found in (18, Chap. 4;23, 27-63; 23, 113-132; 187), as well as
in the references cited therein, A more fundamental difficulty with this overall
approach 1s that the iteration procedure may fail to converge but, instead,
stabilizes on a solution that is inconsistent; see the discussion in (18, §4.2)
and (23, 27—-63). This failure, which is not too common, and which can some-
times be overcome with special procedures, is, nevertheless, not surprising:
as we shall see in the next section, there are many physical situations in which
the radiation fields in different lines are very strongly interdependent, in
contradiction to the basic assumption of the equivalent-two-level-atom
approach. The inconsistency problem is overcome wholly by the complete-
linearization method presented in §12.3.

APPLICATION

The equivalent-two-level-atom approach has been extensively applied
to calculations of a wide variety of spectra, particularly for the solar atmo-
sphere and for solar-type stars. For example, for the sun, analyses have been
made of the Ca II H- and K-lines (400; 401; 569), O T and C II lines (168),
the Mg T b-lines and Na I D-lines (21), and the spectrum of Fe I (22), using
sophisticated multilevel atoms and elaborate atmospheric models. Very
complete spectrum syntheses, using this general approach, of both continuum
and line intensities have led to refined photospheric-chromospheric models
(645; 646). Further, similar analyses have been made of the Ca II H- and
K-lines in solar-type stars (56 58).

Space does not permit a discussion of all of these results, and the reader
should examinc the references cited. Tt is, nevertheless, of interest to quote a
few results (401) for the solar Ca II lines, which play a ceatral role in studies
of the chromosphere. The I and K lines arise from the transitions 4s 25, —
4p *P, , (see Figure 12-1}; the two upper states are coupled by col]jsi;)ns,
and may also decay to the metastable 34 2D§, s states In the inlrared triplet
228498, 8542, 8602. As the next levels lic well above the 4p level (recall
kT ~ 0.5 eV m the solar photosphere), the five levels mentioned above, plus
the continuum, suflice to provide an accurate description of the physics of
line-formation. A solution of the transfer and statistical equilibrivm equa-
tions for this 5-level Ca™ atom yields source functions in all § lines; the
frequency-independent K-line source function {obtained assuming complete
redistribution) is shown in Figure 12-2, along with the Planck function
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FIGURE 12-1

Energy-level diagram for lower states of Ca™. The five levels 45°S,, 4p”F, ;. and
3d*D, . suflice to describe the line-formation process for the Ca IT H and K lines at
743968 and 3933, and the infrared-triplet 148498, 8542, 8662. Note that the next levels
lic fairly high in energy, and hence can be ignored, though interactions with the
continuum are included. From (401), by permission. (Courtesy of the Publications of

the Astronomical Society of the Pacific.)
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FIGURE |2-2

Ca 1I K-line source function S, and corresponding Planck-function
B, in a model solar atmosphere, Source function is in absolute
units; ergs em 2 sec” ! hz ™! sr™L, Optical depth scale is at line
center and dashed lines indicate computed intensities at K, K,
and K5 (sec Fig. 12-3).  From (401), by permission, (Courtesy of
the Publications of the Astronomical Society of the Pacific.)

corresponding to the adopted run of temperature T,(k). The emergent inten-
sity profiles, at u = 1, for the H- and K-lines and the infrared triplet, are
compared with observation in Figures 12-3 and 12-4, respectively. The agree-
ment between theory and observation is quite satisfving. However, when the
computed variation of the fi- and K-line profiles from center to Hmb is
compared with observation, significant disagreements are found; as we shall
see in §13-4, these are removed when the partial coherency of the scattering
process, and the resulting frequency-dependence of the source function, are
taken into account. Further, the calculations shown in Figures 12-3 and 12-4
represent only the average quiet chromosphere. To match plage profiles (569),
a different atmospheric model is required ; and to match the detailed variation
of the K-line profile, as observed from point to point on the disk, will require
a full treatment of the three-dimensional fine-structure and the velocity fields
in the chromosphere. Such calculations have not yet been undertaken in 2
completely satisfactory fashion, but are necded, both to diagnose details
of chromospheric structure, and to answer the question “To what extent
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Computed - and K-line profiles at 4 = 1 {dashed lincs)
compared with observed profiles (solid lines), From (401),
by permission. {Courtesy of the Publications of the
Astronomical Scciety of the Pacific)
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Computed Ca I1 infrared-triplet profiles al ¢ = 1 compared with observed profiles.
From (401), by permission. (Courtesy of the Publications of the Astronomical Society
of the Pacific.)
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(if any) is it possible to replace the complicated multidimensional strie-
ture of the chromosphere with a meaningful horizontally-averaged ‘mean
chromosphere’?” .

12-2  Effects of Level Coupling: Source Function
Equality in Multiplets

As was emphasized in the preceding section, the equivalent-two-level-atom
approach works best when the coupling terms from two particular levels
to all other levels are small, compared to those between the levels themselves
and from these levels to the continuum. There are, however, many important
physical situations for which this will not be the case, and it is important to
understand the effects of strong coupling among several levels. These effects
have important implications that affect both our perception of line-formation,
and our choice of numerical methods used to obtain solutions of multilevel
transfer problems. Most of the fundamental physical concepts were outlined
by Jefferies (333; 334, Chap. 8), and much of the subsequent theoretical
work [e.g, (567)] has been based on his ideas. Numerous instructive cal-
culations, using idealized multilevel atomic models and parameterized model
atmospheres, have been carried out; see, e.g., (54; 18, Chap. 4; 187; 213;
217; 218. Rather than attempt to summarize these diverse investigations
here, we shall, instead, confine attention to two concrete examples, which
illustrate the nature of interlocking effects in a particularly illuminating way.

First we shall consider, briefly, the case of three levels coupled together
by two lines of a resonance series, and one subordinate line. The primary
result of interest here is photon degradation from the higher resonance line
into the lower resonance and subordinate lines; this phenomenon is related
to fluorescence in nebulae and to the Rosseland cycles discussed in §5-5.
Next, we shall devote the remainder of the section to the interlocking of
lines within a multiplet; here photon conversion may occur as collisions
shuffle clectrons among the fine-structure levels of the spectroscopic terms
involved. As a result, the source functions in the different lines become
dependent upon one another, and in a certain limit become egual at cach

depth in the atmosphere. Source-function equality in multiplets is of great

theoretical importance, for it implies that we may replace several lines within
a multiplet by a single representative line, and thereby reduce greatly the
amount of computation required. Further, source function equality, when it
occurs, allows application of a non-L'TE method of analysis of line-profile
data, by means of which the physical properties of an atmosphere may be
inferred directly with a minimum of theoretical interposition. In keeping
with the remainder of the book, in which theoretical prediction rather than

analysis of observations has been emphasized, this analytical method will -
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not be discussed here, and the reader is encouraged to refer to the complete
discussion by Jefferies (334, Chap. 9).

PHOTON DEGRADATION AND CONVERSION

Consider, first, a three-level atom with two tesonance lines 1 < 2 and
1+ 3, and a subordinate line 2 «» 3. As an example, in hydrogen we would
have the Lo, Lf, and He lines; in fact, for expository convenience, the three
lines will be referred to with these names, even though we may not be dealing
with hydrogen. For the present purposes, interactions with the continuum
will be ignored, and attention focussed entirely upon the lines. Generally,
we can expect the ground-state population #, to be vastly larger than the
upper-state populations n, and n,; hence the resonance lines will be much
more opaque, and will have much larger optical depths, at a given physical
depth, than the subordinate lines. Suppose now that all three lines were
somehow uncoupled, and were formed in distinct two-level atoms: each
would then thermalize at a characteristic depth A;; & 1/g;;, where g, is the
colfisional destruction probability in transition i « j. Because hv,; <« hvy,
(or hvy;) we will generally find &,5 » &, {or g,3); hence the subordinate
line will thermalize in a smaller number of optical depths, measured on its
own scale, than the resonance lines,

But this will be overshadowed by the much greater opacity in the resonance
lines, and the subordinate-line thermalization will occur at much greater
geometric depth in the atmosphere. Put another way, the subordinate line
15 so much more transparent than the resonance lines, that photon-escapes
(and hence departures of S from B) first occur in this transition, as one
proceeds outward from great depth toward the surface of the atmosphere.
There will thus be a certain range of depths over which the resonance lines,
were they nor coupled to the subordinate line, would by themselves be
thermalized, but within which the subordinate ling has become transparent
enough to permit escapes. In this critical range, some of the electrons
photoexcited by Lf from level 1 to level 3 will decay into Ha, and the Ha
photens will escape; there will thus be a systematic degradation of LA photons
into Ho and Lo photons, al a rate determined by the branching ratio
Asafld3, + As,) Note that the inverse process of conversion of He photons
into Lf is essentially ineffectual. If an He photon is absorbed, leading to
an excitation 2 — 3, most of the subsequent emissions from state 3 will be
in the 3 — | transition; because, however, 7,4 is so large and ¢, 4 1s s0 small,
these photons are trapped, and merely scatter until a 3 — 2 transition is
finaflly made, and the photon escapes. In this atmospheric region, Lo will
adjust in such a way as to remain almost in detailed balance (with its source
function near to the Planck function), while L§ excitation is drained, and
its source function is depressed.
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Ignoring stimulated emissions, we can express “reduced” source functions
as (851/Bz1) = (b2/by),  (S31/Bsy) = (ba/by), and (S3,/B3,) = (bs/b,), where
B;; denotes the Planck function B(v;, T), and b; = n;/n¥. When Lo adjusts
to detailed balance, b, = b, (recall the discussion pertaining to the ground-
state population of Hin B-stars given in §7-5), and thus (S5,/B52) = (S3:/B31)
so that the “reduced” L and Ha source functions become equal below the
point of Le thermalization. As we proceed to the outermost layers of the
atmosphere, the L§ line becomes more and more transparent and, ultimately,
the probability of direct escape exceeds the branching ratio into Hg, with
its consequent escape; at this point the L and He source functions become
uncoupled.

Results from a calculation (218) for a three-level atom with the parameters
Az jAs; =10, &1 =813 =107 £,3, =9 x 1072, (1,,/7,3) = 6.2, and
(t23/T13) = 1.6 x 107* [(S31/B31)/(S32/B32)] are shown in Figure 12-5.
There we see that Lo thermalizes at 7,53 =~ 2 x 102 which implies 7,, ~ 103,
as expected from 5,4. At 743 5 10, the probability of Lf escape is comparable
to the probability of branching into He; therefore for 7,5 < 10 the “reduced”
Lf and Hu source functions diverge. But below this depth, they rapidly

8
V‘;\
1072 —
1078 | ] 1 I | | 1
1072 10t 1 10 10t 10* 10* 103 108
Tya
FIGURE [2-5

Source [unctions for 3-level atom in which both resonance lines, (1 « 3} and {1 < 2), and the
subordinate line {2 «» 3) are radiatively permitted.  dbscissa: optical depth in the 1 — 3
line; ordinate: “reduced” source lunctions [S5;,(1)/5;{c0)];  Su(o0) is equal to the Planck
function at the appropriate frequency. From (218), by permission.
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approach equality, at a value well below that which the L§ source function
would have attained if degradation did not occur. Thermalization in Ha
(and, along with it, L) occurs at about 1,5 ~ 10%, which implies ,; ~ 10,
as would be expected from ¢,5. Further discussion and interpretation of the
results may be found in the paper cited, but it is clear from what has been
said here that there are major effects of interlocking on the source function
variations in this problem. See also (18, §4.8).

Let us now turn to the case of a three-level atom consisting of a ground
state, and two closc-lying upper states. We assume that both radiative and
collisional transitions can take place between states 1 and 2, and between
1 and 3, but that only collisional transitions occur between states 2 and 3.
This model simulates the actual physical situation for a resonance doublet,
where the upper states are separated by fine-structure splitting. For example,
the sodium D-lines arise from transitions from the 3s *S, ground state
(state 1) to the upper states 3p ZP% and 3p ZP,_,: (states 2 and 3).

Consider first the limit in which the 2 <~ 3 collision rate is zero (ie., the
uncoupled case). The transitions 1 «<» 2 and 1 « 3 can then take place without
reference to one another, and the two lines are formed independently. Each
line will have a source function that falls below the local Planck function
near the surface, and equilibrates to the Planck function at thermalization
depths given by

Apz & (Ayy + Co)/Cyy (12-13a)

and Ars & (A, + Csy)/Cay (12-13b)

Here we have made the simplifving assumptions of Doppler profiles and an
absence of strong gradients. In the limit considered here, the run through
the atmospliere of the source functions for the two lines will, generally, be
different, and at any given depth they will not usvally have the same value.

On the other hand, suppose that collisions occur very rapidly between
levels 2 and 3. In this case, excited electrons are shuffled from one level to
the other; we then say that photons have been converted back and forth
between the two lines. In the transfer problem the two upper states become
effectively a single state, and in the extreme limit, the occupation numbers
of the two upper states will be proportional to their statistical weights. The
source functions for the two lines (which depend on the ratio n,g,/n,g,) then
become equal at each point in the atmosphere. (Here we ignore the inconse-
quential differences that may arise because v, is not exactly equal to v,3).
In general, the actual situation will be intermediate between the two extremes
described above, and we expect that the source functions will be equal only
over a limited range in the atmosphere.

Proceeding outward from the deepest layers of the atmosphere, we will
find that the source functions in the lines begin to drop below the Planck
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function at depths smaller than their thermalization depths; this occurs
(cf. §11-2) because the cscape probability begins to exceed the destruction
probability. But if the collision rates C,; and C;, are nonzero, there is now
a finite chance that the photon will be switched from one line to another,
rather than be destroyed or escape, and there is now a conversion length
(333; 284, 177) over which the source functions in the two lines are still
coupled together. The Iines become uncoupled cnly when the escape prob-
ability exceeds both the destruction and the conversion probabilities—i.e.,

when
Pt12) R ACa + Coz)(Azy + Cor + Cay) (12-14a}

and Poty3) R ACs + Ca)(Asq + Csy 4+ Ca) {12-14b}

From equations (12-14), we see that the two lines could thermalize indepen-
dently over the entire range predicted by equations (12-13) only if, everywhere
on that range, Cy, > Csq and Cyy > C,y (by a fair margin); if either of
these conditions is violated, photon conversion plays an essential role. Again
assuming Dwoppler profiles, we can estimate the optical depths from which
photons in each line can retain their strict identity, and can emerge, without
being either collisionally destroyed or converted, as

Al & (Aaq + Coy + Cua)(Chy + Ci3) (12-15a)
and Afs = (Aszr + Cap + Ca)(Cy + Cs3) (12-15b)

in the T «»2 and 1+ 3 transitions respectively. Let zf, and z¥, be the
geometric depths {(from the surface) corresponding to A¥, and A%,. Then
the two groups of photons may propagate independently only over a depth
z¥ = min(z},, z72).

From a mathematical point of view, whenever conversion is competetive
with thermalization, the usefulness of the iteration procedure employed by
the equivalent-two-fevel-atom approach becomes less clear. It then appears
more attractive to consider the two (or more) lines, and their effects upon
one another, simulteneously, and to develop a different computational
technique.

OBSERVATIONAL INDICATIONS
OF SOURCE FUNCTION EQUALITY

To motivate further the theoretical development, fet us consider some
of the observational evidence that source function equality in multiplets
actually occurs. An excellent example is provided by an extensive set of
precise observations of the sodium D-lines at various positions on the disk
of the Sun (6535). The emergent intensity at a specified frequency and
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disk-position is given by

10,4 = p7t [ IS0 + ASie)] exp[—u-l fya Hmdrc} dr,
(12-16)

where 7, is the continuum optical depth scale, and 8, = 7,6, /y.. In the core
of the line B, » 1, so that, with good accuracy, we may write

10, ) = 17t [ 8i(x) exp(— w9, /i, do (12:17)

where 7 is now the line optical depth scale. For the D-lines one has
(fi2/f12) = 2; thus we may write

Tof0, 1) = |7 S1(e00) exp(— G710/, /i) dzyy (12-182)

and 1500, v} = f: S1alTi2) exp( =27,/ 2¢, /1) dy, ~ (12-18b)

Thus clearly 1,50, i v) = 1,00, 3, v) if S,, and 8,5 have a common depth
dependence. In essence, one may compensate for the higher opacity in one
line by increasing the path length in the other. When this comparison is
carried out, very good agreement between the cores of the two D-lines is
found, as shown in Figures 12-6a through 12-6¢c. By way of contrast,
Figure 12-6d shows the inverse comparison of 7,4(0, 1p, v} with I,5(0, p, v),
and demonstrates the genuine significance of the agreement shown in the
other figures. The disagreement in the wings arises from the mcreasingly
large contributions from the continuum, which invalidate the assumptions
required to write equation (12-17).

These striking observational results provide an impetus to examine in
detail the conditions under which source function equality can occur (aside
from the trivial case of LTE), and to develop methods well suited to handle the
transfer problem for multiplets. The strong agreement shown in Figure 12-6
is so impressive that, in some of the early analyses (655, 656), it was concluded
that there must be strict source function equality in the two lines all the
way to the surface. To obtain such equality, one would have (o impose the
gxacting requirement that C,3 » 4,, and C,, » A;,; these conditions
cannot actually be met by the collisional rates for the D-lines in the solar
atmosphere, and an apparent contradiction arises. Subsequent work (16; 51)
has shown, however, that the requirements stated above are far too stringent,
and that one needs to have only (Cy,/43,) > (Cy,/45,) and (Cy3/45,) >
(C31/A454) (conditions that gre met for the solar D-lines) to obtain a very
near (though not exact) equality of the source functions. These conditions
are sufficient to produce profiles that look identical to within the accuracy
of the observations.
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SOLUTION OF THE TRANSFER EQUATION IN MULTIPLETS
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y Let us now consider how the coupled transfer problems for lines in a
7 multiplet, arising from a single lower level to two (or more) upper levels
1= that interact via collisions, are formulated and solved. For simplicity,
1° L stimulated emissions and coupling to the continunm will be neglected, and
2 ﬁ = the differences in line frequencies ignored; these may, of course, be taken
. =8 into account, but the algebra becomes much more complicated without a
T Eg compensating enhancement of the physical content. The source function
4 = in the (1 — j) transition is
- .O,‘ — )
_ = Sy = @i gingfan,) (12-19)
= |3 . . :
15 e The required population ratios are obtained from rate equations: for the
A 2 ; case of only two upper levels these are:
=
Ly e =% my(Ayy + Coy + Coa) = m(B1aJ;s + i) + m3Csy  (12-20a)
~ QG oy _
s S Zs and (A = Co 4 Cop) = mBisTis + Cs) + mCyy  (12:20b)
55 where
2 48
vy 1
= \-ﬁ g — * o 1
2% T = [ dueiee vy dy = 5 [ @ gymn 1 dptie n
o
& 558
] 22z (12-21)
. = 8 Making use of the Einstein relations, and detailed-balancing relations of
-3 ol § & the form C;; = {n;/n)*Cys, and defining &,, = Cy,/d,,, Mz = Cas/Aay,
] T iy g3 = Cs31/Asy, and 0,53 = C3,/45,, we may rewrite equations (12-20), in
7 ~= 3 terms of source functions of the form of (12-19), as
T - : g
% = —ed = -
}7 @ é‘/ Sé 5 Si2 =2+ 8By + 11:80)/(1 + &5 + 712) (12-22a)
I"" 7 Z‘O : _
. ! é and S1a = (Jys + e13B, + 1S+ &5 + 1y5) (12-22D)
- S o B . -
= 3 gE g These expressions display transparently the linear dependence between
S b = p y P
4 m g2 Spand S;5. Weseethatifn,, = 5,5 = 0, the source functions are uncoupled.
e O < 12 K
4 £ g = § But if either ny, > 1 or ;5 » 1, then §;, — S;5. We see further, that even
. o es if the strong inequalities just mentioned are not satisfied, merely having
' Q_ZF my % eg; and ;84 » & B, will imply a near-equality of S,, and §,,, for
<

02—

then the physical source-sink terms in each source function will be dominated
by the other line. The #,; terms are thus expected to influence the solution
in a way reminiscent of the collisional versus photoionization domination
found in the two-level case (i.e., the lines in a multiplet may be “conversion-
dominated™).

In view of the linear dependence discussed above, it is evident that a
simultaneous solution for both source functions is mandatory. Let us
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consider a single ground state and an arbitrary number of upper levels.
Equations (12-22) can be replaced by the general form

Sy =i+ ) BaSu + 7 (12-23)
k

where the sum extends over all upper levels. This system can be solved (at
each depth-point in the medium) to ebtain an expression of the form

S = Z ajk(T)jlk('f) + By{7) (12-24)

Exercise 12-2:  Write explicit analytical expressions, of the form of equation
{12-24), for the case of only two upper levels, starting from equations ($2.22),

To write the transfer equation we now adopt the optical depth 7,; in some
particular line (I — i) as standard, and write y; = (dz,;/dt,;) = (f1,;/f1:)-
Then for each line (1 — 7} we have

H[dllj(rs £y V)/df] = ?quj(l'a v)[Ilj(Tz vy — S1j('f)] (12-25)

We intreduce depth, angle, and frequency discretizations {z;}, {u,}, and
{v,}, and appropriate quadrature sums required to perform the integrations
indicated in equation (12-21). Then defining

1
T"ij, dmn = ulj(rd: Hons vn) = 5 [Iij(rd: + Ly V") + Ilj(“:da T My vn)] (12_26)

and rewriting equation (12-21) as

jj, 4= jlj(rd) = Z Z W‘lr.'quf:‘,l'(Td: vn)uj, dnn (12_27)

noht

the transfer equation can be written in the discrete form

L+1
H.nz(dzl{i, dmn/dfz) = (}'j, d¢j, a‘n)z (uj, dmn Z A, ﬂ'jj,d - bj, d) (12-28)
k=2
Here (P,‘, dn = 4?5;'(% ), Ay g = “ﬁc(fa): bj,d = bj(Td):
and Yia = “/j(’fd)

the sum extends over all L lines (or upper levels) considered. An equation
of the form of (12-28) can be written for each line.
To solve the system we may use the Rybicki method. Define

uj, mn = (uj, lmus - - - uj, dnins v v uj, Dmn) (12'29)

and = T s T ) (12-30)
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which describe the depth-variations of these quantities on the range 7, <
1 £ 1p. Then the system (12-28) can be written in the generai form

L+1

Tj, mnuj, ran + kzz Uk, mnjk : Kj, i (12_31)

foreach (j=2,...,L+1), mm=1,... M), (n=1,...,N). Here T
isa (D x D) tridiagonal matrix, the U’s are (D x D) diagonal matrices, and
K is a vector of dimension D. These systems are sofved in succession to
yield, in effect,

L+1

uj. m = ]Zz Cjk, mnjk + Dj, mn (12-32)

where C is a full (D x D) matrix. Equations (12-32) are substituted into the

matrix representations of equation (12-27), namely J; = ., W, .00, .., t0
generate a final system of the form
L+1 _
YPJ=0Q, (j=2...,L+1) (12-33)
k=2

Here cach Py is a{D x D) matrix, so the whole system is of order LD x LD.
The system is then solved by standard numerical methods, and yields the
fult depth-variation in all lines simultanecusly. When stimulated emission
terms are included, the system becomes nonlinear and requires an iterative
solution. A linearization method for the problem is described in (23, 1); we
shall not discuss this particular procedure, but instead will describe, in
§12-3, a more general method that handles this problem and many others
from the outset.

The sodium D-lines have been studied (51), using schematic atomic and
atmospheric models, with an integral-equation method essentially equivalent
to the system described above. For these particular lines the following
relations among atomic parameters exist: g, = 2, g, = 2, g3 = 4
Asy = Ay, Bys = 2By, Gy = Cyy; hence 5, = &;5 and 4,5, = 24,5.
Adopt the 1 «<» 3 transition as standard so that y, = $and y, = 1. Solutions
were obtained for a range of typical values of the parameters g,4 and 5,3,
and depth- variations of the Planck function. Results for cases with B, = 1,
e=10"% and y = 1,5, =0, 1074 1072, 1072, [0, and 1, are shown in
Figure 12-7. We see that, while #, ; would have to be larger than 1 to guarantee
strict source function equality to the very surface, much smaller values of
713 yield equality for © 2 1, which is the significant range for determining
the emergent intensity. The emergent specific intensity for ¢ = 1.0, 0.8, and
0.6 is shown in Figure 12-8. Clearly the profiles agree very closely when
# = 1077, and are indistinguishable when # = 1072 These calculations
show that, for all practical purposes, source function equality can occur for
n « 1; indeed this result is not surprising, for we would, in fact, expect
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FIGURE 12-8

Line profiles comparing I4,(0, £u, v) with F;5{C, g, v) for various values of #, at 4 = 1, 0.8, and
0.6. Selid curves give 1,5, dashed curves give Ty,.  Abscissa: displacement from line center in
units of Doppler widths, From (51), by permission.
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conversion to dominate individual line-thermalization as soon as # » &
The effects of a schematic temperature gradient were also studied, and it
was found that, when B, (7} increases inward, the value of # required for
source function equality decreases (compared to the B, = 1 case), and
increases when B, () decreases inward. These results, however, may depend
upon the specific forms chosen for B, (z), and may not be general.

12-3  The Complete Linearization Method

Tn the light of the discussion presented thus far in this chapter, it can be
appreciated that the effects of interlocking in the multilevel line-formation
problem are important, complex, and lead to systems of equations that may
be ili-conditioned. Neither of the methods discussed thus far is entirely
satisfactory for multilevel problems. The equivalent-two-level-atom formu-
lation is ill-posed when there is strong coupling among lines. The method
developed to treat multiplets is too specialized. What is needed is a method
that is general, flexible, and computationally robust, and that handles the
physical complexities of the problem. These requirements are mei by the
complete linearization method (42). In this method, the full set of rate equations
is incorporated into the transfer equation, from the outset, by linearizing in
terms of all occupation numbers and their dependences upon the radiation
field. The rate equations themselves constitute the physical prescription of
how the photons interact with the material, are created, destroyed, converted,
degraded, and interlock within the collective photon pool envisioned by
Jefferies. The transfer equations determine how this information is propa-
gated from one depth to another. By means of the linearization procedure,
a set of equations is developed that describes fully consistently (to first
order) the response of the material, at every point in the atmosphere, to the
radiation field at any frequency and any depth-point and, reciprocally, the
response of the radiation field at afl frequencies and all points in the medium
to a change in material propertics at any point. When this system is solved
(iteratively), one has a simultaneous solution of the full set of rate equations
and transfer equations that reflects both the global nature of the transfer
problem (inherently large destruction/conversion lengths interplaying with
an open boundary surface) and the intricate infrastructure of the statistical
equilibrium equations. In practice, this method has provided a means of
treating extremely complex model atoms with a very high degree of realism.

We shall examine here the statistical equilibrium problem for a multi-
level “impurity” atom that has no effect upon the structure of the atmosphere.
We regard the model atmosphere as given—i.e., the temperature (T), electron
density (n,), mass density (p), and the total number density of the species
under consideration (n,,,,) are all specified, fixed, functions of depth. The
atom is assumed to have L discrete levels, distributed, perhaps, over several
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ionization stages. The rate equations are formulatad to describe all inter-
actions among all levels, and to fix the total number density at the specified
value n,,,. These equations will be of the general form of the first My,
lines of the matrix displayed in §5-4, supplemented by an equation of the
form Y ;, My = Maom. FOr ease of exposition we make the simplifying
assumption that, at any chosen frequency v,, there is only one transition
{say [ «» u} of the atom that can interact (bound—bound or bound—{ree) with
the radiation field, and that all overlapping sources of opacity and emission
are fixed.
The transfer equation to be solved at each frequency v is

P Nor? = T = (niz) {12-34}

From equations (7-1) and (7-2) we can write the opacity and emissivity in a
bound—bound transition as

Ay = D"lu(v)[nf - (gl/gu)nu:[ + Xv {12_353“)
n, = 2 /e V)G g, + E, (12-35b)

and that in a bound—free transition as

It

7o = auim — nln/n)e 0] 4 X, (12-36a)
1, = (20 e, (Wn,(ny /e B L B (12-36b)
where X, and E, are fixed. To unify the notation, write
o= — Guvin,] + X, {12-37a}
n = @03/, ()G, 00, + E, (12-37b)

where G, (v) = {(g,/g,) for bound-bound transitions, and G, (v) = n,@(T)
exp(— hv/kT) for bound-free transitions; here ®,(T) is the Saha—Boltzmann
factor for level [ [cf. equation (5-14)]. The system is discretized in depth
{mg},(d = 1,..., D), and frequency {v,}, (k = 1,..., K). We then can write
a transfer equation of the form of equation (7-37) at each frequency v, ; these

equations are linearized to obtain an equation of the form of (7-39), where

now Sy, and dng can be expressed simply as
O = oVl Omy, 4 — Grlvy) Om, 4] (12-38a)
Ny, = (2hvk3/62)O:.lu(vk)Gtu(vk) Oy g (12-38b)

The én’s can be expressed in terms of changes in the radiation field only, as
T and n, are assumed fixed, and from equation (5-102) or (7-157} we can write

K 611)
o= 3 () 5, (12-39)
! kzl (@J k/a o
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where analytical expressions for (on/éJ;) are given by equation (5-108). By
means of equations (12-38) and (12-39), it is now easy to eliminate all the
éw’s in the linearized transfer equation analytically, in terms of the §.J’s only
(33), and to obtain equations In the standard Feautrier form

7Ad ﬁJd*I + Bd ﬁ.Id — Cd 8Jd+l = Ld (12'40)
where 8J; = (040, -, 8T, .., ST )T (12-41)
and A, = Cp = 0.

Exercise 12-3:  Write explicit expressions for the elements of the matrices A,
B, and C,, and the vector L in equation (12-40).

In the formulation of the linearization procedure described in §7-5, both
the 6./°s and on’s appeared explicitly. By eliminating the dn’s the system size
has been reduced from [(K + L) x (K + L)] to (K x K), which saves
compuler storage; but now A and Care full, whereas in the earlier formulation
[cf. equation (7-159)] both A and C were diagonal (omitting the constraint
of hydrostatic equilibrium which is not relevant in the present context). All
of the operations in the elimination scheme given by equations (6-40) and
{6-41) now involve {ull matrices, and the computing time therefore increases;
the overall scaling is T = ¢ DK?, compared to the older scaling 7" = ¢
D(K + LY, but ¢ is much larger than ¢

The selution of equations (12-40) is carried out iteratively, as described
below. The great power of the method is that equations {12-40) account for
the full depth-to-depth and frequency-to-frequency coupling in the problem.
That is, the effect of 8J, at (7,, v) upon Jz, at all other (z,, v,) is given
consistently, and thus photon propagation within the collective pool is taken
fully into account.

In actual application of the method, we must now consider how to obtain
a starting solution, and how to treat a large number of lines, as required by a
realistic model atom. These questions are related, and the latter is of partic-
ular importance. For example, suppose the model atom has, say, 20 levels.
On combinatorial grounds there could be of the order of 200 transitions;
if we require, say, 10 frequencies per line profile, the problem becomes
unmanageable. But of course spectroscopic selection rules severely limit the
number of transitions that are actually possible in the spectrum, and among
20 levels one would typically have about 30 permitted lines. Of these, only a
particular subset will directly influence those levels of primary interest in the
treatment of definite limited set of lines in the spectrum, and usually it is
possible to divide the transition array into a set of “primary” lines for which
a strictly self-consistent treatment is necessary and a set of “secondary” lines
for which a less precise treatment is adequate. This division is exploited in
the initialization procedure.
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To initialize the problem, the model atmosphere is used to determine
background opacities and emissivities, and the radiation field is computed,
assuming LTE populations for the atom under study. This radiation field
is used to calculate photoionization rates, and the statistical equilibrium
equations are solved assuming radiative detailed balance in the lines, but not
in the continua; in this way one obtains the correct asymptotic solution at
depth. It is then possible to do an equivalent-two-level-atom solution to find
Jy, in each line.

The resulting J’s allow the radiative rates in the lines to be computed, and
the complete statistical equilibrium eguations can then be solved to obtain
improved level-populations. This process may be iterated, and may be ex-
tended to include the analogue of the equivalent-two-level-atom solution
for the opaque continua as described in §7-5 [cf. equations (7-135) through
(7-144)]. The process outlined here could, in principle, be iterated to con-
sistency, and one would then have the method of §12-1; however, in the
present context, only one or two iterations are performed, and the results are
adopted as initial estimates of the »’s, J,’s, and Eddington factors required
to start the linearization procedure. At this point, and henceforth, the radia-
tive rates in the “secondary” lines are held fixed at their equivalent-two-level-
atom values, and oniy the “primary” lines are treated explicitly in the
linearization. This will provide an adequate treatment of the secondary lines
if they have been chosen astutely, and if they (a) are very weak, and therefore
dominated by overlapping absorption—emission processes, or (b) are, in fact,
“isolated”, and therefore accurately described by a two-level atom, or (c) are
only very weakly coupled to the lines of primary interest, even though they
are members of, say, a multiplet, and the two-level-atom appreximation is
poor.

Starting from the initial solution just described, the linearized equations
(12-40) are now solved for 8J at all depths. The resulting &J’s are used (o
obtain a more accurate estimate of the radiation field; the radiative rates are
then updated with this revised field, and the statistical equilibrium equations
are re-solved for new level populations. With the new occcupation numbers,
opacities and emissivities may be computed, and a formal solution (A-
iteration) is then performed to obtain the radiation field and Eddington
factors (this step also provides a smoothing of the solution), The convergence
of the method is ordinarily very swift, yielding ||6J,/J,|| £ 107% in 4 or 5
iterations, typically with order-of-magnitude improvement between succes-
sive iterations. This scheme is the one used to carry out most of the work
discussed in §12-4. A detailed description of a particular version of the
method, including a program adapted for calculations in the solar atmo-
sphere, is given in (36),

A difficulty with the Feautrier-type approach developed above is that it
becomes costly for computations involving large numbers of frequencies.
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The problem can be overcome, however, with a new method (37) that uses a
Rybicki-type elimination. Again we assume that at frequency v, there is only
one transition (¢), arising from levels [ and u. At this particular frequency, the
linearized transfer equation (7-39) can be written, in view of equations

{12-38), as

Tk 6-];( + LFC 8111 + Uk 51‘lu = Rk (12"42)
where each of the 8-vectors contains the depth variation of the quantity—e.g,,
SJk - (5‘111{) [N 5']:”(7 Ceay (SJDk)T (12'43)

and the matrices Ty, L;, and U, are of dimension (D x D) and are tridiagonal.
Equation (12-42) may be solved to obtain an equation of the form

aJk + ucfk 5[1; + %k 6nu = @k (12_44)

where & and 9 are now full matrices. Now the basic radiation-dependent
quantities entering the rate equations are radiative rates integrated over the
transitions in question. We therefore introduce the variations in the net rates,

defined as
OL)y = g ORy 4 — 1y, 4 Ry 4
= Z [475W150511.(Vk)/;]-vk] [”i.d — Gulvn, d] & g (12-43)
P

where the sum extends only over those frequencies contained within transi-
tion t. If we substitute equations of the form of (12-44) into (12-45), and
perform the indicated summations, we obtain finally

87, + A, 6n + B, én, = C, (12-46)

where A, and B, are full matrices.

Exercise 12-4: {a} Write explicit expressions for the elements of the matrices
T,, L, and U,, and the vector R, in equation (12-42). (b) Assuming that the
matrices &, U,. and the vecior &, are known, write explicit expressions for the
elements of A,, B,, and C, in equation (12-46).

From equations (5-108) and {12-39} it follows that one can write

én, = Y D, 87, (12-47)
t

where D, is a diagonal matrix with elements (D), = (n,/0Z,); =
(A it — (o Ji» Where o7 is the unperturbed rate matrix at depth-point
d, and i and j are the lower and upper states in transition ¢, Using equation
(12-47) in equation (12-46), we obtain the system

E,8Z, = (1 + A, D, + B,D,) 57,
~C —A Y D87, — B, Y D, SZ, (12-48)

e v

with one such equation for each transition t.
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The overall size of the system (12-48), which contains the full transition-to-
transition coupling (interlocking) over all depth-points, is (DT « DT). A
direct solution of these equations would thus require a time that scales as
Tp = ¢ D*T3, which for, say, T ~ 20 and D ~ 50 becomes jmpractically
large. The system is therefore solved by iteration, using a successive over-
relaxation (SOR) method (526, 438). In this appreach there are two basic
iteration cycles: (a) the SOR iteration, to obtain a definite set of 8Z,’s
(¢t =1,...,T) within a given stage of linearization, and (b) the overall
linearization procedure, where successive sets of 8Z,’s are used to update
rates, and the full statistical equilibrium equations are then re-solved. The
SOR procedure is started by computing the solutions of the systems
E8Z" =C, (t=1,...,T);this initial solution requires ¢ P*>T operations,
and the resolved systems (equivalent to E, ") are saved. Then with any set
of current estimates of the 8Z’s, the righthand side of equation (12-48) can
be evaluated for each transition in turn (note that only vector multiplications
are involved, so the procedure is very fast); this vields a single vector of
known value on the righthand side, and, using the previously resolved E,,
a new value of 87, is obtained. Each cycle in the SOR procedure requires
¢ D*T? operations, so if I iterations are necessary, the overall computing
time scales as Tgop = ¢ D*T + ¢'I D*T?, which is clearly favorable com-
pared to Tpif I < DT,

By actual tests it is found (37) that this method works well, even though
the SOR iterations resemble the equivalent-two-level-atom approach, in
that only one transition at a time is treated. The reason is that this part of
the calculation is required only to determine the 82’s, which are merely
one step of the overall linearization procedure (in itself designed to handle
the terlocking problem self-consistently). Inasmuch as further steps in the
linearization are presumed, the 8Z’s at any given stage need not be known
perfectly, but only with sufficient accuracy that the error in the current
estimate of 8Z, is smaller than the full size of the 8Z,’s of the next linearization
step. In practice, the requirement [8Z{7 — 6ZF~ Y| < /52| (where i denotes
the SOR iteration number) works well with & set at about 10~ 2. Both of the
methods described in this section have proven to be very effective in a wide
variety of physical problems, for different atoms, in stellar atmospheres of
various types; we now turn to a discussion of some of the results obiained
for early-type stars.

12-4  Light-Element Spectra in Early-Type Stars

From our study of the combined equations of transfer and statistical equili-
brium, we have gained deep insight into the physics of spectral line-formation
in stellar atmospheres, But it has also emerged that, when departures from
LTE are taken into account, the equations to be solved become extremely
intricate, and require special methods (which are computationally expensive).
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1t is therefore of considerable interest to answer the questions: “Do depar-
tures from LTE actually have a sensible effect in real stellar spectra?” “Are.
serious errors made in diagnostics of element abundances, or physical prop-
erties of the atmosphere, when non-LTE effects are ignored?” “Are there
regions of the spectrum, portiens of the H-R diagram, or classes of atoms
and ions, for which we can conclude categorically that the use of an LTE
approximation is safe, or is unsound?” From the practical point of view, .it
is important to know when it is adequate to assume L'TE in the analysis
of a stellar spectrum, for then the amount of computational work required
is greatly reduced. Equally important is knowledge of when the results
obtained from such analyses are nor to be trusted. Answers to the questions
posed above have come forth only quite recenily as it became possible to
obtain accurate numerical solutions of the non-LTE transfer equaticns, for
elaborate multilevel atomic models in realistic model atmospheres, by apply-
ing on high-speed computers the techniques discussed in this chapter. Tt is
now known that non-LTE effects are indeed of great consequence in several
situations of basic interest and importance, and that a number of serious
discrepancies between theory and observation are removed when departures
from LTE are taken into account. A few of the results obtained thus far will
be described below; further details can be found in the papers cited as well
as reviews given in (433; 434; 435). It is not an exaggeration to state that
work in this essential area has just begun, and much is yet to be learned
from further efforts.

In many respects, the most fundamental spectrum in early-type stellar
atmospheres is that of hydrogen. Not only do the hydrogen-line profiles
serve as effective tools to measure basic stellar parameters, such as the
effective temperature and surface gravity, but also, when one recognizes
that hydrogen dominates the transfer of radiation through the major part
of the spectrum in early-type stars, one realizes that a serious discrepancy
between theory and observation for these lines has grave implications for
the overall properties of the radiation field. Although very good agreement
is usually obtaincd between predicted and observed H-line profiles for B-
and A-type stars (cf. §10-5), strong disagreement has been found for the
O-stars (T, > 30,000°K). The basic problem is that the H-lines arc observed
to have nearly-constant strength in the O-stars over the spectral range Q9-035
[as can be seen by inspection of the plates in (465) or (5)], while the LTE
equivalent widths decrease markedly over the corresponding temperature
range (30,000°K < Ty < 50,000°K), owing to increased hydrogen ioniza-
tion. This decrease can be offset somewhat by assuming a higher surface
gravity in the models, but then inconsistencies arise. Typically it is found
(420} that, if a match is made between the observed H-line equivalent widihs
and those calculated from LTE models, then the surface gravities required
to obtain the fit are too large {by about a factor of 3) compared to those
deduced from fundamental measurements of stellar masses and radii, or

12-4 Light-Element Spectra in Early-Type Stars 443

from stellar-structure computations. Similarly, when detailed comparisons
arc made with line profiles (510), it is found that, if a fit is made to the line-
wings, the line-core predicted by LTE is much too weak. These discrepancies
vanish when departures from LTE are taken into account (436; 45), and it
is found that the non-LTE profiles are invariably much stronger than the
L'TE profiles, as shown in Figure 12-9 for a typical model. A comparison
between the observed equivalent widths of Hf and both LTE and non-LTE
calculations is shown in Figure 12-10. It can easily be seen there that the
non-LTE results are in much better agreement with observation, and that
the LTE equivalent widths are systematically too small by factors of 3 to 5
in the extreme cases [ see also (174)]. Further, an excellent fit can be obtained
to observed profiles by using the non-LTE computations; this can be seen
by comparing the fits displayed in (510) and (45), both of which use the same
observational data. In sum, by taking into account departures from LTE,
major improvements are obtained in matching observed H-line profiles for
the O-stars, For the B-stars, the hydrogen lines are much less strongly
affected by deviations from LTE, and for a line such as Hy, LTE actually
provides a very good approximation. Some important effects are found
for He (511; 430}, where departures from LTE produce a deeper line-core,
and a shallower wing than given by LTE. The latter effect arises because at
the depths where the Ho-wing is formed, b, > b, (¢ §7-5) and therefore
Sz3 > B(vy3, T); the predicted changes have been confirmed by observation.

After hydrogen, helium is the next most important element in stellar
atmospheres, and is represented by the He I spectrum in B-stars, and by
both the He I and He II spectra in O-stars. These lines may be used to
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Hz profiles for O-star models with T = 45,000°K ; curves are
labeled with surface gravity g.  Abscisse gives displacement
from linc-center in A;  ordinate gives residual Nlux.  Sofid
curves: non-LTE profiles; dashed curves: LTE profiles.  Note
marked sirengthening of line by non-LTE effects. From (45),
by permissian.
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Hp equivalent widths in O-stars.  Selid curves: non-LTE
calculations; dashed curves: LTE calculations.  Pots: observed
values (693). Ordinare gives equivalent width in A;  abscissae give
(To:/10%) and spectral types.

estimate the helium abundance N(He)/N(H), and in the O-stars, the ratio
of strengths of the He IT lines to He I lines provides a sensitive temperature-
indicator. LTE calculations of He I lines in B-stars have produced excellent
agreement with the observations for the blue-violet lines [see, e.g. (390;
480; 481)], especially when the most accurate line-broadening theories avail-
abie are used (438; 439). However, lines in the vellow-red regions of the
spectrum [e.g, 25876 (2p *P-3d D) and 16678 (2p *P-3d 'D)] are always
found to be stronger in B-star spectra than given by L'TE computations, using
the same model and abundance that fit the blue-violet lines. Formally these
lines indicate abundances almost three times larger than that given by the
blue-violet lines. When a detailed non-LTE ¢alculation is made (46), using a
realistic atomic model (see Figure 12-11), it is found that the lines mentioned
above arc strengthened dramatically, and that good agreement with obser-
vation is obtained, as shown in Figure 12-12 for 26678, It is interesting that
the largest non-LTE effects are found for the lines with the smallest values
of hv, for, as mentioned in §5-3, these lines, with relatively small values of

hv/kT, have collisional rates that are comparable to the radiative rates, and

the classical argument is that these lines should therefore be in LTE. The
reason for the large effects can be seen by examining the source function in
the limit § = Av/kT < 1. If we write (b,/b,) = (1 + f), then

(SI/B}) = (e’””‘T — l)/[(b!/b")eﬁw'k'[ _ 1]
= (& - 1)1 + B — 1]~ 6/ +8) =1 + /5"
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FIGURE 12-11

Model He I atom used in non-LTE calculation of He I spectrum. Ordinate gives wavenumber
in em ™! times 1073, All the transitions shown were included in the calculation explicitly as
“primary” transitions in the sense defined in §12-3; all other dipole-permitied lines up through
it = 10 were treated as “secondary” transitions, with rates fixed by an equivalent-two-level-
atom computation. The singlets and tripiets are treated separately. From {46), by permission.

which shows that a given fractional departure f§ of the level-population ratio
is amplified by a factor §~' when § < 1. The occupation numbers, and hence
the ratio (b;/b,) will, in general, be determined by processes other than thosc
in the line. In the O- and B-stars the level populations are set by photo-
ionizations and recombinations, and thus § will generally bz nonzero despite

‘a large collisional rate in a line. Once f§ # 0, large departures of S, from

B, become possible; the same argument, by the way, explains why even tiny
departures from LTE have very large eflfects in the radio-frequency recom-
bination lines observed in nebulae (199). In the O-stars, LTE predicts too-
weak lines for both He I and He IL. If one attempts to match the observed
equivalent widths, without regard to line-profiles (420), the derived helium
abundances are about a factor of two higher than the value obtained from
B-stars, or from the nebulae in the interstellar medium from which the
O-stars have just formed. If a fit is made to the wings of the line profiles
(510), it is again found that the line cores are much too weak. On the other
hand, a non-LTE calculation (45) yields excellent agreement with observed
line strengths and profiles at the “standard” abundance N(He)/N(H) = 0.1
[sce also (174;175)].

Departures from LTE on occasion introduce large erross into abundance
estimates based on LTE calculations. For example, LTE determinations of
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the abundance of Mg in O-stars are in error by a factor of 10 or more (431),
and only when a non-LTE calculation is made, is a fit obtained to the
observations, with an abundance necar the solar (and accepted “cosmic”)
value, as shown in Figure 12-13 [see also (384; 5386)]. Similarly, LTE analyses
of the spectrum of Ne T in B-stars have routinely given a neon abundance
of 5 x 107* relative to hydrogen, in disagreement with the value 10™*
obtained from nebulae, the solar corona, the solar wind, and cosmic rays
{(both galactic and solar-produced). Again the discrepancy is removed when
a non-LTE caleulation is done (47) and it is found that the Ne I spectrum,
consisting primarily of lines in the red, is affected by essentially the same
mechanism as that described above for He 1. Finally, the spectra of Si 111
and Si IV in B- and O-stars show significant non-LTE effects (349). Depar-
tures from LTE increase the computed line-strengths by 50 to 70 percent,
and line-core intensities decrease by a factor of 0.6 relative to LTE. To
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FIGURE [2-13

Strength of Mg IT /4481 in B- and O-stars.  Ordinate: cquivalent width
inA; abscissa: (T /10%).  Squares: observed values at the indicated
spectral types.  Dotred curves: LTE caleulations at a solar or ten-times
solar Mg abundance, with zero microturbulence. Dashed curpe: solar
Mg abundance, and 4 km s~ ' microturbulence.  Sofid curves: non-LTE
caleulation at solar Mg abundance, and zero (open circles) or 4 km s~
{filled circles) microturbulence. Note that for the O-stars the choice of
microturbulent velocity does not influence the result, and that the LTE
predictions yield much too small a line-strength, while the non-LTE
results agree well with the observations.

produce lines of similar strength in LTE, an abundance 5 to 7 times the solar
value would be required. In short, there is ample evidence that, at Ieast for
carly-type stars, deviations from LTE may produce large and important
changes in abundance estimates.

Yet another context in which non-LTE effects enter preeminently in early-
type stellar spectra is in the production of emission lines. For example, in
the Of stars, the lines of He TI 44686, C 111 25696, and N I 1/4634—41 are
seen in emission, while other fines of the same ionic spectra are in absorption.
In the case of He 1T /4686, studies have been made of selective excitation
mechanisms (45) and the effects of atmospheric extension in static models
(376); while weak emission lines have been obtained in such work, it is clear
that a quantitative fit to the observed line-strengths will be obtained only
when large-scale atmospheric expansion is taken into account (see Chapters
14 and 15). The C III line has not yet been subjected to analysis. For the
N IIT lines there exists a subgroup of the Of stars, designated O((f)), in
which the N 111 lines are weakly m emission and the He II line is in absorption
{657); these appear to be near-main-sequence objects in which the eflects
of atmospheric extension and expansion, if present at all, may be ignored.
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A detailed non-LTE study of the N IIT doublet spectrum (429, 440; 443;
433) gives a plausible explanation of how the 12463441 lines frorr} the
3p 2P — 3d %D transition can be in emission, while the next lower multiplet,
424097, 4103 (3s *S — 3p *P} is in absorption. The two essential ingredients
required to produce this result are (a) a mechanism for populating the 3d
state with enough electrons to induce the 3d — 3p emission, and (b) a way
of depopulating the 3p state so that emission does not appear in the 3p — 3s
transition. Both the 3s and 3d states can be populated directly by transitions
from the ground state (see Figure 12-14) and, when the ultraviolet radiation
feld at 4374 and 7452 is intense, these states will have large occupation
numbers. In static atmospheres, however, the resonance lines come into
detailed balance, and therefore do not lead to a very large overpopulation
of the 3d state. Rather, the overpopulation results from dielectronic recom-
bination from the 2s2p(*P)3d state—which, for the N* " ion, just happens
to lie barely above the ilonization limit. Stabilization of this state occurs
when the 2p electron drops to the 2s level, and proceeds at a very rapid rate,
feeding electrons directly into the 3d state. These electrons then decay
3d — 3p, producing the emission. Further, it turns out that, because of the
particular structure of the N* ™ ion, the most probable route of exit from
3p is not 3p — 3s, but rather via “two-electron jumps” of the form 2523p.—>
252p? (see Figure 12-14); the latter process occurs so efficiently that it drains
the 3p state, leaving the 3s — 3p line in absorption. Inasmuch as the AA4634—
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FIGURE ]2-14 o
Simplificd term diagram for the lower states of N* ™, as well as the autoiomizing state
252p( P)2d from which dielectronic recombinations can occur directly into the 25234 state,
leading to emission at 224634-40.
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41 emission lines can be produced in planar, static atmospheres, sokely as a
result of the atomic structure of the ion responsible, they must be regarded
as fntrinsic emission lines. In expanding atmospheres, direct pumping of the
3s and 3d states will occur in the 2p — 3s and 2p — 34 transitions, because
the resonance lines will be Doppler shifted into the bright adjacent continuum
and will not be in detailed balance. This greatly enhances the 3d — 3p
emission {thus explaining the very bright emission seen in the Of stars, which
are known to have expanding envelopes and stellar winds), while the in-
creased 3s population, coupled with the drain from 3p, assures that the
3s — 3plines remain in absorption. The calculations show (see Figure 12-15)
that the 114634-40 lines make the transition from absorption to emission
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N III line-strengths for the 3s — 3p (74097) and 3p — 3d (44634--40) lines in planar,
static, model atmospheres.  Ordinate: equivalent width (negative values denote
emission); abseissa: (T:/10%). Note that the 44097 line remains in absorption whilc
#44634~40 make a transition from absorption to cmission at a spectral type near Q6.
From (443) by permission.
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at about spectral type O6 near the main sequence, in agreement with obser-
vation (443). -

Many more analyses, for a wide variety of atoms and stellar atmospheres,
need yet to be done (particularly for later spectral types) before the questions
posed at the beginning of this section can be answered fully, and efforts in
this direction will be richly rewarded with interesting results.

13

- Line Formation with Partial
Frequency Redistribution

In the process of scattering in spectral line-formation, an atom is excited from
one bound level to another by the absorption of a photon, and then decays
radiatively back to the original state, with the emission of a photon. In our
work on line-transfer we have, thus far, assumed that scattering is either
strictly coherent, or that the photons arc completely redistributed over the
line profile. Neither of these limits is achieved exactly in stellar atmospheres,
and it is necessary to consider the redistribution of photons, in angle and
frequency, in some detail, and to calculate redistribution functions, which
describe the scattering process precisely. This calculation proceeds in two
steps. We first consider a single atom in its own frame of reference, and com-
pute the form of any redistribution that occurs within the substructure of
the bound states. Then, recognizing that what is actually observed in a
stellar atmosphere is an entire ensemble of atoms moving with a thermal
velocity distribution, we take into account the Doppler redistribution in
frequency produced by the atoms’ motion. Doppler redistribution arises
because the incident and emergent photons travel, in general, in different
directions; in this event the projection of the atom’s velocity vector along the
propagation vectors will be different for the two photons, and a differential
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Doppler shift must occur. The final redistribution function is obtained by
averaging over all possible velocities. Once the redistribution function is
known, a transfer calculation can be carried out, taking into full account
any correlations (or lack thereof) between incoming and outgoing photon
frequencies.

In this chapter the notation and methods of Hummer (313) will be adopted;
the reader is referred to this paper for further details and other results. An
interesting analysis of the problem from a rather different conceptual point
of view can be found in (295) and (296).

13-1 Redistribution in the Atom’s Frame

Let us first consider the nature of redistribution in the rest frame of the atom.
Let the frequency displacement from line center of the incoming photon,
measured in the atont's frame, be denoted by &, its direction by n', and the
frequency displacement and direction of the outgoing photon by ¢ and n.
Assume that the material has no preferred directions on an atomic scale so
that the atomic absorption profile f(£') is isotropic; f is normalized such that
jfw A& d& = 1. Further, suppose that the frequency redistribution function
p(&', &) gives the probability that a photon absorbed in the frequency range
(&, & + d&’) is emitted into the range (&, £ + d&), while the angular phase
Junction g{n'’, n) describes the probability that the photon is scattered from
solid angle de’ in direction n', into solid angle dw in direction n. These func-
tions are normalized such that

o v aae = [T peoae =1 (13-1)

and (4m)"? gﬁ g, n) de’ = (4m)~1 959(“', n) do — 1 (13-2)

The phase functions most useful in describing atomic scattering are those for
isotropic and dipole scattering, given by equations (2-17) and (2-18).

In terms of the functions just defined, we may now write the probability
that a photon (&', n') is absorbed as (&) d¢' dew'/4n, and the probability that,
if a photon (&', w') is absorbed, then a photon (&, n) is emitted as p(&, &)g(n’, n)
d& deo/dn. Thus the joint probability that a photon (&', n') is absorbed and a
photon {&, n) is emitted is f(&)p(&, &) d& d¢ g(n', n)(dw’ /4n)(dw/fim).

We must now specify the functions f(£) and p(&', £). Following Hummer,
we shall consider the following four categories: (a) Case I, zero line width;
{(b) Case 11, radiation damping in the upper state, and coherence in the atom’s
rest frame; (c) Case IIL, complete redistribution in atom’s frame; (d) Case
IV, subordinate-line redistribution between two broadened states. Let us
examine these in turn,
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(a) Case I. Here we consider an idealized atom with two perfectly sharp
states. Then f(&) d&' = (& — &y) d&, and p(&, &) = 6(& — &) where §
denotes the Dirac function, and &, is the line-center frequency: clearly there
is no redistribution in the atom’s frame in this case. It is obvious that the
conditions described here do not apply to any real line, for normally one
(or both) levels will be broadened. 1t is useful, nevertheless, to study this
limiting case, for it demonstrates the effects of Doppler redistribution alone,
as seen by an observer in the laboratory frame examining the ensemble of
moving atoms.

{b) Case II. Here we envision an atom with a perfectly sharp lower state,
and an upper state whose finite lifetime against radiative decay (back to the
lower state) leads to a Lorentz profile

JE&) = ©BmE — &) + 67] (13-3)

where § = TI'y/4x, and Ty is the radiative damping width of the upper staie.
We assume that there are no additional perturbations of the atom while it is
in its upper state; then there will be no reshuffling of electrons among sub-
states of the upper state, and the decay to the lower state will produce a
photon of exactly the same frequency as was absorbed. Thus we again have
p(&, &) = 8(¢ — &). This case applies to resonance lines in media of such
low densities that collisonal broadening of the upper state is completely
negligible—for example, the Lyman o line of hydrogen in the interstellar
medium.

{¢) Case ITI. The basic physical picture here is of an atom with a perfectly
sharp lower state, and a broadened upper state, in a medium where collisions
are so frequent that all excited electrons are randomly reshuffled over the
substates of the upper state before emission occurs. The absorption profile
is again the Lorentz profile given by equation (13-3), where & now represents
the full width (radiative plus collisional) of the upper state. In this extreme
limit, the frequency of the emitted photon will have »no correlation with the
frequency of that absorbed; the probability for emission at any particufar
frequency is then proportional to the number of substates present at that
frequency, and hence to the absorption profile itself. When complete redis-
tribution in the atom’s frame occurs we thus have

P&, 8 dé = fi) dE = (o/m) d/[{E — &) + 67] (13-4)

which shows clearly that p(&, &) is independent of &, and that the joint
probability of absorption at & and emission at & is proportional to f(E)f(&).

{d) Case IV. Here we suppose that the line is formed by an absorption
from a broadened state i, to a broadened upper state j, followed by a radiative
decay to state i. This picture is appropriate to scattering in subordinate lines.
Because the electron returns to the same level as that from which it was
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excited, the entire circuit is treated as a single quantum-mechanical process,
and an expression is obtained for the product f{{')p(&’, ). An expression for
the joint probability of absorption and emission was derived by Weisskopf
(663) and by Woolley (683). A subsequent analysis by Heitler (293, 198) yielded
a different result that was widely quoted in the astrophysical literature, but
is now known to be int error (489, 195); the earlier formula is, in fact, correct,
The derivation is siraightforward but lengthy, so only the final expression
will be quoted here, namely

AP, )
:(5- <>-/n-45 + AYIE - &) + APJE = &) + AP — &7 + 487 ]}
Syt ){[(E — Col + ATI[E — & + 4671}
+(0i §i/mLE — & + 482 1[(E — &o) Y+ AT]

+ 02 mALE — &) + ATJ[E — &o)* + A%]] (13-5)
where A = §; + 6; [see (684, 164-168) for a detailed derivation and dis-
cussion].

It is easy to show that f{&)p(&, &) = f(Ep(E, &), as would be expected in
the symmeirical process [ — j — i. Further, by inspection of the denomi-
nators in equation {13-5), it is easy to see that for a given value of £, there are
two relative maxima, one with & = € and the other with &' = £;. These can
be understood physically as follows. (1) Most absorptions will arise from
the center of the lower level; when these excite a particular substate of the
upper state, the decay occurs most often back to the center of the lower level.
It is clear that & will then equal &', and that this process occurs with a relatively
high probability. (2) Alternatively, there is a very high probability that an
atom will be excited from the center of the lower state to the center of the
upper by photons with & = &;; the upper state may then decay to any
arbitrary substate of the lower, in particular, yielding the frequency ¢. The
inverse also occurs: a transition from an arbiirary substate of the lower level
has high probability of exciting the center substate of the upper level, and
the most probable decay is back to the center of the lower level. Thus there
will be a peak in emission at line center (ie., at { = ), and indeed one sees
that there is such a peak in equation (13-5).

The laboratory-frame redistribution function corresponding to equation
{13-5) has not appeared in the literature [ owing to use of the erroneous result
of Heitler], though it could be derived straightaway (the calculation would
be tedious, however). Moreover, the formulation of a correct transfer equa-
tion for subordinate-line redistribution is quite complicated; we shall not,
therefore, consider Case IV further in what follows.

Of the four cases defined above, Cases 11 and 11l are of the greatest astro-
physical importance. In fact, neither of these extreme limits is attained, and

13-2  Doppler-Shift Redistribution 415

the typical situation ol interest for resonance-line formation is one in which
the upper state is broadened by both radiation damping and elastic collisions,
with damping-widths dp and & respectively. In this case, one would expect
the line profile to be given by equation (13-3) with § = 8 + d.. Ofthe atoms
in the upper state; a fraction y = dz/(dz + 6¢) would be expected to decay
radiatively, and hence to emit coherently in the atom’s frame (recall the lower
state is perfectly sharp). The remaining fraction (1 — v} = 5./(6x + O¢)
would have suffered collisions, and would be expected to have been com-
pletely redistributed. Thus we could now write

plE, ) =70 — & + (1L = po/mylE — &) + 6] (13-6)

This result was derived by Zanstra (694); 691), who treated the radiating atom
as a classical oscillator. A detailed quantum-mechanical calculation (489)
recovers equation {13-6) when the lower state is presumed to be perfectly
sharp. If inelastic collisions accur with sufficient frequency, &;, to contribute
to the total width of the state, then 6 = d; + ., + &;; we now write y =
(O + 61)/(6g + O¢ + &), for it is only the elastic collisions that reshuffle
atoms among upper-level substates (48%). In this case it is also necessary to
introduce an additional emisston source accounting for collisional excitations
of the upper level (see §13-4). Tnn sum, we see that the redistribution fanction
in this more general situation can be expressed as a linear combination of
the results for Cases I1 and 111,

13-2  Doppler-Shift Redistribution
in the Laboratory Frame

GENERAL FORMULAE

Let us now consider the effects of the Doppler shifts introduced by the
motion of the scattering atoms relative to the laboratory frame. In this section
we shall derive expressions that describe the full angular and frequency depen-
dence of redistribution in the scattering process. In practice, relatively few
radiative transfer calculations of relevance to line formation in stellar atmo-
spheres have been done with the scattering treated in this much detail (the
dimensionality of the problem is large!), and the angle-averaged functions to
be derived in §13-3 are generally much more useful in application. Following
Hummer's treatment, we first deduce general formulae for the observer’s-
frame redistribution function, and then calculate explicit results for the
specific cases defined above. As was discussed in §2-1, the redistribution
function R{,n’;v,n) dv' dv{dw'/4z)(dw/4x) gives the joint probability of
scattering a photon from a laboratory frame frequency (v, v + dv’), and
solid angle de’ in direction n', into frequency (v, v + dv), and solid angle dw
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in direction n. The function is normalized such that [equation (2-7}]

(4m) 2 98 da’ 95 des fow v’ fom dv R(V, W' v, ) =1

Suppose an atom moving with velocity v, which remains fixed during the
scattering process, absorbs a photon (v, n’) and emits a photon (v, n), as
measured in the laboratory frame. Neglecting the aberration of directions in
transforming from the atom’s frame to the laboratory frame, the correspond-
ing atom’s frame frequencies for the absorption and emission are

E =1 — vo{v-n)e (13-7a)
and &= v — vlv m)c {13-7b)
As was shown in §13-1, the joint probability of absorption of a photon (&', n')
with subsequent emission of a photon (£, n) measured in the atom’s frame is
FEP(E, Egn', m) dE dé(de'/Am)(dw/4n). Transforming this expression to
the laboratory frame via equations (13-7) we can write

R.(v',n';v,n) = f(v — vov M/c)p(v' — vov-®/c,v — vov - n/c)g(n’, ) (13-8)

where the subscript v implies that the redistribution is produced by an atom
of velocity v. To find the net result for the entire ensemble of atoms, we must
average over the velocity distribution, which is assumed to be Maxwellian.
To perform this average, introduce an orthogonal triad of reference axes
{n,, n,, ny), with n, and n, chosen to be coplanar with n” and n, and with n,
bisecting the angle ©® between them {see Figure 13-1). Then we may write

n = (cos 2@, + (sin 2@, = sn, + fn, {13-9)
and n = (cos ®m, — (sin @), = on, — fin, {13-10)
0y
o FIGURFE 13-1
Coordinate axes used in caleulation of
redistribution function. The vectors ny, n;, n,
o2 and o’ are coplanar. The vector n, bisects the

I

0/2 angle &, (0 < 0 < 7), between i’ and n.
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Resolve v along these axes, and write v; = v n;; for convenience express
velocities in dimensionless thermal units

U= Vg = (Mg /2hT Y (13-11)
where m, is the mass of an atom, and introduce the Doppler width

w = (vo/O)2kT/m )2 = voltinerma/C) (13-12)
Then the Maxwellian velocity distribution [equation (5-1)] is
Pluy, ty, ts) duy duy diy = 7~ Fexp[ —(u,> + uy? + us?)] duy duy duy
(13-13)

We now average equation (13-8) against the velocity distribution of equation
{13-13) to obtain

o o o
R(v,w';v,n) = J‘_ . diy ﬁ . duiy J: " dus Plug, iy, )RV, 0'; v, m)

=" "g(n, n fj(f duy e ™’ J‘jw dy
x e " v — wlom, + Bus)]
x p[v — wlau; + Pus), v — wlam, ~ fuy)] (13-14)

where the integration over u; has been carried out explicitly. An alternative
form for R, which will prove useful, can be derived by choosing n, to lie along
n. Then v o' = v, while

von=yp,¢080 + v,8in @ = g'v; + fu, (13-15)

We then find
ROwowm) = 27 g n) 7 duy o™ — wiy)
* f_wm duy, e p[v — wuy, v — wiw'u, + fus)]  (13-16)

With the aid of these general formulae, we can now compute the redistribu-
tion functions for the various cases defined in §13-1. Note first, however, that
in both Cases I and 11 the scattering is coherent in the atom’s frame, so that

plEEY = 0(& — &) = v — v + 2whu,) {13-17)

In these cases #; no longer appears explicitly in the expression for p, and the
integrations written above are simplified. Substituting equation (13-17) into
(13-14), the integration over u, can now be performed explicitly (transforming
to the variable z = 2wfBu, in order to preserve normalization of the Dirac
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d-function). We then obtain, for g # 0,

R(,n';v,m) = g, m) exp [_(V _ V’)z}

2rfw 4w
X _f O e Ay + V) — wond] du (13-18)

while if # = 0 we find

R.(v,n';v,n) = = g, n) (v — v) fw

-

e Y — widu (13-19)
Here the subscript ¢ denotes coherence in the atont’s frame.
Exercise 13-1:  Verify equations {13-18) and (13-19).

Finally, we note that the results can be written in a concise and convenient
form by expressing frequency displacements from line center in Doppler
units:

X ={v — v)iw (13-20)

and X =0 — ve)iw (13-21)
and writing
R{x',n'; x, n} = RV, n'; v, m)(dv'/dxWdv/dx) = w*R(v',n';v,n) (13-22)

to yield normalization of R{x, n’; x, n) when integrated over x* and x.

RESULTS FOR SPECIFIC CASES

(a) Case I. If we substitute f{&') = §(& — v,) into equation (13-18), we
obtain immediately

W _ g, n) vy —(v v = 2P
Rivowsvm =g exp[ e | P dot? (13-23)

Now noting that 24§ = 2 sin(3@) cos(3®) = sin @, that o> + 2 = 1, and
transforming to dimensionless units via equations (13-20) through (13-22),
we have

Ry, 0's x, m} = [g{n’, n)/m sin @] exp[ —x* — (x' — x cos ®)” cs¢? O]
(13-24)

Exercise 13-2:  Fill in the steps required to obtain equation (13-24).
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From this result, we immediately notice that, even though the scatiering in
the atom’s frame was presumed to be strictly coherent, there is significant
redistribution in the laboratory frame. This is a point of very great physical
significance, as was stressed by Thomas (622). He examined the frequency
dependence of scattered radiation [cf. equation (2-9)] using several simple
analytical expressions for the incident intensity, and showed that in the
Doppler core {x < 3), over which the absorption profile varies by a factor
of 10, the emission profile departs from the absorption profile by less than
a factor of four! Thus, within the Doppler core, the assumption of complete
redistribution of the scatteved radiation provides an excellent approximation
(it will be easy to see this using the angle-averaged redistribution functions
derived in §13-2; see also Figure 13-2). This result provided much of the
motivation for assuming complete noncoherence in the (reatment of line
formation, as was done in Chapters 11 and 12. Qutside the line core, complete
redistribution is not achieved as closely, and one must use the correct redis-
teibution function. For example, in the case considered here, a simple physical
argument (397) shows that the radiation in the far line-wings is about two-
thirds noncoherent, and one-third coherent. On the other hand, outside the
Doppler core the line-wings will often be swamped by the continuum (unless
the profile has a large damping parameter), in which event the details of
redistribution become less significant.

{b) Case II. Here we substitute equation (13-3) into (13-18) to obtain
R ( ! i, ﬂ) o g(n" n) ex ——(1”‘ - v’)2 i
oty s = 2nafiw? P 457 w? oW

w oV v =2y z S\ ]!
x [* e [(W——u) +(aw) du (13-25)

Transforming to dimensionless frequency units via equations (13-20) through
(13-22), and recalling the definition of the Voigt function H{g, v) [ see equation
(9-34)], we obtain, finally

(', )

Ra(od, s %, m) = & exp[ —3(x — ¥)* esc® 30]

7 sin @

x Hlasec 30, 3(x + x') sec 160 (13-26)
where a = (8/w). Although this result 1s relatively complicated, efficient
methods to evaluate H(g, v) exist, and Ry can be calculated fairly easily.

As will emerge in §13-3, Ry simulates nearly complete redistribution in the
line core {x < 2.5), but becomes nearly coherent in the line wings.

Exercise 13-3:  Fill in the missing steps leading to equation (13-26).
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(c) Case I1L. Here, as was noted in equation (13-4, p(&', &) is independent

of &. In this case equation (13-16) is particularly useful, and substituting
from equations (13-3) and (13-4) we find :

ﬂf’n [ —uy2 0 , 2 o
Ryy(v,n';v,m) = %?) ‘Lw dug e (ﬂ) (v — ve — wuy)* + 6°]1
P f"b duy e " (5) {[v — w(u; cos © + u, sin @) — vl + 87T (13-27)
—w n

Converting to dimensionless units, and again using the definition of the
Voigt function, we find

— 2
gfn’, w e "Hio,xcsc® — uctn ©)
Rl %, 1) = J(nﬁj o[, e

where ¢ = acsc ® and a = (§/w). This result is no longer expressible in
terms of simple functions, and must be evaluated by numerical integrations

(529).

Evercise 13-4+ Fillin the steps required to obtain equation {13-28).

Exercise 13-5+ In the limit that Compton scattering effects are negligible (ie.,
hvjmc? <« 1 where m is the mass of an electron), the scattering of radiation by
clectrons is coherent, p(&, & = 8(&" — &), and grey, f(§) = 0. = (8me*/3m*c*).
(a) Show that the redistribution function for electron scattering is

me* H —mc3y — V) }
Ry afvom) = gla', m) [4ch(1 s @’ | S| AkT(1 = cos @)y
[See (196; 475; 161, §861]. (b) Show that for T = 10+ K, A = 4000 A Q=
7/2, the characteristic width of the above redistribution is about 10 A. This result
suggests that spectral lines in carly-type stars can be significantly broadened by

electron scattering (159; 475; 161, §86; 318; 39).

SYMMETRY PROPERTIES

The functions obtained above have certain symmetry properties which
often may be exploited to simplify the form of the transfer equation. To
obtain these, it is convenient to rewrite the general result (13-14} in terms
of x and x': let f(v — vo) = f(¥) and By — vo, v' — vo) = p(v, v). Then
from equations (13-14), and (13-20) through (13-22)

— o oy o
R(x, w';x, ) = w'n™ lg(n, n}f " di, e J‘ dus

x e wx — oy — Bu ) PLw(x" — oy — fuy), wix — oy + Buis )]
(13-29)
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Now for all four cases defined in §13-1, the scattering is symmetric in the
atom’s frame—i.e.,

Fepe, o = J(=ep(=¢, & (13-30)

Suppose we replace x" - —x" and x — - x in equation (13-29}; if we simul-
taneously change the signs on u; and u, [which we may do because the
integrals span the entire range (— o0, )], we immediately see from equation
(13-30) that

R(—x,n'; —x,m) = R(x",n"; x, n) (13-31)

Next, noting that replacing " — —n’ and n — —n changes the sign of «
and f, and recalling that g(n’, n) depends only on n'-n, it is clear from
equations (13-29) and (13-30) that

R(—x', —n"; —x, —n) = R(x', n’; x, m) (13-32)
and from (13-31) and (13-32) it follows that
R(x, —n';x, —m) = R(x",n’; x, n) (13-33)

Equations {13-31) through (13-33) depend only on the validity of (13-30)
and hence are rather generally true. Further, because R depends only on
the angle between n' and n, we may interchange them without changing R;
ie.,

R{x',n; x,ny = R(x,n"; x,n) {13-34)

Next we notice that, for coherent scatiering in the atom’s frame (Cases 1
and I1), the redistribution functions depend only upon (x + x’}and |x — x’
[¢f. equations (13-23) and (13-26)]; hence x and x’ may be interchanged
without altering R; ie.,

Rix,n':x,n) = R(x’,n;x,n), (i=1LINH (13-33)

Finally, a transformation from n’ — —n' changes the sign of o and f in the
expressions for incoming photons, hence if g{n’, n) is an even function of
n -n,

_ o0 _ an
R(—x, —n'; x,m) = wn " 'g(n’, n) J‘_T duy e ®? J‘_T du,

x e T [w(—x" + omy + Pup) [PLwl—x" + ouy + Puy), wix — ousy + fuy)]
(13-36)
which will reduce to (13-29} in certain cases. In particular, the integrals will

be equal if (&) = () or if IEWHE, &) = f(—E)F(—&, &). The former s
true for Case I, while the latter is true for Case IIT where (&) = f(—£&)
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and p{&, &) = 7(&). Hence we conclude that
R(—x,—n';x,n)=R(—x,n';x, —n} = R(x",n";x,m), (i=1LTIT) (13-37)

where the second identity follows from equation (13-33).

APPLICATIONS

The solution of the transfer equation allowing for full angle and frequency
redistribution is fairly difficult, and requires techniques more powerful than
those discussed in this book; both Monte Carlo methods (31; 50) and
difference-equation methods (460) have been developed to handle the prob-
lem. There are a number of situations where both angular and frequency
effects may become important. For example, the escape of Lo photons from
a very thick nebula depends sensitively upon the details of the scattering
process, and a complete, careful treatment is required (31}. In addition,
when the material has a macroscopic velocity, both the absorption and
emission coefficients  become angle-dependent in the observer’s rest frame
(cf. §2-1). There then results an inextricable coupling between angles and
frequencies in the transfer problem (see §14-1), and the details of the redis-
tribution process may be of consequence; in this book, however, we shall
consider only the case of complete redistribution in moving media, and will
not pursue this point further. Finally, when observable angle-dependent
information is available (e.g., center-to-limb variations as measured in the
solar atmosphere), the possible importance of angular effects in the redis-
tribution process must be examined. The investigations of this question
conducted thus far {640; 641 ; 460) show that, at least for semi-infinite plane-
parallel atmospheres with homogeneous layers, the differences between re-
sults obtained using angle-averaged redistribution functions and those
obtained using the full angle-dependent functions are negligible. On the other
hand, for optically thin media or small-scale structures (e.g., chromospheric
fine-structure, spicules, etc.) the angular effects are often quite important
(186), and should be considered in detail. However, these questions lie beyond
the scope of this book, and will not be discussed here; rather, we now turn
to the derivation of angle-averaged redistribution functions, and then to
their use in radiative transfer calculations.

13-3  Angle-Averaged Redistribution Functions

As was noted jn §2-1, if we assume that the radiation at any particular point
in the atmosphere is essentially isotropic, then the contribution to the
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emissivity from scattering processes can be wriiten in the form
260
w5, v) = o(r) f O ORWLW, Y (13-38)

where J,. is the mean intensity and R{v, v} is the angle-averaged redistribution
function

R, ) = (4m) ! 56 ROV, '; v, n) de’ (13-39)

The rationale for this approach is essentially as follows. The radiation
field will depart significantly from isotropy at any given frequency only at
points whose optical depths 7, from the surface are of order unity or less;
at depths 7, > 1, the radiation field is essentially isotropic. Now a basic
characteristic of non-LTE line-formation that emerged clearly in Chapter 11
is that the surface value of the source function is determined by photons
contributed from over an entire destruction length, and over virtually all
of this region the radiation field will, in fact, be isotropic. We may expect,
therefore, that even at the surface where I{u, v} shows departures from
isotropy, S, will still have a value already fixed by processes occurring at
depths where the anisotropy is negligible; hence the value of I(t, = 0, 4, v)
computed from this S, should be guite accurate. On the other hand, use
of the angle-averaged functions accounts completely for the frequency-
reshuffling of scattered photons, the action of which {as we saw in Chapter
11) affects crucially the photon escape-probability, and hence the thermal-
ization process. In short, in this approach we account for the critical aspects
of the redistribution process, and sacrifice information only in an area of
secondary importance.

The functions defined by equation (13-39) are normalized such that

J" © f_“”m dv' R(Y, v) = 1 (13-40)
Integration over all emitted photons yields the absorption profile
dv fio RO,V dv = ¢(v) dv (13-41)

while integration over all absorptions vields the natural-excitation emission
profile | ¢f. equation (2-14)]

vy dv = dvf . R(v, v) v’ (13-42)

If R(v', v) = R(v, v') (we shall find this to be true for cases I-II1), then clearly
Y¥(v) = ¢(v). Tt should be emphasized, however, that y/*(v) is rot, in general,
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the actual emission profile in the line when J, varies over the line.profile
(see the discussion in §13-4); that profile follows, ultimately, from the equa-
tions of statistical equilibrium and knowledge of the frequency-variation of
g

Two hypothetical limiting cases sometimes considered are strict coherence
and complete redistribution in the laboratory frame. In the former circum-

stance we would have

R(v, v) = (v (v — v) (13-43)
and in the latter

RV, v} = (¥ )p(v) (13-44)

Neither of these limits can actually ever be achieved. As we have seen already,
even if the seattering is strictly coherent in the atom’s frame it is not in the
laboratory frame unless the atoms have zero velocities (impossible). Further,
as we shall see below, complete redistribution in the atom’s frame does not
produce exactly complete redistribution in the laboratory frame. However,
in the latter situation it is nonetheless found that equation (13-44) does, in
fact, provide a very good approximation to reality in most cases, and hence
may normally be used to describe that limit. Note in passing that, because
the dependences of R on v and on v are separated in equation (13-44), the
true emission profile ¥, = ¥F = ¢, regardless of the behavior of J,, which
justifies our earlier use of this relation [ but only if equation (13-44) is actually
accurate!].

GENERAL FORMULAE

The integration indicated in equation (13-39) could, in principle, be
carried out directly, using each of the redistribution functions derived in
§13-2. This however, turns out to be rather complicated. It is simpler to
derive first a general formula, by performing the angle-average for arbitrary
(&) and p(&', &), and then to obtain specific forms for the particular cases
of interest. We begin by rewriting equation (13-8), using the Doppler units
defined in equations (13-11) and (13-12}:

R(v,n;v,n) = f(' — wa-W)p(y — wu-n,v — wn-njgn',n) (13-45)

We now wish to fix v and v and integrate over all angle. Choose an ortho-
normal triad (n;, nz, n;) such thatu = un;. Thenu'n = prandu-n' = p'u,
where ¢ = n-ny and p’ = 0’ - n;. An element of solid angle may be written
dw = du d¢ where ¢ is the azimuthal angle around n;. The phase function
g(n', n) can be expressed in general as g(y, p, ). Thus, angle-averaging
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equation (13-45) we have
R, vy = (emy™t [ do 1w 0 = wwa)
% fi du plv' — wi'n, v — w u)f"dqbf (i, &) (13-46)
_dup W, ) | de gl
- Zn ’ F r
Define g0, ) = @40 [ gl @) dp (13-47)

Then, noting that the integral over ¢ in equation (13-46) is trivial, we have

1 ! o t I 1 El ! 7
R, v) =3 f ' = wpn) f_l dp g(u's Wp(y — wi'n, v — wu)
(13-48)

For simplicity, in what follows only isotropic scattering in the atom’s frame
will be considered; in the case g(y, 1) = + [formulae for a dipole phase
function are given in (313)]. Applying this restriction we have

Roalt'ow) =4 (7 aw g0 = ww) [ dpp(v = wan v — wp) - (13-49)

Although equation (13-49) is general, it is not convenient in the case of
coherent scattering in the atom’s frame because of complications that arise
in setting the limits of integration; let us, therefore, derive a more refined
formula for this case.

If the scattering is coherent in the atomic frame,

plv — wu'n, v — wun) = OV — v — wul(y — )] (13-50)

Because the range of integration for g and p is only (—1, 1), it is clear that
for a given value of u, the singularity of the é-function will be outside the
range of integration for sufficiently large values of |v’ — v|, and R, (v, v)
will, accordingly, be zero. Physically this corresponds to the fact that an
atom moving with velocity u can change a photon’s frequency by no more
than 2uw, this maximum shift occurring if the propagation vectors of the
incoming and outgoing photons lie along the velocity vector and are op-
positely directed. We substitute equation (13-50) into (13-49), and consider
first the integration over u. Let y = wpu, and write

W

I = (wu)™? J‘ ' By — (v — v + wup)dy {13-51)

— Wit

The integral will equal (1/wu) if —wu < v — v + wuy' < wy, and will be
zero otherwise. Define A(x) such that A = 1if —1 < x < 1,and A =0
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otherwise. Then equation (13-49) can be rewritten, using equation (13-51), as

Ry v, v) = (dwu)™? J‘_ll SO = wup )AL + (v Ny — V)] dy’ (13—52)

If u is sufficiently small, then |(v — v')/wu| > 1 and A will vanish for all
values of p/. Thus there is a minimum speed u,,;,, whose value we must
determine, for which scatiering from +' to v can actually occur. Define
¥ = max(v, viand v = min(y', v). First suppose that v > v'; then the require-
ment that the argument of the A-function fall in the range (—1. 1) implies
that [(v — vywu] — I = [(¥ = y)/wu] — 1 < 1; this inequality yields

U

min

= (F — 2w =y — v|/2w (13-53)

But the same result is obtained by similar reasoning if we assume v > v;
therefore equation (13-53) is general. For u <y, R, will be zero. For
u > U, a contribution to R, will come from part of the range of integration
over . To determine this range, we suppose, for definiteness, that v > v,
Then a contribution is obtained when

—lgsp<l—[(v—=vywu] =1—[F— v/wu]

which implies that ¥ — wu < v — wuy' < v + wu; recalling that v = v’ by
hypothesis, the result just stated can be rewritten as

F—wy v — wup’ < v+ wu (13-54)

If we assume insicad that v/ > v, we again obtain equation {13-54), which is,
therefore, general.

Now introducing the Heaviside function ©(x, x,), defined such that ® = 1
when x > xoand ® = 0 when x < x,, making the substitution y = v/ — wuy',
and using equations {13-53) and (13-54), equation (13-52) may finally be
written as

y+w

Ry ) = @) 0 — v — v 0) [T f(ydy (13-55)

2

Finally, the resulis expressed in equations (13-49) and (13-55) must be
averaged over the Maxwellian velocity distribution

Plu)du = 1 e “(4mu?) du (13-56)

From equation (13-35) we then have for coherence in the atom’s frame
(Cases T and 1I)

R, v) = (zmbw?) L f C due J" STy dy (13-57)

Hmin vowi "
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From equation {13-49) we have, for noncoherence in the atom’s frame (e.g.,
Case III},

o

R,V,v) =n = J‘o du u?e™" fji du' f(vi — wyp'n)
X J‘jl du pv' — wp'u, v — wunt) (13-58)

Finally it is convenient to use Doppler units [cf. equations (13-12), (13-20),
and (13-21)] and write

R (x, x) = R, v)(dv'/dxYdvjdx) = w*R (v, v} (13-39)

RESULTS FOR SPECIFIC CASES

{a) Case L. Here f(y} = é(y — vy); hence the integral over v in equation
(13-57) is nonzero only ifv + wu = v, = ¥ — wu. This implies that u,,, now
becomes effectively u),;,, = max(}x’|, |x[), which clearly satisfies the inequality
Hoin 2 Unin 88 given by equation (13-53). Then from equations (13-57) and
(13-59)

—1

Ry 4, x)=mn"3 LOO ™" du = 1 exfe(uy,) {13-60)

where the complimentary error function is defined as
erfo(x) = 2z~ % f” e 7 dz (13-61)
Substituting for u),p,
Ry 4(x', x} = & erfe[max(|x], x'))] (13-62)

This redistribution function is easy to compute from well-known approxi-
mation formulae for erfe(x) (4, 299); asymptotic formulae and results for
dipole scattering are given in (313).

A plot of Ry 4(x', x)/¢p(x") is shown in Figure 13-2; the curves are labeled
with the incoming photon frequency x’, and give the probability for emission
at frequency x, per absorption, as a function of x. We see that a photon
absorbed at frequency x’ will be emitted with equal probability at all x such
that —|x'| < x < |x'}, and with exponentially decreasing probability beyond
this range. It is easy to understand this result. The absorption can occur only
when ¢’ = 0 1n the atom’s frame. Therefore atoms absorbing at frequency x'
in the laboratory frame have a velocity of at least x’ Doppler units. As the
emissions occur with equal probability in all directions, the photons can be
redistributed with equal probability over the entire range + x'.
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FIGURE 13-2

Probability of emission at [requency X, per absorption at frequency ¥, for pure
Doppler redistribution.  Ordinate: Ry(x', x)/¢(x"); abscissa: emission frequency x.
Curves are labeled with frequency x’ of absorbed photon.

{b) Case T1. Substituting equation (13-3) into (13-57), we have

¥+ wu

Ry, 0¥, v) = () J::i” due™ f_ dy [{y — vo)* + 52]_1 {13-63}

YWy

Converting to Doppler units, writing z = (y — v,)/d = x/a, and writing
tin = 3% — x| from equation (13-53) we have

min
y g e _p2 [xtwa 1
Ry 4x.x)== jx'—x\fz due ﬁfiwﬂ dz(l + z7)
i [ 2 o, f{Xx+u (X —u
:ﬂ;ﬂfﬁ e ™ [tan™! [ = — tan ! du
|« —x|/2 [t a

(13-64)

where ¥ = max(|x], |x'|) and x = min([x|, |x'|). The asymptotic behavior of
Ry, and results for dipole scattering, are given in (313); an accurate method
for the evaluation of Ry is given in (6). '

The redistribution function Ry is of great interest, for it describes the
important case of scattering by a resonance line that is broadened by
radiation damping, and it has been extensively studied. A plot of
Ry, 4(x', x){$(x') for @ = 107* is shown in Figure 13-3; again, the curves
are labeled with the incoming photon frequency x’, and give the probability,
per absorption, of a subsequent emission at frequency x. Here we see that
for small x' (x’ < 3), the curves resemble those for R, because most of the
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FIGURE 13-3

Probability of emission at [requency x, per absorption at frequency
x', Tor Doppler redistribution from a coherently scattering {in the
atom’s frame) Lorentz profile with ¢ = 1077, Ordinate:

Ry(x', x)/p(x"); abscissa: emission frequency x.  Curves are labeled
with frequency x* of absorbed photon,

emissions are from atoms absorbing at line center and moving with velocities
near x'. For large x' there wili be very few atoms with high-enough velocity
to absorb at line cénter, and most emissions then come from atoms moving
with low velocities and absorbing in the line-wing. As the scattering process
is coherent in the atom’s frame, and the appropriate atoms are nearly at
rest in the laboratory frame, the scattering will be nearly coherent in the
laboratory frame as well. Thus in the line-core there is Doppler redistribution
and strony noncoherence, while in the wing the scattering is more nearly
coherent; this dichotomy has important implications for the line-transfer
problem, as we shall see in §13-4.

In early work by Jefferies and White (338), it was suggested that a simple
approximation for R could be written in the form

Ry o¥, %) & [1 = a(x)]p(x}p(x) + alx)¢(x) d(x — x')  (13-65)

where a{x) is nearly zero for x < 3 and approximately unity for x = 3. The
original suggestion for the form of a(x) is not adequate, however, and fails
to meet requirements of normalization, symmetry, and wing-coherence.
Nevertheless it Is easy to define an appropriate function (358), and an
approach of this type does simplify the calculation somewhat, although in
the most precise work the correct form for Ry [equation (13-64)] should
be used.
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{¢) Case IIL In this case we no longer have coberence in the atom’s frame,
and equation (10-55) may be used without complication to give

) 1M {o/m) di’ 1 (6/m) du
RA,u(V; V) = EJ\_I (V’ — w,u’u - vO)Z 5 52 J471 (V — wpu — vD)Z 1 82

i o fx+u X —u
T antwiie tan a - tan a
X {tan_l (" + ”) ~ tan~! (x - “ﬂ (13-66)
a a

Averaging over a Maxwellian velocity distribution and converting to Doppler
units we have

s i el (X tu (X —u
Ry X, x) =7 fg e l:t‘m (a ) — tan ( ” )J
>< [tan*l (X ;r “) — tan~! (x . ”)] du (13-67)

Asymptotic formulae, results for dipole scattering, and computational
methods for evaluation of Ry are given in (313, 212 ; 529}

A plot of Ry(x', x)/é(x") for @ = 1077 is shown in Figure 13-4. For small
x', most absorptions are at line center by atoms moving with velocities near
x', hence redistribution occurs with equal probability over the range
—x' <€ x < x',as was true for Ryand Ry;. Again, for large x’ most absorptions
occur in the line wings of nearly statiopary atoms, but now the emitted
photons are completely redistributed over the absorption profile in the
atom’s frame, hence Ry (x', x)/¢(x") — ¢(x) for x" » 1. It has, on occasion,
been argued on intuitive grounds that if the redistribution process is com-
pletely noncoherent in the atom’s frame, and if this is combined with random
Doppler motions, then the redistribution should be completely noncoherent
in the observer’s frame as well; this conclusion is false, however, as is clearly
shown by Figure 13-5. In fact, Doppler motions introduce a correlation
between incoming and outgoing frequencies near the line core, and the
deviations from complete frequency redistribution in the laboratory frame
can be large. Despite these deviations, it turns out (see §13-4) that the as-
sumption R(x', x) = ¢(x")¢(x) produces line profiles quite similar to those
obtained from the exact Ry(x', x), and in practice, the case of complete
noncoherence in the atom’s frame may be treated as complete noncoherence
in the laboratory frame also, without serious errors. (P /(x “ )iy

]
o
|
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—
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Ordingte: Ry(x', x)/d(x);

Abscissa: emission frequency x.

From (212), by permission.

Dotted curve is the natural-excitation emission profile ¢(x).

Probability of emission at frequency x, per absorption at frequency x, for complete redistribulion over a Lorentz profile in

the atom’s frame, and Doppler redistribution in the laboratory frame, with & = (d/w) = 1072,

note logarithmic scale.
Curves are labeled with frequency x’ of absorbed photon.

FIGURE 13-4
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Ratio of actual redistribution funciion, for complete redistribution in the atom’s

frame and Daoppler redistribution in the laboratary frame, Ryy(x', x), to the
limiting case of complete noncoherence in the laboratory frame, ¢{xp{x). The
absorption profile ¢ is a Voigt profile with a = 1073 From (212), by
permission.

Fxercise 13-6:  Show that the angle-averaged redistribution function for scattering
by electrons (under the same assumptions as employed in Exercise 13-5) is

R, 40V, v) = w Verfel(v’ — v)/2w]
where ierfe(x) = Lm erfeiz) dz = n7 %™ — xerfe(x)

and w denotes the eleciron Doppler width, w = vo(2kT/m*/c, which is about
43.4% times as large as the Poppler width of an atom of atomic weight A. See also

(318) and (39).
SYMMETRY PROPERTIES
From equation (13-31) we see that, after angle-averaging, we must have

R(~x', —x) = R(x, x) (13-68)
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which 1s general so long as equation (13-30) holds. Further, by a direct
extension of the arguments leading to equation (13-35) one finds

R{x,x) = Rix,x), (i = LTI, IID) (13-69)

The validity of this result can also be seen by inspection of equations (13-62),
{13-64), and (13-67). From equation (13-69) it follows that the natural-
excitation emission profile [see equation (13-42)]

E) = i), (= L 1L, 1) (13-70)

Exercise 13-7:  Verify the result stated in equation (13-70) for Case T by direct
integration of Ry (x', x) over x'.

13-4 Radiative Transfer with Partial Redistribution

Consider now the problem of accounting for the effects of angle-averaged
partial redistribution in spectral line formation. For simplicity we shall con-
fine attention to a two-level atom with continuum, and develop a general
method that gives a rigorous solution of the problem. (This method can be
generalized easily to more complicated atomic models as well) Next, a
somewhat simpler, but less general, approach will be developed, which still
treats the troublesome stimulated emission term correctly. Then a still
simpler method, which treats the stimulated emission terms only approxi-
mately, will be described, and results from the application of this method in
highly idealized models will be discussed. Finally, results from calculations
of resonance-line profiles, using the general method, for realistic model atoms
and stellar atmospheres, will be presented.

FORMULATION FOR A TWO-LEVEL ATOM

Let us examine the formation of a resonance line connecting a perfectly
sharp lower level to an upper state that is broadened into a distribution of
substates by both radiation damping and collistons. Denote the population
of the lower level by n,, the total population of the upper level (summed over
all substates) by n,, and the number of ions by n,. The distribution of the
atoms over the upper state is specified in terms of the observer's-frame
emission profile \,, defined as the fraction of all atoms in the upper state
that, if they decay radiatively, emit photons of frequency v as seen in the
laboratory frame. This method of counting atoms in the upper state is well-
posed physically, for it describes the distribution in terms of observables;
mathematically, ¥, is a complicated, but unique, one-to-one mapping from
the distribution of atoms over their own rest-frame [requencies &, and
velocities v, the transformation being specified by the redistribution function
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{d56). Clearly v, is normalized, and n, = n, |, dv. We shall find it con-

venient to define an auxilliary variable 77, such that n (v} = i, = i (v) ¢,

gives the number of upper-state atoms in substates that can emit photons of -

frequency v; the dominant variation of the upper-state distribution is
factored out this way, and 7, reflects only the departure from natural ex-
citation.

The substate occupation number n,(v) (or, equivalently, jr,) is specified
by a rate equation of the form

ny{v)(Asy + Bayd, + Cop + Rae + Cy)

=m[&aRWwwww+cuw}+@wmﬂ+ck)uxm

This equation has a simple physical interpretation [see also (456)]. The term
on the lefthand side is the population of the substate, times the total rate of
exit (a) to the ground state by spontancous emissions, stimulated emissions
and collisions, and (b) to the continuum by photoionizations and collisions.
The only noteworthy term is that for stimulated emission which is strictly
coherent in both the laboratory and the atom’s frame. [This follows from the
fundamental quantum-mechanical characteristics of the process (197, §62;
293, §17), in which a photon, incident upon the atom, induces an emission
in such a way as to create yet another photon of exactly the same properties:
energy (hence frequency), momentumm (hence direction of propagation), and
polarization. Thus a photon (v, n) in the laboratory frame undergoes a
definite transformation (depending on n’ and v) to (£, n') in the atom’s frame,
and creates another identical photon; both photons undergo exactly the
same inverse transformation back into the laboratory frame, returning two
photons (v, 0’} into the radiation field.] The terms on the righthand side
describe processes of excitation to the substate ny(v), from the ground state
and by recombinations from the continuum. The latter produce atoms in
level 2 distributed according to the natural-excitation profile yrf;  nF denotes
the LTE particle density n§ = na1,0,(T), where O(T) is the appropriate
Qaha-Boltzmann factor. For all three physically interesting cases of redis-
tribution considered in §13-3, ¥ = ¢, [see equation (13-70)]. From the
ground state, atoms excited by collisions are also distributed according to
w¥. The radiative excitations are given by the number of absorptions of
photons of frequency v, namely a;B;,J,, times the joint probability R(v', v}
of absorbing at v and emitting at v, summed over all v'. In the scattering
process we assume that a fraction y of all excited atoms emit coherently,
and the remainder are completely redistributed in the atom’s frame by
elastic collisions [so that p(¢’, £) is given by equation (13-6}]. The correct
laboratory frame redistribution function in this case would be

RV, v) = pRy(v, v) + (1 — )Rylv', v) (13-72)
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but in practice it is adequate (and much easier) to use

R, v) = yRylv, v) + (1 — oy : {13-73)

which assumes that complete redistribution in the atom’s frame leads to
complete redistribution in the observer’s frame.
The rate equation for the ground state is

iy (812 jﬁbw}\- dv + CIZ + le + Clx)
=1, (Au + By, J‘l/"\“]\' dv + sz) + 1Ry + Cp) (13-74)

which has an interpretation entirely analogous to that of equation (13-71).
Finally, the total number of atoms is presumed known, hence

ny + ny j‘ljl\, dv -+ 1, = Hyom (13-73)

The required photoionization and recombination rates may be considered
as given, in which event only the radiation field in the line needs to be cal-
culated, or these rates may follow from a solution of the transfer equation
in the continuum (assumed necessary for the ground state only).

The transfer equation to be solved may be written as

& f,J e, = J, — S, (13-76)

where, as usual, dt, = —y, dzand S, = #,/y,. In the line
1o = osalm — (@1/g) 0], + X, (13-77)
and 7y = 2hv3iedog (g, /g0, + E, (13-78)

and in the ground-state continuum

T = L)y — nfe™ ™R + X, (13-79)

and #y = 23 iet)e My, (wnt + K, {13-80)
Here X, and E, represent (fixed) background opacity and emissivity sources,
while o, = (Byhv)/4zn.

The solution of the transfer equation is now quite complicated because
the emission profile \r, is not known a priori, but follows from the statistical
equilibrium equations (13-71) through (13-75). Unlike the case of complete
redistribution, where only the ratio (n,/n,) 18 required to specify the source
function [cf. equation (11-4)] and hence only one statistical equilibrium
equation is needed, we must now compute ,, and this introduces as many
equations of the form of (13-71) as are required to define this funciion to
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the desired precision. Indeed, the situation at hand strikingly resgmbles that
of a multiline “multiplet” problem with very strong interlocking effects,

each frequency within the line playing the role of a separate transition, and

the line as a whole acting as the collective photon pool, This analogy suggests
that the solution can be obtained effectively by means of a complete linear-

ization technique.

METHODS OF SOLUTION

A general and powerful method of solving equations (13-71) through
{13-75), simultaneously with the transfer equations {13-76) through (13-80),
is to use the complete linearization technique. We introduce a d1scr§te set
of upper-siate substates specified by frequencies {v j}, measured relan:fe to
line center. The substate populations can then be written as ny(v;) = fipsp)s
and the rate equations discretized as

J

J

ny (Blz Y owibsd; b Ciz b R Clrc) — ¥ willy Az + BarJ; + Cad)

- n.'c[ne(D1(T)(Rxc1 —+ C1;¢)] =0 (13-81)

- {Blz |:"/ Zgg?’ﬂj' + (1 - P)ff);z Wj"i)j“]j’:\ + Cu‘ﬁj}
¥ j

+ flyp (Ao + By J; + Coy + Rop Cyp) — [ M@ THR, 2 + C)] =0
(13-82)

and ny o+ Y Wil e = Myom (13-83)
J

Here 45 is a discrete representation of R"(v;, v;) in aTn appropriate quadra-

ture. Writing n = (7, oy, M2z, - - s flaps . oes 2y, n.}", where J denotes the

total number of substates, equations (13-81) through {13-83) are of the form

i = 9. .

Suppose we have an estimate of the occupation numbers n for all de.pthls;
then current values of 7, #7,, and J, may be computed at all frequencies 1n
the line and continuum. We may then linearize the transfer equation 1n
terms of 8.J,, 6y, and ds,, and express the latter two quantities in terms of
n,, the dn, s, and ém,.. In turn, the én’s can be written as on =), (fvn/aj ) 05,
where the sum extends over all frequencies in the line and continuum. The
derivatives {on/dJ,) can be written as (fn/dJ,) = —of ™ L[(@%/-&Ik) -n], and
explicit analytical expyessions can be obtained for the del‘l-VHtIVGS (Ded /0T
[see (456;459)]. The final system of equations to be solved is of the standard
Feautrier form —A, 8, + By 8, — C48Js41 = Ly where

83, = @Jwa .-+ Sy - - 8Jka)’
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When the system is solved, the /s are applied to the current estimates of
J,, and the rate equations (13-81} through (13-83) are re-solved for new n’s.
These values are used to compute y, and #,, and a formal solution of the
transfer equation updates the Eddington factors f,. The whole process is
iterated to convergence. The formalism can be extended (459) to include the
case of several lines from different sharp lower levels to common broadened
upper levels [c.g., the Ca II M- and K-lines and infrared triplet, for which
the 4s ground state and metastable 3d levels are sharp, while 4p is broad
(sce Figure 12-1)]. The convergence properties of this method are good,
typically vielding a factor of § to 10 reduction in errors in the solution per
iteration.

The method described above is effective, but is relatively expensive compu-
tationally, and it is worthwhile to explore less costly approaches (292). One
of the basic problems encountered in treating partial redistribution is that
the unknown emission profile appears explicitly in the stimulated emission
term in y,, and hence in the denominator of S, = #,/y,. However, in many
astrophysical applications, particularly for ultraviolet resonance lines in
solar-type atmospheres, this stimulated emission correction, which is of
order exp(—hv/kT), is extremely small. In this event we may proceed by
iterating the ratio @, = (¥,/¢,) in the stimulated emission term of an analyt-
ical expression for the source function obtained from manipulation of the
statistical equilibrium equations.

Consider the source function for a strict two-level atom, omitting the
continuum for simplicity. Using the Einstein relations we may write the line
source function as

(V) = (2hv’ /e )nzy, _ (2hv?/e?) (g o fgan b,)
: (g2/o0)m b, — nah, 1 — {g,n2/g,n)w,

(13-84)

Here, and in what follows, we assume that a current estimate of w, 18 known.
From equation (13-71), omitting the continuum terms,

A2, TR v + Gyl — e B (T)

203 e g et Jgan L) =
( [e NG /G201 9,) A, + By, J, + Cy

(13-85)
and from equation {13-74)

R A21 + le(jg - w\’ja) + C21(1 _ (ﬂve*hvﬂcT)
o o = 13-86
[l Grisfgzm )] Az + Byd. + Cyy {13-86)

where J, = I dodydv oand J, =y J, dv = i ¢uo,J, dv. Defining & =
Cy(1 — e * Ty 4, we have

S0 = &, [gﬁ)‘l J” ROV, W), dv + s:’B‘] (13-87)
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where
£ = [(Azy + Bz_1je + C_zl)/(Am + By, + C21)_]M“_ (13-88)
YT 4 By /AU — w,d,) + (CaifAr )1 — wye )

Using equation (13-87) in an expression for the total source function of the

f
o S, = [nMS + %S/t + xl (13-89)

where now
wulv) = aya[n — (g:/g2 20, ]9, + X, (13-50)

the transfer equation now reduces to the general form
I yenE =0, — a fR(v’, W dv 4 b, (13-91)

which may be solved straightaway by the standard Feautrier tef:hnique.. In
this method we use current estimates of m, and J, to cal.culate 5»-_ in equapon
(13-88), and of the level populations and w, to d;termme (v) in (?qua_tlons
(13-89) and (13-90). The transfer equatiqn {1 3-91) is then solved for improved
values of J,. These J,’s are then used in equations (13-81) through (13-83.)
to update ny, x{v), and n,, and from these, ¥, and. thus c,. The process 1s
then iterated to convergence. One would expect thls method to Work well
whenever (By;7/A;1) « 1; when stimulated emissions are very important
one must use the full linearization technique described above.

RESULTS FROM IDEALIZED MODELS

A great deal of insight into the nature of partial redist.ribut-ion effects
can be obtained from studies similar in spirit to those descrl_bed in Chapter
11, using idealized model atmospheres and atoms. To simplify Fhe problem
as much as possible, it is customary to make the additional physical assump-
tion that the stimulated emission profile is given by ¢,, not y,, and that tl}_e
stimulated emission rate in equation (13-71) can be written as .;12(\:)}:321&
rather than n,(v)B,J,. Then the parameter o, defined above is identically

M

unity, J, = J,, and §, = (1 + &)1, and equation (13-87) reduces to
S = {1 — &), f R, W, dv + 2B, (13-92)

where & = ¢/(1 + ¢). With this source function, the transfer equation can
be solved in a single step without iteration. This approach has been useFi 0
estimate the differences between the frequency-dependent Sy{v), obtained
when partial redistribution effects are taken into account, and the frequency-
independent

S = (1 &) [ $.J, dv + ¢B, (13-93)
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obtained from complete redistribution, for R, R, and Ry in constant-
property atmospheres (53; 212; 316). The source functions S,(v) and $;*
may also be used to compute line-profiles; the errors made in calculated
profiles if complete redistribution is assumed in place of an accurate re-
distribution function can then be assessed. An intermediate approgimation
is the iterated source function

S = (1 - g¢,7} J‘R(v’, VISR AV + B, (13-94)

which is evaluated using the mean intensity obtained from the complete
redistribution solution based on equation (13-93). Tt has been found that
$9(y) in isothermal media is nearly equal to S;(v) (316), and obviously it is
much simpler te compute.

Let us first consider the case of redistribution by Doppler shifts only—1Le.,
R(v,v) = R/, v). A number of solutions for §,(v) have been obtained (316)
for both finite and semi-infinite isothermal media, assuming zero continuum
opacity, with e = 10~ *and 107°. Results for variation of the source function
with frequency and depth are shown in Figure 13-6 for ¢ = 10 The
vertical arrows designate the frequency at which the monochromatic optical
depth , = 1.Itis clear that, at all frequencies where 7, 2 I, S,{x)essentially
equals S,°}; large deviations occur when 7, < 1, but are of little consequence
because these optically thin regions do not contribute significantly to the
intensity in a line profile. In fact, the line profiles computed from S;** and
from S;(x) are virtually identical; hence we conclude that for Case I the
scattering process is, for all practical purposes, adequately described by the
simpler assumption of complete redistribution. A similar conclusion, is
reached (212) for the case of complete redistribution in the atom’s frame—i.e.,
RV, v) = Ry(v, v). Here the iterated source function, equation (13-94), was
evaluated in an isothermal semi-infinite atmosphere, for lines witha = 1077,
and ¢ = 107° and 6 x 1073 Again it is found that S{(x) departs from
S, “® only for ¢, < 1, and that emergent line profiles computed from S, are
almost identical to those computed from the [requency-dependent function.
Thus the assumption of complete redistribution provides a very useful and
accurate approximation for Case 111 as well.

The situation for Case 11 (coherent scattering in a broadened profile in
the atom’s frame with Doppler redistribution in the laboratory frame) is
quite different. Results from an isothermal atmosphere of total thickness
T = 10, for a line with ¢ = 10" * and ¢ = 10~ %, given in (316), are shown
in Figure 13-7. Here we see that at line center, S,(v) is near §,* for shallow
optical depths, but rises above S,°* at great depth, and thermalizes to the
Planck function sooner than the complete-redistribution source function.
This result is obtained because the coherent nature of the scattering process
in the line-wings inkhibits photon escape from the line-core, and forces more
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FIGURE 13-6

Source functions in an isothermal, semi-infinite atmosphere for a line with ¢ = 1074,
assuming pure Doppler redistribution (case I). The vertical arrows show the [requency
at which the monochromatic optical depth t, = 1. Dashed curves: frequency-
independent 5;° obtained assuming complete redistribution. Sefid curves:
frequency-dependent S5,(x) obtained using correct redistribution function.  Abscissa:
displacement from line center in Doppler units.  From (316), by permission.

Source functions in an isothermal atmosphere of total thickness T = 10°, for 2
line withe = 10" *and 4 = 1077, assumning coherent scattering in a radiation-
damping profile in the atom’s frame, and Doppler redistribution in the laboratory
frame. Dashed curses: frequency independent §;°* obtained assuming complete
redistribution.  Solid curves: frequency-dependent Sy(x) obtained using correct
redistribution function.  4bscissa: frequency displacement from line-center in
Doppler vnits.  From {316), by permission.
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rapid thermalization in the core by reducing the net escape probabiiity for
such photons. In contrast, in the line-wings, the frequency-dependent source
function lies substantially below S,%, because photons are no longer being
fed into the wings from the core as efficiently. These effects are even more
pronounced for finite atmospheres where S;°* may exceed S,(x) by orders of
magnitude in the line wing! The emergent line profiles faithfully reflect the
discrepancies between S,(x) and S,%%. Profiles for the correct source function
have intensities that lie well below those for complete redistribution in the
wings, and that nearly agree with the intensities predicted by coherent
scattering. Although these effects will be diminished when there is an over-
lving continuum, we may, nevertheless, expect partial redistribution effects
to be important for resonance lines formed in the outer layers of stars where
densities, and thus collision rates, are low.

APPLICATION TO SOLAR AND STELLAR RESONANCE LINES

The resonance lines of many ions [e.g., those of hydrogen (particularly
La), Ca™, and Mg ] are formed in chromospheric layers of low density,
and hence are rather well characterized by the redistribution function of
gquation (13-73) with y almost unity. Several calculations have now been
made for solar lines, using the HSRA (249) or related models, and for solar-
type giants (where densities are even lower than in the sun) using realistic
mode] atmospheres.

One of the first examples of the Importance of partial redistribution
effects in resonance-line formation arose from attempts to fit the observed
solar chromospheric La profile (645). It was found that when the line profile
was computed under the assumption of complete redistribution, using models
that provided accurate fits to the continuum data formed in the same
atmospheric layers as the Lo line-wing, the intensity in the calculated profile
wing was much larger (by a factor of 5 to 6) than observed. From the first
study (645) it emerged that a much better fit to the profile is obtained if the
scattering is assumed to be about 93 percent coherent, and only 7 percent
completely redistributed. Subsequent work showed (456) that this param-
eterization is equivalent to using equation (13-73) with realistic values of
y (determined from the known collisional and radiative rates), and finally,
that when the full depth-dependence of the profile and redistribution fune-
tions, atomic rates, level populations, and background opacity are taken
into consideration, an excellent fit to the observations is achieved (457).

An even more interesting example is provided by the solar Ca IT H- and
K-lines, for which the earlier work (e.g., 401) assuming complete redistribu-
tion gives a good fit to the disk-center profiles, but fails to fit the observed
center-to-limb variation. Calculations using a five-level atom similar to that
shown in Figure 12-1 were made (570) [see also (642}] for three model
atmospheres: (1} the HSRA with a depth-independent microturbulence of
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4.5 km s™'; (2) the HSRA with the microturbulent velocity distribution
given by {401); and (3) the same as model 1, but with the temperature
structure modified to be T3 = max ( Ty, 4450°K), which raises the tem-
perature minimum by about 300°K. In all cases the full depth-variations of
the line profile (allowing for radiation, van der Waals, and Stark broadening),
the redistribution function, and background sources were taken into account,

The results from complete redistribution (CR) and partial redistribution
{PR) computations of the double-reversal near line center (which provides
vital information for diagnostics of the temperature-minimum region and
the chromosphere) are strikingly different. As may be seen in Figure 13-8,
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FIGURE 13-8
Ca I1 K-line profiles computed using the HSRA (249) model solar
atmosphere with the distribution of microturbulent velocitics
given in (401).  Ordinate: specific intensity I(p, A} in absolute
units; abscissa: displacement Aj from line-center in A, {a)
Partial redistribution results; (b) complete redistribution results.
Curves are labeled with g, the cosine of the angle from disk
center.  From (570), by permission.
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the PR profiles show uniform limb-darkening throughout the entire profile.
In contrast, the CR results show limb-brightening at K, (the emission
maximum} and no center-to-limb variation at K, (the minimum outside K 2);
both of these results are contrary to observation. Furthermore, the wave-
length position of the K; minimum shows a rapid center-to-limb increase
for CR (again contrary to observation), while for PR the increase is much
slower. The problem of limb-brightening of K, when CR is assumed can be
overcome if a very special distribution of microturbulent velocities (27) is
employed. However, neither of the problems just described for K, is elimi-
nated in this way; moreover, the need for this speciat assumption is cbviated
when PR is employed.

The quantitative improvement in the comparison with the observed
behavior of the K, feature is shown in Figure 13-9. There we see that CR
produces much too rapid a rise in AL(K,) as u — 0, while both models 1 and
3 yield an excellent fit to the data. Model 2 does not do as well, though it
provides a better fit to certain data for K, (not discussed here). In part (b) of
the figure we see that CR fails badly to fit the limb-darkening of K 1 Intensity,
while PR (with any of the three models) yields the correct center-to-limb
variation {notice the logarithmic scale). Note that the absolute intensity of the
K feature is reduced by PR, relative to CR, for a given model (compare the
open and filled circles at u = 1). This results from the essentially coherent
nature of the scattering process in the K, feature, and is consistent with the
results for Ry redistribution in the idealized models discussed above. One
way to obtain a fit to the absolute intensity is to raise the temperature
minimum by 300°K to 400°K over the HSRA value, as was done for model 3.
While this change seemingly is small, it should be recalled that a change of

about 100°K near T, changes the energy content of that region by an -

amount comparable to the energy content of the entire corona (cf. §7-7). One
hesitates to conclude on the basis of one line that 7., must be higher than
the HSRA model value; however, similar results are also obtained from an
analysis of the Mg II i and k-lines (59), and it may, in fact, be necessary to
raise the empirical value of T, to about 4400°K. Such an adjustment would
bring the semiempirical result into harmony with the estimates of T from
radiative cquilibrium models, and would eliminate the difficulty described
in §7-7. In any case it must be emphasized that the drop in intensity of PR
relative to CR is a differential effect for a given model, and therefore will occur
no matter what model is used. Thus if T, is estimated from a fit to the K :
intensity (as is sometimes done in stellar work), one must use a PR description
of the scattering process, especially for giants (571), or systematic errors will
be made. Finally, it is found that the PR calculation accurately reproduces
the relative behavior of the H- and K-lines while CR does not.

The marked differences in the CR and PR predictions of Iimb-darkening
and wavelength-position of K, can be easily understood in terms of the
differences in the depth-variation of the source function S,%, which is
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(a} Wavelength position of minimum intensity outside emission
core, K, as a function of y, cosine of angle from disk center.
(b) Limb-darkening at K ; note logarithmic units of intensity.
Open circles: complete redistribution results, model 2 {see text).
Fifled circles: partial redistribution, model 2. Open triangles:
partial redistribution, model 1 (see text). Crosses: partial
redistribution, model 3 (see text). From (570), by permission,

frequency-independent, and the frequency-dependent PR source functions
§,(v) shown in Figure 13-10. There we see that CR yields a unique source
function that has a single absolute minimum. As one observes from center to
limb, the slant-length optical depth at a particular frequency increases; if
S,% is used, this implies that the intensity at Alg (u = 1) must rise as p
decreases. The minimum S,°® will manifest itself only at some larger Al
where the material is more transparent and thus reflects the source function
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FIGURE 13-10
Depth-variation of K-line source function (for a five-level atom)
and Planck function in mode] 1.  Dashed curve: Planck
[unction B,. Dotted curve: complete-redistribution source-
function S; (see also Figure 12-2). The other curves show the
partial-redistribution source-functions at line-center (K ), the
emission peak (K,), and the profile minimum outside the peak
(K;). Abseissa: column density gm/em?.  From (570), by
permission,

deeper in, near the minimum. This explains both the rapid increase in
AZ(K) as a function of g, and the near-constancy of I, predicted by CR. In
contrast, the PR source function at line-center (K 3) lies above the CR value
{as a result of photon trapping as discussed previously). But at K, the source
functien has an essentially coherent-scattering character, is decd'upled from
other frequencies, and shows a monotonic decrease outward in the atmo-
sphere [similar results were obtained in (642)]. For this behavior of §,,
changing the point of observation from center to limb merely samples S,(K, )
higher in the atmosphere, where it has (for PR) a lower value, and hence
produces a decrease in [, as desired, at about the same A, In short, taking
partial redistribution into account yieids a substantial improvement in the
degree of agreement between theory and observation for the solar Ca II
H- and K-lines. Similar calculations, yielding similar results, have also been
made for the Mg IT # and k (3s—3p) lines for the solar atmosphere (458; 59)
and for solar-type stars (455). It now appears that it is mandatory to account
for partial redistribution effects in the interpretation of strong chromospheric
resonance lines with strong radiation-damping wings, and further efforts it
this direction will undoubtedly be amply rewarded.

14
Radiative Transfer in
Moving Atmospheres

The existence of macroscopic motions (i.e., nonthermal velocities that are
coherent over distances much larger than a particle mean-free-path) in
stellar atmospheres is well-documented by a wealth of observational evi-
dence. These motions appear to be present on all scales, from “eddies” whose
sizes are small compared to a photon mean-free-path, up to expansion of the
atmosphere as a whole. Although velocity fields have but little effect on
radiative transfer in the continuum, they strongly influence line-formation
because even a small (Doppler) frequency shift of a line produces a major
change in its absorptivity as seen by a stationary observer.

Tn the analysis of spectra of supergiants, Struve and Elvey (617) discovered
that the Doppler widihs inferred from the position of the flat part of the curve of
growth (cf. §810-3 and 10-4) were far in excess of the thermal value. They attri-
buted this broadening to nonthermal “turbulent” velocities, presumed to have
a Gaussian distribution. The geometric scale of these motions {(which are
called “microturbulence”) is supposed to be so small that they act as additional
line-broadening agents, and thus enhance the line-strength. The inferred ve-
locities often approach or exceed the speed of sound in the material, and it is
clear that astrophysical “microturbulent” velocities are not to be identified
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with turbulence in the strict fluid-dynamical sense, but rather with unresolved
motions.

The picture is clarified when we examine the solar spectrum. From curves of
growth, or from spectra of low spatial, spectral, and temporal resolution, one
again infers a significant microturbulent velocity. But high-resolution specira
have a characteristic “wiggly-line” appearance [see Figure I11-2 of (20) for
an excellent example ], showing distinct Doppler shifts and asymmetries that
fluctuate rapidly along the length of the slit, and in time. Probably a large
part, or even all, of the velocity field is composed of wave motions of various
types, scales, and periods, which {when superposed) give rise to a pattern
that appears chaotic and “turbulent”. However, the diagnostics are still in a
primitive state, and the precise nature of the velocity field is not at all well
known.

Evidence for velocity patterns on a large scale (“macroturbulence™ was
provided by Struve’s observation (616} that the widths of line profiles in
certain stars exceeded the Doppler widths obtained from the curve of growth
of their spectra; here the Jine strength is unchanged, and one envisions areas
on the stellar surface so large as to be practically independent “atmospheres”
moving systematicaily along the line of sight. A discussion of the observations,
with numerous references, can be found in (261, Chap. 8). Further, periodic
Doppler shifts of the lines in some stellar spectra reveal that they are from
pulsating stars. Beyond this, objects such as the WR stars, P-Cygni stars, and
early-type supergiants all show characteristic line profiles, with blue-shifted
absorption components and red-shifted emission compoenents, indicative of
large-scale expansion.

It is clear that a characterization of stellar velocity fields by the two
extremes of “micro”- and “macro”-turbulence is an oversimplification and,
in the end, we wish to know distribution functions describing the amplitudes
and scales of the velocity patterns. Further, one would like to relate observed
parameters to more fundamental quantities such as the velocities of convec-
tive motions. Finally, a truly consistent theory of stellar atmospheres will
require a dynamical theory of the interaction of material velocities, the
thermodynamic state of the matter, and the radiation field ; only then will we
be able fully to understand stellar chromospheres and coronae.

At the present time, however, we are far from having such a complete
theoretical structure. In this chapter we shall focus almost entirely on the
“kinematics” of radiative transfer in moving media; i.e., given the velocity
field and the model atmosphere, compute the emergent spectrum. A variety
oftechniques exist to attack the problem just posed. Observer’s-frame methods
can handle complicated velocity fields and multidimensional structures
{although we shall confine attention to one-dimensional problems only), but
are generally restricted to velocities of the order of a few Doppler widths, and
hence are not well suited to handle rapid atmospheric expansion. Sobolev’s
method, on the other hand, provides an approximate solution in the case of
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rapid flow with large velocity gradients. Comoving- frame methods span the
two extremes and provide general solutions applicable in both limits. Special
techniques have been developed to treat random or stochastic velocity fields.

14-1 = The Transfer Equation
in the Observer’s Frame

FORMULATION AND SOLUTION OF THE TRANSFER EQUATION

When the material in the atmosphere moves with velocity w{r) relative
to an external observer at rest, there is a Doppler shift of photon frequencies
between the observer’s frame, and the frame of the atoms of which the material
is composed. If the frequency in the observer’s frame is v, then in the atom’s
frame the frequency at which a photon traveling in direction n was emitted,

or can be absorbed, is
vV o= v — vn - vie) (14-1)

Thus, the opacity and emissivity of the material, as seen by a stationary
observer, become angle-dependent. The transfer equations for a time-
independent moving medium in planar geometry is then

u[ol(z, vz = n(z. pv) — xlz, w VM, 1, v) (14-2)

It is convenient to measure frequency displacements from line center in
units of a fiducial Doppler width Avf = vgul /e, where vf is a thermal
velocity parameter, and to measure velocities in the same units, V' = v/vf,.
Then the transformation between observer’s frame and atom’s frame fre-

quencies 18
X' =x—uV (14-3}

where x = (v — vo)/Avf, and x’ is defined similarly. The effects of Doppler
shifts are inconsequential for continuum terms, which do not vary much over
the frequency range implied by velocity shifts, so we account only for changes
in line terms and write

Uz 1, x) = 72) + pl2)e(z p x) (14-4)

and Az 1 %) = 12 + (D)l s ) (14-5)
where the normalized line-profile is defined by

Plz, 1 x) = @z x — pb) (14-6)

For example, for a Doppler profile,

oLz %) = 7 20 (D expl—[x — uM@]Y5%; (147



