where δ measures the local Doppler width in units of the fiducial value; i.e., $\delta(z) \equiv \Delta v_{\rm D}(z)/\Delta v_{\rm D}^*$. We now define line and continuum source functions $S_l(z) \equiv \eta_l(z)/\chi_l(z)$, and $S_c(z) \equiv \eta_c(z)/\chi_c(z)$; a total source function $$S(z, \mu, x) \equiv [\phi(z, \mu, x)S_{l}(z) + r(z)S_{c}(z)]/[\phi(z, \mu, x) + r(z)]$$ (14-8) where $r(z) \equiv \chi_c(z)/\chi_1(z)$; and an optical depth scale measure along a ray specified by μ , $\tau(z, \mu, x) = \mu^{-1} \int_{z}^{z_{\text{max}}} \chi(z, \mu, x) dz$ (14-9) where $z_{\rm max}$ denotes the upper surface of the atmosphere. Then the transfer equation becomes $$\left[\partial I(z,\mu,x)/\partial \tau(z,\mu,x)\right] = I(z,\mu,x) - S(z,\mu,x) \tag{14-10}$$ The formal solution of equation (14-10) can be written immediately as $$I(z_{\text{max}}, \mu, x) = I(0, \mu, x)e^{-\tau(0, \mu, x)} + \int_{0}^{\tau(0, \mu, x)} S(z, \mu, x)e^{-\tau(z, \mu, x)} d\tau(z, \mu, x)$$ $$= I(0, \mu, x)e^{-\tau(0, \mu, x)}$$ $$+ \int_{0}^{z_{\text{max}}} \mu^{-1} [\phi(z, \mu, x)S_{l}(z) + r(z)S_{c}(z)]e^{-\tau(z, \mu, x)}\chi_{l}(z) dz$$ $$(14-11)$$ from which we can compute the emergent intensity for given source functions. (For example in LTE, $S_c = S_l = B$; or we might use the values of S_l found for the line in a static atmosphere, an approximation that often is surprisingly accurate as we shall see below.) In equation (14-11) we have taken the atmosphere to be a finite slab with intensity incident at z = 0; for a semi-infinite atmosphere, we set $\tau(0, \mu, x) = \infty$ and omit the term in $I(0, \mu, x)$. The formal solution allows a direct evaluation of the effects of velocity fields on profiles by accounting for the velocity-induced shifts in the opacity and emissivity of the material. The line source function will, in general, contain a scattering term, and therefore depend on the radiation field; thus the source function can be strongly affected by material motions. For example, an expansion at the upper surface of an atmosphere can displace a line away from a dark absorption feature, at the rest position, into the bright nearby continuum, thus raising J (and S_l) dramatically. If we assume that photons scattered by the line are *completely redistributed*, then the source function for a two-level atom becomes $$S_{l}(z) = \frac{1}{2} (1 - \varepsilon) \int_{-\infty}^{\infty} dx \int_{-1}^{1} d\mu \ I(z, \mu, x) \phi(z, \mu, x) + \varepsilon B(z) \quad (14-12)$$ where ε is the usual thermalization parameter. Note that in the scattering integral we can no longer replace I with J because ϕ is angle-dependent; note also that the intensity can no longer be assumed to be symmetric around the line center, hence the full profile must be considered. The approximation of complete redistribution becomes questionable for moving media, as the conditions that help validate it in static media no longer occur; a good discussion of this point is contained in (273, 87) (this is a superb paper that is highly recommended to the reader). Recently some work has been devoted to the problem of partial redistribution in moving atmospheres; it has been shown that to treat the problem in the observer's frame, the full angle-frequency dependent redistribution function must be employed. In contrast, in a comoving-frame method (see §14-3), one can employ static redistribution functions in the fluid frame, and angle-averaging again yields accurate results. Accurate calculation of the scattering integral in equation (14-12) with a quadrature sum poses a fundamental difficulty in an observer-frame solution for two reasons. (1) The line-profile $\phi(x - \mu V)$ is clearly shifted by an amount 2V in frequency as μ varies from -1 to 1. Thus, in the frequency quadrature, an amount equal to twice the maximum macroscopic flow velocity must be added to the bandwidth required to describe the static line-profile. This requirement is not severe in studies of, say, wave motions in the solar atmosphere, but becomes prohibitive for atmospheres in supersonic expansion where $v/c \approx 0.01$, or $2(v_0v/c)/\Delta v_0^* \approx 200$. (2) The angle-quadrature scheme must employ a large number of angles. Because the argument of the profile function is $(x - \mu V)$, there is an inextricable coupling between the angular and frequency variations of the intensity. Thus if some maximum frequency increment $\Delta x_{\text{max}}(\approx \frac{1}{2})$ is required to obtain sufficient precision in the frequency quadrature, the maximum tolerable angle increment will be $\Delta \mu_{\text{max}} = \Delta x_{\text{max}}/V$, which is quite stringent! These difficulties are ameliorated by transforming to the comoving frame. Equation (14-10) may be cast into second-order form. If the line profile is symmetric about line center, then $\phi(-x + \mu V) = \phi(x - \mu V)$, which suggests that we group the two pencils $I(z, \mu, x)$ and $I(z, -\mu, -x)$ together, for $d\tau(z, \mu, x) = d\tau(z, -\mu, -x)$ and $S(z, \mu, x) = S(z, -\mu, -x)$. Thus, defining $$u(z, \mu, x) \equiv \frac{1}{2} [I(z, \mu, x) + I(z, -\mu, -x)]$$ (14-13) and $$v(z, \mu, x) \equiv \frac{1}{2} [I(z, \mu, x) - I(z, -\mu, -x)]$$ (14-14) we obtain $$\left[\partial^2 u(z, \mu, x)/\partial \tau(z, \mu, x)^2\right] = u(z, \mu, x) - S(z, \mu, x)$$ (14-15) At the upper boundary there is no incoming radiation, hence $$\left[\partial u(z, \mu, x)/\partial \tau(z, \mu, x)\right]_{z_{\text{max}}} = u(z_{\text{max}}, \mu, x)$$ (14-16) At the lower boundary we assume either that the incident radiation is specified, in which case $$[\partial u(z, \mu, x)/\partial \tau(z, \mu, x)]_{z=0} = I(0, \mu, x) - u(0, \mu, x)$$ (14-17) or that, in a semi-infinite atmosphere, the lower boundary is chosen to be so deep that the diffusion approximation is valid [which demands that the velocity gradient be small enough that $\chi^{-1}(dV/dz) \ll 1$; i.e., there is a negligible change in the velocity over a photon mean-free-path], in which case $$\frac{\partial u(z, \mu, x)}{\partial \tau(z, \mu, x)}\Big|_{z=0} = \left[\frac{\mu}{\chi(z, \mu, x)} \left(\frac{\partial B_{\nu}}{\partial T}\right) \left| \frac{dT}{dz} \right| \right]_{z=0}$$ (14-18) As in the static case, we introduce a discrete depth-mesh $\{z_d\}$, angle-mesh $\{\mu_m\}$, and frequency-mesh $\{x_n\}$, and combine angles and frequencies into a single quadrature set $\{\mu_l, x_l\} \equiv (\mu_m, x_n)$ where l = m + (n-1) M; the angle-points are distributed on the interval [0,1], while frequencies must now span a range $[x_{\min}, x_{\max}], x_{\min} < 0$ and $x_{\max} > 0$, large enough to contain both halves of the line profile and to allow for Doppler shifts $\pm 2V_{\max}$. We then replace equations (14-15) through (14-18) with difference equations and write $$S_{dt} = S(z_d, \mu_t, x_t) = \alpha_{dt} \, \overline{J}_d + \beta_{dt}$$ (14-19) where α and β are the appropriate combinations of r_d , ϕ_{dl} , and ε_d , and $$\overline{J}_d \equiv \sum_{l=1}^L w_l \phi_{dl} u_{dl} \tag{14-20}$$ where $\phi_{al} \equiv \phi(z_d; x_l - \mu_l V_d)$. The resulting system is then of the *standard Rybicki form* [see equation (6-47)] and is solved for **J** as described in §6-3. An analogous integral-equation solution can also be constructed (273, 120), but in application the differential-equation method is easier to use. The whole procedure is stable and general, and quite efficient, as the computing time $T_R = cL D^2 + c' D^3$ is only *linear* in L, the number of angles and frequencies. The depth-mesh must be chosen sufficiently fine to assure that only modest changes in $V(z_d)$, say $\lesssim \frac{1}{2}$, occur between successive depth-points; otherwise the profile function ϕ_{al} may change radically with depth and lead to inaccuracies in the optical depth increments. Except for supersonic winds, this is not a stringent requirement. Note also that the same methods can be used to construct the *formal solution*, when S is *given*, by solving a single tridiagonal system (at each angle-frequency point desired) of the form $T_l \mathbf{u}_l = \mathbf{S}_l$; here the computing time required is only $T_S = cL D$, which is minimal. ## LINE-FORMATION WITH SYSTEMATIC MACROSCOPIC VELOCITIES IN PLANAR ATMOSPHERES The effects of velocity fields on line-formation in planar atmospheres have been studied by a number of authors; we shall review some typical results here. Basic insight into effects of motions can be gained by using just the formal solution. Consider, for example, a semi-infinite atmosphere with a line formed in LTE, with r = constant, and $S_l = S_c = B_v = B_0(1 + a\tau_l)$, where τ_l denotes the static line optical depth. Choose a velocity field of the form $v(\tau_l) = v_0/[1 + (\tau_l/\tau_0)]$, taken to be positive toward the observer (i.e., toward increasing z). Then it is easy to calculate the emergent intensity $I(\mu, x)$ over the surface of the star, and to construct the flux F(x) by integrating over μ ; results for models with $a = 3 \times 10^{-2}$, $r = 10^{-2}$, $v_0 = (0, 1, 3, 5, 10)$, and $\tau_0 = (1, 10, 100)$ are displayed in Figure 14-1. There we see that the line flux profile shows an asymmetry toward the blue. Similar asymmetries result even if there is no velocity gradient and the atmosphere is assumed to expand with constant velocity, because of the way velocities and intensities are weighted in the flux integral (Cf. Exercises 14-1 and 14-2). Exercise 14-1: (a) For a linear limb-darkening law $\phi(\mu) = I(\mu)/I(1) = 1 + \beta\mu$, show that the function normalized to give unit flux is $\phi^*(\mu) = (1 + \beta\mu)/(\frac{1}{2} + \frac{1}{3}\beta)$. (b) Assume that a weak line is formed on the surface of an atmosphere expanding with velocity v_0 , and that the line depth, as a fraction of the continuum, does not vary with
μ . Derive an expression for the radial velocity measured from observations of the flux in a spectrogram. In particular, show that for the grey-body limb-darkening law, in the Eddington approximation, $v_{\rm obs} = (17/24)v_0$. What is the ratio of $v_{\rm obs}/v_0$ for $\beta=0$; for $\beta=\infty$? Exercise 14-2: Calculate the flux profile from a line, idealized as a delta-function of constant depth, on a stellar surface expanding with constant velocity v_0 ; i.e., take $I(\mu, x) = (1 + \beta \mu) [1 - a_0 \delta(x - \mu V_0)]/(\frac{1}{2} + \frac{1}{3}\beta)$. Derive an explicit expression for $F(x; a_0, \beta, V_0)$, and plot the profile in the limiting cases $\beta = 0, \beta = \infty$. (b) Extend the analysis to a line with a Gaussian profile, and compute numerically a typical flux profile. The formal solution can be used to evaluate proposed velocity-diagnostic techniques by computing profiles for given velocity fields, subjecting these profiles to the diagnostic analysis, and comparing the inferred with the originally-assumed fields. For example, the "bisector shift" technique has been examined (373) for a variety of cases. This method supposes that the displacement δx , from the static line-center, of the position of the point midway between two points of equal intensity in the line-profile, gives the Doppler shift caused by velocities in a layer at unit optical depth for a (static) line frequency Δx , where $2\Delta x$ is the full distance between the two points on the profile. It is found that the inferred velocities are in fair agreement with FIGURE 14-1 Flux profiles from an expanding atmosphere, for a line formed in LTE, with $B_v(\tau_t) = B_0(1 + a\tau_t)$ and $v(\tau_t) = v_0/[1 + (\tau_t/\tau_0)]$. Ordinate: flux in units of continuum; Abscissa: frequency displacement from line center in Doppler units. Parameters are $B_0 = 1$, $a = 3 \times 10^{-2}$, $r = 10^{-2}$, for all curves. Each curve is labeled with v_0 . Panels (a), (b), and (c) have $\tau_0 = 1$, 10, 100, respectively. the input velocities for measurements in the line-core, but that spurious velocities at great depths are inferred from the wings. It is easy to see why this is so. Suppose that the atmosphere moves with velocity v_0 on the range $0 \leqslant \tau_l \leqslant \tau_1$, and is at rest for $\tau_l > \tau_1$. It is clear that the shift of the line in the upper layer forces the line-wings to be asymmetric, because opacity from the upper layer intrudes into the wing and absorbs radiation from below. By assuming that radiation at frequency displacement Δx from line-center arises from depths $\tau_l \sim 1/\phi(\Delta x)$, velocities will automatically be ascribed to these depths even if $\tau_l > \tau_1$. This example shows that care must be taken in inferring velocity fields! A further example of such problems is shown in (321) where a calculation is made [using the *Riccati* method (544)] of the non-LTE source function of a line with $\varepsilon=10^{-3}$ and r=0, in a differentially expanding finite slab of total (static) optical depth $\tau_{\rm max}=50$. The expansion is taken to be symmetric about the midpoint of the slab (assumed to be *at rest*) with a linear velocity law of the form $V(\tau)=V_0+V_1\tau_t$; the medium is effectively thin, and simulates an expanding nebula. Line profiles are shown in Figure 14-2. There we see that the usual central reversal arising in the material nearest the observer is blue-shifted, and thus obliterates the blue emission peak, while the red peak is enhanced because photons more easily emerge from below; the line as a whole *appears red-shifted* even though the average velocity of the material is *zero*! One cannot, therefore, immediately conclude that a small observed red shift implies a receding emitter. To evaluate the effect of velocity fields on the source function one must solve the transfer equation self-consistently. Some of the early work on this FIGURE 14-2 Normally-emergent intensity from differentially expanding slab with total (static) thickness $\tau_{\rm max}=50$, for a line with $\varepsilon=10^{-3}$ and r=0. Abscissa: $x\equiv\Delta\nu/\Delta\nu_{\rm D}$. Curves are labeled with v_0 , velocity of expansion at surface; velocity law is linear in τ and gives zero velocity at slab center. From (23, 215). problem (370; 371) treated the case of an isothermal atmosphere with a velocity jump Δ at a depth τ_1 , with constant velocities above and below. The transfer equation was solved in the Eddington approximation, for a twolevel atom, using a discrete-ordinate method. When $\Delta=0$, the static solution for the appropriate values of ε and r is obtained. As Δ becomes greater than about 4, the lines (which have Doppler profiles) in the upper and lower regions are strongly shifted with respect to one another and no longer interact. The atmosphere then acts as if it consists of two independent parts: (a) a finite upper layer of optical thickness τ_1 , and (b) an underlying semi-infinite atmosphere in which $\tau = 0$ at the depth, τ_1 , of the velocity jump. In this limit, the source functions in the two layers both achieve their respective static limits. Thus for $\Delta = 0$ and $\Delta \to \infty$, one recovers profiles identical to those computed from static source functions, the major effect just being the Doppler shift of the line-center in the formal solution. This result is strengthened when there is an appreciable background continuum [see also (372)]. For Δ on the range of 2 to 3, the two layers interact strongly and a full solution must be found. A more realistic problem (273, 120) is presented by an atmosphere with a "chromospheric" Planck-function rise at the surface (see Figure 14-3a) and with velocity laws of the form $V(\tau_l) = 10/[1 + (\tau_l/\tau_0)]$, where τ_l is the static optical depth in the line. The resulting source functions for a line with $r = 10^{-4}$ and $\varepsilon = 10^{-2}$ and various values of τ_0 are shown in Figure 14-3a, while emergent intensity profiles are shown in Figure 14-3b, and flux profiles in Figure 14-3c. The striking result seen in Figure 14-3a is that the line source function is only weakly affected by the velocity field, even though the profiles show drastic changes. The basic reason for this result is that photon-escape through the outer layers is increased in the red wing, but decreased in the violet wing—and, to a large measure, these effects nearly cancel [see also (18, 53)]. On the whole, the photon-escape probability is slightly enhanced by the atmospheric expansion, which explains why S_i tends to lie below its static value for $1 \lesssim \tau_l \lesssim 10^2$. In the case $\tau_0 = 10$, the value of S_l increases for $\tau_{l} \lesssim 10$ because the line intercepts underlying continuum radiation while it is optically fairly thin, which leads to an increase in \overline{J} ; for larger values of τ_0 , the line becomes optically thick above the velocity rise, and the effect vanishes. When $\tau_0 \gtrsim 10^3$, the point of the velocity rise already lies below the thermalization depth of the line; line-formation in the upper (effectively thick) layer then proceeds as if the atmosphere were static, and the static value of S_t is recovered very closely. The flux profiles for $\tau_0 = 10^2$ to 10^3 show "P-Cygni" features with red emission components and violet-shifted absorption. Here the emission, however, arises from the assumed temperature rise, and not from the geometrical effects that occur in extended atmospheres. To a high degree of approximation, one would find the same profiles from a velocity-dependent formal solution using static source functions. FIGURE 14-3 (a) Planck function and source function in an expanding atmosphere, for a line with $\varepsilon = 10^{-2}$ and $r = 10^{-4}$. Abscissa: static line optical depth. (b) Normally-emergent intensity. Abscissa: $x \equiv \Delta v/\Delta v_D$. (c) Flux profiles. Curves are labeled with value of τ_0 in velocity law $v(\tau) = 10/[1 + (\tau_1/\tau_0)]$. From (273, 120). The results described above apply to expansion, where an increased escape probability in one wing can be compensated by a decrease in the other. In fluctuating velocity fields, however, the coherence of shifts from one point in the atmosphere to another is lost, and effects similar to a marked depth-variation of the line profile are produced. The effects of fluctuating mesoscale velocity fields on line-formation have been studied (568) for sinusoidal waves with $V(\tau, t) = \beta \sin[2\pi(\lambda^{-1}\log_{10}\tau + t)]$, and for "sawtooth" waves; the latter simulate steepened shock-like structures. Using the Rybickitype method described earlier, the transfer equation was solved at times spaced equally over a period, and time-averaged profiles were found for various values of β and λ . The limit $\lambda \to 0$ corresponds to a "microturbulent" regime, while $\lambda \to \infty$ yields a "macroturbulent" limit. For a given source function (e.g., $S_1 \equiv B_v$), the line profiles for finite λ invariably lie between those given by the two extremes $\lambda = 0$ and $\lambda = \infty$. The lines computed with a given β and $\lambda = 0$ are always stronger than those for $\lambda = \infty$, as expected. When non-LTE cases are considered, the source functions are modified by the velocity field; characteristically, S_t shows ripples as a function of τ , and the departure of the results for finite λ from the microscopic limit ($\lambda = 0$) are larger at smaller values of ε . The primary result found for non-LTE isothermal atmospheres is a significant rise in the core intensity of the timeaveraged profile for finite λ ; the profile lies between the limiting ($\lambda = 0$,
$\lambda = \infty$) profiles only in the wings, and is much brighter than both in the core (by a factor of 2.5 for $\beta = 2.5$ and $\lambda = 4$). The same behavior of the line core is also found in computations using the HSRA, and substantial changes in the source function occur. In particular, even though a collisiondominated source function is used, S, rises above B, (as it can for photoionization-dominated lines), because velocity shifts allow the line to intercept bright continuum radiation. The brightening of the line core appears to improve greatly the agreement between the observed and computed solar Na I D-lines at disk center, without recourse to unusually high densities as hitherto required; this result may also offer an explanation for similar discrepancies observed in the solar Ca I and Fe I lines. Further work in this area will be quite rewarding. The results discussed above take no account of possible effects of the velocity field on the state of the gas. Recently a study has been made (291) of effects of acoustic pulses on formation of the solar Ca II lines, allowing for the temperature and density changes the pulses produce in the gas. These computations show that, if changes in the physical variables are *ignored*, the velocity field *alone* produces little change in the source function, and the correct profile is predicted using the static source function in a velocity-dependent formal solution; a similar conclusion was reached in (185). In contrast, the changes in T and N produced by the pulses have major effects on S_t and hence on the profiles. In particular, both T and n_e increase together, and increase the local coupling of S_l to B_v ; this, in turn, leads to substantial increases first in the violet, and then the red, emission peaks of the doubly-reversed profile. These results again point to the need for a *dynamical* theory for the velocity fields. #### SPHERICAL ATMOSPHERES: LOW-VELOCITY REGIME Observer's frame calculations in the low-velocity regime have been carried out for radially expanding spherical atmospheres (375). Such an approach can be useful in studying line formation in the deeper layers of expanding atmospheres, but for the large-velocity regime a comoving-frame formulation is preferable. The method is similar to that described in §7-6 for static atmospheres, and carries out a ray-by-ray solution in the same (p, z) coordinate system. The transfer equation along the ray is $$\pm \left[\partial I^{\pm}(z, p, x) / \partial z \right] = \eta(z, p, x) - \chi(z, p, x) I^{\pm}(z, p, x) \quad (14-21)$$ where $\chi(z, p, x) \equiv \chi_c(r) + \chi_l(r)\phi(z, p, x)$, and a similar expression defines $\eta(z, p, x)$; we use the relations $r(z, p) = (z^2 + p^2)^{\frac{1}{2}}$ and $\mu(z, p) = z/(z^2 + p^2)^{\frac{1}{2}}$. The profile is defined as $\phi(z, p, x) \equiv \phi[r(z, p); x - \mu(z, p)V(r)]$. The velocity V(r) is positive in the direction of increasing r. Introducing the optical depth along the ray $$\tau(z, p, x) \equiv \int_{z}^{z_{\text{max}}} \chi(z', p, x) dz'$$ (14-22) and defining $$u(z, p, x) \equiv \frac{1}{2} \left[I^{+}(z, p, x) + I^{-}(z, p, -x) \right]$$ (14-23) and $$v(z, p, x) \equiv \frac{1}{2} \left[I^{+}(z, p, x) - I^{-}(z, p, -x) \right]$$ (14-24) we may rewrite equation (14.21) in second-order form: $$\left[\partial^2 u(z, p, x) / \partial \tau(z, p, x)^2 \right] = u(z, p, x) - S(z, p, x)$$ (14-25) where $S(z, p, x) \equiv \eta(z, p, x)/\chi(z, p, x)$ has the general form $S(z, p, x) = \alpha(z, p, x)\overline{J}[r(z, p)] + \beta(z, p, x)$. Here α and β contain combinations of the line parameters ε and $r_0 \equiv \chi_c/\chi_l$, and the profile function $\phi(z, p, x)$, while $$\overline{J}(r) = \int_{-x_{\text{max}}}^{x_{\text{max}}} dx \int_{0}^{1} d\mu \ \phi[r; x - \mu V(r)] u[z(r, \mu), p(r, \mu), x]$$ (14-26) In formulating the boundary conditions a difficulty arises. On the axis z=0 we can no longer write v(0, p, x)=0 because *two* frequencies $(\pm x)$ of radiation are involved. We may circumvent this problem by following the ray for its *entire* length—i.e., we consider the whole interval $[-z_{\text{max}}, z_{\text{max}}]$. The lower and upper boundary conditions for rays that do not intersect the core then become $\left[\partial u(z, p, x)/\partial \tau(z, p, x)\right]_{z = \pm z_{\text{max}}} = \pm u(z, p, x)|_{z = \pm z_{\text{max}}}$ (14-27) For rays that intersect the core, $p \le r_c$, we either (a) apply a diffusion approximation at an opaque core (stellar surface), which yields $v(z_{\min}, p, x)$ directly, or (b) for a hollow core (nebular case), apply equation (14-25) at z_{\min} (forcing the points at $\pm z_{\min}$ to be identical), and equation (14-27) at the ends of the ray. To solve the system we introduce the same discrete meshes $\{r_d\}$ and $\{p_i\}$ used in §7-6 to solve the static problem. The frequency mesh now includes the whole profile $\{x_n\}$, $n=\pm 1,\ldots,\pm N$, with $x_{-n}=-x_n$; we shall, however, be able to eliminate half of these (see below). We again obtain equations of the form of (6-27) and (6-48), and hence can apply the Rybicki method to obtain \overline{J} . Because $\overline{J}(r_d)$ need be defined only for $\{r_d\}$, $1 \leq d \leq D$, while $u_{din}=u(z_d,p_i,x_n)$ is defined on a mesh $\{z_{di}\}$, $d_i=1,\ldots,D_i$, which runs the whole length of the ray, it now turns out that, while the tridiagonal T-matrix is square, the U-matrix is rectangular, and is a chevron matrix. Solution of these systems for each choice of (i,n) yields an expression of the form $$\mathbf{u}_{in} = \mathbf{A}_{in}\mathbf{J} + \mathbf{B}_{in} \tag{14-28}$$ Equation (14-26) defining $\overline{\mathbf{J}}$ can be written in the discrete form $$\overline{J}(r_d) = \sum_{n=-N}^{N} w_n \sum_{i=1}^{I_d} a_{di} \phi[r_d; x_n - \mu(r_d, p_i) V(r_d)] u_{din}$$ (14-29) But, from the spherical symmetry of the problem, $I^{\pm}(z, p, x) \equiv I^{\mp}(-z, p, x)$, and thus $u(z, p, -x) \equiv u(-z, p, x)$, and $v(z, p, -x) \equiv -v(-z, p, x)$; these relations allow elimination of the values of u at negative x and positive z, in equation (14-29), in terms of u at positive x and negative z. Thus $$\overline{J} = \sum_{n=1}^{N} w_n \sum_{i=1}^{I_d} a_{di} \{ \phi[r_d; x_n - \mu_{di} V_d] u_{din} + \phi[r_d; x_n + \mu_{di} V_d] u_{d'in} \}$$ (14-30) where $d' = D_i + 1 - d$. Equation (14-30), when used in the Rybicki method, yields V-matrices that are rectangular chevron matrices. Using equations (14-28) for all values of i and n in equation (14-30), we obtain a final system for J, which is then solved. The computing time required for the solution scales as $T_R \approx cN \ D^3 + c' \ D^3$; this is less favorable than the result for the planar case, because now there are about as many angles (i.e., impact parameters) as there are depths. The method is stable and easy to use for small velocities (i.e., a few times thermal). For larger velocities, the number of depth-points required to resolve the velocity field becomes large, and the computing time is prohibitive; in this case one may use a comoving-frame method. An advantage of the observer-frame method is that it can be used for *arbitrary* variations in the velocity field (e.g., nonmonotone flows), which is *not* true for comoving-frame methods, as currently formulated. Exercise 14-3: (a) Verify the symmetry relations quoted above for I^{\pm} , u, and v, and the reduction of (14-29) to (14-30). (b) Sketch the form of the rectangular chevron matrices U_{in} and V_{in} in the Rybicki scheme, and show that the dimensions of the matrices mesh in the correct way to allow a solution. The method described above has been applied (375) to highly idealized spherical atmospheres with power-law opacities and linear velocity laws of the form $V(r) = V(R)(r - r_c)/(R - r_c)$. Calculations were made in extended isothermal models with $R/r_c = 30$, for a line with $\varepsilon = 10^{-2}$ and 10^{-4} and zero background continuum, with V(R) = 0, 1, and 2. The results include the following. (a) The source function is more strongly affected by extension than by small velocity fields; to a first approximation, one may use the static spherical source-function in a velocity-dependent profile computation. (b) The effects of extension and velocities are more significant for smaller values of ε . (c) The dominant effect of the velocity field is to reduce photon trapping, and hence to increase the photon escape probability. (d) The line profiles become skewed to the red as the central absorption feature obliterates the violet emission peak [true also in planar geometry, cf. Figure (14-2). In a second sequence of models, the maximum velocity was held fixed, V(R) = 2, and R/r_c was chosen to be 3, 10, and 30; $B = r^{-2}$, $\varepsilon = 10^{-4}$, $\chi_c/\chi_t = 10^{-4}$, and $\chi_t = Cr^{-2}$. The effects of velocities on the source function are small compared to the changes produced by spherical geometry, and the relative departure from static results increases as R decreases, probably because the velocity gradient increases. The emergent profiles all show a strong P-Cygni character. A final calculation worthy of mention is a case in which the velocity is constant throughout the atmosphere; i.e., $V(r) \equiv V_0$. For a planar medium the source function would, of course, be unchanged (though the flux profile computed by averaging over the surface of a star changes; recall Exercise 14-1). For a spherical medium however, the radii diverge from the center, leading to a transverse velocity gradient that decreases photon trapping; as a result, the escape probability increases, and the source function decreases. Even a modest constant velocity of expansion has quite dramatic effects on emergent flux profiles. #### EFFECTS OF LINES ON ENERGY BALANCE IN MOVING MEDIA The energy balance in the outer layers of
an atmosphere can be dominated by spectral-line contributions. Hence Doppler shifts, which may move a line away from its rest position and allow it to interact with the continuum (in which the intensity can be markedly different), can significantly alter the temperature distribution. Qualitatively, we can expect three effects to be present, over and above the usual boundary-temperature change and backwarming that occur in static media. (1) Lines Doppler-shifted away from their rest frequencies can intercept continuum photons from deeper layers: we may call this the *irradiation effect*. The absorbed continuum flux provides additional energy input to the gas and, because the color temperature of the flux exceeds the ambient temperature locally, irradiation will lead to a net heating of the outer layer. The effectiveness of the input is determined by the strength of the coupling of the lines to the thermal pool; thus heating will be greatest when $\varepsilon = 1$, and should be negligible for $\varepsilon \to 0$. (2) As the lines shift away from their rest positions, photons that would have been trapped in the deeper layers by overlying line absorption now encounter only continuum opacity, and hence may diffuse freely to the surface and escape; we may refer to this effect as escape-enhancement. In general, an increase in photon escapes will lead to a *cooling* of deeper layers. (3) A velocity gradient in the atmosphere smears the lines over a larger bandwidth, thus impeding the free flow of photons; we may call this the bandwidth-constriction effect. At depth in the atmosphere, where the diffusion approximation is valid, a velocity gradient causes little, if any, change in the temperature structure when the scale of the velocity variation is large compared to a photon mean-free-path. But if a velocity shift of the order of a Doppler width occurs in a mean-free-path, then bandwidth constriction leads to a decrease in the effective radiation-diffusion coefficient, and hence to increased backwarming. In the extreme limit of an abrupt velocity step near the surface, photons emerging from lower layers in formerly-open continuum bands encounter opaque material, and have their escape impeded; this might more appropriately be termed a "backscattering" or "reflector" effect. Studies of the influence of line-shifts on energy balance have been made for highly schematic picket-fence models, in planar geometry with an abrupt velocity jump (428), and in spherical expanding atmospheres (445). The velocity-step can be regarded as a caricature of a shock front. The escape-enhancement and irradiation effects show very clearly for the velocity-jump, where the layers above the jump heat markedly (one case gives $\Delta T \sim 1100^\circ {\rm K}$ for $T_{\rm eff}=10{,}000^\circ {\rm K}$), and a cooling of a few hundred degrees occurs immediately below. For the expanding spherical atmospheres one obtains large irradiation-effect rises at the surface, and substantial backwarming below. The irradiation-effect temperature rise is larger for extended models than for nearly-planar models; this is because the discrepancy between the color temperature of the flux, and the ambient temperature characteristic of the local energy density, becomes larger as atmospheric size increases. For one extreme case, the velocity field produces a change $\Delta B/B \approx 3$, which implies $\Delta T/T \approx 0.33$, or $\Delta T \sim 10,000^\circ {\rm K}$ for an O-star. Even though the models upon which the results quoted above are based are very schematic, it is clear that velocity-field effects on line-absorption can lead to very substantial changes in the energy balance of the outer layers of stellar atmospheres. These changes could, in principle, influence the hydrodynamics of the flow. Thus, in a pulsating atmosphere, energy deposition in the lines produces a kind of radiative precursor that could affect shock propagation; for expanding atmospheres, significant energy deposition could occur in the transsonic flow region, which might alter the nature of the stellar wind. It is also possible that velocity-dependent line-absorption contributions to energy balance could affect the flow-dynamics of novae, supernovae, and mass-exchange in binaries. Much further work remains to be done on this subject. #### LINE-FORMATION IN TURBULENT ATMOSPHERES As mentioned earlier, the dichotomy of velocity-field effects on spectrum line-formation into the "microturbulent" and "macroturbulent" limits is obviously oversimplified. In these two extreme limits, the effects of the velocity field upon line strengths and profiles may be predicted from simple phenomenological arguments. To study the influence of velocity fields that have a scale which is neither zero, nor infinite, with respect to a photon mean-freepath, a detailed computation must be made. One could, in principle, specify a particular run of the velocity, solve the equation of transfer, and average over as many realizations of the velocity field as are necessary to embrace the possible ranges of its inherent degrees of freedom. Such an approach, however, would be costly, and would not yield direct insight into the problem. An attractive alternative (motivated by the expectation that in stellar atmospheres the velocity field is *chaotic*, and possibly even *turbulent* in the hydrodynamic sense) is to assume that the velocity is a random variable, described locally by a probability distribution for the amplitude, and nonlocally by a characteristic correlation length. Considerable progress in solving the transfer equation in turbulent media has recently been made with two distinct approaches. One formulation, developed by the Heidelberg group (70, 325; 234; 235; 236; 557), employs the *joint probability* P(z; v, I) that, at point z, the velocity lies in the range (v, v + dv), and the intensity in the range (I, I + dI), for Markov-process variations of v and I. P, or some other suitable distribution function derived from P, is found by solving a Fokker-Planck equation. This method is powerful and general, and allows the treatment of velocity fields that are continuous functions of depth. However, the resulting partial differential equations are difficult to solve, and a succinct description of the method would presume considerable familiarity of the reader with the mathematical methods for treating Markov processes. A rather different formulation has been developed by the Nice group (49; 226; 227). The flow is conceived as consisting of turbulent eddies or cells. The velocity is taken to be uniform within each cell, and to jump discontinuously at sharp boundaries that separate the cell from neighboring cells with uncorrelated velocities; this description is called a Kubo-Anderson process. Although the discontinuity of the velocity structure is unphysical and introduces some artifical high-order correlations in the field (49; 70, 325), this approach nevertheless has the advantages of yielding exact analytical results in certain limits, and of expository simplicity. We shall therefore describe the Nice method here, but quote results from both bodies of work. We assume that the cell boundaries, at which the velocity changes, are located at random continuum optical depths $\{\tau_n\}$, distributed according to a Poisson law characterized by an eddy density $n(\tau)$, which gives the reciprocal of the correlation length l (in continuum optical depth units) of the velocity field. The probability that no jump has occurred on the interval (τ', τ) is given by $\exp[-\int_{\tau'}^{\tau} n(\tau'') d\tau'']$. Let $v_h(\tau)$ denote the hydrodynamic velocity of the cell at τ ; these velocities are independently distributed according to a probability distribution function $P(v_h)$, which we shall take to be Gaussian. Let $v_{th}(\tau)$ denote the thermal velocity of the line-forming atoms at τ , and measure all velocities in thermal units, $u_h(\tau) \equiv v_h(\tau)/v_{th}(\tau)$, and frequencies from line center in units of the corresponding Doppler widths, $x \equiv \Delta v/\Delta v_D(\tau)$. Characterize the turbulent field by a dispersion ξ (in thermal units); then $$P(u_{\rm h}) = \exp(-u_{\rm h}^2/\xi^2)/(\pi^{\frac{1}{2}}\xi) \tag{14-31}$$ The transfer equation to be solved in $$\mu[\partial I(z,\mu,x)/\partial z] = -(\chi_c + \chi_l \phi_x)I(z,\mu,x) + \chi_c S_c + \chi_l S_l \quad (14-32)$$ where $\phi_x(\tau) \equiv \phi[x - \mu u_h(\tau)]$. Equation (14-32) is a stochastic equation—i.e., the coefficients in the equation are random variables. We now assume that the turbulent velocity field influences only the line absorption coefficient via Doppler shifts; fluctuations in the continuous opacity, source functions, and occupation numbers are expected to be of secondary importance, and are ignored here. We adopt LTE and ignore scattering, so that $S_t = S_c = B_v(\tau)$, and employ a Voigt line-profile so that $$[\chi_l(\tau)\phi_x(\tau)]/\chi_c(\tau) = \beta(\tau)H[a(\tau), x - \mu u_h(\tau)]$$ (14-33) where $$\beta(\tau) \equiv (\pi^{\frac{1}{2}}e^2/mc)[f_{ij}n_i(\tau)(1-e^{-h\nu/kT})]/[\chi_c(\tau)\Delta\nu_D(\tau)] \qquad (14-34)$$ and $$a(\tau) \equiv \Gamma/4\pi \, \Delta v_{\rm D}(\tau)$$ (14-35) Here Γ is the damping width, and n_i denotes the occupation number of the lower level of the transition. We may obtain an analytical solution of the problem if we introduce the following additional assumptions: (1) set $B_{\nu}(\tau) = B_0(1 + \alpha \tau)$; (2) use a Milne–Eddington model—i.e., $\beta = \text{constant}$, $\alpha = \text{constant}$, $\Delta \nu_D = \text{constant}$; (3) adopt a constant eddy density $n(\tau) \equiv n$. All of these assumptions may be relaxed if the problem is solved numerically (49; 226). To simplify the treatment still further, we consider the intensity emergent at disk-center, and set $\mu \equiv 1$. The transfer equation thus
becomes $$\left[\frac{\partial I(\tau, x)}{\partial \tau} \right] = \left[1 + \beta H_x(\tau) \right] \left[I(\tau, x) - B_0(1 + \alpha \tau) \right] \tag{14-36}$$ where $H_x(\tau)$ denotes $H[a, x - u_h(\tau)]$ and is constant between successive jump-points. If we define $$q_{x}(\tau) \equiv \exp\left\{-\int_{0}^{\tau} \left[1 + \beta H(\tau')\right] d\tau'\right\}$$ (14-37) then the emergent intensities in the continuum and the line are $$I_c = \int_0^\infty B_0(1 + \alpha \tau) e^{-\tau} d\tau$$ (14-38) and $$I(0, x) = \int_0^\infty B_0(1 + \alpha \tau) q_x(\tau) [1 + \beta H_x(\tau)] d\tau$$ (14-39) It is easy to show that $I_c = B_0(1 + \alpha)$, and that the intensity in a line of infinite strength $(\beta \to \infty)$ is B_0 ; the absorption depth of such a line will be $A_0 = \alpha/(1 + \alpha)$. Then, in general, the line absorption depth $a_x \equiv [I_c - I(0, x)]/I_c$ can be written $$(a_x/A_0) = 1 - \int_0^\infty q_x(\tau) d\tau$$ (14-40) The ensemble average of the line profile over all possible realizations of the velocity field is thus $$\langle a_{\mathbf{x}} \rangle / A_0 = 1 - \int_0^\infty \langle q_{\mathbf{x}}(\tau) \rangle d\tau$$ (14-41) while the average of the reduced equivalent width is $$\langle W^* \rangle \equiv \langle W_{\nu}/A_0 \, \Delta \nu_{\rm D} \rangle = A_0^{-1} \int_{-\infty}^{\infty} \langle a_{\rm x} \rangle \, dx$$ (14-42) Thus the crux of the problem is the calculation of $\langle q_x(\tau) \rangle$. The function $\langle q_x(\tau) \rangle$ can be found from the solution of an integral equation, which is obtained by the following arguments. First, at a given point τ , the probability that *no* jump has occurred on $(0,\tau)$ is $\exp(-n\tau)$; the corresponding contribution to $\langle q_x(\tau) \rangle$ is then $\exp(-n\tau)\langle q_x(\tau) \rangle_S$, where the static average is $$\langle q_{x}(\tau)\rangle_{S} \equiv \langle \exp[-(1+\beta H_{x})\tau]\rangle$$ $$= \int_{-\infty}^{\infty} \exp\{-[1+\beta H(a, x-u_{h})]\tau\}P(u_{h}) du_{h} \quad (14-43)$$ Here u_h (and hence H_x) is *constant* over the entire interval $(0, \tau)$. On the other hand, suppose that one or more jumps have occurred on the interval $(0, \tau)$, and let $\tau'(<\tau)$ denote the last jump point. On the interval (τ', τ) , H_x will be constant, hence $$q_x(\tau) = \exp[-(\tau - \tau')(1 + \beta H_x)]q_x(\tau')$$ (14-44) The probability that the last jump, at τ' , occurs between τ' and $\tau' + d\tau'$ is $\exp[-n(\tau - \tau')]n d\tau'$; thus averaging (14-44), and summing over all τ' , we obtain the contribution to $\langle q_x(\tau) \rangle$ from jumps on $(0, \tau)$, namely $$\langle q_x(\tau) \rangle_{\text{jump}} = \int_0^{\tau} \langle \exp[-(\tau - \tau')(1 + \beta H_x)] q_x(\tau') \rangle \exp[-n(\tau - \tau')] n \, d\tau'$$ (14-45) Now all steps in $H_x(\tau'')$ on the interval $0 < \tau'' < \tau'$ are independent of the value of H_x on the interval (τ', τ) , hence $$\langle \exp[-(\tau - \tau')(1 + \beta H_x)]q_x(\tau') \rangle = \langle \exp[-(\tau - \tau')(1 + \beta H_x)] \rangle \langle q_x(\tau') \rangle$$ $$= \langle q_x(\tau - \tau') \rangle_S \langle q_x(\tau') \rangle \qquad (14-46)$$ Adding the static and jump contributions we have, finally, $$\langle q_x(\tau) \rangle = e^{-n\tau} \langle q_x(\tau) \rangle_S + \int_0^{\tau} \langle q_x(\tau') \rangle \langle q_x(\tau - \tau') \rangle_S e^{-n(\tau - \tau')} n \, d\tau' \quad (14-47)$$ Because we have taken n to be depth-independent, the integral in equation (14-47) is a *convolution* integral, and we may apply a Laplace transformation to obtain the solution. Thus let $$Q_x(s) \equiv \int_0^\infty e^{-st} \langle q_x(\tau) \rangle d\tau \tag{14-48}$$ and $$S_x(s) \equiv \int_0^\infty e^{-s\tau} \langle q_x(\tau) \rangle_S d\tau = \int_{-\infty}^\infty du_h P(u_h) \int_0^\infty \exp[-(1+\beta H_x)\tau] e^{-s\tau} d\tau$$ $$= \langle [s+(1+\beta H_x)]^{-1} \rangle \qquad (14-49)$$ Then from equation (14-47) we find $$Q_x(s) = S_x(s+n)/[1 - nS_x(s+n)]$$ (14-50) Exercise 14-4: Derive equation (14-50). We do not require the inverse transform of Q_x because, as can be seen by comparison of equations (14-48) and (14-41), the residual intensity can be expressed entirely in terms of $Q_x(0)$. Thus we have the *general result* that $$\langle a_x \rangle / A_0 = 1 - \langle (n+1+\beta H_x)^{-1} \rangle [1 - n \langle (n+1+\beta H_x)^{-1} \rangle]^{-1}$$ (14-51) We can recover the *macroturbulent limit* by taking the correlation length $l = \infty$, or n = 0, so that the entire atmosphere along the ray moves with constant velocity. From equation (14-51) we find $$\langle a_x(\beta) \rangle_{\text{macro}} = A_0 \langle \beta H_x / (1 + \beta H_x) \rangle$$ (14-52) This result agrees with our intuitive expectations when we recognize that the argument in the bracket is just the emergent residual intensity of a line in the Milne-Eddington model (cf. §10-3), shifted bodily by a velocity $u_{\rm h}$, and then averaged over the probability distribution of $u_{\rm h}$. We may express the general result in terms of the macroturbulent limit as $$\langle a_x(\beta) \rangle = (n+1)\langle a_x[\beta/(n+1)] \rangle_{\text{macro}} [1 + nA_0^{-1} \langle a_x[\beta/(n+1)] \rangle_{\text{macro}}]^{-1}$$ (14-53) To obtain the *microturbulent limit*, we let $n \to \infty$. First, note that for $\beta \to 0$, equation (14-52) can be expanded as $\langle a_x(\beta) \rangle_{\text{macro}} \approx A_0(\beta \langle H \rangle - \beta^2 \langle H^2 \rangle)$, which yields $$A_0^{-1} \langle a_x(\beta) \rangle_{\text{micro}} = \beta \langle H(a, x) \rangle / [1 + \beta \langle H(a, x) \rangle]$$ (14-54) where $$\langle H(a, x) \rangle \equiv (\pi^{\frac{1}{2}} \xi)^{-1} \int_{-\infty}^{\infty} H(a, x - u_h) \exp(-u_h^2/\xi^2) du_h$$ (14-55) Because the Voigt function is a convolution of a Lorentz profile with a Gaussian [cf. equation (9-34)], we obtain, from an interchange of the order of integration, $$\langle H(a,x)\rangle = (1+\xi^2)^{-\frac{1}{2}}H[a(1+\xi^2)^{-\frac{1}{2}}, x(1+\xi^2)^{-\frac{1}{2}}]$$ (14-56) That is, in the microturbulent limit the Doppler width Δv_D is increased by a factor of $(1 + \xi^2)^{\frac{1}{2}}$. In the limit of zero turbulence the standard Milne–Eddington curve of growth is given by [cf. equation (10-38)] $$W_0^*(a,\beta) = \int_{-\infty}^{\infty} \beta H(a,x) [1 + \beta H(a,x)]^{-1} dx \qquad (14-57)$$ Now, substituting equation (14-52) into (14-42) and interchanging the order of integration, we find $W^*_{\text{macro}}(a, \beta) = \langle W^*_0(a, \beta) \rangle \equiv W^*_0(a, \beta)$; i.e., in the macroturbulent limit the curve of growth is unchanged—which, of course, is the expected result. In the microturbulent limit, by substitution of equations (14-54) and (14-56) into (14-42), we obtain immediately $$W_{\text{micro}}^*(a, \beta) = (1 + \xi^2)^{\frac{1}{2}} W_0^* \left[a/(1 + \xi^2)^{\frac{1}{2}}, \beta/(1 + \xi^2)^{\frac{1}{2}} \right]$$ This shows that the linear and damping parts of the curve are unaffected, while the flat part rises by a factor of $(1+\xi^2)^{\frac{1}{2}}$. Between these limits the curve of growth is found by numerical integration of equation (14-42), using equation (14-53). In addition to expressions for $\langle a_x \rangle$ and W^* , it is possible to derive an expression for σ_x , the rms fluctuation in the residual intensity that would be seen along the slit in a spectrogram of perfect resolution; i.e., $\sigma_x \equiv A_0^{-1} (\langle a_x^2 \rangle - \langle a_x \rangle^2)^{\frac{1}{2}}$ [see (49)]. Absorption depth in line with $\beta=100$, in a turbulent atmosphere with turbulent velocity $\xi=1$, and eddy-density n=10. Abscissa: $x\equiv\Delta\nu/\Delta\nu_{\rm D}$. Solid curve: average profile from all realizations of velocity distribution. Dashed curves: average profile \pm the rms fluctuation seen by spectrograph of perfect resolution. From (49), by permission. Results for the average depth, and its dispersion, of a strong line in an atmosphere with the turbulent-velocity parameter ξ equal to the thermal velocity, and a density of 10 "eddies" per unit continuum optical depth, are shown in Figure 14-4. Curves of growth for $\xi=1$ are shown in Figure 14-5. There we see that the dependence of the theoretical curve upon the eddy density, n, implies that a comparison of an observed curve to a theoretical curve with $\xi=0$ cannot lead to a unique value for ξ . In general, the value of ξ deduced in the microturbulent limit will be a lower bound on the actual value. Note that this effect is opposite to that produced by departures from LTE—which, typically, raise the flat part of the curve of growth even when no velocities are present (cf. §11-4). Detailed calculations, using a realistic solar atmosphere, have been made for the O I $\lambda\lambda$ 7771, 7774, 7775 lines, and the Fe I $\lambda\lambda$ 5576, 5934, 6200 lines (235); an excellent fit to observed profiles is achieved. In the fitting procedure, the loci of points in the (ξ, l) plane $[l \equiv 1/n \text{ (km)}]$ that match the observed FIGURE 14-5 Curves of growth in turbulent atmospheres with $\xi=1$. Ordinate: Logarithm of reduced equivalent width $W^*\equiv (W_{\rm v}/\Lambda_0\,\Delta v_{\rm D})$. Abscissa: Logarithm of linestrength $\beta=\chi_1/\chi_c$. Curves are labeled with depth-independent eddy density. From (49), by permission. intensities at several values of $\Delta \lambda$ from line center, as well as the equivalent width, intersect at almost a unique point. Thus it proves possible to determine both ξ and l=1/n (km) uniquely; numerically $\xi\approx 2.2$ km s⁻¹, and $l\approx 150$ km. The velocity is *larger* than that usually adopted as a microturbulent velocity; the correlation length is of the same order as the photospheric scale height. It would be of interest to ascertain whether the
apparent near-equality of the correlation length with the scale height has hydrodynamic significance, or is mere coincidence. Allowance for a finite scale in the velocity structure also has important implications for the interpretation of the center-to-limb variation of solar line profiles. A long-standing problem has been that the profiles at disk center have a characteristic V-shaped appearance, suggestive of macroturbulence, while those at the limb have a U-shaped appearance, suggestive of microturbulence. Moreover, the microturbulent velocities derived from limb profiles are typically larger than those derived from the same lines at disk center. This result has been advanced as evidence for anisotropic turbulence (a situation difficult to understand hydrodynamically). Both of these effects can be understood, at least qualitatively, in terms of a finite eddy density for the velocity field (226). If $n_0(\tau)$ gives the eddy density at $\mu = 1$, then the appropriate density at other values of μ is $n_0(\tau)/\mu$; this follows from the requirement that the turbulence be isotropic, so that we encounter the same eddy density per unit path-length along the ray. If the density is depth-independent, equation (14-53) is unaltered except that we replace n with n_0 , and now $A_0 = \alpha \mu (1 + \alpha \mu)^{-1}$. In general, $n_0(\tau)$ must vary with τ . Suppose we demand that the eddies have constant geometrical size L; then $n_0(\tau) = \lceil \chi_c(\tau) L \rceil^{-1}$. For the HSRA $\chi_c(\tau) \propto \tau$, hence $n_0(\tau) \propto \tau^{-1}$. Thus the eddy density pertinent to observations near the limb must be higher than at disk center, and this result provides at least a qualitative explanation of the center-to-limb effects mentioned above. An analysis of the Mg I 24571 line has been performed (226) using the HSRA. A good fit to the profiles is obtained with isotropic turbulence characterized by $\xi = 1.2 \text{ km s}^{-1}$ and $l \approx 70 \text{ km}$. The smaller value for l quoted here, compared to the results for O I and Fe I mentioned earlier, may reflect the fact that this analysis is based on a Kubo-Anderson discontinuous velocity field while the other uses a continuous field. It turns out that for a given ξ , a given line-strength is always achieved at a smaller value of l in the discontinuous case (237). Non-LTE effects produce line profiles that are deeper in the core, and approach the LTE profile in the wing (227; 236). The deviations of the non-LTE profiles from their LTE counterparts become larger as the turbulent velocity parameter ξ increases, and as the correlation length l decreases. Much useful information about the nature of velocity fields in stellar atmo- spheres will undoubtedly emerge from further detailed application of the methods described above to the analysis of the solar spectrum, and to stellar spectra where possible. ## 14-2 Sobolev Theory The existence of large-scale, rapid (sometimes violent) expansion in stellar atmospheres is well established observationally. Probably the first objects in which such motions were unequivocally recognized were the novae (and later the supernovae). In their spectra, after the explosive increase in the star's luminosity, one observes absorption lines strongly violet-shifted from their rest positions, indicating material flowing rapidly toward the observer. These lines are accompanied by extensive red-shifted emission features, resulting in characteristic P-Cyani profiles resembling those in Figure 14-6. In nova spectra these features are transients, and indicate episodes of violent ejection of the outer layers of the star. In other objects [the classical P-Cvani stars (79; 366), these lines, though variable, are more-or-less permanently present in the spectrum, and indicate persistent outflow of material. Beals first recognized (75; 77) that the great breadths of lines in WR spectra (indicating velocities of the order of 3000 km s⁻¹) could be interpreted in terms of rapid outflow of material. He suggested that the flow was driven by radiation pressure, a conclusion supported by current dynamical models. Similar conclusions can be reached for the Of stars. We know today that in the WR and Of stars, and in many early-type supergiants, there are transsonic stellar FIGURE 14-6 P-Cygni profiles of the hydrogen lines in the spectrum of HD 190603 as observed by Beals (79). Ordinate: observed flux in units of the continuum (successive profiles are displaced for clarity). Abscissa: displacement from line center in velocity units—i.e., $v = c \Delta \lambda / \lambda$. winds (cf. §15-4), that have vanishingly-small outward velocities in the deeper layers, and a large outward acceleration producing very large velocities $(v/c \approx 0.01)$ at great distances from the star. The solution of the transfer equation in a spherical expanding medium is difficult, and in the early work by Beals (75; 76; 77; 78), Chandrasekhar (149), Gerasimovič (243), and Wilson (674) it was assumed that the material was optically thin so that transfer effects could be ignored. This approach, while obviously oversimplified, has nevertheless contributed a good deal to our basic picture of the physical situation. A major advance occurred with the brilliant realization by Sobolev (590; 591; 15, Chap. 28) that the presence of the velocity gradient in an expanding medium actually simplifies line-transfer problems, for it dominates the photon escape and thermalization process, and implies a geometric localization of the source function not present in static problems. In Sobolev's theory the solution of the transfer problem is, in effect, replaced by the calculation of escape probabilities; the basic theory has been refined and extended by Castor (134), and has been applied to fairly realistic calculations of spectra from multilevel atoms in WR envelopes (139; 140). ### SURFACES OF CONSTANT RADIAL VELOCITY Consider a spherically-symmetric, radially-expanding envelope surrounding a star with a fairly well-defined photospheric surface, as sketched in Figure 14-7. With this basic model we can explain qualitatively the main features of P-Cygni profiles such as those in Figure 14-6. For the discussion in this subsection, we shall assume that the envelope is essentially transparent, so that every photon emitted towards an external observer can be received. This approach yields insight, and results that will be useful later. Throughout the discussion we make use of the fact that most of the line emission (or absorption) occurs at line center; thus radiation from a given region, as received by an external observer, appears mainly at the line-center frequency, Doppler-shifted by an amount corresponding to the velocity of the material along the line of sight. The material behind the stellar disk is in an occulted region, and cannot be seen by an external observer. The matter projected on the stellar disk can either (a) simply emit radiation without significant reabsorption as occurs in, e.g., a forbidden line in a nebula or in a thermally excited medium where $T_e \gg T_c$ (the color temperature of the radiation from the underlying photosphere), or (b) absorb the incident photospheric radiation and scatter it out of the line of sight. From this material, in case (a) we would obtain a violet-shifted emission feature, while in (b) we obtain a violet-shifted absorption dip characteristic of P-Cygni profiles. From the matter in the emission FIGURE 14-7 Schematic diagram of expanding envelope surrounding a stellar surface. The material in the *occulted region* is blocked from view by the stellar disk, and cannot be seen by an external observer. lobes to the sides of the disk, we receive photons either emitted thermally or scattered from both the stellar and diffuse (from the envelope itself) radiation fields. The velocities along the line of sight in the emission-lobe material range from positive through negative values, and produce a symmetric emission feature extending from a wavelength to the violet of the rest-wavelength, to redder wavelengths. Because material is occulted by the star, the maximum redshifts that could be produced will not be observed, and, in general, we expect to derive information about the *maximum flow* velocities from the position of the blueward edge of the absorption feature (or emission feature if no absorption is present). The volume of the emitting region can be enormous compared to that of the star, and the integrated contributions to the observed emission line from this volume may far outweigh the amount of energy received from the stellar disk. As a result, the peak intensities in strong emission lines may be several times the background continuum value (see Figures 14-6 and 14-9). Also, when the size of the stellar disk is much smaller than that of the emission region, occultation effects become unimportant. Finally, some lines are much more opaque than others and may, therefore, have a larger effective volume for emission; thus in Figure 14-6 we see a transition from quite strong emission at $H\alpha$, to practically no emission at $H\gamma$, where we see essentially the photospheric $H\gamma$ absorption-line. To make these notions more quantitative, we can compute the energy received at frequency v by an external observer as $$E_{\nu} = \int_{V} \eta(r, \nu) \, d^{3}r \tag{14-58}$$ where the integration is carried out over the entire unocculted volume. In performing the integration we may use, as was done in our earlier work in spherical geometry, either (r, θ) coordinates with the axis of symmetry from the center of the star through the observer, or (p, z) coordinates (see Figure 7-27). Equation (14-58) can be made more explicit if we write $\eta(r, v) = \tilde{\eta}(r)\phi[v-v_0(1+\mu v_r/c)]$, which accounts for the shift of line center, as seen by an external observer, to $v_0(1+v_z/c)$, where $v_z=\mu v_r$ is
the velocity along the line of sight resulting from the expansion velocity v_r . If we suppose that $\tilde{\eta}(r) = \eta_0(\rho/\rho_0)^2$, (where reasonable values for α lie in the range $0 \le \alpha \le 2$) and, further, assume $v = v_0(r/r_0)^n$, then from the requirement of continuity, $\rho v r^2 = \rho_0 v_0 r_0^2$, we obtain finally $\tilde{\eta}(r) = \eta_0(r/r_0)^{-(n+2)\alpha}$. Choose units such that $r_0 = v_0 = 1$ (these quantities referring to values at the photospheric surface), and measure frequency displacements from line center in units $x = (v - v_0)/\Delta v_D$, where $\Delta v_D \equiv v_0 v_0/c$. Then $$E_{x} = \eta_{0} \int_{V} \phi[x - \mu v(r)] r^{-(n+2)\alpha} d^{3}r$$ (14-59) In principle V refers to the entire unocculted volume; in actuality the volume of integration can be defined more precisely. Most of the emission observed at frequency x will arise from regions where the line center frequency, after Doppler shifting, is at the observed value. The observed flow velocities (up to 3000 km s⁻¹) in WR and Of atmospheres vastly exceed the thermal velocity ($\sim 30 \text{ km s}^{-1}$). Therefore the geometrical region from which the emission at any one frequency arises must be a very thin zone, centered on a surface of constant radial velocity such that $v_z = \mu v_r = x$. (Note: here the term "radial velocity" has the usual astronomical meaning of velocity along the line of sight, not the more fundamental meaning of the velocity v_r measured from the center of the star.) In the idealized limit that the width of the line profile is negligible (because $v_{\rm thermal} \ll v_{\rm flow}$), the zones degenerate to the radial velocity surfaces themselves, which therefore play a basic role in the theory. The shape of these surfaces depends upon the nature of the velocity field—which, ultimately, must be obtained from dynamical calculations. We can gain insight, however, by consideration of some simple velocity laws of the form $v=r^n$ (in units $v_0=r_0=1$). (a) Suppose $v_r=$ constant. This law could apply to a thin spherical shell (e.g., a planetary nebula at large distance from the star), or in high-velocity flows nearing terminal velocity [see (c) below]. (b) Suppose v=r. This law could apply in the case of an explosive ejection that started at some time t_0 such that $(t-t_0)=r/v$; here the faster-moving particles outrun the slower ones, giving the linear relation of v with r. (c) Suppose the gas leaves the star with velocities greater than escape velocity. We then can write $v=v_{\infty}(1-r_c/r)^{\frac{1}{2}}$, which provides a crude simulation of a transsonic wind; the flow accelerates everywhere on the range $r_e \leqslant r \leqslant \infty$. (d) If the material is ejected with just the escape velocity and is decelerated by gravity, we may take $v=r^{-\frac{1}{2}}$. Each of these laws has a distinctive set of constant radial-velocity surfaces. Exercise 14-5: Show that the surfaces $v_z = \text{constant}$ for cases (a) and (b) are the cones $\theta = \cos^{-1} \mu = \text{constant}$, and the planes z = constant, respectively, in the usual (r, θ) and (p, z) coordinate systems. The constant-radial-velocity surfaces for laws of the form (c) and (d) are shown in Figure 14-8 (a and b). From what has been said above, some far-reaching conclusions can be drawn. The fact that the surfaces of constant radial velocity extend over large regions (infinite if the flow is not decelerating) implies a complete breakdown of the Eddington-Barbier relation for expanding atmospheres. We can no longer associate a given frequency in the line profile with a specific position r in the envelope, but only with a wide range of values $(r, r + \Delta r)$. From the viewpoint of an outside observer, geometric localization occurs only if variations in total particle density and ionization-excitation equilibria confine the region of high emissivity. What is worse, this conclusion is independent of the intrinsic line-strength (317). So we can no longer, in principle, obtain a depth-analysis of atmospheric structure, with a precision better than the characteristic Δr defined above, by examining weak and strong lines. Clearly these considerations imply severe modeling and diagnostic +0.2Occulted +0.4-0.8-0.2 Observer FIGURE 14-8 Surfaces of constant radial velocity, $v_r = \text{constant}$. (a) $v(r) = v_{\pi} (1 - 1/r)^{\frac{1}{2}}$. Curves are labeled with v_{π}/v_{π} . (b) $v(r) = r^{-\frac{1}{2}}$. From (366), by permission. (b) problems for expanding atmospheres. The problems are even more severe in the case of decelerating flows where, as can be seen in Figure 14-8b, a particular line of sight may intersect a surface of constant radial velocity at two distinct points; hence two regions, which may have vastly different physical properties, contribute to the information received by the observer. Furthermore, in this case these two distinct regions can also interact radiatively, and the Sobolev method to be described below requires reformulation. Taking into account the geometry of the surfaces of constant radial velocity, equation (14-59) can be applied to calculate observable line profiles. For instance, as Beals first showed (75; 76; 77; 78), if we can ignore occultation, then the profile from an optically thin shell expanding with v =constant is flat-topped; an example of such a profile appears in Figure 14-9, where the λ5696 line of C III and the λ5808 line of C IV in the spectrum of the hot WR star HD 165763 are shown. The rounded profile for the C IV line indicates it is optically thick (see below). Beals's result can be seen by inspection of equation (14-59) using an (r, θ) coordinate system. We note that radiation at each value of v_z (and hence of x in the line profile) is contributed by a conical volume element centered on $\mu \equiv \cos \theta = x$, in a range $d\mu$; the volumes of all such elements are manifestly identical. Results for other velocity laws may easily be derived so long as the line is optically thin; this approximation will not be true in general, and the need for it is overcome by Sobolev's method. **FIGURE 14-9** Observed profiles of C III $\lambda 5696$ and C IV $\lambda 5808$ in the WC5 star HD 165763. Notice the flat-topped profile for the transparent 25696 line, and the rounded profile for the optically-thick 25808 line. From (369), by permission. Exercise 14-6: (a) Suppose that the intrinsic line profile is $\phi(x) = \delta(x)$. Consider an envelope for which $v \equiv v_0 = 1$. Ignoring occultation, show that $E_x = E_0 = \text{constant}$ for $-1 \leqslant x \leqslant 1$, and $E_x = 0$ for |x| > 1. Derive expressions for E_0 from equation (14-59), and show that different results are obtained for $\alpha < 1.5$, $\alpha = 1.5$, and $\alpha > 1.5$. Show that for $\alpha \leqslant 1.5$ he envelope must be bounded, $r \leqslant R$, but that no restriction is required for $\alpha > 1.5$. Accounting for occultation, show that $E_x = 0$ for $x < x_{\min}$, where $x_{\min} = -(1 - R^{-2})^{\frac{1}{2}}$, and write an expression for E_x on the range $x_{\min} \leqslant x \leqslant 0$. (b) Perform a similar analysis for v = r; determine E_0 for appropriate ranges of α , and derive analytical expressions for the profiles of E_x/E_0 , including occultation effects. ## ESCAPE AND THERMALIZATION IN AN EXPANDING MEDIUM Consider now the formation of a line in an optically-thick expanding envelope surrounding an opaque core of radius r_c ; assume that the effects of a background continuum can be ignored. If we now transform to a coordinate system at rest with respect to a particular fluid element, and inquire what happens as we look along a given ray, it is clear that (as a result of the velocity gradient) there will be a differential Doppler shift of each successive samplepoint along the ray relative to the test-point. Eventually this shift becomes so large that no line photon emitted within the effective bounds of the line profile (assumed to be limited by some $\pm x_{max}$) can interact with the line profile at the test point. The velocity field has introduced an intrinsic escape mechanism for photons; beyond the interaction limit (measured from the point of emission) they no longer can be absorbed by the material (even if it is of infinite extent!) but escape freely to infinity. Thus there is a definite limit to the size of the region within which photons emitted, or scattered, can have any effect upon the intensity within the line at the test-point. In the limit of large velocity gradients the interaction region will be small, and may, therefore, be presumed to be nearly homogeneous in its physical properties (temperature, density, ionization state, etc.). The theory then can be formulated in terms of local quantities, and a parameter β that gives the probability of photon escape summed over all directions and line-frequencies. In the limit of negligible transfer effects, we can therefore write $$\overline{J}(r) = (1 - \beta)S(r) + \beta_c I_c \tag{14-60}$$ The first term is derived from the value that \overline{J} would have in the limit of no escapes, namely $\overline{J}=S$, corrected for velocity-induced escapes. The parameter β_c measures the probability of penetration (summed over frequency and angle) of the specific intensity I_c , emitted from the core, to the test-point. We must now calculate β and β_c . As was done earlier, we measure velocities in units of a thermal velocity [i.e., $V(r) = v(r)/v_{\rm th}$] and frequency displacements from line center in Doppler units, [i.e., $x \equiv (v - v_0)/\Delta v_{\rm D}$, where $\Delta v_{\rm D} \equiv v_0 v_{\rm th}/c$]. The optical depth along a ray to an observer at infinity can then be written [cf. equation (14-22)] $$\tau(z, p, x) = \int_{z}^{\infty} \chi(z', p, x) \, dz' = \int_{z}^{\infty}
\chi_{l}(r') \phi(x') \, dz'$$ (14-61) where $r' \equiv (z'^2 + p^2)^{\frac{1}{2}}, \quad \mu' \equiv (z'/r'), \text{ and }$ $$x' = x'(z', p, x) \equiv x - V_z(z') = x - \mu' V(r')$$ (14-62) The main contribution to the integral in equation (14-61) must come from the region where x'=0—i.e., from $z'=z_0(p,x)$, where z_0 is chosen such that $z_0r_0^{-1}V(r_0)=x$; here $r_0\equiv (z_0^2+p^2)^{\frac{1}{2}}$. The surface $z_0(p,x)$ is, of course, just a surface of constant radial velocity. To a good approximation, we can then replace $\chi_l(r')$ with $\chi_l(r_0)$, and remove this factor from the integral. We now change the variable of integration from z' to x'; in view of equation (14-62) the transformation is $$-(\partial x'/\partial z)_{p} = (\partial V_{z}/\partial z)_{p} = (\partial \{\mu(z, p)V[r(z, p)]\}/\partial z)_{p}$$ $$= \mu^{2}(\partial V/\partial r) + (1 - \mu^{2})(V/r) \equiv Q(r, \mu)$$ (14-63) where μ and r are again understood to be functions of z and p. If the interaction region is small, the transformation coefficient written above may be assumed to be essentially constant and may be evaluated at the resonance point $z=z_0(p,x)$. Then if we define $$\Phi(x) \equiv \int_{-\infty}^{x} \phi(\xi') d\xi'$$ (14-64) where clearly $\Phi(-\infty)=0$, and $\Phi(\infty)=1$, we can rewrite equation (14-61) as $$\tau(z, p, x) = \tau(-\infty, p, x)\Phi[x'(z, p, x)]$$ (14-65) where x'(z, p, x) is defined by equation (14-62) and $$\tau(-\infty, p, x) = \chi_l(r_0)/Q(r_0, \mu_0) \equiv \tau_0(r_0)/\{1 + \mu^2[(d \ln V/d \ln r) - 1]\}_0$$ (14-66) Here $$\chi_l(r_0) = (\pi e^2/mc) f_{ij} [n_i(r_0) - (g_i/g_i)n_i(r_0)]/\Delta v_D$$ (14-67) and $$\tau_0(r_0) \equiv \chi_l(r_0)/(V/r)_0$$ (14-68) In equations (14-66) through (14-68) it should be borne in mind that r_0 and μ_0 are functions of p and x, i.e., $r_0 = r_0[z_0(p, x), p]$ and $\mu_0 = \mu_0[z_0(p, x), p]$. Let us now choose a fixed value of r and calculate $\beta(r)$; because of spherical symmetry, integration over μ can be effected by using the above results for various values of p. The escape probability along any ray is just $\exp(-\Delta \tau_{\infty})$ where $\Delta \tau_{\infty}$ denotes the optical path length from the test-point to infinity. Thus, summing over angle and frequency, we have $$\beta(r) = \frac{1}{2} \int_{-1}^{1} d\mu \int_{-\infty}^{\infty} dx \, \phi[x'(z, p, x)] \exp\{-\tau[z(r, \mu), p(r, \mu), x]\} \quad (14-69)$$ Here we have assumed that photons that hit the opaque core are absorbed and hence lost. To evaluate equation (14-69), we use equations (14-64) through (14-67), and assume that the material in the interaction region is sufficiently homogeneous that the distinction between r_0 and r may be ignored. Then $$\beta(r) = \frac{1}{2} \int_{-1}^{1} d\mu \int_{0}^{1} d\Phi \exp[-\chi_{l}(r)\Phi/Q(r,\mu)]$$ $$= \chi_{l}^{-1}(r) \int_{0}^{1} \{1 - \exp[-\chi_{l}(r)/Q(r,\mu)]\} Q(r,\mu) d\mu \qquad (14-70)$$ For the special case that V=kr, $Q(r,\mu)\equiv k$, and equation (14-70) reduces considerably to $$\beta(r) = \{1 - \exp[-\tau_0(r)]\}/\tau_0(r)$$ (14-71) where now $\tau_0(r) \equiv k^{-1} \chi_l(r)$. The same result is obtained if the angle-dependent terms in equation (14-63) are merely *ignored*. To calculate β_c , assume that the test point is relatively far from the core (i.e., that the surface of the core is at $-\infty$). Then, from its physical meaning, β_c can be written $$\beta_c(r) = \frac{1}{2} \int_{-1}^{-\mu_c} d\mu \int_{0}^{1} d\Phi \exp[-\chi_l(r)\Phi/Q(r,\mu)]$$ $$= \chi_l^{-1}(r) \frac{1}{2} \int_{\mu_c}^{1} \{1 - \exp[-\chi_l(r)/Q(r,\mu)]\} Q(r,\mu) d\mu \quad (14-72)$$ where $\mu_c \equiv [1 - (r_c/r)^2]^{\frac{1}{2}}$. Again, for the special case of a linear velocity law we obtain a considerable reduction, namely $\beta_c(r) = W\beta(r)$, where W is the usual dilution factor given by equation (5-36). The result just quoted is what would be expected physically, because W is the fraction of the full sphere contained in the solid angle subtended by the disk, while β measures the probability of penetration from the disk to the test point. Note that both β and β_c are defined essentially in terms of local quantities: the local opacity and velocity gradient. Given these values, one can compute \overline{J} from equation (14-60) without actually solving a transfer equation; thus we see the enormous simplification that has been achieved. For the particular case of a two-level atom, where the source function (assuming complete redistribution) is given by $S=(1-\varepsilon)\overline{J}+\varepsilon B$, we may use equation (14-60) to write $$S = [(1 - \varepsilon)\beta_c I_c + \varepsilon B]/[(1 - \varepsilon)\beta + \varepsilon]$$ (14-73) which shows that knowledge of β and β_c is sufficient to determine S. Further, if we ignore the continuum contribution ($\beta_c I_c = 0$), equation (14-60) allows us to write the net radiative bracket for each line of a multilevel atom immediately, namely $Z_{ji} \equiv \beta_{ij}$; we shall exploit this result in the discussion of multilevel atoms. It is very instructive to consider a uniformly expanding plane-parallel atmosphere, for then we can obtain expressions that show the effects of the velocity gradient on the thermalization of the source function in a particularly transparent way [see (273, 87) and (406)]. Let τ denote the integrated line optical depth defined for a medium at rest; assume the velocity gradient $\gamma = \partial V/\partial \tau$ is everywhere constant. The specific intensity at a test point τ in direction μ is $$I(\tau, \mu, x) = \int_{\tau}^{\infty} S(\tau') \exp\left[-\mu^{-1} \int_{0}^{(\tau'-\tau)} \phi(x + \gamma \mu t) dt\right] \phi[x + \gamma \mu(\tau'-\tau)] d\tau'/\mu$$ (14-74) Thus the source function for a two-level atom is given by the integral equation $$S(\tau) = (1 - \varepsilon)\overline{J}(\tau) + \varepsilon B(\tau) = (1 - \varepsilon) \int_{-\infty}^{\infty} K_{\beta} |\tau' - \tau| S(\tau') d\tau' + \varepsilon B(\tau)$$ (14-75) where the kernel function $$K_{\beta}(s) = \frac{1}{2} \int_{-\infty}^{\infty} dx \int_{0}^{1} d\mu \, \mu^{-1} \phi(x) \phi(x + \gamma \mu s) \exp \left[-\mu^{-1} \int_{0}^{s} \phi(x + \gamma \mu t) \, dt \right]$$ (14-76) It is easy to show that, unlike the static case where the kernel is normalized to unity, in the present case the effects of escapes lead to $$\int_{-\infty}^{\infty} K |\tau| d\tau = 1 - \beta \tag{14-77}$$ where β is the planar-atmosphere escape probability that follows from equations (14-70) and (14-63) in the limit that $1/r \to 0$, namely $$\beta = |\gamma| \int_0^1 \{1 - \exp[-1/(|\gamma| \, \mu^2)]\} \mu^2 \, d\mu \tag{14-78}$$ Exercise 14-7: Verify equations (14-77) and (14-78). Equation (14-75) may be cast into the standard form for a two-level atom by renormalizing the kernel to $K^*(\tau) = K_{\beta}(\tau)/(1-\beta)$, and defining $1 - \varepsilon^* = (1 - \beta)(1 - \varepsilon)$ and $B^*(\tau) \equiv \varepsilon B(\tau)/\varepsilon^*$. Then $$S(\tau) = (1 - \varepsilon^*) \int_{-\infty}^{\infty} K^* |\tau' - \tau| S(\tau') d\tau' + \varepsilon^* B^*(\tau)$$ (14-79) When thermalization is achieved, S varies slowly and may be removed from under the integral to yield $S(\tau) = B^*(\tau) = \varepsilon B(\tau)/(\varepsilon + \beta - \varepsilon \beta)$. For $\varepsilon \gg \beta$, $S(\tau) \to B(\tau)$, as expected. But for $\beta \gg \varepsilon$, escapes dominate and $S(\tau) \to \varepsilon B(\tau)/\beta$, showing that S decreases to the local creation rate εB as $\beta \to 1$, which is reasonable on physical grounds. If the medium has a boundary surface and B is constant, then [cf. (406)] $$S(0) = (\varepsilon^*)^{\frac{1}{2}} B^* = \varepsilon B / (\varepsilon^*)^{\frac{1}{2}}$$ (14-80) Thus when $\varepsilon \gg \beta$ we recover the usual static result $S(0) = \varepsilon^{\frac{1}{2}}B$, while for $\beta \gg \varepsilon$, we find $S(0) = \varepsilon B/\beta^{\frac{1}{2}} = \beta^{\frac{1}{2}}S_{\infty}$, where S_{∞} denotes the asymptotic value for S at depth. #### LINE PROFILES Let us now derive expressions for the line profiles seen by an external observer. The flux emergent at frequency x is proportional to $$F_{x} = 2\pi \int_{0}^{\infty} I(\infty, p, x) p \, dp$$ $$= 2\pi \int_{r_{c}}^{\infty} S(r_{0}) \{1 - \exp[-\tau(-\infty, p, x)]\} p \, dp$$ $$+ 2\pi \int_{0}^{r_{c}} S(r_{0}) \{1 - \exp[-\tau(-\infty, p, x)\Phi(x_{c})]\} p \, dp$$ $$+ 2\pi I_{c} \int_{0}^{r_{c}} \exp[-\tau(-\infty, p, x)\Phi(x_{c})] p \, dp \qquad (14-81)$$ where, as above, r_0 denotes the value of r at the surface of constant radial velocity specified by x, and x_c is the value of x' given by equation (14-62) at $r' = r_c$ and $\mu' = \left[1 - (p/r_c)^2\right]^{\frac{1}{2}}$. The first term gives the emission from the part of the envelope seen outside the disk (i.e., $p > r_c$). The second term gives the emission from the part of the envelope superposed on the core, the factor $\Phi(x_c)$ correcting for occultation of material by the core. Note that, for an expanding atmosphere, $\Phi(x_c)$ equals zero for x<0 and will be essentially unity for x>0, showing immediately the effect of core occultation on the red wing of the profile. The last term gives the continuum contribution from the core; in view of the properties of $\Phi(x_c)$ just mentioned, we see that it is unattenuated in the red wing, and more or less heavily attenuated in the blue wing of the line. The flux in the continuum outside the line is proportional to $$F_c = 2\pi I_c \int_0^{r_c} p \, dp = \pi r_c^2 I_c \tag{14-82}$$ Transforming the variable of integration from p to r on surfaces (z/r)V(r) = x, equations (14-81) and (14-82) can be combined to yield an expression for the line profile $R_x \equiv (F_x - F_c)/F_c$, namely $$R_{x} = 2(r_{c}^{2}I_{c})^{-1} \int_{r_{\min}(x)}^{\infty}
S(r)[\tau_{0}(r)/\tau(-\infty, p, x)]\{1 - \exp[-\tau(-\infty, p, x)]\}r dr$$ $$- 2(r_{c}^{2}I_{c})^{-1} \int_{0}^{r_{c}} S(r_{c})\{\exp[-\tau(-\infty, p, x)\Phi(x_{c})]$$ $$- \exp[-\tau(-\infty, p, x)]\}p dp$$ $$- 2r_{c}^{-2} \int_{0}^{r_{c}} \{1 - \exp[-\tau(-\infty, p, x)\Phi(x_{c})]\}p dp$$ (14-83) where $r_{\min}(x)$ is the radius at which V(r) = x, and p is regarded as p(r, x). Note the change in sign convention [relative to equation (8-2)] that has been made to give positive numbers for emission lines. Each term in equation (14-83) can be interpreted in parallel with terms in equation (14-81). If we ignore the last two terms, from the core, in equation (14-83), we consider a two-level atom for which the envelope is so thick that the source function achieves its asymptotic value $S = \varepsilon B/\beta$, and we replace $\tau(-\infty, p, x)$ with τ_0 , then, in view of equation (14-71), we may write $$R_x \approx \frac{\langle \varepsilon B \tau_0 \rangle}{I_c} \int_{r_c}^{\infty} \frac{\varepsilon B \tau_0}{\langle \varepsilon B \tau_0 \rangle} \frac{2r \, dr}{r_c^2} = \frac{A \langle \varepsilon B \tau_0 \rangle}{I_c}$$ (14-84) where $\langle \varepsilon B \tau_0 \rangle$ is a typical value of $\varepsilon B \tau_0$; here the quantity A denotes the effective emitting area measured in core units. For sufficiently large effective emitting areas, the line can become quite bright relative to the continuum. In fact, most strong emission lines result largely from this geometrical effect. Another interesting result follows easily from equation (14-81) [see, e.g., (15, Chap. 28)]. Consider an envelope with constant velocity of expansion V; then $Q(r, \mu) = (V/r) \sin^2 \theta$, and the surfaces of constant radial velocity are given by $\cos \theta = (x/V) = \text{constant}$. The transformation from p to r is FIGURE 14-10 Calculated line profiles in expanding spherical atmospheres. (a) $\varepsilon=0.0092$ and $\tau_0(\text{max})\approx 15$. (b) $\varepsilon=0.002$ and $\tau_0(\text{max})\approx 0.5$. (c) $\varepsilon=0.021$ and $\tau_0(\text{max})\approx 2$. From (134), by permission. $p = r \sin \theta$, and in the limit that we can neglect the contribution from the core, $$F_x = 2\pi \sin^2 \theta \int_0^\infty S(r) \{ 1 - \exp[-\chi_l(r)r/(V\sin^2 \theta)] \} r dr \quad (14-85)$$ If the envelope is *opaque*, the exponential term vanishes, and the integral becomes a constant, so that $F_x = C \sin^2 \theta = C[1 - (x/V)^2]$; the line profile in this case is *rounded* (specifically, it is parabolic). This conclusion is of importance because it shows that rounded profiles occur naturally, as a result of optical-depth effects, even if the velocity is constant. In contrast, an interpretation based upon an analysis that assumes the lines are optically thin would necessarily have involved an accelerating, or decelerating, velocity field (which would, of course, have quite different dynamical implications). We thus see that the spectroscopic diagnostic procedure must be carried out with care, and to a high degree of consistency, if physically meaningful results are to be derived. Detailed calculations of flux profiles, using equation (14-83), have been made (134) using the two-level-atom source function of equation (14-73). along with assumed distributions of V(r), $\tau_0(r)$, and the constants ε and B/I_c (the latter chosen always to have the numerical value 5). The velocity law was taken to be of the form $V(r) = V_{\infty}(1 - r_{c}/r)^{\frac{1}{2}}$. The adopted distributions of $\tau_0(r)$ all are characterized by a maximum on the range 1.1 \leq $(r/r_c) \leq 4$. If monotone decreasing distributions are used, very asymmetric profiles (not observed) result. Presumably this indicates that the lines observed in real stars arise in shell-like zones, produced by variations in the ionization equilibrium that yield a dominance of a particular ion in a definite range of radii. A wide variety of profiles can be produced by suitable choices of the parameters. Three characteristic types of profiles, similar to those observed in WR stars, are shown in Figure 14-10: (a) rounded emission with violet absorption, such as observed in the C III $\lambda 4650$ and N III $\lambda 6438$ lines; (b) flat-topped emission with violet absorption, such as seen in the He I lines; (c) very intense rounded emission with no absorption, such as observed in the He II lines. In each case the intensity of the emission is proportional to $A\langle \varepsilon B\tau_0 \rangle / I_c$ as expected from equation (14-84); note that the flat-topped profile results from an optically thin line. #### MULTILEVEL ATOMS: APPLICATION TO WOLF-RAYET STARS In the spectra of Wolf-Rayet stars, extensive series of extremely strong emission lines can be observed. The spectra fall into two broad classes: WC, in which lines of C and O are prominent while those of N seem to be practically absent; and WN, which have prominent lines of N and essentially no lines of C. The He II Pickering series $(n = 4 \rightarrow n')$ is very strong and, by comparison of lines with odd n' (not overlapped by a hydrogen line) and even n' (blended with a hydrogen Balmer line), it is found that the hydrogen emission is weak, and hence we conclude that the hydrogen to helium ratio must be significantly less than unity. To derive quantitative information about these interesting abundance anomalies, as well as about the physical structure of the envelope, it is necessary to carry out a complete multilevel analysis of the spectrum. At present it is not possible to specify the atmospheric structure in detail, and studies (139; 140) have been carried out in the spirit of a coarse analysis (making a fair number of approximations), with the goal of obtaining estimates of the physical properties at a single typical point in the envelope. The statistical equilibrium equations are of the form $\Re_i + \mathscr{C}_i = 0$ where \Re_i and \mathscr{C}_i are, respectively, the *net* rates at which level i is populated by radiative and collisional processes. We have one such equation for each level of the ion under consideration, plus one additional equation specifying a total abundance for the chemical species. The net collision rate can be written (cf. §5-4) $$\mathscr{C}_{i} = \sum_{j < i} \left[n_{j} - (n_{j}/n_{i}) * n_{i} \right] C_{ji} + \sum_{j > i} \left[(n_{i}/n_{j}) * n_{j} - n_{i} \right] C_{ij} + (n_{i}^{*} - n_{i}) C_{i\kappa}$$ (14-86) while the net radiative rate is $$\mathcal{R}_{i} = \sum_{j>i} \left[n_{j} (A_{ji} + B_{ji} \overline{J}_{ij}) - n_{i} B_{ij} \overline{J}_{ij} \right] + \sum_{j $$+ n_{i}^{*} 4\pi \int_{v_{i}}^{\infty} \alpha_{ik}(v) (hv)^{-1} B_{v} (T_{e}) [1 - \exp(-hv/kT_{e})] dv$$ $$- n_{i} 4\pi \int_{v_{i}}^{\infty} \alpha_{ik}(v) (hv)^{-1} J_{v} [1 - b_{i}^{-1} \exp(-hv/kT_{e})] dv$$ (14-87)$$ Here T_e denotes the envelope temperature, and $n_i^* \equiv n_{\kappa} n_e \Phi_{i\kappa}(T_e)$ [cf. equation (5-14)] where n_{κ} is the actual ion density. The expression for \mathscr{C}_i is useful as written, for a given value of T_e and n_e , but that for \mathscr{R}_i must be rewritten. To simplify the bound-bound rates we use equation (14-60) to obtain $$n_i(A_{ii} + B_{ii}\overline{J}_{ij}) - n_iB_{ij}\overline{J}_{ij} = [n_jA_{ji} - (n_iB_{ij} - n_jB_{ji})WB_v(T_c)]\beta_{ij}$$ (14-88) where β_{ij} is given by equation (14-71), and τ_{ij} (called τ_0 there) is given by equations (14-67) and (14-68); in equation (14-88) we have used the approximate result $\beta_c \approx W\beta$, and have parameterized I_c in terms of a radiation temperature T_c . The bound-free terms are somewhat harder to reduce, because the Doppler shifts produced by expansion scarcely affect continuum formation, and no essential simplification is introduced by intrinsic escapes, as it is for lines; in fact, a solution of the static transfer problem is, in principle, required. To circumvent the need for a detailed solution, write $J_v = J_v^c + J_v^d$, where J_v^c represents the radiation emitted by the stellar core, and J_v^d is the diffuse field from the envelope. Allowing for absorption, we adopt $$J_{\nu}^{c} \approx W B_{\nu}(T_{c}) e^{-\tau_{\nu}} \tag{14-89}$$ where a representative optical depth between the test-point (R) and the core (r_c) is taken to be $$\tau_{v} = n_{i}\alpha_{i\kappa}(v)[1 - b_{i}^{-1} \exp(-hv/kT_{e})](R - r_{c})$$ (14-90) Further, if we assume that (a) the envelope is homogeneous, and (b) the optical depth from the test point to the boundary in any direction is τ_{ν} , we then may adopt $$J_{\nu}^{d} \approx S_{i\kappa}(\nu)(1 - e^{-\tau_{\nu}})$$ (14-91) where $S_{i\kappa}(v)=(2hv^3/c^2)[b_i\exp(hv/kT_e)-1]^{-1}$. With these approximations we have rate equations of the form $\mathcal{A}\mathbf{n}=\mathcal{B}$ where \mathcal{A} and \mathcal{B} contain rate coefficients, line escape probabilities, and analogous continuum quantities. To solve the system, the parameters that must be specified are T_c , r_c , R, v(R), T_e , n_e , and the total number density $n_{\rm atom}$ of the species under consideration. Most of these quantities can be specified from independent considerations, and typically only T_e , n_e , and $n_{\rm atom}$ are free parameters to be determined from model-fitting. The system of statistical equilibrium equations is nonlinear because the optical depths τ_{ij} , τ_v , and the departure coefficients b_i in the continuum terms, depend upon the solution; it is necessary, therefore, to solve the system iteratively. The iteration may be effected using a Newton–Raphson procedure, which yields swift convergence. To compute line-strengths we use equation (14-83) and, in the spirit of coarse analysis, we assume that S_{ij} and τ_{ij} are constant for $r_c \leqslant r \leqslant R$, and ignore angular factors. Then the three
contributions to the line profile are constant, and are equal to (a) $R_e = (R^2/r_c^2)[S_{ij}/B_v(T_c)](1-e^{-\tau_{ij}})$ from the emission component; (b) $R_0 = -[S_{ij}/B_v(T_c)](1-e^{-\tau_{ij}})$ from the occulted material; and (c) $R_a = -(1-e^{-\tau_{ij}})$ from the absorption component. The blue half and red half of the line profile each has a width, in wavelength units, of $\Delta \lambda = \lambda v(R)/c$. Thus the equivalent width (taken positive for emission) is $$W_{\lambda} = (\lambda v/c)(1 - e^{-\tau_{ij}})\{[(2R^2/r_c^2) - 1][S_{ij}/B_v(T_c)] - 1\} \quad (14-92)$$ If occultation and absorption effects are ignored, the two terms involving "-1" in the above formula are suppressed. Equation (14-92) is only approximate, because of the assumption of homogeneity of the envelope, and could be in error by as much as a factor of two. The above results can be used to compute intensities and line strengths if S_{ij} and τ_{ij} (i.e., the level-populations) are known, or, alternatively, may be used in diagnostics to determine these quantities. The methodology developed in this section has been applied (140) in a thorough analysis of the He II spectrum of two WN6 stars: HD 192163 and HD 191765. As a first step, the total line intensities (which show neither absorption components nor occultation effects) are used to establish the level populations empirically. For the line $(u \rightarrow l)$ the total intensity is $$I_{ul} \propto \int A_{ul} h v_{ul} n_u(r) \beta_{ul}(r) dV \propto \int \eta_{ul}(r) \beta_{ul}(r) dV$$ $$\propto \int S_{ul}(r) [v_0 v(r)/c] \{1 - \exp[-\tau_{lu}(r)]\} dV \qquad (14-93)$$ where equation (14-71) was used for β_{ul} , and equations (14-67) and (14-68) for τ_{lu} . Therefore, assuming homogeneity, $$(I_{nl}/v_{nl}^{4}) = K\{1 - \exp[-\tau_{ln}(R)]\}/[(g_{n}n_{l}/g_{l}n_{n}) - 1]$$ (14-94) where K is the same for all lines. For any line that is optically thick, we can set the exponential term to zero; this is expected to be true for $\lambda 4686$ ($n=3\rightarrow n=4$). From the observed intensities, the "reduced intensities" (relative to $\lambda 4686$) $\mathcal{I}_{ul} \equiv (I_{ul}/v_{ul}^4)/(I_{43}/v_{43}^4)$ can be formed. From equation (14-94), $$\mathscr{I}_{ul} = [1 - \exp(-\tau_{lu})][(g_4 n_3/g_3 n_4) - 1]/[(g_u n_l/g_l n_u) - 1] \quad (14-95)$$ where we have set $\exp(-\tau_{34}) = 0$. Further, we can write $$\tau_{lu} = A[(n_l/g_l) - (n_u/g_u)](g_l f_{lu} \lambda)/(n_4/g_4)$$ (14-96) where 488 $$A = (\pi e^2/mc)(n_4/g_4)[R/v(R)]$$ (14-97) If we now assume that both the $\lambda 3203$ (5 \rightarrow 3) and the $\lambda 10124$ (5 \rightarrow 4) lines are also opaque, we may solve for the *numerical value* of $(g_4n_3/g_3n_4) = \mathscr{I}_{54}(1-\mathscr{I}_{53})/\mathscr{I}_{53}$, and S_{43} in each star. The three lines considered thus far are, in fact, opaque, but this need not be true for higher series members which have much smaller f-values. Suppose, however, we *presume* that all Pickeringseries line *are* opaque; then from equation (14-95) we can obtain empirical values for (g_4n_u/g_un_4) . At reasonable values of n_e and T_e , the upper levels of the He⁺ ion should become dominated by collisions, and their occupation numbers should have the LTE values $$(n_{\nu}/g_{\nu}) = n_{\rm ion} n_e \, \frac{1}{2} (h^2 / 2\pi m k T_e)^{\frac{3}{2}} \exp(\chi_{\nu}/k T_e) \tag{14-98}$$ for $u \gtrsim 10$. Because $\chi_u/kT_e \ll 1$ for $u \gg 1$, (n_u/g_u) should approach a constant value. This, however, is not found for the empirical values just obtained; but rather $(n_u/g_u) \propto (f\lambda)_{4u}$, as expected for optically thin lines because of the factor $[1-\exp(-\tau_{4u})] \approx \tau_{4u} \propto (f\lambda)_{4u}$ for $\tau_{4u} \ll 1$. We thus conclude that the upper Pickering-series lines are optically thin; this implies an upper bound on the parameter A defined in equation (14-97). By imposing the physically reasonable requirements that (n_u/g_u) (a) be a monotone decreasing function of u (i.e., no population inversions), and (b) become constant for u > 10, we may set limits on A; the results are $3 \lesssim A \lesssim 6$ for HD 192163, and $2 \lesssim A \lesssim 8$ for HD 191765. As a next step, one may use the known absolute magnitude M_n to obtain, from standard relations, the absolute continuum flux at $\lambda 5500 \text{ Å}$; if we adopt $T_c \approx 40,000^{\circ}$ K, as indicated observationally, we can then deduce $r_c \approx 13R_{\odot}$. Using the observed ratio $F_c(\lambda 4686)/F_c(\lambda 5500)$, we find $F_c(\lambda 4686)$; then using the observed value of the emission line strength R_e ($\lambda 4686$) we can find R^2S_{43} . This in turn yields $R \approx 70 R_{\odot}$ because S_{43} is already known. The ratio $(R/r_c) \approx 5-6$ is in agreement with direct interferometer measures for the WC star y^2 Vel, and also explains the absence of any occultation effects in the profiles. If we adopt $v(R) = 1000 \text{ km s}^{-1}$ from the observed linewidths, and use the known values of A and R in equation (14-97), we deduce a numerical value for (n_4/g_u) , and hence for all (n_u/g_u) , from the empirically determined ratios (g_4n_u/g_un_4) . If these values are used in the Saha equation (14-98) for $u \gtrsim 10$, and if we adopt $T_e \sim 10^5$ °K and set $n_e = 2n_i$ (i.e., a completely ionized atmosphere of helium), we find $n_e \approx 5 \times 10^{11} \text{ cm}^3$, which implies that the optical depth of the envelope in electron scattering is $\tau_e \approx n_e \sigma_e R =$ 1.5. Finally, knowing that the upper lines are optically thin, the observed excess emission in Pi 14 (which is blended with H 7) relative to Pi 15 can be used to estimate $n(H^+)/n(He^{++}) \approx n(H)/n(He) \leq 0.5$; in these stars the helium-to-hydrogen ratio is thus enhanced by a factor of 20! Having fixed r_c , T_c , R, v(R), and n_e , the rate equations can be solved for various assumed values of T_e and n(He); the results yield theoretical values of A and (n_i/g_i) . Calculations (140) were done for a 30-level atom. Good agreement with the empirical results are obtained for $n(\text{He}) \approx 2.5 \times 10^{11} \text{ cm}^{-3}$ and $T_e \approx 10^5$ °K (the fit is not unique). The calculations show that the upper levels are indeed collision dominated, and that $b_u \to 1$ for $u \gg 1$. Further, because $T_e > T_c$, it appears that a nonradiative source of energy input is required to maintain the excitation of the envelope. A second application of the methods described above has been made in an analysis of the C III line strengths (in the ultraviolet, visible, and infrared) observed in the WC 8 star γ^2 Vel (139). In this work, independent estimates could be made of the parameters r_c , T_c , R, and v(R). The values of T_e , n_e , and $n(C^{++})$ were determined by fitting the observed equivalent widths for 10 lines to theoretical widths obtained from equation (14-92), using occupation numbers from a model atom consisting of the lowest 14 terms of C^{++} . Transitions to higher levels and to the continuum were ignored; this compromises somewhat the accuracy of the upper-state populations. Good agreement with observations was obtained for $$T_e = 22,000^{\circ} \text{K}, \quad n_e = 4 \times 10^{11} \text{ cm}^{-3}, \text{ and } n(\text{C}^{++}) = 1 \times 10^9 \text{ cm}^{-3}$$ [having adopted $T_c = 30,000^{\circ} \text{K}$, $(R/r_c) = 3.6$, and $v(R) = 900 \text{ km s}^{-1}$]. The lowest four excited states are found to have a Boltzmannian distribution relative to the ground state, while the higher levels are underpopulated. Assuming that *all* the carbon is in the form C^{++} , and that all the electrons come from hydrogen, a lower bound is found for the ratio n(C)/n(H)—namely, 2.5×10^{-3} . This value exceeds the normal cosmic abundance by a factor of 8, and suggests that the carbon abundance in WC stars is indeed enhanced, and that the prominence of the carbon lines in the spectrum is a result of this enhancement. Allowing for other ions of carbon and for electrons from other sources (e.g., He) would raise the lower limit mentioned above. For γ^2 Vel, $T_e < T_c$, which does not present a compelling argument for nonradiative energy deposition, and even offers the possibility that the envelope may be in radiative equilibrium. ## 14-3 The Transfer Equation in the Fluid Frame The formulations of the transfer equation discussed in the preceeding sections of this chapter are all based in the stationary frame of the observer, who views the stellar material as moving. As we have seen, the complication in this approach is that the opacity and emissivity of the material become angle-dependent, owing to the effects of Doppler shifts and aberration of light. There results an inextricable coupling between angle and frequency that presents severe difficulties in the calculation of scattering terms with a discrete quadrature sum. It then becomes attractive to treat the transfer problem in a frame comoving with the fluid. There are two strong motivations for working in the moving frame of the material. (1) From the point of view of the transfer equation itself, there is the advantage that both the opacity and the emissivity are *isotropic* in the comoving frame. Further, in problems involving partial redistribution effects, we may use the standard *static* redistribution functions. In addition, in the calculation of scattering integrals we need consider only a frequency bandwidth broad enough to contain fully the line profile; this bandwidth is *independent* of the fluid velocity. Finally, the angle quadrature may be chosen on the basis of the *angular* distribution of the radiation alone. (2) Dynamical calculations in spherical flows (e.g., pulsation, expansion) can be handled accurately in a *Lagrangian coordinate system* (i.e., the
comoving frame). The Lagrangian equations of gas dynamics are easy to formulate, and offer many physical and computational advantages. Obviously it is desirable to be able to treat the radiation field in a closely parallel way. On the other hand, a disadvantage of the comoving-frame formulation is that present methods of solution work only for relatively simple velocity fields; otherwise it becomes too difficult to pose boundary conditions on the problem (cf. Exercise 14–12 below). In the comoving frame we shall develop both (1) the *monochromatic* equation of transfer, used for calculating, e.g., line profiles, and (2) frequency-integrated moment equations, which specify the total radiative contributions to the energy, momentum, and pressure of the gas-plus-radiation fluid. To obtain expressions describing how the relevant physical variables change between the rest and the comoving frames, Lorentz transformations are applied. Here we encounter a problem: strictly speaking, a Lorentz transformation applies only when the velocity v of one frame relative to the other is uniform and constant. But in stellar atmospheres we are concerned with situations where $\mathbf{v} = \mathbf{v}(\mathbf{r}, t)$, and hence the fluid frame is not an inertial frame. We must then imagine transformations taking place from uniformlymoving frames that *instantaneously* coincide with the moving fluid. Actually, the difficulty just mentioned introduces considerable complication into the analysis. It is easy to show that the form of the transfer equation is the same in two uniformly moving frames (i.e., the transfer equation is covariant), providing we account for the effects of Doppler shifts and aberration of photons when we calculate atomic properties. Further, it is straightforward to derive the behavior under transformation of the atomic properties themselves. But for unsteady or steady differential flows, new terms appear in the equations that account, in effect, for changes in the Lorentz transformation from one point in the medium to another; these terms can be derived by application of the differential operator $(c^{-1} \partial/\partial t + \mathbf{n} \cdot \mathbf{V})$ in the transfer equation to the transformation coefficient of the specific intensity. #### THE LOCAL FREQUENCY TRANSFORMATION Before discussing the details of transformation of the physical variables in the transfer equation, it is worthwhile to extract the essential physical flavor of the problem in simplest possible terms. A velocity field produces a Doppler shift and aberration of photons, and gives rise to advection terms describing the "sweeping up" of radiation by the moving fluid. Formally, these terms are all of order (v/c). However, in the case of line-profiles, the effect of a frequency shift Δv becomes important not when $\Delta v/v = v/c$ is significant, but rather when $\Delta v/\Delta v_{\rm D}=(v/v_{\rm th})$ is significant (i.e., of order unity); in essence, velocity-field Doppler effects are *amplified* a factor of $(c/v_{\rm th})$ by the swift variation of the line profile with frequency. To a first approximation, then, it is sufficient to consider *only Doppler shifts* and to ignore aberration and advection. If v is a frequency seen in the observer's frame, then $v_0 = v(1 - \mu v/c)$ is the corresponding comoving-frame frequency. The differential operator $\mu(\partial/\partial z)$ in the observer's frame (for a time-independent, planar atmosphere) is evaluated at constant frequency v; but if we move a distance Δz , holding v fixed, $v_0 = v_0(v, z)$ will change because v changes. Thus $(\partial/\partial z)_v \to (\partial/\partial z)_{v_0} + (\partial v_0/\partial z)_v (\partial/\partial v_0)_{z_0}$. Clearly $(\partial v_0/\partial z)_v = -(v_0\mu_0/c)(\partial v/\partial z)$, to order (v/c). Substituting into the transfer equation we thus obtain $$\mu_{0}[\partial I^{0}(z, \mu_{0}, \nu_{0})/\partial z] - [(\mu_{0}^{2}\nu_{0}/c)(\partial v/\partial z)][\partial I^{0}(z, \mu_{0}, \nu_{0})/\partial \nu_{0}]$$ $$= \eta^{0}(z, \nu_{0}) - \chi^{0}(z, \nu_{0})I^{0}(z, \mu_{0}, \nu_{0}) \quad (14-99)$$ The corresponding result for spherical geometry is $$\mu_{0} \frac{\partial I^{0}(r, \mu_{0}, \nu_{0})}{\partial r} + \frac{(1 - \mu_{0}^{2})}{r} \frac{\partial I^{0}(r, \mu_{0}, \nu_{0})}{\partial \mu_{0}} - \left(\frac{\nu_{0} v}{cr}\right) \left[(1 - \mu_{0}^{2}) + \mu_{0}^{2} \left(\frac{d \ln v}{d \ln r}\right) \right] \times \frac{\partial I^{0}(r, \mu_{0}, \nu_{0})}{\partial \nu_{0}} = \eta^{0}(r, \nu_{0}) - \chi^{0}(r, \nu_{0}) I^{0}(r, \mu_{0}, \nu_{0}) \quad (14-100)$$ Exercise 14-8: Derive equation (14-100). Several points should be noticed about equations (14-99) and (14-100). (1) The variables I, μ , and ν are now all in the comoving frame, and in that frame γ and η are isotropic. (2) It is clear that any scattering terms need be evaluated only on a (small) definite range of v_0 . (3) The transfer equation is now a partial differential equation. The frequency derivative accounts for the change, with position, of a given photon frequency vo in the comoving frame, as seen by an external observer—or, equivalently, for the frequency shift of photons as seen in the comoving frame. In particular, suppose the atmosphere is expanding so that $\partial v/\partial z$ (or $\partial v/\partial r$) is greater than zero; we then see that photons are always systematically redshifted as they transfer from one point in the atmosphere to another, as expected intuitively. Note that in planar geometry only velocity gradients matter; in spherical geometry a net effect occurs even when v(r) = constant, because divergence of the rays still implies a transverse velocity gradient in this case. (4) From a mathematical point of view, equations (14-99) and (14-100) yield a hyperbolic system of equations [cf. (181, Chap. 5; 530, Chaps. 9 and 12; 462, Chap. 4)], and pose an initial-boundary-value problem requiring boundary conditions in the spatial coordinate and initial conditions in frequency to effect their solution. We shall discuss a numerical method for solving these equations below. Equations (14-99) and (14-100) contain all the *essential* physics of the *transfer* problem, but there are additional angle-dependent terms that have been omitted by our neglect of aberration and advection; to obtain these terms (which are important for the *fluid equations*), we must now develop the transformation properties of the relevant variables. #### LORENTZ TRANSFORMATION OF THE TRANSFER EQUATION We consider here transformations between the rest system, specified by the four coordinates $(x^1, x^2, x^3, x^4) = (x, y, z, ict)$, and the fluid system (x_0, y_0, z_0, ict_0) , moving relative to the rest system with a constant velocity v in the z-direction. This choice for v is the one most physically important to our work, and simplifies the calculation; generalizations for an arbitrary orientation of v are given in (621). Changes from one system to the other are effected by means of a Lorentz transformation, which corresponds to a proper rotation in four-dimensional space-time. Physically the Lorentz transformation is chosen in such a way that the equation for the wavefront of a light wave is of the same form (covariant) in both systems (i.e., such that the velocity of light is always v0 in both reference frames). The mathematical form of the transformation is $x_0^{\alpha} = L_{\beta}^{\alpha} x^{\beta}$ ($\alpha = 1, ..., 4$) where the Einstein convention of summing over repeated indices is employed. The transformation can be represented [cf., e.g., (392, 29; 253, 191)] by the matrix $$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \gamma & i\beta\gamma \\ 0 & 0 & -i\beta\gamma & \gamma \end{pmatrix}$$ (14-101) where $\gamma \equiv (1-v^2/c^2)^{-\frac{1}{2}}$ and $\beta \equiv (v/c)$. Note that **L** is *Hermitian*; i.e., **L** = **L**[†] where "†" denotes the *adjoint* (i.e., conjugate transpose). Note also that $\mathbf{L}^{-1} = \mathbf{L}^{\mathrm{T}}$ where "T" denotes the ordinary transpose. In matrix notation, $\mathbf{x}_0 = \mathbf{L}\mathbf{x}$, where \mathbf{x}_0 and \mathbf{x} are *column vectors*. Clearly $\mathbf{x} = \mathbf{L}^{-1}\mathbf{x}_0 = \mathbf{L}^{\mathrm{T}}\mathbf{x}_0$; equivalently, $x^{\alpha} = (L^{-1})_{\beta}^{\alpha}x_0^{\beta}$. The Lorentz transformation can be applied to arbitrary four-vectors and to four-tensors of rank two. The transformation rules of tensor analysis assure that these quantities are covariant under the Lorentz transformation (because it is a proper rotation in four space); hence physical laws written in terms of four-vectors and four-tensors are automatically covariant. The transformation of an arbitrary contravariant four-vector \mathbf{A} [e.g., a space-time increment $(\Delta x, \Delta y, \Delta z, ic\Delta t)^T$] is defined such that $A_0^{\alpha} = (\partial x_0^{\alpha}/\partial x^{\beta})A^{\beta} = L_{\beta}^{\alpha}A^{\beta}$, or, in matrix notation, $\mathbf{A}_0 = \mathbf{L}\mathbf{A}$, $\mathbf{A} = \mathbf{L}^{-1}\mathbf{A}_0$. The transformation 494 of a covariant four-vector \mathbf{B} (e.g., the gradient operator $[\partial/\partial x, \partial/\partial y, \partial/\partial z, (ic)^{-1} \partial/\partial t]^{\mathrm{T}})$ is defined such that $(B_0)_{\alpha} = (\partial x^{\beta}/\partial x_0^{\alpha})B_{\beta} = (L^{-1})_{\alpha}^{\beta}B_{\beta}$ —which, in matrix notation, is equivalent to $\mathbf{B}_0^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{L}^{-1}$ or, transposing, $\mathbf{B}_0 = (\mathbf{L}^{-1})^{\mathrm{T}}\mathbf{B} = \mathbf{L}\mathbf{B}$; also, $\mathbf{B} = \mathbf{L}^{-1}\mathbf{B}_0$. Finally, the transformation of $C^{\alpha\beta}$, a contravariant tensor of rank two, is defined such that $C_0^{\alpha\beta} = L_{\gamma}^{\alpha}L_{\delta}^{\beta}C^{\gamma\delta}$, which (in matrix
notation) is equivalent to $\mathbf{C}_0 = \mathbf{L}\mathbf{C}\mathbf{L}^{\mathrm{T}} = \mathbf{L}\mathbf{C}\mathbf{L}^{-1}$ (i.e., the transformation is a similarity transformation); also we have $\mathbf{C} = \mathbf{L}^{\mathrm{T}}\mathbf{C}_0\mathbf{L} = \mathbf{L}^{-1}\mathbf{C}_0\mathbf{L}$. (Note: The word covariant describing the four-vector \mathbf{B} is used in a different sense from that used two sentences earlier in relation to physical laws, where it meant "of the same form"; this double meaning, however deplorable, is standard usage.) Equipped with the transformation rules given above, we can now derive a number of important results. First, applying the transformation to the coordinates themselves it is easy to show that the measurement of intervals perpendicular to the z-axis is unaffected by the relative motion of the two frames—i.e., $\Delta x_0 = \Delta x$ and $\Delta y_0 = \Delta y$. But an object of length Δz at rest in the fixed frame will be measured by an observer in the moving frame to have a length $\Delta z_0 = \gamma^{-1} \, \Delta z \tag{14-102a}$ This result is the celebrated *Lorentz–Fitzgerald contraction effect*. Likewise a time-interval Δt measured in the fixed frame will be measured by an observer in the moving frame to be $$\Delta t_0 = \gamma \, \Delta t \tag{14-102b}$$ This is the *time-dilation effect*. From these results we conclude that a space-time volume element is *invariant*; i.e., $$dV \, dt = dV_0 \, dt_0 \tag{14-103}$$ a result we shall use repeatedly below. Next, applying the Lorentz transformation to the four-gradient (a covariant vector), we obtain $$\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{1}{ic} \frac{\partial}{\partial t}\right) = \left[\frac{\partial}{\partial x_0}, \frac{\partial}{\partial y_0}, \gamma \left(\frac{\partial}{\partial z_0} - \frac{\beta}{c} \frac{\partial}{\partial t_0}\right), \frac{\gamma}{ic} \left(\frac{\partial}{\partial t_0} - c\beta \frac{\partial}{\partial z_0}\right)\right]$$ (14-104) Let us now turn to the transformation of the radiation field and transferrelated variables [further discussion can be found in (521; 551; 621)]. For any particle, the four-momentum is $P^z = (p_x, p_y, p_z, iE/c)^T$, where p_j is the jth component of the ordinary momentum, and E is the total energy of the particle. If the particle has rest mass m_0 , then $p^2c^2 + (m_0c^2)^2 = E^2$, where $p^2 = p_x^2 + p_y^2 + p_z^2$. Photons have $m_0 = 0$ and E = hv, hence p = hv/c, and $$P^{\alpha} = (h\nu/c)(n_x, n_y, n_z, i)^{\mathrm{T}} = (h\nu/c)(\mathbf{n}, i)^{\mathrm{T}}$$ (14-105) Here **n** is the direction of photon propagation, and $(n_x, n_y, n_z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. Applying a Lorentz transformation to equation (14-105) we find $$(v_0 n_x^0, v_0 n_v^0, v_0 n_z^0, iv_0) = [v n_x, v n_y, v \gamma (n_z - \beta), iv \gamma (1 - n_z \beta)]$$ (14-106) which is equivalent to $$[\phi_0; (1 - \mu_0^2)^{\frac{1}{2}}; \mu_0; \nu_0]$$ $$= [\phi; \gamma^{-1} (1 - \mu^2)^{\frac{1}{2}} / (1 - \mu\beta); (\mu - \beta) / (1 - \mu\beta); \nu\gamma(1 - \mu\beta)] \quad (14-107)$$ The inverse transformation gives $$[(1-\mu^2)^{\frac{1}{2}};\mu;\nu] = [\gamma^{-1}(1-\mu_0^2)^{\frac{1}{2}}/(1+\mu_0\beta);(\mu_0+\beta)/(1+\mu_0\beta);\nu_0\gamma(1+\mu_0\beta)]$$ (14-108) Equations (14-106) through (14-108) contain the familiar results for Dopplershift and aberration; the classical results can be derived by keeping only terms of O(v/c), (i.e., by setting $\gamma \equiv 1$). From equations (14-107) and (14-108), it is easily seen that $dv_0 = (v_0/v) dv$ and $d\mu_0 = (v/v_0)^2 d\mu$; hence, using $d\omega = \sin\theta \ d\theta \ d\phi = d\mu \ d\phi$, we find $$v dv d\omega = v_0 dv_0 d\omega_0 \tag{14-109}$$ To establish the transformation properties of the specific intensity we calculate (621) the *number* of photons passing through an area dS oriented perpendicular to the z-axis, in frequency interval dv, into solid angle $d\omega$, propagating at angle $\theta = \cos^{-1} \mu$ to the z-axis, in a time dt. We suppose that dS is stationary in the rest frame; then $N = [I(\mu, v)/hv] d\omega dv dS \cos \theta dt$. This must be the same number that would be counted passing through the same surface element by an observer in the comoving frame, namely $N_0 = [I^0(\mu_0, v_0)/hv_0] d\omega_0 dv_0 \times (dS \cos \theta_0 dt_0 + c^{-1} dS v dt_0)$; here the first term gives the number that would have been counted if dS had been stationary in the comoving frame, and the second gives the density of photons (I^0/hv_0c) times the volume $(dS \ v \ dt_0)$ swept out by dS in a time dt_0 . Using equations (14-102), (14-108), and (14-109), we find $$I(\mu, \nu) = (\nu/\nu_0)^3 I^0(\mu_0, \nu_0) \tag{14-110}$$ Next, consider the emissivity. The *number* of photons emitted from a given volume, into a specified solid angle and frequency-interval, in a definite time interval, must be the same in both frames, hence $$(\eta_v d\omega dv dV dt)/hv = (\eta_v^0 d\omega_0 dv_0 dV_0 dt_0)/hv_0,$$ which implies that $$\eta(\mu, \nu) = (\nu/\nu_0)^2 \eta^0(\nu_0) \tag{14-111}$$ (where we have noted explicitly that η is isotropic in the fluid frame). To be able to establish energy balance in any frame, we must be able to balance emission losses with absorptions; hence, from equations (14-110) and (14-111), we conclude that $$\chi(\mu, \nu) = (\nu_0/\nu)\chi^0(\nu_0) \tag{14-112}$$ Finally, between two frames moving *uniformly* with respect to one another, the differential operator in the transfer equation transforms, using equation (14-104) and (14-106), to $$c^{-1}(\partial/\partial t) + (\mathbf{n} \cdot \mathbf{\nabla}) = (v_0/v)[c^{-1}(\partial/\partial t_0) + (\mathbf{n}^0 \cdot \mathbf{\nabla}^0)]$$ (14-113) We can now show that the transfer equation is, in fact, covariant, for we see from equations (14-110) through (14-113) that $$c^{-1}(\partial I_{\mathbf{v}}/\partial t) + (\mathbf{n} \cdot \nabla)I_{\mathbf{v}} = \eta_{\mathbf{v}} - \chi_{\mathbf{v}}I_{\mathbf{v}}$$ (14-114a) transforms to $$\begin{split} (\nu_0/\nu) \big[c^{-1} (\hat{\sigma}/\hat{\sigma} t_0) \, + \, (\mathbf{n}^0 \cdot \boldsymbol{\nabla}^0) \big] \big[(\nu/\nu_0)^3 I^0(\mu_0, \, \nu_0) \big] \\ &= \, (\nu/\nu_0)^2 \big[\eta^0(\nu_0) \, - \, \chi^0(\nu_0) I^0(\mu_0, \, \nu_0) \big] \end{split}$$ which, if (v/v_0) is a *constant*—as it will be if the two frames are in *uniform* motion with respect to one another (and *only* then)—can be written as $$\lceil c^{-1}(\partial/\partial t_0) + (\mathbf{n}^0 \cdot \nabla^0) \rceil I^0(\mu_0, \nu_0) = \eta^0(\nu_0) - \chi^0(\nu_0) I^0(\mu_0, \nu_0)$$ (14-114b) Obviously equations (14-114a) and (14-114b) are of the same form. Two points must be stressed. (a) Despite the similar form of the two equations, equation (14-114b) (at rest relative to the fluid) is actually much simpler because of the isotropy of $\eta^0(v_0)$ and $\chi^0(v_0)$. (b) The reduction of equation (14-114a) to equation (14-114b) is not valid if the two frames do not move uniformly with respect to each other; i.e., this equation does not apply in, say, an expanding or pulsating atmosphere. One approach to coping with the shortcoming mentioned above is to leave the streaming terms described by the differential operator, and the radiation field itself, in the observer's frame, but to use first-order expansions to write the source-sink terms in the comoving frame (521, Chap. 6). Thus, using equations (14-111), (14-112), and (14-107) we can write $$\left[c^{-1}(\partial/\partial t) + (\mathbf{n} \cdot \nabla)\right] I(\mu, \nu) = \eta^{0}(\nu) - \chi^{0}(\nu) I(\mu, \nu) + (\mathbf{n} \cdot \mathbf{v}/c) \left\{2\eta^{0}(\nu) - \nu(\partial\eta^{0}/\partial\nu) + \left[\chi^{0}(\nu) + \nu(\partial\chi^{0}/\partial\nu)\right] I(\mu, \nu)\right\}$$ (14-115) This approach may be adequate for *continua*, where the frequency derivatives are well defined and nearly constant, but will not be accurate enough for *lines* where the changes in η_{ν} and χ_{ν} are so swift that a first-order expansion is not sufficient. A complication in application of equation (14-115) is that both even and odd terms in μ appear on the righthand side, so that the usual reduction to a second-order transfer equation is not possible; a satisfactory numerical scheme can, nevertheless, be devised using a staggered mesh [see, e.g., (460)]. #### TRANSFORMATION OF MOMENTS OF THE RADIATION FIELD The total energy density, energy flux, and radiation pressure in the field are specified by the frequency-integrated quantities [cf. equations (1-7), (1-19), (1-28)] $$E_R(\mathbf{r},t) \equiv c^{-1} \int_0^\infty d\nu \oint d\omega \ I(\mathbf{r},\mathbf{n},\nu,t)$$ (14-116a) $$\mathscr{F}(\mathbf{r},t) \equiv \int_0^\infty d\mathbf{v} \oint d\omega \ I(\mathbf{r},\mathbf{n},\mathbf{v},t)\mathbf{n}$$ (14-116b) $$P(\mathbf{r}, t) \equiv c^{-1} \int_0^\infty d\nu \oint d\omega \ I(\mathbf{r}, \mathbf{n}, \nu, t) \mathbf{n} \mathbf{n}$$ (14-116c) These are related by the frequency-integrated moment equations [cf. equations (2-75) and (2-68)] $$c^{-2}(\partial \mathcal{F}/\partial t) + \nabla \cdot \mathsf{P} = c^{-1} \int_0^\infty dv \oint d\omega [\eta(\mathbf{r}, v, t) - \chi(\mathbf{r}, v, t) I(\mathbf{r}, v, t)] \mathbf{n}$$ (14-117a) and and $$(\partial E_R/\partial t) + \mathbf{\nabla} \cdot \mathbf{\mathscr{F}} = \int_0^\infty d\mathbf{v} \oint d\omega [\eta(\mathbf{r}, \mathbf{v}, t) - \chi(\mathbf{r}, \mathbf{v}, t)I(\mathbf{r}, \mathbf{v}, t)]$$ (14-117b) As written, equations (14-117) are already covariant. One way this may easily be seen is to exploit the results of electromagnetic theory in which one finds [see, e.g., (331, Chap. 12; 386, Chap. 4; or 494, Chap. 21)] that the momentum-energy conservation laws of electrodynamics can be written in the covariant form $$\partial
T^{\alpha\beta}/\partial \chi^{\beta} = -f^{\alpha} \tag{14-118}$$ Here $T^{\alpha\beta}$ is the *stress-energy tensor* of the electromagnetic field, and f^{α} is a four-vector giving, per unit volume, the three components of the *Lorentz forces* of the field on charged matter, and (i/c) times the rate of work done by the field on charges and currents. The stress-energy tensor is a contravariant four-tensor of rank two, namely $$T = \begin{pmatrix} -T^{M} & ic\mathbf{G} \\ ic\mathbf{G} & -W \end{pmatrix}$$ (14-119) 499 where T^M is the Maxwell stress tensor (cf. §1-5), G is the momentum density, and W is the energy density of the field. We have seen in Chapter 1 that a one-to-one correspondence between electromagnetic field quantities and moments of the radiation field can be made; specifically, $T^{M} = -P$, $G = c^{-2}\mathcal{F}$, and $W = E_{R}$. We thus conclude that the stress-energy tensor of the radiation field must be $$R = \begin{pmatrix} P & ic^{-1}\mathscr{F} \\ ic^{-1}\mathscr{F} & -E_R \end{pmatrix} = c^{-1} \begin{pmatrix} \int dv \oint d\omega & I\mathbf{n} \\ i \int dv \oint d\omega & I\mathbf{n} \\ -\int dv \oint d\omega & I \end{pmatrix}$$ (14-120) We can see by inspection that R is actually a four-tensor merely by noting that it is formed from the outer product of the four-vector $(v\mathbf{n}, iv)$ [recall equation (14-105)] with itself, times the invariant [see equations (14-109) and (14-110)] (I $dv d\omega/v^2$), integrated over all angles and frequencies. Similarly, the Lorentz force can be identified with the rate at which momentum is transferred from radiation to matter, and the rate of work with the rate of energy input of the radiation into the matter. Thus we conclude that we can write $$\mathbf{g}_{R} = c^{-1} \left[\int dv \oint d\omega \left(\chi I - \eta \right) \mathbf{n}, i \int dv \oint d\omega \left(\chi I - \eta \right) \right] \quad (14-121)$$ as a four-vector. This can again be seen to be the case, for \mathbf{g}_R is composed of the four-vector $(v\mathbf{n}, iv)$ times the invariants $(\chi I \ dv \ d\omega)/v$ or $(\eta \ dv \ d\omega)/v$. The four-divergence of a four-tensor is automatically a four-vector, hence $$\partial R^{\alpha\beta}/\partial x^{\beta} = -g_{R}^{\alpha} \tag{14-122}$$ is, in fact, a covariant representation of the conservation relations for the radiation field. One can see immediately that equation (14-122) produces equations (14-117a) and (14-117b), when the latter is multiplied by (-ic), and that these equations are, therefore, covariant between frames moving *uniformly* with respect to one another; for nonuniform motion, additional terms will appear in the comoving-frame moment equations. In working with the equations of radiation hydrodynamics (§15-3), it will be useful to have transformations accurate to O(v/c) of E_R , \mathscr{F} , and P (or, equivalently, J, H, and K) between the fixed and comoving frames. These are most easily obtained by using equations (14-109), (14-110), and (14-107), and expanding to first order in (v/c). Thus, setting $\gamma \equiv 1$, we find readily that $I_v^0 dv_0 d\omega_0 = (v_0/v)^2 I_v dv d\omega \approx (1 - 2\beta\mu) I_v dv d\omega$, from which it follows that $$J^0 = J - 2\beta H (14-123a)$$ Similarly, $I_v^0 \mu_0 dv_0 d\omega_0 = (\mu - \beta)(1 - \mu\beta)I_v dv d\omega \approx [\mu - \beta(1 + \mu^2)]I_v dv d\omega$, and $I_v^0 \mu_0^2 dv_0 d\omega_0 = (\mu - \beta)^2 I_v dv d\omega \approx (\mu^2 - 2\mu\beta)I_v dv d\omega$, from which it follows that $$H^0 = H - \beta(J + K) \tag{14-123b}$$ and $$K^0 = K - 2\beta H (14-123c)$$ The inverse transformations yield $$(J, H, K) = [J^0 + 2\beta H^0, H^0 + \beta (J^0 + K^0), K^0 + 2\beta H^0]$$ (14-124) Notice that these transformations are valid only for the frequency-integrated moments. Exercise 14-9: Derive equations (14-123) and (14-124) by applying a Lorentz transformation to the stress-energy tensor [equation (14-120)] and expanding the result to O(v/c). #### THE COMOVING-FRAME EQUATION OF TRANSFER The full transformation of the equation of transfer (including the differential operator) for a nonuniform velocity field can be done rigorously using covariant differentiation (399; 135; 278); however this approach requires considerable familiarity with tensor calculus. We shall instead use a simple first-order expansion method that yields results correct to O(v/c). The equations of transfer that we consider are (in planar and spherical geometry, respectively) $$\begin{split} \left[c^{-1} (\partial/\partial t) + \mu(\partial/\partial r) \right] \left[(v/v_0)^3 I^0(r_0, \mu_0, v_0, t_0) \right] \\ &= (v/v_0)^2 \left[\eta^0(v_0) - \chi^0(v_0) I^0(r_0, \mu_0, v_0, t_0) \right] \end{split} \tag{14-125a}$$ and $$[c^{-1}(\partial/\partial t) + \mu(\partial/\partial r) + r^{-1}(1 - \mu^2)(\partial/\partial \mu)][(v/v_0)^3 I^0(r_0, \mu_0, v_0, t_0)]$$ = $(v/v_0)^2 [\eta^0(v_0) - \chi^0(v_0) I^0(r_0, \mu_0, v_0, t_0)]$ (14-125b) We consider one-dimensional flows, and apply a *local* Lorentz transformation to a frame that *instantaneously* coincides with the moving fluid. We shall ignore terms of $O(v^2/c^2)$, and set $\gamma \equiv 1$. We then have $$r_0 = r \tag{14-126a}$$ $$ct_0(r,t) = ct - c^{-1} \int_0^r v(r',t) dr'$$ (14-126b) Equation (14-126a) states that space increments will be judged to be the same by observers in both frames (i.e., no Lorentz contraction). Equation (14-126b) accounts for the finite propagation velocity of light and accounts for the classical retardation effect. [The significance of this term can be understood more fully by the following thought-experiment. Suppose clocks at a number of stations around some point r_1 in the rest frame are initially synchronized. Then suppose that at some time t_1 all these stations simultaneously emit pulses of light received by (a) an observer at rest at r_1 , and (b) an observer at r_1 moving with velocity v. Observer (a) will receive the pulses synchronously, while observer (b) receives pulses from directions $r > r_1$ sooner than from $r < r_1$. He thus concludes that the emission times (t_0) were earlier for $r > r_1$ than for $r < r_1$, as is shown by equation (14-126b) (for simplicity consider the case of v = constant). The retardation effect is, in one sense, not a relativistic term, but merely acknowledges a finite light-propagation speed; its significance from a relativistic viewpoint is, of course, profound. To evaluate the derivatives in equations (14-125) the chain rule is applied. $$\begin{pmatrix} \frac{\partial}{\partial r} \end{pmatrix} \equiv \begin{pmatrix} \frac{\partial}{\partial r} \end{pmatrix}_{\mu\nu t} = \begin{pmatrix} \frac{\partial r_0}{\partial r} \end{pmatrix}_{\mu\nu t} \frac{\partial}{\partial r_0} + \begin{pmatrix} \frac{\partial \mu_0}{\partial r} \end{pmatrix}_{\mu\nu t} \frac{\partial}{\partial \mu_0} \\ + \begin{pmatrix} \frac{\partial v_0}{\partial r} \end{pmatrix}_{\mu\nu t} \frac{\partial}{\partial v_0} + \begin{pmatrix} \frac{\partial t_0}{\partial r} \end{pmatrix}_{\mu\nu t} \frac{\partial}{\partial t_0} \qquad (14-127a)$$ $$\begin{pmatrix} \frac{\partial}{\partial \mu} \end{pmatrix} \equiv \begin{pmatrix} \frac{\partial}{\partial \mu} \end{pmatrix}_{r\nu t} = \begin{pmatrix} \frac{\partial r_0}{\partial \mu} \end{pmatrix}_{r\nu t} \frac{\partial}{\partial r_0} + \begin{pmatrix} \frac{\partial \mu_0}{\partial \mu} \end{pmatrix}_{r\nu t} \frac{\partial}{\partial \mu_0} \\ + \begin{pmatrix} \frac{\partial v_0}{\partial \mu} \end{pmatrix}_{r\nu t} \frac{\partial}{\partial v_0} + \begin{pmatrix} \frac{\partial t_0}{\partial \mu} \end{pmatrix}_{r\nu t} \frac{\partial}{\partial t_0} \qquad (14-127b)$$ $$\begin{pmatrix} \frac{\partial}{\partial t} \end{pmatrix} \equiv \begin{pmatrix} \frac{\partial}{\partial t} \end{pmatrix}_{r\mu\nu} = \begin{pmatrix} \frac{\partial r_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial r_0} + \begin{pmatrix} \frac{\partial \mu_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial \mu_0} \\ + \begin{pmatrix} \frac{\partial v_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial v_0} + \begin{pmatrix} \frac{\partial \mu_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial t_0} \\ + \begin{pmatrix} \frac{\partial v_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial v_0} + \begin{pmatrix} \frac{\partial \mu_0}{\partial t} \end{pmatrix}_{r\mu\nu} \frac{\partial}{\partial t_0} \qquad (14-127c)$$ We use the first-order expressions $(v/v_0) = 1 + \beta \mu_0$, $(v_0/v) = 1 - \beta \mu$, $\mu_0 = (\mu - \beta)(1 - \beta \mu)^{-1}$, and $\mu = (\mu_0 + \beta)(1 + \beta \mu_0)^{-1}$, and make the additional approximation that fluid accelerations (which are identically zero for steady flow) are so small that the change in any velocity during the time of a photon flight, over a mean-free-path, is negligible compared to the velocity itself. We then neglect $(\partial v/\partial t)$ and derivatives of the form $(\partial x_0/\partial t)$ for $x_0 = r_0$, μ_0 , or v_0 , and retain only $(\partial t_0/\partial t) \equiv 1$. The remaining coefficients in equations (14-127), to O(v/c), are easily derived from equations (14-126) and the first-order relations written above. One finds $$\left(\frac{\partial}{\partial r}\right)_{\mu\nu t}(r_0, \mu_0, \nu_0, t_0) = \left[1, c^{-1}(\mu_0^2 - 1)(\partial v/\partial r_0), -c^{-1}\mu_0\nu_0(\partial v/\partial r_0), -\beta/c\right]$$ (14-128a) $$\left(\frac{\partial}{\partial \mu}\right)_{ryt}(r_0, \mu_0, \nu_0, t_0) = [0, (1 + 2\mu_0 \beta), -\nu_0 \beta, 0]$$ (14-128b) Starting with equation (14-125a), rewritten with the approximation mentioned above as $$\begin{split} \{(v/v_0)[c^{-1}(\partial/\partial t) + \mu(\partial/\partial r)] + 3\mu[\partial(v/v_0)/\partial r]\}I^0(r_0, \mu_0, v_0, t_0) \\ &= \eta^0(v_0) - \chi^0(v_0)I^0(r_0, \mu_0, v_0, t_0), \end{split}$$ substituting from equations
(14-127) and (14-128) and the first-order expressions for (v/v_0) , etc., and retaining only terms of first-order in (v/c), one obtains: $$\left[\frac{1}{c}\frac{\partial}{\partial t_{0}} + \left(\mu_{0} + \frac{v}{c}\right)\frac{\partial}{\partial r_{0}} + \frac{\mu_{0}(\mu_{0}^{2} - 1)}{c}\left(\frac{\partial v}{\partial r_{0}}\right)\frac{\partial}{\partial \mu_{0}} - \frac{v_{0}\mu_{0}^{2}}{c}\left(\frac{\partial v}{\partial r_{0}}\right)\frac{\partial}{\partial v_{0}} + \frac{3\mu_{0}^{2}}{c}\left(\frac{\partial v}{\partial r_{0}}\right)\right]I^{0}(r_{0}, \mu_{0}, v_{0}, t_{0})$$ $$= \eta^{0}(v_{0}) - \chi^{0}(v_{0})I^{0}(r_{0}, \mu_{0}, v_{0}, t_{0}) \qquad (14-129)$$ For spherical geometry we have the additional term $$\begin{split} (\nu_0/\nu)^2 r^{-1} (1 \ - \ \mu^2) (\partial/\partial\mu) \big[(\nu/\nu_0)^3 I^0 \big] \\ &= (\nu/\nu_0) r^{-1} (1 \ - \ \mu^2) (\partial I^0/\partial\mu) \ + \ 3 r^{-1} (1 \ - \ \mu^2) \big[\partial(\nu/\nu_0)/\partial\mu \big] I^0 \end{split}$$ Again expanding to first order in (v/c), and using the result from equation (14-107) that $v^2(1-\mu^2)=v_0^2(1-{\mu_0}^2)$, and also $\left[\partial(v/v_0)/\partial\mu\right]=(v/c)$, we obtain for these additional terms $$r_0^{-1}(1-\mu_0^2)\{[(1+\beta\mu_0)(\partial/\partial\mu_0)-\beta\nu_0(\partial/\partial\nu_0)]+3\beta\}I^0$$ Thus the comoving-frame transfer equation to order $\mathrm{O}(v/c)$ in spherical geometry is $$\left\{ \frac{1}{c} \frac{\partial}{\partial t_0} + \left(\mu_0 + \frac{v}{c} \right) \frac{\partial}{\partial r_0} + \frac{(1 - \mu_0^2)}{r_0} \left[1 + \frac{\mu_0 v}{c} \left(1 - \frac{d \ln v}{d \ln r_0} \right) \right] \frac{\partial}{\partial \mu_0} - \left(\frac{v_0 v}{c r_0} \right) \left[1 - \mu_0^2 \left(1 - \frac{d \ln v}{d \ln r_0} \right) \right] \frac{\partial}{\partial v_0} - \left(\frac{3v}{c r_0} \right) \left[1 - \mu_0^2 \left(1 - \frac{d \ln v}{d \ln r_0} \right) \right] \right\} I^0(r_0, \mu_0, v_0, t_0) \\ = \eta^0(v_0) - \chi^0(v_0) I^0(r_0, \mu_0, v_0, t_0) \tag{14-130}$$ Exercise 14-10: Verify equations (14-129) and (14-130) in detail. 502 subsection. Equations (14-129) and (14-130) are the comoving-frame equations including all terms of O(v/c), and were first derived consistently by Castor (135). The time-derivative written in these equations is, in essence, still in the fixed frame (though it allows for retardation); the Lagrangian time derivative, which follows the motion of a fluid element (cf. §15-1) consists of the two terms $(D/Dt) = (\partial/\partial t) + (v/c)(\partial/\partial r)$, the second term being the advection term. For steady flows, the terms in $(\partial/\partial t)$ are identically zero. The equations just derived are obviously fairly complicated. As we shall see, it is important to retain all of the terms in the moment equations. However, for a solution of the transfer equation itself, it is sufficient for most astrophysical flows [as verified by a detailed calculation (446)] to retain only the frequency-derivative terms because of the effective amplification of these terms by (c/v_{th}) , as discussed earlier. In this limit, equation (14-129) for steady flow reduces to equation (14-99), while equation (14-130) reduces to (14-100). We shall describe a numerical method for solving equation (14-100) in the next For problems of radiative transfer involving partial redistribution, it is useful to derive frequency-dependent moment equations from equations (14-129) and (14-130). For spherical geometry we obtain $$\frac{1}{c} \frac{\partial J_{v}^{0}}{\partial t} + \frac{v}{c} \frac{\partial J_{v}^{0}}{\partial r} + \frac{1}{r^{2}} \frac{\partial (r^{2}H^{0})}{\partial r} + \left(\frac{v}{cr}\right) (3J_{v}^{0} - K_{v}^{0}) + \frac{1}{c} (J_{v}^{0} + K_{v}^{0}) \frac{\partial v}{\partial r} + \left(\frac{v}{cr}\right) \frac{\partial}{\partial v_{0}} \left[v_{0}(3K_{v}^{0} - J_{v}^{0})\right] - \frac{1}{c} \left(\frac{2v}{r} + \frac{\partial v}{\partial r}\right) \frac{\partial (v_{0}K_{v}^{0})}{\partial v_{0}} = \eta^{0}(v_{0}) - \chi^{0}(v_{0})J_{v}^{0} \tag{14-131a}$$ for the zero-order moment, and for the first-order moment $$\frac{1}{c}\frac{\partial H_{v}^{0}}{\partial t} + \frac{v}{c}\frac{\partial H_{v}^{0}}{\partial r} + \frac{\partial K_{v}^{0}}{\partial r} + \frac{1}{r}(3K_{v}^{0} - J_{v}^{0}) + \frac{2}{c}\left(\frac{v}{r} + \frac{\partial v}{\partial r}\right)H_{v}^{0} + \left(\frac{v}{cr}\right)\frac{\partial}{\partial v_{0}}\left[v_{0}(3N_{v}^{0} - H_{v}^{0})\right] - \frac{1}{c}\left(\frac{2v}{r} + \frac{\partial v}{\partial r}\right)\frac{\partial(v_{0}N_{v}^{0})}{\partial v_{0}} = -\chi^{0}(v_{0})H_{v}^{0} \tag{14-131b}$$ where $$N_{\nu}^{0} \equiv \frac{1}{2} \int_{-1}^{1} I^{0}(r, \mu_{0}, \nu_{0}, t) \mu_{0}^{3} d\mu_{0}$$ (14-132) and, for brevity, we have written $J_{\nu}^{0} \equiv J^{0}(r, \nu_{0}, t)$, etc., and suppressed the suffix "0" on r and t. Again, for practical transfer calculations with steady flow, it is sufficient to replace equations (14-131a) and (14-131b) with $$r^{-2} [\hat{\sigma}(r^2 H_v^0)/\partial r] - a[\hat{\sigma}(J_v^0 - K_v^0)/\partial v_0 + b(\partial K_v^0/\partial v_0)] = \eta^0(v_0) - \chi^0(v_0)J_v^0$$ (14-133a) and $$(\partial K_{v}^{0}/\partial r) + r^{-1}(3K_{v}^{0} - J_{v}^{0}) - a[\partial (H_{v}^{0} - N_{v}^{0})/\partial v_{0} + b(\partial N_{v}^{0}/\partial v_{0})]$$ = $-\chi^{0}(v_{0})H_{v}^{0}$ (14-133b) where $a \equiv (v_0 v/cr)$ and $b \equiv (d \ln v/d \ln r)$ [see (447)]. For problems of radiation hydrodynamics we require the frequency-integrated moment equations, which follow immediately from equations (14-131): $$\begin{split} (\partial E_{R}{}^{0}/\partial t) + v(\partial E_{R}{}^{0}/\partial r) + r^{-2} \big[\partial (r^{2}\mathscr{F}^{0})/\partial r \big] \\ + (v/r)(3E_{R}{}^{0} - p_{R}{}^{0}) + (\partial v/\partial r)(E_{R}{}^{0} + p_{R}{}^{0}) \\ = 4\pi \int_{0}^{\infty} \big[\eta^{0}(v_{0}) - \chi^{0}(v_{0})J_{v}{}^{0} \big] \, dv_{0} \quad (14\text{-}134a) \\ c^{-2} (\partial \mathscr{F}^{0}/\partial t) + (v/c^{2})(\partial \mathscr{F}^{0}/\partial r) + (\partial p_{R}{}^{0}/\partial r) + (3p_{R}{}^{0} - E_{R}{}^{0})/r \end{split}$$ $+ (2v/c^2r)[1 + (d \ln v/d \ln r)]\mathcal{F}^0 = -c^{-1} \int_0^\infty \chi^0(v_0)\mathcal{F}_v^0 dv_0 \quad (14-134b)$ where $E_R^0 = (4\pi/c) \int J^0(v_0) \, dv_0 \equiv (4\pi/c) J^0$ and $p_R^0 \equiv (4\pi/c) K^0$. In planar geometry, equations completely analogous to (14-131) through (14-134) can also be written down. Equations (14-134) contain additional velocity-dependent terms on the lefthand side compared to their counterparts [cf. equations (14-117)] in the fixed frame. But this is more than adequately compensated by the tremendous simplification of the righthand side, where the isotropy of the opacity and emissivity in the comoving frame allows the integrals to be expressed in terms of the moments themselves, instead of as double integrals over the specific intensity. The only question remaining to be faced is: "How do we actually solve the comoving-frame transfer equation for $I^0(r, \mu_0, v_0)$ and its moments?" #### SOLUTION FOR SPHERICALLY SYMMETRIC FLOWS Let us now consider methods for solving the comoving-frame transfer equations in the limit that only Doppler shifts are taken into account—i.e., equations of the form of (14-99) and (14-100). As was mentioned earlier, the transfer equation in the comoving frame is a partial differential equation, which was first obtained by McCrea and Mitra (414). Chandrasekhar (156; 157) obtained solutions of these equations for planar geometry, with a linear velocity law, a two-stream description of the radiation field, and strictly coherent scattering; generalizations of this approach are given in (1; 2; 3; 276, 199). Lucy (403) solved the equations in planar geometry, with coherent scattering, in the high-velocity limit, by ignoring the spatial derivative and treating the equation as an ordinary differential equation in frequency alone. An integral-equation method for planar geometries has also been devised (574); this method is restricted to linear velocity laws and hence is not useful for realistic models. A general and flexible numerical method developed by Noerdlinger and Rybicki (478) solves the equations in planar geometry using a Feautrier-type elimination scheme; this method can treat problems involving partial redistribution. In a ray-by-ray solution for spherical geometry, the number of angles must be of the same order as the number of depth-points, and a Feautrier-type solution becomes costly. If complete redistribution is assumed, we can construct an efficient Rybicki-type solution (444), as will be described here; for partial redistribution we use moment equations [e.g., equations (14-133)], thereby eliminating the angle-variable, in which case a Feautrier-type solution again becomes practical (447). In spherical geometry we adopt the (p, z) coordinate system introduced in 87-6. Then, along a ray specified by constant p, equation (14-100) becomes $$\pm \left[\partial I^{\pm}(z, p, \nu) / \partial z \right] - \overline{\gamma}(z, p) \left[\partial I^{\pm}(z, p, \nu) / \partial \nu \right] = \eta(r, \nu) - \chi(r, \nu) I^{\pm}(z, p, \nu)$$ (14-135) where $$\widetilde{\gamma}(z, p) \equiv \left[vv(r)/cr\right] \left[1 - \mu^2 (d \ln v/d \ln r)\right]$$ (14-136) and $r = (p^2 + z^2)^{\frac{1}{2}}$, $\mu = (z/r)$. In equations (14-135) and (14-136) we have suppressed the suffix "0" for notational simplicity (and continue to do so henceforth in this chapter), but it is to be stressed that all quantities are evaluated in the comoving frame. Now introducing the optical depth along the ray, $d\tau(z, p, v) = -\chi(z, p, v) dz$, and the variables $$u(z, p, v) \equiv \frac{1}{2} [I^{+}(z, p, v) + I^{-}(z, p, v)]$$ (14-137) and $$v(z, p, v) \equiv \frac{1}{2} [I^{+}(z, p, v) - I^{-}(z, p, v)]$$ (14-138) we can obtain from equation (14-135) the system $$\left[\partial u(z, p,
v)/\partial \tau(z, p, v)\right] + \gamma(z, p, v)\left[\partial v(z, p, v)/\partial v\right] = v(z, p, v) \quad (14-139)$$ and $$\left[\frac{\partial v(z, p, v)}{\partial \tau(z, p, v)}\right] + \gamma(z, p, v)\left[\frac{\partial u(z, p, v)}{\partial v}\right] = u(z, p, v) - S(z, p, v)$$ (14-140) where $\gamma(z,p,\nu) \equiv \widetilde{\gamma}(z,p)/\chi(z,p,\nu)$, and the source function is assumed to have the form for an equivalent-two-level-atom with complete redistribution—i.e., $S(z,p,\nu) = S[r(z,p),\nu] = \alpha(r,\nu)\overline{J}(r) + \beta(r)$. The coefficients α and β contain the thermalization parameter ε , the opacity ratio χ_c/χ_t , and the profile function, while $$\overline{J}(r) \equiv \int_{v_{\min}}^{v_{\max}} dv \; \phi(v) \int_{0}^{1} d\mu \; u[z(r, \mu), p(r, \mu), v] \qquad (14-141)$$ In equation (14-141), v_{\min} and v_{\max} are chosen to contain the whole line profile as seen in the comoving frame. Note particularly in equations (14-137) and (14-138) that, because we are working in the comoving frame, we can now average I^+ and I^- at a given value of v, in contrast to the situation in an observer's-frame formulation [cf. equations (14-23) and (14-24)]. Spatial boundary conditions are now required. At the outer radius r = R $I^- \equiv 0$; therefore $u \equiv v$, hence $$\left[\partial u(z, p, \nu)/\partial \tau(z, p, \nu)\right]_{z_{\text{max}}} + \gamma(z_{\text{max}}, p, \nu)\left[\partial u(z_{\text{max}}, p, \nu)/\partial \nu\right] = u(z_{\text{max}}, p, \nu)$$ (14-142) At the plane of symmetry z = 0, we can now write $v(0, p, v) \equiv 0$, hence for rays that do not intersect the core, $$\left[\partial u(z, p, \nu)/\partial \tau(z, p, \nu)\right]_{z=0} = 0 \tag{14-143}$$ For rays that intersect the core (i.e., $p \le r_c$) we (a) apply the diffusion approximation for an *opaque* core (stellar surface), which specifies v, or (b) set $v \equiv 0$ (by symmetry) for a *hollow* core (nebular case). In addition, an initial condition in frequency is required. For an expanding atmosphere [i.e., one in which v>0 and (dv/dr)>0], it is obvious that the high-frequency edge of the line profile (in the comoving frame) cannot intercept line photons from any other point in the atmosphere, because they will all be systematically red-shifted; any photon incident at the high-frequency edge must be a continuum photon. To specify the required initial condition we may therefore either (a) solve equations (14-139) and (14-140) in the continuum, omitting the frequency-derivative terms (which yields the standard second-order system) to obtain $u(z, p, v_{\text{max}}) = u_{\text{continuum}}$, or (b) fix the derivative $(\partial u/\partial v)_{v_{\text{max}}}$ to any prespecified value given by the slope of the continuum; in particular, the choice $(\partial u/\partial v) \equiv 0$ leads to equations identical to option (a) just mentioned. The system is now discretized using the same grids $\{r_d\}$, $\{p_i\}$, $\{z_{d_i}\}$ as were employed in §7-6 and §14-1. We now choose the frequency grid $\{v_n\}$ $(n=1,\ldots,N)$ in order of decreasing values $(v_1>v_2>\cdots>v_N)$ because the initial condition is posed at the highest frequency. We replace equation (14-141) with a quadrature sum $$\overline{J}(r_d) = \sum_{n=1}^{N} w_n \sum_{i=1}^{I_d} a_{di} \phi(r_d, v_n) u[z(r_d, p_i), p_i, v_n]$$ (14-144) Equations (14-139) and (14-140) are replaced with difference approximations $$(u_{d+1, in} - u_{din})/\Delta \tau_{d+\frac{1}{2}, in} = v_{d+\frac{1}{2}, in} + \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}}(v_{d+\frac{1}{2}, in} - v_{d+\frac{1}{2}, i, n-1})$$ (14-145) and $$(v_{d+\frac{1}{2}, in} - v_{d-\frac{1}{2}, in})/\Delta \tau_{din} = u_{din} - S_{din} + \delta_{di, n-\frac{1}{2}}(u_{din} - u_{di, n-1})$$ (14-146) where u is presumed to be defined on the mesh-points $z_d = z(r_d, p_i)$, and $u_{din} \equiv u(z_d, p_i, \nu_n)$, while v is presumed to be defined on the interstices $z_{d\pm\frac{1}{2}} \equiv \frac{1}{2}(z_d + z_{d\pm1})$ and $v_{d\pm\frac{1}{2}, in} \equiv v(z_{d\pm\frac{1}{2}}, p_i, \nu_n)$. Further, we have defined $$\chi_{d\pm 4, in} \equiv \frac{1}{2}(\chi_{d\pm 1, in} + \chi_{din}) \tag{14-147}$$ $$\Delta \tau_{d \pm \frac{1}{2}, i, n} \equiv \chi_{d \pm \frac{1}{2}, in} | z_d - z_{d \pm 1} | \tag{14-148}$$ $$\Delta \tau_{din} \equiv \frac{1}{2} (\Delta \tau_{d+\frac{1}{2}, in} + \Delta \tau_{d-\frac{1}{2}, in}) \tag{14-149}$$ and $$\delta_{di, n-\frac{1}{2}} \equiv \gamma_{din}/(\nu_{n-1} - \nu_n) \tag{14-150}$$ Similar difference equations may be written to represent the boundary conditions (444). In equations (14-145) and (14-146), an *implicit* frequency differencing is used to assure stability (444; 462; 530). Equation (14-145) can be solved analytically for $v_{d+\frac{1}{2}, in}$ to yield $$v_{d+\frac{1}{2}, in} = \left\{ \left[(u_{d+1, in} - u_{din}) / \Delta \tau_{d+\frac{1}{2}, in} \right] + \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}} v_{d+\frac{1}{2}, i, n-1} \right\} / (1 + \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}})$$ (14-151) Organizing the solution into vectors that specify the depth-variation along a particular ray at a given frequency—i.e., $$\mathbf{u}_{in} \equiv (u_{1in}, u_{2in}, \dots, u_{D_i, in})^{\mathrm{T}}$$ (14-152a) and $$\mathbf{v}_{in} \equiv (v_{+,in}, \dots, v_{D_i - \frac{1}{2}, in})^{\mathrm{T}}$$ (14-152b) equation (14-151) can be written in the form $$\mathbf{v}_{i,n} = \mathbf{G}_{i,n}\mathbf{u}_{i,n} + \mathbf{H}_{i,n}\mathbf{v}_{i,n-1} \tag{14-153}$$ where **G** is bidiagonal and **H** is diagonal. Equations (14-151) can be used to eliminate $v_{d\pm\frac{1}{2},in}$ from (14-146); we then obtain a set of second-order equations for u_{din} , namely $$\{(u_{d+1, in} - u_{din})/[\Delta \tau_{d+\frac{1}{2}, in}(1 + \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}})]$$ $$- (u_{din} - u_{d-1, in})/[\Delta \tau_{d-\frac{1}{2}, in}(1 + \delta_{d-\frac{1}{2}, i, n-\frac{1}{2}})]\}/\Delta \tau_{din}$$ $$= (1 + \delta_{di, n-\frac{1}{2}})u_{din} - S_{din} - \delta_{di, n-\frac{1}{2}}u_{di, n-1}$$ $$+ [\delta_{d-\frac{1}{2}, i, n-\frac{1}{2}}(1 + \delta_{d-\frac{1}{2}, i, n-\frac{1}{2}})^{-1}v_{d-\frac{1}{2}, i, n-1}$$ $$- \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}}(1 + \delta_{d+\frac{1}{2}, i, n-\frac{1}{2}})^{-1}v_{d+\frac{1}{2}, i, n-1}]/\Delta \tau_{din}$$ $$(14-154)$$ Adding the boundary conditions to equation (14-154) we obtain the system $$\mathbf{T}_{in}\mathbf{u}_{in} + \mathbf{U}_{in}\mathbf{u}_{i, n-1} + \mathbf{V}_{in}\mathbf{v}_{i, n-1} + \mathbf{W}_{in}\mathbf{J} = \mathbf{X}_{in}$$ (14-155) where T_{in} is tridiagonal, U_{in} and W_{in} are diagonal, V_{in} is bidiagonal, and X_{in} is a vector. Exercise 14-11: Verify equations (14-151) and (14-154), and sketch the forms of the G, U, and V matrices. To solve the complete system, we choose a definite ray, specified by a given p_i , and carry out a frequency-by-frequency integration procedure, with n ranging from 1 to N. This is effected by noting that the initial condition in frequency implies that \mathbf{U}_{i1} , \mathbf{V}_{i1} and \mathbf{H}_{i1} are all exactly zero; thus we can obtain expressions of the form $\mathbf{u}_{i1} = \mathbf{A}_{i1} - \mathbf{B}_{i1}\mathbf{J}$ and $\mathbf{v}_{i1} = \mathbf{C}_{i1} - \mathbf{D}_{i1}\mathbf{J}$, where $\mathbf{A}_{i1} = \mathbf{T}_{i1}^{-1}\mathbf{X}_{i1}$ is a vector, $\mathbf{B}_{i1} = \mathbf{T}_{i1}^{-1}\mathbf{W}_{i1}$ is a matrix, $\mathbf{C}_{i1} = \mathbf{G}_{i1}\mathbf{A}_{i1}$, and $\mathbf{D}_{i1} = \mathbf{G}_{i1}\mathbf{B}_{i1}$. Similar substitutions are carried out for successive values of n, to yield $$\mathbf{u}_{in} = \mathbf{A}_{in} - \mathbf{B}_{in}\mathbf{\overline{J}} \tag{14-156}$$ and $$\mathbf{v}_{in} = \mathbf{C}_{in} - \mathbf{D}_{in}\mathbf{\overline{J}}$$ (14-157) where $$\mathbf{A}_{in} = \mathbf{T}_{in}^{-1}(\mathbf{X}_{in} - \mathbf{U}_{in}\mathbf{A}_{i, n-1} - \mathbf{V}_{in}\mathbf{C}_{i, n-1})$$ (14-158) $$\mathbf{B}_{in} = \mathbf{T}_{in}^{-1}(\mathbf{W}_{in} - \mathbf{U}_{in}\mathbf{B}_{i, n-1} - \mathbf{V}_{in}\mathbf{D}_{i, n-1})$$ (14-159) $$\mathbf{C}_{in} = \mathbf{G}_{in}\mathbf{A}_{in} + \mathbf{H}_{in}\mathbf{C}_{i, n-1}$$ (14-160) and $$\mathbf{D}_{in} = \mathbf{G}_{in}\mathbf{B}_{in} + \mathbf{H}_{in}\mathbf{D}_{i,\,n-1}$$ (14-161) Each result, of the form of equation (14-156), for every frequency v_n , along every ray p_i , is substituted into equation (14-144) to obtain a final system for \overline{J} of the form $\left(\mathbf{I} + \sum_{i,n} \mathbf{F}_{in} \mathbf{B}_{in}\right) \mathbf{\bar{J}} = \sum_{i,n} \mathbf{F}_{in} \mathbf{A}_{in}$ (14-162) where the **F**'s contain the quadrature weights. The solution of this final system yields $\overline{\bf J}$, and hence S(r,v), and u(z,p,v) and v(z,p,v) from equations (14-156) and (14-157). Knowledge of u(z,p,v) implies knowledge of $u(r,\mu,v)$, so it is clear that we can calculate $J^0(r,v)$ and $K^0(r,v)$ in the comoving frame; similarly we can calculate the flux $H^0(r,v)$ from $v(r,\mu,v)$. Thus we obtain a complete solution for the radiation field and its moments in the comoving frame. The number of operations required to obtain A_{in} and B_{in} in equation (14-156) is proportional to D_i^2 , so summing over all frequencies on all rays one obtains $T_S = cN D^3 + c' D^3$ as an estimate of the computing time required. Note that this time is linear in the number of frequencies. A similar formulation can be written down for planar geometry; in this case we dispense with the rays and use M fixed angles $\{\mu_i\}$. In planar geometry the computing time required for the solution is $T_P = cNM D^2 + c' D^3$. For partial redistribution in spherical geometry one would use a Feautrier solution of the moment equations (447), obtaining the Eddington factors from a ray-by-ray formal solution with a given estimate of the source function. For partial redistribution in planar
geometry the method of Noerdlinger and Rybicki (478) is applicable. Exercise 14-12: Consider flows with monotonic velocity fields [i.e., (dv/dr) everywhere ≥ 0 or everywhere ≤ 0]. (a) In planar geometry show that the choice of the initial condition in frequency is unique and depends only on the sign of (dv/dr) [cf. (451) for a discussion of non-monotonic velocity fields]. (b) In spherical geometry show that unique conditions can be found only if [v > 0, (dv/dr) > 0] or [v < 0, (dv/dr) < 0], and that, owing to projection effects along a ray at the plane of symmetry (z = 0), velocity distributions of the form [v > 0, (dv/dr) < 0] or [v < 0, (dv/dr) > 0], though monotone in the radial direction, produce non-monotonic fields along tangent rays. The method outlined above has been used to calculate source functions and line profiles in idealized model atmospheres (444). Each atmosphere is characterized by an outer radius R (in units of $r_c=1$), a continuum optical depth T_c (at $r=r_c$), a static line optical depth T_l , opacities $\chi_L \propto r^{-2}$ and $\chi_c \propto r^{-2}$, and constant Planck function B=1. The two-level-atom thermalization parameter was set to $\varepsilon=2/T_l$. The velocity field was chosen to be either (a) $dv/d\tau=$ constant, or (b) $v(r)=v_0$ [tan⁻¹(ar+b) – tan⁻¹ (a+b)], which gives a sharp rise at the point $r_v=-(b/a)$, and has constant terminal FIGURE 14-11 Line source functions in expanding atmospheres for various values of outer radius R (in units of r_c), and terminal velocity $v_{\rm max}$ (in thermal velocity units). For all models $T_c=2$, $T_l=10^3$, B=1, and $c=2\times 10^{-3}$. Abscissa: log of static line optical depth. The dashed line gives the mean intensity in the continuum. The curves are labeled with $v_{\rm max}=v(R)$. From (444), by permission. velocity at large r. Form (b) is a caricature of stellar-wind solutions. Results for the source function in several models are shown in Figure 14-11; for these models $T_l = 10^3$, $T_c = 2$, $r_v = (R+1)/2$, B=1, and $\varepsilon = 2 \times 10^{-3}$. We see that the basic effect of the velocity gradient at depth is to increase the escape probability; hence the source function drops below its static value and, for large values of v_{max} , S_l approaches J_c , the mean intensity ## Stellar Winds FIGURE 14-12 Line profiles (emergent fluxes integrated over the disk) from expanding spherical atmospheres. Ordinate: flux relative to continuum flux. Abscissa: $\Delta v/\Delta v_D$. For all models, R=300, $T_c=2$, B=1, $c=2/T_L$, and $(dv/d\tau_1)=-100/T_L$. From (444), by permission. in the continuum (dashed line). Near the surface, the enhanced escape probability competes with interception of continuum radiation by the Doppler-shifted line. In planar geometries the latter effect dominates, and produces an *increase* in S_i ; in very extended atmospheres the former effect dominates, and S_i decreases. Flux profiles, as seen by an external observer, are shown in Figure 14-12 for models with parameters specified in the figure caption. Characteristic P-Cygni profiles are obtained with both the emission intensity and the absorption depth increasing with increasing optical depth. The solution of the comoving-frame transfer equation by the method described above is convenient, efficient, and easily generalized to realistic stellar models. The method can also be extended to apply to multilevel atoms, and should permit the computation of line spectra for realistic model atoms in expanding atmospheres. Accurate theoretical spectra, when compared with observation, should assist in the determination of the physical structure of the atmospheres of stars with expanding envelopes and stellar winds. The outermost atmospheric layers of many stars are in a state of continuous rapid expansion, and the material lost from a star in such a flow is called a stellar wind. These winds have a wide range of properties. At one extreme are very massive flows (mass-loss rate $\sim 10^{-5}~M_{\odot}/{\rm year}$) that are optically thick in spectral lines (and even in some continua) and produce emission lines and P-Cygni profiles; at the other are relatively tenuous flows such as that of the Sun, which is optically thin and inconsequential in terms of massloss ($10^{-14} \, M_{\odot}/\text{year}$), but still of great importance to the solar angular momentum balance. In Chapter 14 we discussed the problem of spectrum formation in a given flow; here we shall examine the dynamics of the wind and analyze questions of momentum and energy balance. We shall find that there are two primary mechanisms for producing stellar winds. (1) In stars with hydrogen convection zones (such as the Sun), the outer atmosphere is a mechanically-heated corona of very high temperature. Here we find that the corona cannot establish a static pressure balance with the interstellar medium, but must inevitably expand supersonically, driving the flow by tapping the thermal energy of the gas. (2) In early-type high-luminosity stars, the radiation field is so intense that momentum imparted to the gas by photons drives the material in a transsonic flow. (There is also some observational evidence that there may be a corona near the surface of these stars, and our theoretical models for their winds are only *preliminary*.) Stellar winds have important implications for many astrophysical problems. In some cases, the mass-loss rate is so large as to produce a significant change in the star's mass on a thermonuclear-evolution time-scale, and hence directly to affect the star's evolution track. In other cases, the possibility of noncatastrophic mass-loss over its entire lifetime may permit a star to evolve to a white-dwarf configuration without becoming a supernova. Stellar winds act as brakes on stellar rotation, and hence strongly influence the angular momentum content of stars. Further, stellar winds represent important sources of mass- and energy-input into the interstellar medium, and thus help to determine its composition and thermodynamic state. In this book we shall consider only winds from single, isolated, stars. Stellar winds can also occur in binaries, where they may induce rapid mass-exchange that radically alters the course of stellar evolution, or, in some cases, produce exotic objects such as X-ray sources; although space does not permit a discussion of these phenomena, the material presented here is basic to a study of the more complex cases just mentioned, and provides a background for an approach to the literature. # 15-1 The Equations of Hydrodynamics for an Ideal Compressible Fluid In this section we shall develop briefly the equations of hydrodynamics for an ideal (nonviscous) compressible fluid, which is taken to be a perfect gas. We shall ignore ionization effects, and assume that the material is already essentially completely ionized. No attempt will be made to discuss the equations in great depth, as numerous excellent texts and monographs on the subject of hydrodynamics are readily available (385; 692; 104; 490). For expository convenience, the equations will be derived in Cartesian coordinates when explicit reference to a coordinate system is required, then restated in vector—tensor notation, and finally rewritten in spherical coordinates (assuming spherical symmetry) for application to the stellar wind problem. #### KINEMATICS Let us first consider some of the basic kinematic properties of the fluid. We consider the gas to consist of a mixture of particles of different species (e.g., protons, electrons, heavy ions). Each species k has a mass m_k , and a space and velocity distribution function $f_k(\mathbf{r}, \mathbf{V}, t)$, defined such that $f_k d\mathbf{x}_1$ $dx_2 dx_3 dV_1 dV_2 dV_3$ gives the number of particles of type k in the volume element $(\mathbf{r}, \mathbf{r} + \mathbf{dr}) = [(x_1, x_1 + dx_1), (x_2, x_2 + dx_2), (x_3, x_3 + dx_3)]$, with velocities on the range $$(\mathbf{V}, \mathbf{V} + \mathbf{dV}) = [(V_1, V_1 + dV_1), (V_2, V_2 + dV_2), (V_3, V_3 + dV_3)]$$ at time t. The plasma is assumed to be chemically homogeneous, so that the relative numbers of particles of different species are the same throughout the gas. The velocity distribution is characterized physically in terms of macroscopic flow velocities and a microscopic thermal distribution; the former describe the average motions of particles (and hence the bulk fluid motion) as seen in a fixed laboratory frame, while the latter gives the random individual particle motions relative to the average. We assume that the Coulomb collision rate in the plasma is so large that (a) there is no drift of any species relative to any other, and (b) on the microscopic level there is perfect equipartition of energy at each point, so that all species have the same thermal distrubtion specified by a unique temperature $T(\mathbf{r})$. Further, the microscopic velocity distribution is assumed to be isotropic. The number density (cm $^{-3}$) of particles of species k is given by $$n_k(\mathbf{r}, t) \equiv \int_{-\infty}^{\infty} dV_1 \int_{-\infty}^{\infty} dV_2 \int_{-\infty}^{\infty} dV_3 f_k(\mathbf{r}, \mathbf{V}, t)$$ (15-1) The mass density of species k is $m_k n_k(\mathbf{r}, t)$, and the total density (gm cm⁻³) is $$\rho(\mathbf{r},t) = \sum_{k} m_k n_k(\mathbf{r},t)$$ (15-2) The average velocity (i.e., the fluid-flow velocity) in the ith direction is $$n_k \langle V_i \rangle_k \equiv \int_{-\infty}^{\infty} dV_1 \int_{-\infty}^{\infty} dV_2 \int_{-\infty}^{\infty} dV_3 f_k(\mathbf{r}, \mathbf{V}, t) V_i$$ (15-3) As mentioned above, $\langle V_i \rangle_k$ is taken to be the same for all species, hence the subscript may be omitted. The full velocity component V_i of any particular particle may now be written as $V_i = \langle V_i \rangle + V_i'$, where V_i' is the random thermal velocity in the *i*th direction. Clearly $\langle V_i'
\rangle \equiv 0$. The complete *fluid velocity* is $$v(\mathbf{r}, t) = \langle V_1 \rangle \mathbf{i} + \langle V_2 \rangle \mathbf{j} + \langle V_3 \rangle \mathbf{k}$$ $$\equiv v_1(\mathbf{r}, t) \mathbf{i} + v_2(\mathbf{r}, t) \mathbf{j} + v_3(\mathbf{r}, t) \mathbf{k}$$ (15-4) The motion of the fluid results in mass transport and the *mass flux* is given by $\sum_{k} m_{k} n_{k} (\langle V_{1} \rangle \mathbf{i} + \langle V_{2} \rangle \mathbf{j} + \langle V_{3} \rangle \mathbf{k}) = \left(\sum_{k} m_{k} n_{k}\right) \mathbf{v} = \rho \mathbf{v}$ (15-5) Similarly, the particles carry momentum, and the rate of transport of the ith component of momentum, across a surface oriented perpendicular to the ith direction, by particles of species k, is $$\Pi_{ij}^{\ k}(\mathbf{r},t) = m_k \int_{-\infty}^{\infty} dV_1 \int_{-\infty}^{\infty} dV_2 \int_{-\infty}^{\infty} dV_3 f_k(\mathbf{r},\mathbf{V},t) V_i V_j = m_k \int_{-\infty}^{\infty} dV_1 \int_{-\infty}^{\infty} dV_2 \int_{-\infty}^{\infty} dV_3 f_k(\mathbf{r},\mathbf{V},t) (v_i + V_i') (v_j + V_j') = m_k n_k(\mathbf{r},t) (v_i v_j + v_i \langle V_j' \rangle_k + v_j \langle V_i' \rangle_k + \langle V_i' V_j' \rangle_k) = m_k n_k(\mathbf{r},t) (v_i v_j + \langle V_i' V_j' \rangle_k)$$ (15-6) The quantity $\langle V_i'V_j'\rangle_k$ is the average of the *i*th and *j*th components of the random thermal velocity, and because the thermal distribution is isotropic and the individual components are uncorrelated, $$\langle V_i' V_i' \rangle_k = \langle (V_i')^2 \rangle_k \, \delta_{ij} = (kT/m_k) \, \delta_{ij} \tag{15-7}$$ Hence $$\Pi_{ij}^{\ k} = m_k n_k v_i v_j + (n_k kT) \, \delta_{ij} = m_k n_k v_i v_j + p_k \, \delta_{ij}$$ (15-8) where p_k is the partial pressure from species k. Summing over all species, the total momentum flux tensor is given by $$\Pi_{ij} = \left(\sum_{k} m_k n_k\right) v_i v_j + \left(\sum_{k} p_k\right) \delta_{ij} = \rho v_i v_j + p \, \delta_{ij} \tag{15-9}$$ where p is the total gas pressure. Finally, there are two useful (and conceptually rather different) schemes for describing the changes that occur in the fluid as a result of material motions. As an external observer views the fluid, the natural description of its properties will be to write $\alpha(x_1, x_2, x_3, t)$ for any property α . The variation of α , as a function of time and position, is described in terms of a time derivative $(\partial/\partial t)$ computed at fixed (x_1, x_2, x_3) , and space derivatives $(\partial/\partial x_i)$ evaluated at a fixed t. This system is called the Eulerian description. Alternatively, imagine that we follow the motion of a fluid element, consisting of a definite sample of material; this system is called the Lagrangian description. The time variation of the properties of a Lagrangian fluid element is described in terms of the fluid-frame time derivative (D/Dt) (also known as the "Lagrangian", "total", or "substantial" derivative). The relationship of the Lagrangian derivative to derivatives in the Eulerian frame may be obtained as follows. The derivative $(D\alpha/Dt)$ is defined as the limit, as $\Delta t \to 0$, of $[\alpha(t + \Delta t) - \alpha(t)]/\Delta t$, where α is measured in the fluid frame at times t and $t + \Delta t$, at (in general) two different positions: r, and $r + \Delta r = r + v \Delta t$. Allowing for the change in position of the fluid element we have $$\alpha(t + \Delta t) = \alpha(\mathbf{r}, t) + \Delta t \left[(\partial \alpha / \partial t)_{\mathbf{r}} + \sum_{i} (\partial \alpha / \partial x_{i})_{t} v_{i} \right]$$ $$= \alpha(\mathbf{r}, t) + \Delta t \left[(\partial \alpha / \partial t)_{\mathbf{r}} + (\mathbf{v} \cdot \nabla) \alpha \right]$$ It thus follows that for any α (scalar or vector) $$(D\alpha/Dt) = (\partial \alpha/\partial t) + (\mathbf{v} \cdot \nabla)\alpha \tag{15-10}$$ The Lagrangian system is particularly advantageous for time-dependent one-dimensional (planar or spherically symmetric) flows, while the Eulerian system has advantages in complicated geometrices. For steady flows [i.e., all properties constant in time as viewed by an external observer, so that $(\partial/\partial t) \equiv 0$], one usually employs the Eulerian system. #### THE EQUATION OF CONTINUITY Consider a fixed volume element $d\tau$ in the fluid. If we demand overall mass conservation, then the rate of decrease of the mass in $d\tau$ is given by the net mass flux out of the element through the surface S enclosing the element. That is, $$\frac{\partial}{\partial t} \int \rho \ d\tau = -\oint_{S} (\rho \mathbf{v}) \cdot \mathbf{dS} = -\int \mathbf{\nabla} \cdot (\rho \mathbf{v}) \ d\tau \tag{15-11}$$ where the second equality follows from the divergence theorem. The equation written above is true for an arbitrary element $d\tau$, and hence the integrands must be equal; therefore we have the equation of continuity $$(\partial \rho/\partial t) + \mathbf{\nabla} \cdot (\rho \mathbf{v}) = 0 \tag{15-12}$$ or, in view of equation (15-10), $$(D\rho/Dt) + \rho \nabla \cdot \mathbf{v} = 0 \tag{15-13}$$ Equation (15-12) was also derived in §5-4 from the non-LTE rate equations [cf. equation (5-50)]. For steady flow, $(\partial/\partial t) \equiv 0$, hence $$\mathbf{\nabla} \cdot (\rho \mathbf{v}) = 0 \tag{15-14}$$ For a one-dimensional spherical flow, equation (15-12) becomes $$(\partial \rho/\partial t) + r^{-2} [\partial (r^2 \rho v)/\partial r] = 0$$ (15-15) which, for steady flow implies $$4\pi r^2 \rho v = \text{constant} = \dot{\mathcal{M}} \tag{15-16}$$ Here \vec{M} is the mass-loss rate through an entire spherical surface and v denotes the velocity in the radial direction. Exercise 15-1: Show that for any physical variable α (scalar or vector) the equation of continuity implies that $$\rho(D\alpha/Dt) = \partial(\rho\alpha)/\partial t + \nabla \cdot (\rho\alpha \mathbf{v}) \tag{15-17}$$ #### MOMENTUM EQUATIONS The momentum density (i.e., momentum per unit volume) in the flow is ρv . If we again consider a fixed volume element $d\tau$, we may equate the time rate of change of the momentum in $d\tau$ to the sum of the losses from the momentum flux through the surface S enclosing $d\tau$, and the gains from the force per unit volume f acting on the material in $d\tau$. That is, $$\frac{\partial}{\partial t} \left(\int \rho \mathbf{v} \, d\tau \right) = - \oint_{S} \mathbf{\Pi} \cdot \mathbf{dS} + \int \mathbf{f} \, d\tau$$ $$= \int (\mathbf{f} - \mathbf{V} \cdot \mathbf{\Pi}) \, d\tau \tag{15-18}$$ where the divergence theorem has again been employed. As the element $d\tau$ is arbitrary, we conclude that $$\partial(\rho \mathbf{v})/\partial t = -\mathbf{\nabla} \cdot \mathbf{\Pi} + \mathbf{f} \tag{15-19}$$ Substituting for Π from equation (15-9) we have $$\left[\partial(\rho \mathbf{v})/\partial t\right] + \mathbf{\nabla} \cdot (\rho \mathbf{v} \mathbf{v}) = -\mathbf{\nabla} p + \mathbf{f}$$ (15-20) In view of equation (15-17), we can rewrite equation (15-20) to obtain the equations of motion $$\rho(D\mathbf{v}/Dt) = \rho[(\partial \mathbf{v}/\partial t) + (\mathbf{v} \cdot \nabla)\mathbf{v}] = -\nabla p + \mathbf{f}$$ (15-21) For a spherically symmetric one-dimensional flow with a gravity force $f_r = -(G\mathcal{M}\rho/r^2)$, equation (15-21) becomes $$\rho(\partial v/\partial t) + \rho v(\partial v/\partial r) = -(\partial p/\partial r) - (G\mathcal{M}\rho/r^2)$$ (15-22) For steady flow the first term of equation (15-22) vanishes. #### ENERGY EQUATION The statement of energy conservation for an element of gas is conveniently given by the first law of thermodynamics, which equates the change in the specific (i.e., per unit mass) internal energy, de, plus the work done by the gas pressure p when the specific volume changes by an amount $d(1/\rho)$, to the amount of heat per unit mass added to the element, da. That is. $$de + p d(1/\rho) = dq \tag{15-23}$$ Imagine that these changes occur as we follow the motion of a Lagrangian fluid element for a time Δt , and assume that heat exchange with the surroundings occurs by means of conduction only (other sources and sinks—e.g., radiation and mechanical energy dissipation—being neglected) with a conductive flux \mathbf{q}_c , which yields a rate of energy loss per unit mass of $(1/\rho) \nabla \cdot \mathbf{q}_c$. Then equation (15-23) yields the gas energy equation $$\rho\{(De/Dt) + p[D(1/\rho)/Dt]\} = -\nabla \cdot \mathbf{q}_c$$ (15-24) Normally the conductive flux is written as $\mathbf{q}_c = -\kappa(\nabla T)$ where κ is the thermal conductivity of the material. From the equation of continuity, one sees that $\rho[D(1/\rho)/Dt] = \nabla \cdot \mathbf{v}$; hence equation (15-24) can be written in the alternative form $$\rho(De/Dt) + p(\nabla \cdot \mathbf{v}) = -\nabla \cdot \mathbf{q}_c \qquad (15-25)$$ Now, from the momentum equation, a statement of mechanical energy conservation can be derived by taking the dot product of equation (15-21) with v, to find $$\rho \left[D(\frac{1}{2}v^2)/Dt \right] + (\mathbf{v} \cdot \mathbf{\nabla})p = \mathbf{v} \cdot \mathbf{f}$$ (15-26) Adding equations (15-25) and (15-26), and noting that $\nabla \cdot (a\mathbf{b}) = (\mathbf{b} \cdot \nabla)a + \nabla \nabla$ $a(\mathbf{V} \cdot \mathbf{b})$, we find a total energy equation $$\rho \lceil D(\frac{1}{2}v^2 + e)/Dt \rceil + \nabla \cdot (p\mathbf{v}) = \mathbf{v} \cdot \mathbf{f} - \nabla \cdot \mathbf{q}_c$$ (15-27) Applying equation (15-17) we may write instead $$\left[\partial(\frac{1}{2}\rho v^2 + \rho e)/\partial t\right] + \nabla \cdot \left[\left(\frac{1}{2}\rho v^2 + \rho e + p\right)v + \mathbf{q}_c\right] = \mathbf{v} \cdot \mathbf{f}$$ (15-28) For one-dimensional spherically-symmetric flow equation (15-28) becomes $$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho v^2 + \rho e \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \rho v \left(\frac{1}{2} v^2 + e + \frac{p}{\rho}
\right) - r^2 \kappa \left(\frac{\partial T}{\partial r} \right) \right] = -\frac{G \mathcal{M} \rho v}{r^2}$$ (15-29) For steady spherically symmetric flow $$\frac{\partial}{\partial r} \left[r^2 \rho v(\frac{1}{2}v^2 + h) - r^2 \kappa \left(\frac{\partial T}{\partial r} \right) \right] + (r^2 \rho v)(G\mathcal{M}/r^2) = 0$$ (15-30) where $h \equiv e + (p/\rho)$ is the specific enthalpy. Recalling that $(r^2 \rho v) = \text{constant}$, we may integrate equation (15-30) to obtain the total energy integral $$(4\pi r^2 \rho v) \left[\frac{1}{2} v^2 + h - (G\mathcal{M}/r) \right] - (4\pi r^2) \kappa (\partial T/\partial r) = C \qquad (15-31)$$ Equation (15-31) states that the total energy flux through a spherical surface (consisting of the flux of kinetic energy, gas enthalpy, potential energy, and heat conduction) is a constant in a steady flow. #### SOUND WAVES When a compressible fluid suffers a small impulsive disturbance, an oscillatory motion of small amplitude (consisting of alternating compressions and rarefactions) is generated and propagates through the medium. These oscillations are sound waves, and their characteristic speed is the speed of sound. Suppose the medium is planar and homogeneous, and originally at rest with an ambient density ρ_0 , and pressure p_0 . Write the perturbed values of density and pressure as $\rho = \rho_0 + \rho_1$ and $p = p_0 + p_1$, respectively, where it is assumed that $\rho_1 \ll \rho_0$ and $p_1 \ll p_0$; further, v, the velocity of the disturbance, is to be regarded as a small quantity. Then substituting these expressions into the equation of continuity (15-12) and the momentum equation (15-21) (with the external force $f \equiv 0$), expanding, and retaining only terms of the first order in the perturbations, we find $$(\partial \rho_1/\partial t) + \rho_0(\partial v/\partial x) = 0 (15-32)$$ and $$\rho_0(\partial v/\partial t) + (\partial p_1/\partial x) = 0 \tag{15-33}$$ For an *ideal* fluid (i.e., no viscosity or conductivity), there is no thermal energy exchange from one fluid element to another, and the material behaves *adiabatically*. We may therefore write $$(\partial p_1/\partial x) = (\partial p/\partial \rho)_s(\partial \rho_1/\partial x) \equiv a^2(\partial \rho_1/\partial x)$$ where $(\partial p/\partial \rho)_s$ is the *isentropic* derivative of the pressure with respect to density. Now, differentiating equation (15-32) with respect to t, and (15-33) with respect to x, and eliminating the cross derivative $(\partial^2 v/\partial t \partial x)$, we obtain $$(\partial^2 \rho_1 / \partial t^2) - a^2 (\partial^2 \rho_1 / \partial x^2) = 0 \tag{15-34}$$ Equation (15-34) is the wave equation, in which the wave velocity is a. We thus identify the adiabatic speed of sound as $$a_s = \left[(\partial p/\partial \rho)_s \right]^{\frac{1}{2}} \tag{15-35}$$ For a perfect gas undergoing adiabatic changes, $(p/p_0) = (\rho/\rho_0)^{\gamma}$, where γ is the ratio of specific heats at constant pressure and constant volume $(\gamma = \frac{5}{3})$ for an ideal monatomic gas); thus $$a_{\rm s} = (\gamma p/\rho)^{\frac{1}{2}} = (\gamma kT/\mu m_{\rm H})^{\frac{1}{2}}$$ (15-36) where μ is the number of atomic units per free particle. In certain situations there can be a very free exchange of energy between the wave and its surroundings via conduction or radiation; in this case the temperature fluctuations in the sound wave are destroyed (the wave is thereby damped), and the wave propagation proceeds isothermally. In this event $p = \rho(kT_0/\mu m_{\rm H})$ and the isothermal sound speed is $$a = (kT_0/\mu m_{\rm H})^{\frac{1}{2}} \tag{15-37}$$ THE RANKINE-HUGONIOT RELATIONS FOR STATIONARY SHOCKS The speed of sound determines the rate at which a disturbance propagates naturally in a compressible fluid. If the velocity of the flow exceeds the speed of sound, then the adjustments of the fluid state by sound waves cannot proceed quickly enough, and situations occur where the properties of the flow may change markedly over a rather small distance. This gives rise to almost discontinuous changes at a narrow interface called a shock front. Shocks may occur in a wide variety of circumstances. For example, in a pulsating star, a wave initiated at great depth will propagate with larger and larger velocities as it progresses upward in the atmosphere, because of the decrease in density; eventually it runs through the material at supersonic velocities, producing a shock front that travels outward into the upper layers of the atmosphere. Such shocks produce interesting spectroscopic phenomena in RR Lyrae and Cepheid variables, but we shall not be able to pursue this subject here. Alternatively, in a steady flow, a stationary shock front may be produced where the gas, in effect, encounters an obstacle (e.g., a constriction in a nozzle or flow channel or at the point where a stellar wind runs into the interstellar medium). For the purposes of this chapter, only stationary shocks will be considered. The shock front itself has a structure whose properties are determined by dissipative processes involving viscosity, heat conduction, and radiation; furthermore, the downstream material may be forced out of equilibrium in one or more degrees of freedom, depending on how long are the characteristic relaxation times that restore the equilibrium [see (692) for a detailed discussion of these phenomena]. These effects will be ignored here, and it will be assumed that the fluid is a perfect monatomic gas in equilibrium throughout, and that the shock is a discontinuity at an infinitely sharp interface. If we consider the flow of particles across an interface, it is clear that the flux of mass, momentum, and energy must be conserved. Using subscript 1 to denote *upstream* quantities (i.e., material flowing into the shock), and subscript 2 to denote *downstream* quantities (i.e., post-shock material), the conservation requirements just mentioned become (in planar geometry) $$\rho_1 v_1 = \rho_2 v_2 \tag{15-38}$$ $$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 \tag{15-39}$$ and $$\rho_1 v_1 \left[e_1 + (p_1/\rho_1) + \frac{1}{2} v_1^2 \right] = \rho_2 v_2 \left[e_2 + (p_2/\rho_2) + \frac{1}{2} v_2^2 \right]$$ (15-40) The appropriate fluxes have been identified from equations (15-5), (15-9), and (15-28). In view of equation (15-38), and the results for a perfect gas that $e=(p/\rho)/(\gamma-1)$ so that $h=e+(p/\rho)=\gamma(p/\rho)/(\gamma-1)$, equation (15-40) can be rewritten as $$[\gamma p_1/(\gamma - 1)\rho_1] + \frac{1}{2}v_1^2 = [\gamma p_2/(\gamma - 1)\rho_2] + \frac{1}{2}v_2^2$$ (15-41) If we eliminate v_2 by means of equation (15-38), use the definition of the sound speed in equation (15-36), and define the *Mach number* $M_1 \equiv v_1/a_s$, then equations (15-39) and (15-41) may be rewritten as $$(p_2/p_1) = 1 + \gamma M_1^2 [1 - (\rho_1/\rho_2)]$$ (15-42) and $$2\lceil (\rho_1 p_2/\rho_2 p_1) - 1 \rceil = (\gamma - 1)M_1^2 [1 - (\rho_1/\rho_2)^2]$$ (15-43) which are known as the *Rankine–Hugoniot* relations. Equation (15-42) gives p_2 as a function of ρ_2 for given (ρ_1, p_1) . In principle, two solutions exist: (a) $p_2 > p_1$ and $\rho_2 > \rho_1$ and (b) $p_2 < p_1$ and $\rho_2 < \rho_1$. However, it is found [see (385, §§82–84) or (692, §17)] that case (b) is excluded on the basis of the second law of thermodynamics and stability considerations, and that only *compression shocks* are physically possible. Equations (15-42) and (15-43) can be solved simultaneously for (p_2/p_1) and (ρ_2/ρ_1) , yielding $$(\rho_2/\rho_1) = (v_1/v_2) = (\gamma + 1)M_1^2/[(\gamma - 1)M_1^2 + 2]$$ (15-44) and $$(p_2/p_1) = [2\gamma M_1^2 - (\gamma - 1)]/(\gamma + 1)$$ (15-45) Applying the perfect gas law we also may write $$(T_2/T_1) = [2\gamma M_1^2 - (\gamma - 1)][(\gamma - 1)M_1^2 + 2]/M_1^2(\gamma + 1)^2 \quad (15-46)$$ Exercise 15-2: (a) Verify equations (15-42) and (15-43). (b) Show that equation (15-43) can be rewritten in the customary forms $$e_2 - e_1 = \frac{1}{2}(\rho_1^{-1} - \rho_2^{-1})(p_1 + p_2)$$ $$h_2 - h_1 = \frac{1}{2}(\rho_1^{-1} + \rho_2^{-1})(p_2 - p_1)$$ Exercise 15-3: (a) Verify equations (15-44) through (15-46). (b) Show that the downstream Mach number is $$M_2^2 = [(\gamma - 1)M_1^2 + 2]/[2\gamma M_1^2 - (\gamma - 1)]$$ and that this implies the downstream flow is always subsonic. ### 15-2 Coronal Winds The outermost layers of the solar atmosphere comprise the *corona*, a tenuous (characteristic electron density $\sim 4 \times 10^8$ cm⁻³), high-temperature ($T \sim 1.5 \times 10^6$ °K) envelope which can be observed, at eclipses, to extend to several solar radii. As was described in §7–7, the high coronal temperature is a result of energy input from wave dissipation. The ultimate source of the waves providing this mechanical heating is the hydrogen convection zone, and we believe that all stars that have extensive convection zones should also have coronae. For many years the corona was regarded as an essentially static envelope bound to the Sun, and although it was realized that particle bombardment of the Earth from energetic events (e.g., flares) on the Sun produced auroral and geomagnetic effects (164; 165), it was Biermann (91; 92; 93) who first advanced the idea of continuous particle emission ("corpuscular radiation") from the Sun. Realizing the importance, at coronal temperatures, of energy transport by conduction, Chapman (166) showed that the corona extended far out into interplanetary space and, in fact, enveloped the Earth in a low-density high-temperature medium. Subsequently Parker showed (496; 498) that any reasonable hydrostatic model of the corona, starting from known conditions near the Sun, led to such high pressures at large distances, as to preclude the possibility of containment by the pressure of the interstellar medium. Thus static models are internally inconsistent, and large-scale coronal expansion must
occur. This expansion provides the source of the particle emission proposed by Biermann. Parker developed a theoretical model indicating a flow with low velocities near the Sun, rising to very large supersonic values at large distances; he called this transsonic flow the *solar wind*, and made predictions of typical flow velocities, densities, and particle fluxes at the Earth's orbit. These predictions were supported by many bits of evidence [see the summaries of the fascinating historical growth of our conceptions of the solar wind in (107, Chap. 1) and (324, Chap. 1)], but an alternative model was proposed by Chamberlain (147), which was everywhere subsonic and produced only a low-velocity solar breeze at the Earth's orbit. The ensuing debate in the literature, based almost entirely on theoretical considerations, led to a sharpening of the formulation of the theory (and makes interesting reading today because of the high standard of scientific argumentation it contains!). But the question of which picture really applied remained undecided until direct measurements from space vehicles provided conclusive evidence in favor of a high-speed wind. Detailed measurements of solar-wind properties show that there is considerable fluctuation of all the physical variables; many of the variations correlate with a solar rotation period and hence reflect changes in the initial conditions of the flow at the corona, while others are the result of violent events such as flare-generated blast waves. Despite these variations, it is useful to consider the background low-speed "quiet" wind, whose characteristics must result from the conditions prevalent in the corona as a whole. A summary of quiet solar-wind properties measured at the Earth's orbit is given in Table 15-1. Although it must be emphasized that these data define only a high-order abstraction of the real solar wind, they nevertheless provide typical values against which theoretical results can be compared. From the data given, we see that the wind is a highly supersonic (Mach number ≈ 8), nearly-radial flow. It is easy to show (Exercise 15-4) that the effects of the mass-loss in the wind on the evolution of the Sun as a star are negligible. Moreover, the corona-wind ensemble is optically thin. Thus at first sight the flow seems to be of little significance from a stellar-astrophysical point of view. We shall see, however, that even this rather weak (see below) flow has implications of great consequence to the question of angular-momentum loss by the Sun. TABLE 15-1 Properties of the Quiet Solar Wind at the Earth's Orbit | Radial component of flow velocity | $300-325~{\rm km~s^{-1}}$ | |--------------------------------------|---| | Nonradial component of flow velocity | 8 km s^{-1} | | Proton (or electron) density | 9 cm ⁻³ | | Average electron temperature | $1.5 \times 10^5 ^{\circ}\text{K}$ | | Average proton temperature | $4 \times 10^4 ^{\circ}\text{K}$ | | Magnetic field intensity | 5×10^{-5} gauss | | Proton flux | $2.4 \times 10^{8} \text{ cm}^{-2} \text{ s}^{-1}$ | | Kinetic energy flux | $2.2 \times 10^{-1} \text{ erg cm}^{-2} \text{ s}^{-1}$ | | Enthalpy flux | $8 \times 10^{-3} \text{ erg cm}^{-2} \text{ s}^{-1}$ | | Gravitational flux | $4 \times 10^{-3} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | | Electron heat-conduction flux | $7 \times 10^{-3} erg cm^{-2} s^{-1}$ | | | | Source: Adapted from (324, 44-45), by permission. Exercise 15-4: Using the particle flux given in Table 15-1, show that the rate of mass-loss, $\dot{\mathcal{M}} = 4\pi r^2 nvm$, where n is the particle density and m is a mean particle mass, is $\sim 2 \times 10^{-14} \, \mathcal{M}_{\odot}/\text{year}$. Compare this with the thermonuclear mass-loss rate required to yield the solar luminosity. As mentioned previously, we believe there should be coronae for all stars that have hydrogen convection zones (i.e., spectral types F and later); these stars should also have stellar winds. There is, in fact, direct observational evidence (e.g., P-Cygni line-profiles) for massive coronal winds in many late-type supergiants and giants. Thus estimates of mass-loss rates [see, e.g., (624, 238; 70, 246)] range from $2 \times 10^{-10} \, M_{\odot}/\text{year}$ for K-giants to $10^{-8} \, M_{\odot}/\text{year}$ for M-giants; and from $10^{-7} \, M_{\odot}/\text{year}$ for G- and K-supergiants to 10^{-6} or $10^{-5} \, M_{\odot}/\text{year}$ for M-supergiants. All of these are coronal winds resulting mainly from the high temperature of the stellar corona (except possibly for the M-stars, where radiation pressure on grains may be important). Another class of massive winds $(10^{-6}-10^{-5} \, M_{\odot}/\text{year})$ is found for early-type stars (OB supergiants and WR stars); these flows are driven by radiation pressure acting on the material (cf. §15.4). In this section we shall examine the basic physics of coronal winds, using simplified and idealized descriptions, both of the material properties and of the nature of the flow. Our goal will be to gain insight into the overall nature of these winds, rather than to attempt detailed modeling. We shall repeatedly refer to the solar wind as an example, and as an indicator of what other processes need to be considered in an "ultimate" stellar-wind theory. #### EXPANSION OF THE SOLAR CORONA Suppose the corona is taken to be a fully-ionized pure-hydrogen plasma with $T_0 \approx 1.5 \times 10^6$ °K and $n_0 \approx 4 \times 10^8$ cm⁻³, where n_0 denotes the density of protons or electrons ($n_p = n_e$ for charge neutrality). At these high temperatures the electrons have large velocities, and can conduct energy efficiently, producing an energy flux $\mathbf{q}_c = -\kappa \nabla T$, where the conductivity κ is given (598, 86) by $\kappa = \kappa_0 T^{\frac{5}{2}}$ with $\kappa_0 \approx 8 \times 10^{-7}$ ergs cm⁻¹ s⁻¹ deg^{-\frac{7}{2}}. At 10^6 °K, the conductivity of the plasma far exceeds ordinary laboratory conductors! If we assume that conduction is the dominant energy transport mechanism in the corona, then for equilibrium we must have $\nabla \cdot \mathbf{q}_c = 0$, which implies that $$r^{-2}d[r^{2}\kappa_{0}T^{\frac{5}{2}}(dT/dr)]/dr = 0 (15-47)$$ This equation can be integrated twice, and demanding that $T \to 0$ as $r \to \infty$, we find $T(r) = T_0(r_0/r)^{\frac{1}{7}}$ (15-48) where r_0 denotes a suitable reference-level in the corona (which is of the order of $R_{\odot} = 7 \times 10^{10}$ cm). The temperature fall-off implied by equation 15-2 Coronal Winds 525 (15-48) is extremely slow, and at the earth's orbit ($r_{\oplus}=1.5\times10^{13}$ cm) we find $T \approx 3.3 \times 10^5$ °K for $T_0 = 1.5 \times 10^6$ °K; thus the earth is enveloped by high-temperature coronal material. If the corona were in hydrostatic equilibrium, we would have $$(dp/dr) = -(G\mathcal{M}_{\odot}\rho/r^2) \tag{15-49}$$ The Debye length in the corona at the temperature and density quoted above is only about 0.3 cm [cf. equation (9-101)]. Hence the plasma is neutral except on the smallest scales, and we may write $n_e=n_p\equiv n$ and $\rho = n(m_p + m_e) = nm$, where m denotes the mass of a hydrogen atom, and p = 2nkT. Then the hydrostatic equation becomes $$d(nT)/dr = -(G\mathcal{M}_{\odot}m/2k)(n/r^2)$$ (15-50) If T were constant, and we were to consider only distances $r \approx r_0$, we could approximate equation (15-50) with the usual planar limiting form $d(\ln n)/dr =$ -(1/H), where the scale-height $H \equiv (GM_{\odot}m/2kT_0r_0^2)^{-1} \approx 10^5$ km. As shown in Exercise 15-5, this scale-height is so large that the predicted particle density near the earth's orbit is quite large. We would then conclude that the Earth is immersed in a hot, fairly dense, extension of the corona. Actually the assumption that $T \equiv T_0$ is too crude, and produces somewhat of an overestimate of $n(r_{\oplus})$. If, instead, we make use of equation (15-48), we may rewrite equation (15-50) as which yields the solution $$d\lceil (r_0/r)^{\frac{2}{7}} n \rceil / d(r/r_0) = -(r_0/r)^2 n / H$$ (15-51) $$n(r) = n_0(r/r_0)^{\frac{1}{2}} \exp\{-7r_0[1 - (r_0/r)^{\frac{1}{2}}]/5H\}$$ (15-52) from which we deduce $n \sim 9 \times 10^4$ near the earth for $n_0 = 4 \times 10^8$. Exercise 15-5: Assume the corona is isothermal, $T \equiv T_0$, but allow for the variation of the gravitational force to obtain an expression for n(r). With $n_0 \approx 4 \times 10^{-5}$ 10^8 cm³, show that the particle density near the earth's orbit is about 4×10^5 cm⁻³. Exercise 15-6: Show that equation (15-52) yields a minimum for n at $(r/r_0) =$ $(7/4)(r_0/H)$, and that n(r) increases outward beyond that point (formally this configuration would be unstable against a Rayleigh-Taylor instability). Combining equations (15-48) and (15-52), we find that the pressure is $$p(r) = p_0 \exp\{-7r_0[1 - (r_0/r)^{\frac{5}{2}}]/5H\}$$ (15-53) Instead of vanishing at $(r/r_0) = \infty$, the pressure approaches a *finite* value. Adopting $p_0 \approx 0.2$ dynes cm⁻², we find $p_\infty \approx 10^{-5}$ dynes cm⁻². This pressure is to be compared with the pressure expected from the material and magnetic fields in the interstellar medium. The average density of the medium is of the order of 1 cm⁻³; for an H I region, $T \sim 10^2$ °K, while in a typical H II region $T \sim 10^4$ °K, so that we expect pressures to range from 1.4×10^{-14} to 3×10^{-12} dynes cm⁻². The magnetic field in the medium is of the order of 10^{-5} gauss; hence the magnetic pressure $(B^2/8\pi)$ is of the order of 4 \times 10⁻¹² dynes cm⁻². The pressure attributable to cosmic rays is estimated to be about 2×10^{-12} dynes cm⁻²; hence a reasonable upper bound of 10^{-11} dynes cm⁻² can be assigned as the total interstellar pressure. This value is a factor of 106 smaller than
that estimated for a hydrostatic corona, and we conclude that the corona cannot be contained, but must undergo a steady expansion. We therefore abandon the assumption of hydrostatic equilibrium and inquire into the hydrodynamics of coronal expansion. ONE-FLUID MODELS OF STEADY, SPHERICALLY SYMMETRIC CORONAL WINDS To simplify the treatment of the hydrodynamics of a coronal wind, the following assumptions are made: (1) the flow is taken to be steady; (2) the wind is spherically symmetric; (3) the gas is an ideal compressible fluid. Clearly all of these assumptions are idealizations, and they restrict the applicability of the results for, say, the real solar wind; nevertheless they provide a good basic physical model for general study. The equations describing a steady flow are the equation of continuity (mass conservation) $$r^{-2}d(r^2\rho v)/dr = 0 (15-54)$$ the momentum equation $$\rho v(dv/dr) = -(dp/dr) - \rho(G\mathcal{M}_{\odot}/r^2)$$ (15-55) and the energy equation (including conductivity) $$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \rho v \left(\frac{1}{2} v^2 + e + \frac{p}{\rho} \right) \right] = -\rho v \left(\frac{G \mathcal{M}_{\odot}}{r^2} \right) + \frac{1}{r^2} \frac{d}{dr} \left(r^2 \kappa \frac{dT}{dr} \right)$$ (15-56) For a fully ionized gas of pure hydrogen, p = 2nkT and $\rho = nm$, where $n=n_p=n_e$ and m is the mass of a hydrogen atom. The specific internal energy of the gas is $2(\frac{3}{2}nkT)/(nm) = (3kT/m)$, and $(p/\rho) = (2nkT)/(nm) =$ (2kT/m), so the specific enthalpy is $h = e + (p/\rho) = (5kT/m)$. Note that equation (15-56) does not include any terms representing radiative losses or mechanical energy deposition from dissipation of waves. The assumption made is that these processes occur in a relatively thin layer at the base of the corona, and that above some reference level only the kinetic, potential, thermal (enthalpy), and conductive terms need be taken into account. The continuity equation can be integrated to give $$4\pi r^2 nv = F = \text{constant} \tag{15-57}$$ or 15-2 Coronal Winds where F denotes the particle flux, or $$\dot{\mathcal{M}} = mF = 4\pi r^2 nmv = \text{constant}$$ (15-58) where M denotes the rate of mass-loss. The energy equation can be integrated to give $$(4\pi r^2 nv) \left[\frac{1}{2}mv^2 + 5kT - (GM_{\odot}m/r)\right] - (4\pi r^2)\kappa(dT/dr) = E = \text{constant}$$ (15-59) which states that the *total energy flux* through a spherical surface is a constant of the flow. Equations (15-57), (15-55), and (15-59) comprise a nonlinear system of two first-order differential equations, containing two constants of integration; two more constants will result from the integration of the system; hence a total of four conditions (boundary conditions or specifications of the nature of the solution) must, in general, be imposed. Before discussing this general problem, however, it is extremely instructive to consider the simple case of an *isothermal* corona. If we demand that the flow be strictly isothermal, we need to specify only n and v, and hence we may omit the energy equation and employ only the momentum and continuity equations. [The ad hoc assumption T= constant is equivalent to invoking some unspecified mechanism to heat or cool the gas in just the right way as to yield the desired temperature.] Equation (15-55) becomes $$nmv(dv/dr) = -2kT_0(dn/dr) - nm(G\mathcal{M}_{\odot}/r^2)$$ (15-60) and using equation (15-57) to eliminate n we find $$\frac{1}{2}[1 - (2kT_0/mv^2)](dv^2/dr) = -(G\mathcal{M}_{\odot}/r^2)[1 - (4kT_0r/G\mathcal{M}_{\odot}m)] \quad (15-61)$$ This equation yields several families of solutions that have substantially different mathematical behaviors and physical significance. For the solar corona, $(4kT_0r_0/G\mathcal{M}_{\odot}m)\approx 0.3$. Thus it is clear that the righthand side of equation (15-61) is negative for $r< r_c$ and positive for $r_c < r < \infty$, where r_c is the critical radius $$r_{c} \equiv (G\mathcal{M}_{\odot}m/4kT_{0}) \tag{15-62}$$ at which the righthand side is exactly zero. For the solar corona, $(r_c/r_0) \approx 3.5$. At $r = r_c$, the lefthand side of equation (15-61) must also be zero; this may occur in one of two ways. We may either have $$(dv/dr)_{r_{\alpha}} = 0 ag{15-63}$$ $v(r_c) = (2kT_0/m)^{\frac{1}{2}} \equiv v_c \tag{15-64}$ The critical velocity v_c defined by equation (15-64) is equal to the isothermal sound speed. We now restrict attention to solutions for which both v and (dv/dr) are single-valued and continuous. First, suppose that equation (15-63) is satisfied. We may then construct solutions for which $1-(2kT_0/mv^2)$ has the same sign for all r. If $v(r_c) < v_c$ then v(r) will have a relative maximum at r_c ; this yields solutions of type 1 shown in Figure 15-1. These solutions are everywhere subsonic. On the other hand, if $v(r_c) > v_c$, then v(r) will have a relative FIGURE 15-1 Schematic variation of velocity in units of the critical velocity v_c , as a function of radial distance in units of the critical radius r_c , for stellar winds and breezes. Solutions of type 1 are the subsonic breezes. Solutions of type 2 are everywhere supersonic. Solutions 3 and 4 are the transsonic critical solutions that pass through the critical point (heavy dot) continuously. Solutions of types 5 and 6 are double-valued, but are important for fitting shock transitions. Stellar Winds minimum at r_c , and will be everywhere supersonic; these are the type-2 solutions shown in Figure 15-1. Alternatively, if equation (15-64) is satisfied, we obtain a critical solution (i.e., $v \equiv v_c$ at $r = r_c$) that has a finite slope at $r = r_c$. Suppose that $(dv/dr)_{r_c} > 0$; then we obtain a unique transsonic solution that is monotone increasing from subsonic speeds ($v < v_c$) for $r < r_c$ to supersonic velocities ($v > v_c$) for $r > r_c$. This unique solution is shown as type 3 in Figure 15-1. If $(dv/dr)_{r_c} < 0$, then we obtain a unique solution in which v(r) is monotonically decreasing from supersonic speeds for $r < r_c$ to subsonic speeds for $r > r_c$; this is shown as type 4 in Figure 15-1. Finally, there exist two families of solutions defined by the restrictions $r \geqslant r_* > r_c$ or $r \leqslant r_* < r_c$, both of which have $v(r_*) = v_c$ and $(dv/dr)_{r_c} = \infty$. These give rise to the double-valued solutions of types 5 and 6 shown in Figure 15-1. Initially we exclude consideration of these solutions because they are double-valued; we shall find later, however, that they may be used to provide part of a complete solution that includes a shock transition to match boundary conditions as $r \to \infty$. To decide which solution to choose, we must now invoke physical boundary conditions. First, both the entire family of type-2 solutions and the unique type-4 solution can be excluded because they predict velocities $v>v_{\rm c}\approx$ 170 km s⁻¹ in the low corona, which is *not* observed. This leaves solutions of type 1 or the unique transsonic solution of type 3. We may make the choice on the basis of the behavior of the solution as $r \to \infty$. Equation (15-61) may be integrated straightaway to yield $$(v/v_c)^2 - \ln(v/v_c)^2 = 4\ln(r/r_c) + 4(r_c/r) + C$$ (15-65) Exercise 15-7: (a) Verify equation (15-65). (b) Evaluate C for the critical solutions. (c) Evaluate C for solutions of types 1 and 2. Consider first solutions of type 1 as $r \to \infty$. Here (v/v_c) is <1 and decreasing as $r \to \infty$, hence on the lefthand side the dominant term will be $-2 \ln(v/v_c)$, and on the righthand side it will be $4 \ln(r/r_c)$. Thus as $r \to \infty$, then $v \propto r^{-2}$, which implies (from the equation of continuity) that n remains finite. These solutions thus yield a pressure at $r = \infty$ which greatly exceeds the ambient interstellar pressure, and therefore they can be rejected on the same grounds as the hydrostatic solution was. On the other hand, the critical solution has $(v/v_c) > 1$ and increasing as $r \to \infty$, hence we find $v \approx 2v_c \ln(r/r_c)^{\frac{1}{2}}$. In this case $n \propto r^{-2}v^{-1} \to 0$ as $r \to \infty$, and we conclude that this critical solution can indeed match the boundary condition at infinity. Following a line of reasoning similar to that outlined above, Parker concluded (correctly!) that the solar corona must be undergoing a transsonic expansion into interplanetary and interstellar space (496), and that near **FIGURE 15-2** Isothermal solar wind solutions; curves are labeled with coronal temperature. Ordinate: velocity in km s⁻¹; abscissa: heliocentric distance in 10⁶ km. From (496), by permission. the orbit of the Earth the solar wind has velocities of the order of a few hundred km s⁻¹. Several wind solutions for isothermal coronae at different temperatures are shown in Figure 15-2. The wind solution given above is not entirely satisfactory because (v/v_c) increases without limit as $(r/r_c) \to \infty$. This behavior is an artifact of the assumption that the corona is strictly isothermal. The corona is, in fact, nearly isothermal near the Sun because conduction is effective and distributes the heat deposited by wave dissipation very efficiently, thus obliterating large temperature gradients. At large distances, however, expansion of the gas must ultimately force it to cool; if we insist that T remain fixed, we have, in effect, introduced a (spurious) energy source to maintain the temperature. This effectively results in a continuous deposit of energy into the enthalpy of the gas, and this energy is available to do work to continue to accelerate the gas without limit. The problem is easily overcome, however, and Parker was able to produce satisfactory wind solutions by using either of two assumptions. (a) The corona is isothermal for $r_{\odot} \leqslant r \leqslant r_{*}$, and expands adiabatically for $r > r_{*}$. In this case, for $r > r_{*}$ the pressure and density are related by
a polytropic law of the form $p = p_0(\rho/\rho_0)^{\gamma}$ with $\gamma = \frac{5}{3}$ (ideal gas). (b) The corona is everywhere polytropic with a polytropic exponent $\gamma < \frac{3}{2}$. Both of these classes of solutions avoid an unphysical increase in v at large r, and one finds that v approaches a finite value v_{∞} as $r \to \infty$. The isothermal solutions described above reveal the broad outlines of the nature of coronal expansion into a supersonic wind, but clearly are inadequate for a detailed description of the flow. In particular, in solving the problem, we wish to determine the temperature distribution T(r). We must, therefore, turn to the full set of equations including energy balance, namely equations (15-55), (15-57), and (15-59). As before, there are two basic classes of solutions to be considered: (1) subsonic solutions, called stellar breezes, which resemble those of type 1 shown in Figure 15-1; (2) transsonic critical solutions, stellar winds, resembling the unique solution of type 3 shown in Figure 15-1. These two classes are distinguished from one another by the value of the total energy flux E in equation (15-59). The breeze solutions all have E = 0, while the wind solutions have E > 0. Although we are primarily interested in wind solutions in the solar context, the breeze solutions, which have been studied extensively (147; 532), played an important role in the development of the theory, and it is worthwhile to consider them briefly here. In the breeze solutions, as $r \to \infty$, then $u \to 0$, $T \to 0$, and $p \to 0$. There is a whole family of such solutions that are differentiated from one another by the limiting value of (mv^2/kT) as $r \to \infty$ (532). Because a match to the interstellar pressure can now be achieved, we cannot exclude these solutions from the outset, as we could for an isothermal wind; indeed, Chamberlain (147) advocated this type of solution for the solar corona, in which case the velocity of the material near the Earth's orbit would be only 20 km s⁻¹. He argued that the correct hydrodynamic solution should be consistent with an evaporative model of the corona, in which individual particle motions are calculated assuming a critical level above which the density is so low that fast-moving particles suffer no further collisions, but escape. He found that in the evaporative model the mean speed of ions near r_{\oplus} would be about 10 km s⁻¹, and concluded that the breeze (rather than wind) solution was correct. The question was laid aside when direct observation proved the validity of the wind solution. But subsequent work (108; 339) has shown that the basic premise that the hydrodynamic and evaporative pictures should agree is, indeed, correct, and that the difficulty lay in the calculation of the original evaporative model. In particular, when account is taken of the fact that particles moving at different speeds escape from different levels, not from a single "critical" level (the faster particles escape from deeper, denser layers), and when a correct dynamic calculation is made of the electric field in the plasma that couples the electron and proton flows together, then the evaporative solutions yield $n \approx 10$ cm⁻³, $v \approx 300 \ \mathrm{km \ s^{-1}}$, and $T(\mathrm{proton}) \approx 5 \times 10^4 \ \mathrm{^{\circ}K}$, in good agreement with the observed values. We would now conclude that the correct evaporative model supports the solar wind solution. Let us now examine the wind solutions in greater detail. In all of these solutions, as $r \to \infty$, then $v \to v_{\infty}$ (a nonzero value), $n \to 0$, and $T \to 0$. As mentioned above, four distinct conditions are required to specify the solution uniquely. Typically, these may be chosen to be values for the coronal density and temperature, and to meet the requirements that the solution pass smoothly through the critical point, and that $T(r) \to 0$ as $r \to \infty$. The last of these conditions, however, is actually more complex than it seems, and it is now known that the nature of the variation of T with r depends upon the mechanism of heat transport at $r = \infty$ [see (200; 201; 202; 532; 324, 47)]. Suppose first that the heat-conduction flux remains finite at $r = \infty$, with a value $E_c(\infty)$. From equation (15-59) it is clear that we will then find $v_{\infty}=$ $\{2[E-E_c(\infty)]/M\}^{\frac{1}{2}}$, and further, because $[r^2T^{\frac{5}{2}}(dT/dr)]_{\infty}=$ constant, the temperature obeys the asymptotic law $T \propto r^{-\frac{2}{3}}$. This is the same law found by Chapman, and used by Parker (499) in his wind solutions. Next we might suppose that both a conduction flux and an enthalpy flux persist to $r = \infty$, and that the ratio $(5kTv)/\lceil r^2T^{\frac{8}{2}}(dT/dr)\rceil \rightarrow \text{constant}$. In this case both fluxes approach zero at $r = \infty$, and $v_{\infty} = (2E/\mathcal{M})^{\frac{1}{2}}$. Further, the special condition imposed on the ratio of the fluxes implies that $T \propto r^{-\frac{2}{5}}$, a solution first obtained by Whang and Chang (667). Finally, we might suppose that the conductive flux vanishes, as $r \to \infty$, more rapidly than the enthalpy flux. Again $v_{\infty} = (2E/\mathcal{M})^{\frac{1}{2}}$. In this case there is no energy exchange mechanism in the flow as $r \to \infty$, and the gas merely expands adiabatically. If the polytropic exponent is γ , then $T \propto \rho^{(\gamma-1)}$. But $\rho \propto r^{-2}$; hence, as $r \to \infty$, then $T \propto (r^{-2})^{(\frac{2}{3})}$ or $T \propto r^{-\frac{4}{3}}$, for γ equal to $\frac{5}{3}$ (ideal gas). The relationship of these solutions to one another was explained lucidly by Durney (200), who considered wind solutions that were all chosen to have the same value for T_0 , but different values for n_0 . For small values of n_0 , the critical solutions yield large values for $e(\infty) \equiv (E/F)$ which is the residual energy per particle at $r = \infty$, and they have $T \propto r^{-\frac{\alpha}{2}}$. As n_0 is increased, the conductive part of $e(\infty)$, say $e_c(\infty)$, becomes smaller, and at a particular value (n_0^*) , $e_r(\infty) = 0$ and $T \propto r^{-\frac{2}{3}}$ (i.e., this particular value gives the Whang and Chang solution). As n_0 is increased further, $e_c(\infty)$ remains equal to zero, and now $e(\infty)$ decreases; here $T \propto r^{-\frac{4}{3}}$. Finally, when n_0 increases still further, a limiting value is reached at which $e(\infty) = 0$, and a stellar breeze solution is obtained (see Figure 15-3). Physically, these results imply that, as n_0 increases, more and more of the conductive flux at infinity is consumed by the expansion (the flow is more and more massive), until at some point $e_c(\infty)$ vanishes. If we now add more material, the flow continues to be supersonic, but more and more thermal energy is consumed in the adiabatic expansion, and $e(\infty)$ decreases. Eventually $e(\infty)$ vanishes and the flow becomes subsonic. In a systematic study of stellar wind solutions, it is very convenient to work with dimensionless variables. Chamberlain (147) suggested the transformations $$\tau \equiv (T/T_0) \tag{15-66a}$$ $$\psi \equiv (v^2 \,\mu m/kT_0) \tag{15-66b}$$ and $$\lambda \equiv (G\mathcal{M}_{\odot} \mu m/kT_0 r)$$ (15-66c) Regions of stellar wind and breeze solutions as a function of coronal temperature T_0 (in units of $GM_{\odot}\mu m/kr_0$) and density N_0 [in units of $2\kappa_0 k^{-1}(GM_{\odot}r_0)^{-\frac{1}{2}}$]. Shaded area contains breeze solutions. The dotted curve marked S delimits the region (to the right) where the flow is already supersonic at the base of the corona $(r=r_0)$. The region P contains wind solutions with a Parker temperature law, $T \propto r^{-\frac{1}{2}}$, as $r \to \infty$; these solutions have a nonzero conductive flux at infinity. The region P contains Durney temperature law (P winds, which become adiabatic as P and P are P are P winds, which become adiabatic as P and P are P are P are P and P are and P are P are P as P and P are P are P are P are P are P are P and P are and P are P and P are P are P are P are P are P and P are P are P are P are P and P are P are P are P are P are P are P and P are P are P are P and P are P are P and P are P are P are P and P are P are P are P are P are P and P are where μ is the number of atomic mass units per particle (= $\frac{1}{2}$ for ionized hydrogen). In these units, equations (15-57), (15-55), and (15-59) become, respectively, $$n\lambda^{-2}\psi^{\frac{1}{2}} = (kT_0/\mu m)^{\frac{3}{2}} F/(4\pi G^2 \mathcal{M}_{\odot}^2) \equiv C$$ (15-67) $$\frac{1}{2}[1 - (\tau/\psi)](d\psi/d\lambda) = 1 - 2(\tau/\lambda) - (d\tau/d\lambda)$$ (15-68) and $A\tau^{\frac{5}{2}}(d\tau/d\lambda) = \varepsilon_{\infty} - \frac{1}{2}\psi + \lambda - \frac{5}{2}\tau$ (15-69) where $\varepsilon_{\infty} \equiv \mu E/kT_0 F$ (15-70) is the residual energy per particle at infinity (in units of kT_0), and $$A \equiv 4\pi\kappa_0 G \mu^2 m \mathcal{M}_{\odot} T_0^{\frac{3}{2}} / (k^2 F) \tag{15-71}$$ In these equations we need specify only ε_{∞} and A to perform the integration (imposing, of course, the requirements that a critical solution be obtained, and that $\tau \to 0$ as $\lambda \to 0$); by redimensionalization, one can obtain several solutions from a single dimensionless one. A further transformation (531) reduces the number of arbitrary constants to *one* (for *winds* only). Thus, write $\tau_* \equiv \tau/\varepsilon_{\infty}$, $\psi_* \equiv \psi/\varepsilon_{\infty}$, and $\lambda_* \equiv \lambda/\varepsilon_{\infty}$. Then equation (15-68) has the same form in terms of the new variables, while equation (15-69) becomes $$K\tau_*^{\frac{5}{2}}(d\tau_*/d\lambda_*) = 1 - \frac{1}{2}\psi_* + \lambda_* - \frac{5}{2}\tau_*$$ (15-72) where $K \equiv
\varepsilon_{\alpha}^{-\frac{3}{2}}A$. A large number of solutions for a wide range of the parameter K are given in (201), along with an example of how to recover a unique dimensional solution having specified, say, T_0 and F. A detailed discussion of breeze solutions is given in (532). Exercise 15-8: Carry out the transformation to dimensionless variables, and verify equations (15-67) through (15-72). #### TRANSITION TO THE INTERSTELLAR MEDIUM The solutions derived above all have pressures that vanish at $r = \infty$. Actually the interstellar medium does have a finite (if small!) pressure $p_i \lesssim 10^{-11}$ dynes cm⁻². When the high-speed gas in the wind encounters the interstellar medium, a stationary shock front is formed (624, 306; 66⁵) in which the flow speed suddenly diminishes to a small value, and the density and temperature rise. The solution jumps discontinuously from the critical solution (curve 3 in Figure 15-1) to one of the subsonic solutions of type 6 shown in Figure 15-1. Beyond the shock the material finally cools and recombines, and the velocity drops to zero [see, e.g., (106)]. At large distances from the star, the wind is highly supersonic, and the gas pressure is negligible compared to the kinetic energy density. Thus, balance with the interstellar pressure is achieved through the *impact pressure* of the material in the wind. We then have $$mnv^2 \approx p_i \tag{15-73}$$ From the equation of continuity and the assumption that v is approximately constant, we know that $n(r) = n_{\oplus}(r_{\oplus}/r)^2$, and using this relation we may estimate the radius of the shock front in the solar wind as $$(r_s/r_{\oplus}) = (mn_{\oplus}v^2/2p_i)^{\frac{1}{2}}$$ (15-74) Adopting $n_{\oplus} \approx 10 \text{ cm}^{-3}$, $v \approx 300 \text{ km s}^{-1}$, and the upper limit on p_i given above, we find $r_s \gtrsim 30$ a.u. (i.e., outside the orbit of Neptune). The physical conditions in the flow beyond the shock can be estimated by applying the Rankine-Hugoniot relations [equations (15-44) through (15-46)]. On the conservative assumption that the temperature falls as $r^{-\frac{3}{7}}$, the temperature in the preshock flow is of the order of 4×10^4 °K, which implies a sound speed in ionized hydrogen of about 25 km s⁻¹, so the Mach number is about 12. In the large Mach-number limit, the Rankine-Hugoniot relations reduce to $$v_2 = v_1(\gamma - 1)/(\gamma + 1) \tag{15-75}$$ $$n_2 = n_1(\gamma + 1)/(\gamma - 1) \tag{15-76}$$ and $$p_2 = 2n_1 m v^2 / (\gamma + 1) ag{15-77}$$ where in deriving equation (15-77) we have written $$p_1 M_1^2 = (p_1/a_s^2)v_1^2 = (\rho_1/\gamma)v_1^2$$ Here the subscript 1 denotes preshock and 2 denotes postshock conditions. Combining equations (15-76) and (15-77) into a perfect gas law, we estimate the postshock temperature to be $$T_2 = (\gamma - 1)mv^2/[(\gamma + 1)^2k]$$ (15-78) where we have assumed that the material remains fully ionized, and that the proton and electron temperatures equalize. Assuming $\gamma = \frac{5}{3}$, we see that $v_2 = \frac{1}{4}v_1 \approx 75 \text{ km s}^{-1} \text{ while } T_2 = \frac{3mv^2}{(32k)} \approx 10^{6} \text{ s}^{-1} \text{ (which shows that }$ the postshock material is indeed subsonic, as expected from Exercise 15-3(b) for $M_1 \gg 1$. The injection of hot, high-velocity material from stellar winds has significant implications for the energy balance in the interstellar medium. The picture developed here is purposely quite simplified; more elaborate calculations have been made allowing for the effect of an "interstellar wind" (arising from the Sun's peculiar velocity with respect to the interstellar medium), magnetic fields, and thermal conduction [see, e.g., (498, Chap. IX)]. ## THE MAGNETIC FIELD AND BRAKING OF STELLAR ROTATION From direct observation it is known that the Sun has a magnetic field. Because coronal material is completely ionized, it has an extremely high electrical (as well as thermal) conductivity, and thus magnetic fields are "frozen" into the material (i.e., the charged particles cannot diffuse readily across field lines). The large-scale expansion of the corona thus implies that there will be a transport of the solar magnetic field into interplanetary space. If the Sun did not rotate, the field lines would be drawn out radially. The Sun does rotate, however, and the field lines must be considered to be anchored at the solar surface. Field lines from a particular point on the surface will be drawn out along the streamlines of fluid elements as seen by an observer in the rotating frame of the Sun; this yields a spiral pattern for the interplanetary field (496; 498, 137; 107, 67; 324, 11). When the magnetic field is taken into account, the physics of the fluid flow in the wind becomes much more complicated, and considerable mathematical complexity results; we shall not pursue this problem here but merely refer the interested reader to the literature [e.g., (463; 659)]. It is of considerable interest, however, to calculate the angular momentum carried away in the wind, for this loss has important implications for stellar rotation. The magnetic field must satisfy Maxwell's equation $\nabla \cdot \mathbf{B} = 0$, from which it follows, in spherical coordinates, that $B_r(r) = (r_0/r)^2 B_r(r_0)$. The azimuthal component in the spiral pattern, B_{ϕ} , can be computed in terms of B_r , and hence the total field can be calculated. We can then estimate the ratio of the energy density in the flow to the magnetic energy density—i.e., $\alpha = (\frac{1}{2}mnv^2)/(B^2/8\pi)$; one finds that $\alpha \gg 1$ in the vicinity of the Earth's orbit, but α is small at the base of the corona. This implies that—although the fluid motions will dominate the field at large distances, and will drag it along with the material—deeper in the flow, the magnetic field will dominate and will be able to drag the material along with the solar rotation as seen in a fixed frame. Thus there is a region with $r \leqslant r_A$ in which the material is forced into corotation with the Sun, and a region $r > r_4$ where the material streams essentially radially. Inuitively we would expect the transition to occur at the radius r_A where $\alpha = 1$, and detailed analysis [(463; 659; 324, §III.15; 107, §3.7)] shows this conjecture to be correct. The speed of the hydromagnetic Alfven waves is $v_A = (B^2/4\pi\rho)^{\frac{1}{2}}$, hence α is nothing more than the square of the Alfvenic Machnumber $\alpha = (v/v_A)^2 = M_A^2$; thus the flow corotates with the sun inside the Alfvenic critical point, and streams radially outside it. The Alfven speed can be directly measured in the vicinity of the earth's orbit; using the equation of continuity and the inverse-square radial dependence of B, and demanding that $M_A = 1$ at the Alfvenic critical point, we find $$(r_A/r_{\oplus}) = v_A(r_{\oplus})/[v(r_A)v(r_{\oplus})]^{\frac{1}{2}}$$ (15-79) We may obtain a lower bound for r_A by assuming $v(r_A) \approx v(r_{\oplus})$, and substituting numerical values we find $r_A \approx 20~R_\odot$. This region is large, and thus the effects of magnetic fields greatly increase the angular momentum contained in the material flowing in the wind. Exercise 15-9: Verify equation (15-79) and the numerical estimate of r_A . The angular momentum of a particle of unit mass at the equator of a star is $l_0 = \omega r_A^2$; where ω is the angular frequency of stellar rotation. Hence the 15-2 Coronal Winds total angular momentum lost from the stellar surface as a whole is $$(dL/dt) = -(4\pi r^2 nvm)l_0 \int_0^{\pi/2} \cos^3 \theta \ d\theta = -\frac{2}{3} \dot{\mathcal{M}}l_0 \qquad (15-80)$$ where we have accounted for the fact that (at latitude θ) $l(\theta) = l_0 \cos^2 \theta$. This angular-momentum loss into the wind implies a braking of the star's rotation. We may estimate the rotational-braking decay-time τ by writing $(dL/dt) \approx -L/\tau$, and expressing L as $L=I\omega$, where I is the moment of inertia, from which we find $\tau = \frac{3}{2}I/(Mr_A^2)$. For the Sun, $I=6\times 10^{53}$ gm cm², and using $\dot{M}=2\times 10^{-14}$ $M_{\odot}/{\rm year}$ and $r_A\approx 20~R_{\odot}$, we find $\tau\approx 10^{10}$ years, which is comparable to the thermonuclear-evolution time-scale for the Sun. That is, if the solar wind maintains its present properties, we expect the solar angular momentum to be significantly diminished during the main-sequence lifetime of the Sun. One of the striking features of the statistics of stellar rotation is the marked drop in the observed average rotation speed $\langle v \sin i \rangle$, as a function of spectral type, for stars of spectral types F and later. Although it is possible that this decrease is associated with the formation of planetary systems (in the solar system the Sun has only 2 percent of the angular momentum), it is also extremely suggestive that this is precisely the point where stars develop deep hydrogen convection zones, and hence presumably have coronae and winds. It is thus very attractive to hypothesize (554) that all later-type stars lose their angular momentum via magnetic braking in stellar winds. Time-scales for such braking can be estimated by an examination of mean rotation speeds of stars in clusters whose ages can be determined from stellar-evolution considerations; when this is done, it is found that there is indeed a strong decrease with age (362), and that the braking times may be as short as 5×10^8 years. Although the stellar time-scale appears much shorter than that derived from the present solar wind, it is known that chromospheric activity (and presumably also the activity of the corona-wind complex) decreases with age (675; 677); hence it is possible that in the early history of the Sun the wind was stronger, and provided more efficient braking. Actually this discussion provides a good example of the fruitful
exchange of ideas that occurs when solar properties are used to develop detailed physical models of a particular phenomenon, which are then applied in a stellar context, where results of evolutionary significance on long time-scales can be inferred. ## DETAILED PHYSICS OF THE SOLAR WIND The study of the solar wind by means of direct measurements from satellites has greatly deepened our understanding of the physics of coronal flows. In an effort to fit the observations, numerous theoretical refinements have been introduced to extend the basic model described above, and to achieve greater realism. Space does not permit anything more than mere mention of the many physical problems that have been addressed; for further details see, e.g., (324) or (107) and the references cited therein. First we might ask how well a one-fluid conductive model fits the data: taking the model by Whang and Chang (667) as typical, one finds $n = 8 \,\mathrm{cm}^{-3}$, $v = 260 \text{ km s}^{-1}$, and $T = 1.6 \times 10^{5} \text{ °K}$ at the radius of the earth's orbit. Comparing with the observed values listed in Table 15-1, we see that the model gives good agreement for the density, and the one-fluid temperature agrees well with the electron temperature, but is a factor of four larger than the proton temperature; the velocity is about 20 percent too low. The fact that the protons and electrons can have different temperatures is explained by the very low densities, and hence collision rates, in the solar wind near r_{\oplus} ; these rates are so low that they cannot equilibrate the thermal energy in the two separate components (moreover, the thermal velocity distribution for both electrons and protons is observed to be anisotropic). Two-fluid models have been constructed (618; 282) in which electrons and protons are allowed to have distinct temperatures; an energy equation is written for each component, including an energy exchange term of the form $\frac{3}{2}vk(T_p - T_e)$, where v is a collision frequency calculated for Coulomb collisions of the charged particles. Typical models of this type yield $n \approx 15 \text{ cm}^{-3}$, $v \approx$ 250 km s⁻¹, $T_e \approx 3.4 \times 10^5$ °K, and $T_p \approx 4.4 \times 10^3$ °K at $r = r_{\oplus}$. The densities are about a factor of two too large, the velocity is 20 percent too low, the electron temperature is a factor of two too high, and the proton temperature is a factor of 10 too low. Although the basic concepts used in the two-fluid model do admit more physical realism than is inherent in a one fluid description, the quantitative results are not impressive; in particular it appears that the energy exchange between protons and electrons must proceed more efficiently than is predicted from Coulomb collisions alone. The exchange has been treated on the assumptions that the particle-velocity distributions are isotropic and Maxwellian, and that magnetic field effects may be ignored; possibly all of these assumptions are inadequate. However, most of the discrepancy seems to be removed when the effects of viscosity are taken into account. Magnetic fields may play an important role in determining the nature of the solar-wind flow, through magnetic forces, by modification of transport coefficients such as the conductivity, and through energy transport and dissipation by hydromagnetic waves. Each of these effects leads to a significant increase in the complexity of the theory, and can appreciably alter the detailed results. Worse, allowing major sources of momentum of energy input into the wind throughout the flow (from *any* source, not just magnetic), changes the whole topology of permitted solutions of the equations, and introduces many possibilities beyond those shown in Figure 15-1 (307). The models described above all omit the effects of viscosity. When viscous forces are included, the equations become of higher order, and the momentum equation no longer possesses a singular or critical point (668). The earliest one-fluid viscous models (553; 668), using classical viscosity coefficients for a proton–electron plasma, were disappointing, for they yielded flow speeds and temperatures about a factor of two too small. A resolution of the difficulty is achieved when magnetic effects upon the viscous stress tensor are taken into account (660), and modern models including viscous terms (681) have the right velocities, and raise the proton temperature (from the spuriously low values found in the inviscid two-fluid models) to values close to those observed. Even the most refined and accurate spherically symmetric models still represent only very high-order abstractions of the real solar wind, for it varies, on time-scales of days, over wide ranges of all the physical variables. Prominent individual features that appear are high-speed plasma streams; these often are observed to recur with a synodic solar-rotation period, and are, therefore, the result of specific conditions in localized regions of the corona. Further, there are energetic flare-produced shock waves that give rise to geomagnetic storms. These structures often interact in a complex way and, more and more, it seems that it is an oversimplification to view the solar wind as a smooth flow upon which "atypical" structural features are superposed; rather, these complex structures are, in some sense, the wind itself. Similarly we are coming to understand that the wind does not arise from a single smooth coronal condition, but that it may be produced in highly specific regions of markedly differing properties, and can be substantially modified by interaction with magnetic fields and by rapid (nonspherical) divergence from a limited initial volume. At some point the problem of the time-dependence of a full three-dimensional model must be solved; only for the solar wind do we have data that require (and, reciprocally, permit!) such solutions, but it is clear that the results will have important implications for stellar winds as well. ## STELLAR CORONAE AND WINDS As mentioned above, it is reasonable to suppose that all stars having hydrogen convection zones should also have coronae and winds. Further, many stars clearly have much more massive flows than the Sun, for the winds are sufficiently optically thick in some spectral lines to give rise to displaced lines or P-Cygni features. Needless to say, we know less about stellar winds than about the solar wind, and much work remains to be done in this rapidly developing field; nevertheless, a number of interesting results emerge even from very simplified calculations. Parker emphasized (498, Chap. XV) that the amount of energy consumed by coronal expansion rises very rapidly with increasing coronal temperature; for example, for the Sun, the energy consumption ranges from 10^{27} to 3 \times $10^{30}~{\rm ergs~s^{-1}}$ if T_0 varies from $10^6~{\rm ^\circ K}$ to $4\times10^6~{\rm ^\circ K}$. Thus a coronal wind acts as a very effective thermostat for controlling the coronal temperature. If a wind is present, we demand that the temperature be compatible with the flow—i.e., $T_0 \lesssim (GM_*m/4kR_*)$. For the Sun, the numerical factor of 4 is replaced by 10, so one might expect $$T_0 \approx 0.1(G\mathcal{M}_* m/kR) \tag{15-81}$$ In main-sequence stars, (\mathcal{M}_*/R_*) varies only by about a factor of two above or below the solar value, which suggests a similar restricted range for T_0 (less than the variation of photospheric temperatures!). In contrast, the energy in the wind may vary widely (perhaps more so than the stellar luminosity). For a giant or supergiant, (\mathcal{M}_*/R_*) is much smaller than in main-sequence stars and, accordingly, T_0 should also be much smaller. For example, in an M-supergiant, equation (15-81) suggests $T_0 \approx 4 \times 10^4$ °K. At such low temperatures conduction becomes ineffective, and one must invoke some mechanism to heat the corona as a whole (665;666); quite possibly, significant wave dissipation occurs throughout the corona. Similarly, the velocity of the winds ultimately approach some significant fraction of the escape velocity, and thus we can expect $$v_{\infty} \gtrsim (2G\mathcal{M}_{*}/R_{*}) \tag{15-82}$$ Again this implies little variation along the main sequence, and implies that supergiants have quite low wind velocities. The picture developed above depends on the *assumption* that the wind is subsonic at the coronal temperature maximum. If, however, the critical point in the wind lies *below* this maximum, the run of temperature with distance is no longer monotonic and the properties of the flow may change substantially. To construct detailed models or apply existing computations [e.g., (201)], we need to specify the relevant coronal conditions, such as n_0 and T_0 , from theoretical calculations—or to specify one of these quantities and a flow parameter such as the mass-loss rate, which can sometimes be determined observationally. The computation of coronal conditions is exceedingly difficult. The basic technique is to calculate the acoustic energy flux created in the convection zone [see, e.g., (394; 395; 525; 601)], compute the dissipation of this flux in the coronal material, and (taking into account losses by radiation and the energy transported by conduction) obtain a temperature-density structure in a model corona [see, e.g., (192; 377; 378; 630; 631; 632)]. Each of these steps requires use of an uncertain theory, and of necessity many approximations must be made, so a high degree of reliability cannot be assigned to the final results. In particular, a good fit is not obtained to observed solar coronal properties [see Fig. 21 of (192)] in all cases. But if we simply accept the calculations, however uncertain, at face value, it appears that for main-sequence stars the maximum acoustic flux is found for stars near spectral types F0; for these stars $T_0 \approx 4 \times 10^6$ °K and $n_0 \approx 3
\times 10^{10}$ cm⁻³ (192). One would expect substantial coronal winds in these stars. If T_0 and n_0 are regarded as given, then the calculations cited previously can be used to derive wind models. Consideration of the energetics of stellar coronae and winds is also quite instructive (290). A corona is heated by the mechanical flux F_m delivered to it, and loses energy via radiation and conduction, and in the kinetic energy of the wind. Analysis shows that, for a given coronal pressure, the rate of energy loss by mass-ejection and by conduction increases with rising temperature, while that by radiation decreases. Therefore, for a given pressure, a temperature exists at which the total energy loss from the corona is a minimum. Further, losses from all three processes increase with increasing pressure, so for minimum-flux coronae there is a monotone relation between coronal pressure and the energy flux required to maintain the corona and wind. This suggests that a given F_m determines a unique coronal temperature and pressure, and hence wind. (Actually it remains to be demonstrated that, if one has a given minimum-flux corona, and arbitrarily changes F_m , then the corona necessarily adjusts to a new minimum-flux configuration.) The competition among these processes establishes three basic classes of coronae. (1) For low values of F_m the main losses are by conduction and radiation. An example is the solar corona-wind complex where only about 10 percent of the mechanical flux delivered to the corona goes into the wind. (If the wind arises in geometrically localized regions of the corona-e.g., coronal holesthe local conversion efficiency may be much higher.) (2) At intermediate values of F_m the losses are mainly from radiation and mass ejection. An example is the wind in the A2 supergiant α Cyg where losses into the wind are dominant, while those by radiation are significant, and those by conduction are negligible. (3) At very large values of F_m , mass loss totally dominates. For early-type stars the rate of mass ejection is as high as 10^{-6} to 10^{-5} $M_{\odot}/$ year, and exceedingly high coronal temperatures (which appear to be excluded by the observations) would be required to drive the winds; here the winds are driven instead by radiation forces (see §15-4). # 15-3 Radiation Hydrodynamics In both the atmospheres and interiors of stars, there exist intense radiation fields that can influence heavily the momentum and energy gains and losses of the material, and hence its motions. To study the dynamics of a flow occurring in such a situation, it is fruitful to consider the fluid as consisting of both material particles and photons, and to calculate the contributions of both types of particles to the equations of motion and of energy conserva- tion. In this way we obtain the equations of radiation hydrodynamics, which describe the coupled flow of the gas and radiation. In the applications of interest here, it will be assumed that the flow velocities $v \ll c$, so that the material particles can be treated nonrelativistically; in certain other contexts (e.g., in supernovae or thermonuclear explosions), this assumption may not be valid. Despite the restriction to $v \ll c$, the fact that the photons have velocity c leads to subtleties in the way the radiation and material terms interact, and it is a nontrivial task to obtain equations that describe the interaction fully consistently. In the end it is simplest and most reliable to develop them in a relativistically covariant form from the outset (621; 524; 664; 135). These equations may subsequently be simplified to retain only terms of order (v/c), and to omit terms of $O(v^2/c^2)$ and higher. It must again be noted that, as was true in our earlier treatment of the comoving-frame transfer equation, it is not sufficient to apply a unique Lorentz transformation, because the fluid velocity is, in general, a function of position and time. As before, we consider transformations from a set of uniformly-moving frames that instantaneously coincide with the moving fluid. The radiative contributions to the equations can, in principle, be written in terms of either laboratory-frame or fluid-frame quantities. Although in some ways it is easier to write down the equations of radiation hydrodynamics in a stationary frame [see, e.g., (521; 551; 692)], they are actually of a simpler form when written in the comoving frame of the fluid, for the radiative terms are most easily evaluated in that frame (621; 135). In the past this approach was not widely employed, because one must be able to solve the comovingframe transfer equation to calculate the necessary radiation-field quantities. As was shown in §14-3, the comoving-frame transfer equation is easily solved with present-day techniques (and is, in some ways, simpler than the fixedframe equation, which is complicated by anisotropies in the absorption and emission coefficients arising from Doppler shifts). We shall, therefore, concentrate primarily on a comoving-frame formulation, but it will also be shown that these equations are consistent (to order v/c) with the fixed-frame equations. Only one-dimensional spherically-symmetric flows will be treated in this book; an extensive collection of formulae for three-dimensional flows in various coordinate systems can be found in (521, Chap. 9). THE MATERIAL STRESS-ENERGY TENSOR AND THE RADIATING-FLUID EQUATIONS OF MOTION In the Cartesian coordinate system $(x^1, x^2, x^3, x^4) \equiv (x, y, z, ict)$, a covariant formulation of the equations of motion and of energy conservation for the material alone yields a system of equations of the form $$(\partial T^{\alpha\beta}/\partial x^{\beta}) = F^{\alpha}, \quad (\alpha = 1, \dots, 4)$$ (15-83) 543 where F^{α} is a four-vector force (the Minkowski force) and $T^{\alpha\beta}$ is a tensor describing the momentum flux (stress), momentum density, and energy density of the material. Similar equations were written in §14-3 for the radiation [cf. equations (14-118) through (14-122)], and by analogy with equation (14-120) we might expect $T^{\alpha\beta}$ to be of the form $$T = \begin{pmatrix} \mathbf{\Pi} & ic\mathbf{G} \\ ic\mathbf{G} & -E \end{pmatrix} \tag{15-84}$$ where Π , G, and E are suitable covariant generalizations of the momentum flux tensor, the momentum density vector, and the total energy density of the material, respectively. We place three demands upon T: (1) that it be written in terms of scalar invariants and four-vectors, so that it is covariant; (2) that it reduce to the correct limit in the frame at rest with respect to the fluid; and (3) that it yield the correct nonrelativistic limit in the laboratory frame. First, we may define the proper time, a four-scalar (invariant) as $$(d\tau)^2 \equiv -(dx_\alpha dx^\alpha)/c^2 = dt^2 - c^{-2}(dx^2 + dy^2 + dz^2)$$ (15-85) Clearly $d\tau$ reduces to dt as $v \to 0$. Then we define the *contravariant four-velocity* as $$V^{\alpha} \equiv (dx^{\alpha}/d\tau) \tag{15-86}$$ Noting from equation (15-85) that $(dt/d\tau) = (1 - v^2/c^2)^{-\frac{1}{2}} \equiv \gamma$, where v is the ordinary velocity $v^2 \equiv [(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2]$, we have $$V^{i} = (dx^{i}/dt)(dt/d\tau) = (1 - v^{2}/c^{2})^{-\frac{1}{2}}(dx^{i}/dt)$$ $$= \gamma v^{i}, \quad (i = 1, 2, 3)$$ (15-87a) $$V^4 = ic(dt/d\tau) = ic\gamma \tag{15-87b}$$ Note in passing that $V_{\alpha}V^{\alpha}=-c^2$, a world scalar (which is *invariant* under any arbitrary coordinate transformation, as can be readily shown from the transformation properties of covariant and contravariant vectors). Next, if ρ_0 , e, and p are the invariant mass density (i.e., the particle number density times rest-mass per particle), the specific internal energy, and the pressure measured in the rest-frame of the fluid, then the equivalent total mass density is $$\rho_{00} = \rho_0 (1 + e/c^2) \tag{15-88}$$ Also, following Thomas (621) we define $$\rho_{000} = \rho_{00} + p/c^2 = \rho_0(1 + h/c^2) \tag{15-89}$$ Here h is the specific enthalpy of the gas, and $(\rho_0 h/c^2)$ gives the mass equivalent (per unit volume) of the total energy contained in the microscopic motions of the gas. Noting that in the nonrelativistic limit $\Pi^{ij} = \rho v^i v^j + p \delta^{ij}$, while $G^i = \rho v^i$, we may hypothesize, by analogy, that $$T^{\alpha\beta} = \rho_{000} V^{\alpha} V^{\beta} + p \, \delta^{\alpha\beta} \tag{15-90}$$ where $\delta^{\alpha\beta}$ denotes the standard Kronecker symbol. It is obvious that equation (15-90) satisfies requirement (1) stated above. The individual components may be written more specifically as $$T^{ij} = \rho_{000} V^i V^j + p \, \delta^{ij} = \rho_1 v^i v^j + p \, \delta^{ij}$$ (15-91a) $$T^{i4} = T^{4i} = ic\gamma \rho_{000} V^i = ic\rho_i v^i$$ (15-91b) and $$T^{44} = -c^2 \gamma^2 \rho_{000} + p = -c^2 \rho_1 + p$$ (15-91c) where $i=1,2,3,\ j=1,2,3,\$ and $\rho_1\equiv\gamma^2\rho_{000}.$ Notice, now, that in the frame of the fluid itself, where ${\bf v}\equiv 0, {\rm T}$ becomes diagonal, with $T^{ii}=p=(\Pi^{ii})_0$, and $T^{44}=-(\rho_0c^2+\rho_0e);$ this gives the correct static pressure and the correct energy per unit volume of the fluid (including the material restenergy). Thus requirement (2) stated above is satisfied. Next, let us examine the nonrelativistic limit $(v/c\ll 1)$ of T. Note first that, if ρ_0 is the mass density in the fluid frame, then [remembering that a volume element transforms as $dV=\gamma^{-1}dV_0$ (Lorentz contraction)], the density seen in the laboratory frame will be $\rho=\gamma\rho_0$. Thus, expanding each element of T, and retaining only the leading terms, we see by inspection that T^{ij} and T^{i4} (or T^{4i}) reduce to the correct momentum-flux tensor and momentum density, while $$T^{44} = -\gamma^{2}(\rho_{0}c^{2} + \rho_{0}e + pv^{2}/c^{2}) \rightarrow -\gamma(\rho c^{2} + \rho e)$$ $$\approx -(\rho
c^{2} + \frac{1}{2}\rho v^{2} + \rho e)$$ (15-92) which is the nonrelativistic energy density (including the rest-mass energy). Thus T satisfies requirement (3) stated above. The action of external forces upon the fluid are expressed in terms of a four-force (per unit volume) F^{α} whose spatial components give the rate of increase of the momentum of the matter per unit volume and whose time component specifies the rate of increase of energy per unit volume. The expression $V_{\alpha}F^{\alpha}$ is a scalar invariant, and hence may be evaluated in any frame. In particular, we may evaluate it in the frame comoving with the fluid. In this frame $$V_{\alpha}F^{\alpha} = (V_4 F^4)_0 = -c^2 (d\rho_{00}/d\tau)$$ (15-93) In the absence of general-relativistic effects, the derivative on the righthand side will be zero unless there is a change in the proper mass density arising from a chemical energy release or from a conversion of matter to energy by. say, a thermonuclear reaction. Thus $V_{\alpha}F^{\alpha}=0$; note that this relation implies that in the comoving frame $(F^4)_0 = 0$, a result that will be used below. The equations of motion for the material alone are given by equation (15-83), where $T^{\alpha\beta}$ is defined by equation (15-90). If $R^{\alpha\beta}$ denotes the radiation stress-energy tensor [cf. equation (14-120)], then the equations of motion for the complete fluid (matter plus radiation) are $$\partial (T^{\alpha\beta} + R^{\alpha\beta})/\partial x^{\beta} = F^{\alpha} \tag{15-94}$$ $(\partial T^{\alpha\beta}/\partial x^{\beta}) = F^{\alpha} + q^{\alpha}$ (15-95)or where q^{α} is given by equation (14-121). In addition, we may write an equation of continuity for the material particles alone (the photons are massless); demanding number conservation, we have $$\partial(\rho_0 V^\alpha)/\partial x^\alpha = 0 \tag{15-96}$$ #### THE FLITD-FRAME ENERGY EQUATION If we were to assume that the first law of thermodynamics remains valid for the combined material and radiation fluid in the comoving frame of the material, then the gas-energy equation [cf. equation (15-24)] would need to be modified only to account for gains and losses of energy (per unit volume per unit time) by the material from interaction with the radiation field. Thus we could write $$\rho_0(De/Dt) - (p/\rho_0)(D\rho_0/Dt) = 4\pi \int_0^\infty (\chi_\nu^0 J_\nu^0 - \eta_\nu^0) d\nu \quad (15-97)$$ where (D/Dt) denotes the Lagrangian time-derivative, following the motion of the material, and γ_v^0 , η_v^0 , and J_v^0 are evaluated in the comoving frame, which is at rest with respect to the gas. It will now be shown that this a priori expectation is right, and that equation (15-97) is rigorously correct (621; 135). Forming the dot product of the equations of motion (15-95) with $-V_{\alpha}$ [and using the explicit form for $T^{\alpha\beta}$ given by equation (15-90)] one finds $$-(V_{\alpha}V^{\alpha})\frac{\partial(\rho_{000}V^{\beta})}{\partial x^{\beta}} - \rho_{000}V^{\beta}\left(V_{\alpha}\frac{\partial V^{\alpha}}{\partial x^{\beta}}\right) - V^{\alpha}\frac{\partial p}{\partial x^{\alpha}} = -V_{\alpha}F^{\alpha} - V_{\alpha}g^{\alpha} \quad (15-98)$$ But $V_{\alpha}V^{\alpha}=-c^2$, so $V_{\alpha}(\partial V^{\alpha}/\partial x^{\beta})=\partial(\frac{1}{2}V_{\alpha}V^{\alpha})/\partial x^{\beta}=0$ and, recalling that $V_{\alpha}F^{\alpha}=0$, equation (15-98) becomes $$c^{2}\partial(\rho_{000}V^{\alpha})/\partial x^{\alpha} - V^{\alpha}(\partial p/\partial x^{\alpha}) = -V_{\alpha}g^{\alpha}$$ (15-99) Now, subtracting $(c^2 + e + p/\rho_0)$ times equation (15-96) from equation (15-99) and writing $(D/Dt) \equiv V^{\alpha}(\partial/\partial x^{\alpha})$, we obtain $$\rho_0(De/Dt) - (p/\rho_0)(D\rho_0/Dt) = -V_x g^x$$ (15-100) Exercise 15-10: Fill in the missing steps between equations (15-99) and (15-100). As the lefthand side of equation (15-100) is evaluated following the fluid flow, the righthand side can be evaluated in the comoving frame. In this frame $V^i = 0$ (i = 1, 2, 3), and $V^4 = ic$ instantaneously, and from equation (14-121) $$g^{4} = (4\pi i/c) \int (\chi_{\nu}^{0} J_{\nu}^{0} - \eta_{\nu}^{0}) dv$$ (15-101) where advantage has been taken of the isotropy of the absorption and emission coefficients in the comoving frame. It is thus clear that equation (15-100) reduces to equation (15-97), which is then, in fact, the correct gasenergy equation for the material as it interacts with the radiation field. ## THE FLUID-FRAME MOMENTUM EQUATIONS To obtain an equation of motion in the comoving fluid frame, one might argue that the forces exerted by the radiation field on the material should be added to the usual body forces exerted by, say, gravity. The net force exerted by the radiation, when calculated in the comoving frame, is given by [cf. equation (14-121)] $$\mathbf{g}_{R}^{0} = c^{-1} \int \chi_{\nu}^{0} \mathscr{F}_{\nu}^{0} d\nu \tag{15-102}$$ where again χ_{ν}^{0} and \mathcal{F}_{ν}^{0} are evaluated in the comoving frame, and advantage has been taken of the isotropy of χ_{ν}^{0} and η_{ν}^{0} . Thus from equation (15-21) we expect that $$\rho(D\mathbf{v}/Dt) = -\nabla p + \mathbf{F} + c^{-1} \int \chi_{\nu}^{0} \mathscr{F}_{\nu}^{0} d\nu \qquad (15\text{-}103)$$ To verify equation (15-103) we examine the *i*th component of equation (15-95), which, using equations (15-91), may be written $$\left[\partial(\rho_1 v^i v^j)/\partial x^j\right] + \left[\partial(\rho_1 v^i)/\partial t\right] + \left(\partial p/\partial x^i\right) = F^i + g^i \quad (15\text{-}104)$$ or $$\rho_1 \frac{\partial v^i}{\partial t} + \rho_1 v^j \frac{\partial v^i}{\partial x^j} + v^i \frac{\partial (\rho_1 v^j)}{\partial x^j} + v^i \frac{\partial \rho_1}{\partial t} + \frac{\partial p}{\partial x^i} = F^i + g^i \quad (15-105)$$ But the time-component of equation (15-95), multiplied by v^i is $$v^{i}[\partial(\rho_{1}v^{j})/\partial x^{j}] + v^{i}[\partial(\rho_{1} - c^{-2}p)/\partial t] = v^{i}(F^{4} + g^{4})/(ic)$$ (15-106) Hence by subtraction $$\rho_1 \frac{\partial v^i}{\partial t} + \rho_1 v^j \frac{\partial v^i}{\partial x^j} + \frac{\partial p}{\partial x^i} + \frac{v^i}{c^2} \frac{\partial p}{\partial t} = F^i + g^i - \frac{v^i}{ic} (F^4 + g^4) \quad (15-107)$$ Writing $(D/Dt) = V^{\alpha}(\partial/\partial x^{\alpha})$ and $\rho = \gamma \rho_{000}$, equation (15-107) is equivalent to $$\rho(D\mathbf{v}/Dt) = -\nabla p - (\mathbf{v}/c^2)(\partial p/\partial t) + \mathbf{F} + \mathbf{g} - \mathbf{v}(F^4 + g^4)/ic \quad (15-108)$$ Again, the lefthand side of the equation is evaluated following the fluid flow, so the righthand side can be evaluated in the comoving frame of the fluid (in which \mathbf{v} is instantaneously zero). We then find equation (15-103), as expected, when \mathbf{g} is evaluated in the comoving frame from using equation (14-121). It is convenient to rewrite equation (15-108) with g^{α} replaced by $-(\partial R^{\alpha\beta}/\partial x^{\beta})$ [cf. equation (14-120)] to obtain $$\rho \frac{D\mathbf{v}}{Dt} + \mathbf{\nabla}p + \left(\mathbf{\nabla} \cdot \mathbf{P} + \frac{1}{c^2} \frac{\partial \mathscr{F}}{\partial t}\right) - \frac{\mathbf{v}}{c^2} \left(\frac{\partial E_R}{\partial t} + \mathbf{\nabla} \cdot \mathscr{F}\right)$$ $$= \mathbf{F} - \frac{\mathbf{v}}{c^2} \left[\left(\frac{\partial p}{\partial t}\right) + \mathbf{v} \cdot \mathbf{F}\right] \quad (15\text{-}109)$$ where the rate of increase of material energy per unit volume has been written as $F^4 = -(\mathbf{v} \cdot \mathbf{F})/ic$. In equation (15-109) the radiation-field quantities are now expressed in an aribitrary (laboratory) frame. Notice now that, if we are concerned with describing only a nonrelativistic fluid flow, the term from F^4 is $O(v^2/c^2)$ with respect to \mathbf{F} and hence may be omitted. Likewise, if we compute the fluid flow (as opposed to the time-evolution of the photons), the characteristic times involved will be $\Delta t \sim \Delta x/v$ where v is the fluid velocity, and the term in $(\partial p/\partial t)$ is clearly $O(v^2/c^2)$ compared to ∇p and may be omitted. Finally, $E_R \sim p_R$; hence $(v/c^2)(\partial E_R/\partial t)$ is $O(v^2/c^2)$ compared to ∇P and may also be omitted. All of these terms will be dropped henceforth. ## THE INERTIAL-FRAME EQUATIONS Most treatments of radiation hydrodynamics formulate the equations in an inertial laboratory frame. Let us now show [working to O(v/c) only] that the inertial-frame and comoving-frame equations are consistent. This may be done by expressing the inertial-frame radiation-field quantities in terms of their comoving-frame counterparts via equation (14-124), which implies: $$E_R = E_R^0 + 2c^{-2}\mathbf{v} \cdot \mathscr{F}^0 \tag{15-110a}$$ $$\mathscr{F} = \mathscr{F}^0 + E_R^0 \mathbf{v} + \mathbf{v} \cdot \mathsf{P}^0 \tag{15-110b}$$ $$P = P^0 + 2c^{-2} \mathbf{v} \mathscr{F}^0 \tag{15-110c}$$ Consider first the momentum equation (15-109), which for a spherically symmetric flow with a gravity force becomes $$\rho \frac{Dv}{Dt} + \frac{\partial p}{\partial r} + \frac{1}{c^2} \frac{\partial \mathscr{F}}{\partial t} + \frac{\partial p_R}{\partial r} + \frac{(3p_R - E_R)}{r} - \frac{v}{c^2} \left(\frac{\partial \mathscr{F}}{\partial r} + \frac{2\mathscr{F}}{r} \right) = -\frac{G\mathcal{M}\rho}{r^2}$$ (15-111) where use has been made of equation (1-43b) for $\nabla \cdot P$. To obtain an equation correct to O(v/c) the *full* transformations of equations (15-110a) and (15-110c) must be used. However, even in the free-flow limit, $\mathscr{F}^0 \sim cE_R{}^0$ or $cp_R{}^0$; hence it is clear that all of the terms in \mathscr{F} in equation (15-111) are already at most only O(v/c) (remembering that we consider $\Delta t \sim \Delta x/v$). Thus the additional terms in v in equation (15-110b) will introduce terms of $O(v^2/c^2)$ and can be omitted, so that it is
sufficient to write $\mathscr{F} = \mathscr{F}^0$. Substituting for the inertial-frame radiation field as indicated, we thus obtain $$\rho \frac{Dv}{Dt} + \frac{\partial p}{\partial r} + \left[\frac{1}{c^2} \frac{\partial \mathcal{F}^0}{\partial t} + \frac{v}{c^2} \frac{\partial \mathcal{F}^0}{\partial r} + \frac{\partial p_R^0}{\partial r} + \frac{\partial p_R^0}{\partial r} + \frac{(3p_R^0 - E_R^0)}{r} + \frac{2\mathcal{F}^0}{c^2} \left(\frac{\partial v}{\partial r} + \frac{v}{r} \right) \right] = -\frac{G\mathcal{M}\rho}{r^2} \quad (15-112)$$ Exercise 15-11: Verify equation (15-112). In view of the comoving-frame transfer equation (14-134b), all of the terms in the square brackets collapse to yield $$\rho(Dv/Dt) + (\partial p/\partial r) = -(GM\rho/r^2) + (4\pi/c) \int \chi_v^0 H_v^0 dv \quad (15-113)$$ It is thus apparent that the comoving-frame transfer equation derived in Chapter 14 renders the inertial-frame and fluid-frame equations of motion fully consistent to order (v/c). Let us now consider energy conservation (ignoring thermal conduction) as expressed by equation (15-28). The time derivative operates on the energy per unit volume, and to this term we should add E_R ; the divergence operates on the energy flux, and to this term we should add \mathcal{F} . Hence $$\left[\hat{c}(\rho e + \frac{1}{2}\rho v^2 + E_R)/\hat{c}t\right] + \nabla \cdot \left[(\rho e + \frac{1}{2}\rho v^2 + p)\mathbf{v} + \mathcal{F}\right] = \mathbf{v} \cdot \mathbf{F}$$ (15-114) To obtain a gas-energy equation, we subtract out the mechanical work terms obtained by taking the dot product of \mathbf{v} with the momentum equations (15-109). Note that the two terms in (v/c^2) will then become $O(v^2/c^2)$, as will $c^{-2}\mathbf{v} \cdot (\partial \mathcal{F}/\partial t)$ for time-intervals $\Delta t \sim \Delta x/v$; hence $$\rho \lceil D(\frac{1}{2}v^2)/Dt \rceil + (\mathbf{v} \cdot \nabla)p + \mathbf{v} \cdot (\nabla \cdot \mathsf{P}) = \mathbf{v} \cdot \mathsf{F}$$ (15-115) and by subtraction from equation (15-114) we find $$\left[\partial(\rho e + E_R)/\partial t\right] + \nabla \cdot (\rho e \mathbf{v} + \mathcal{F}) + p(\nabla \cdot \mathbf{v}) - \mathbf{v} \cdot (\nabla \cdot \mathbf{P}) = 0 \quad (15-116)$$ In view of equations (15-17) and (15-13), equation (15-116) reduces to $$\rho(De/Dt) - (p/\rho)(D\rho/Dt) + \left[(\partial E_R/\partial t) + \nabla \cdot \mathscr{F} - \mathbf{v} \cdot (\nabla \cdot \mathsf{P}) \right] = 0 \quad (15-117)$$ It is clear that, in transforming to comoving-frame quantities, we must now carry all three terms of equation (15-110b) for \mathscr{F} ; but manifestly the second terms of equations (15-110a) and (15-110c) will produce terms of $O(v^2/c^2)$ in time-intervals characteristic of the fluid flow; hence these terms may be omitted. Thus we calculate $\nabla \cdot \mathscr{F} = \nabla \cdot (\mathscr{F}^0 + E_R^0 \mathbf{v} + \mathbf{v} \cdot \mathsf{P}^0)$, and note that, for spherically symmetric flow, $$\nabla \cdot (E_R^0 \mathbf{v}) = E_R^0 (\nabla \cdot \mathbf{v}) + (\mathbf{v} \cdot \nabla) E_R^0$$ $$= v \left(\frac{\partial E_R^0}{\partial r} \right) + E_R^0 \left(\frac{\partial v}{\partial r} + \frac{2v}{r} \right)$$ (15-118a) $$\nabla \cdot (\mathbf{v} \cdot \mathsf{P}^0) = r^{-2} \, \partial (r^2 v p_R^0) / \partial r$$ $$= v (\partial p_R^0 / \partial r) + p_R^0 [(\partial v / \partial r) + 2(v/r)] \quad (15-118b)$$ Further, $$\mathbf{v} \cdot (\nabla \cdot \mathsf{P}^0) = v[(\partial p_R^0/\partial r) + (3p_R^0 - E_R^0)/r]$$ (15-118c) so, expanding the term in square brackets in equation (15-117), we have $$\left(\frac{\partial E_{R}^{0}}{\partial t}\right) + \left(\frac{\partial \mathscr{F}^{0}}{\partial r} + \frac{2\mathscr{F}^{0}}{r}\right) + v\left(\frac{\partial E_{R}^{0}}{\partial r}\right) + E_{R}^{0}\left(\frac{\partial v}{\partial r} + \frac{2v}{r}\right) + p_{R}^{0}\frac{\partial v}{\partial r} + (E_{R}^{0} - p_{R}^{0})\left(\frac{v}{r}\right) = \left(\frac{\partial E_{R}^{0}}{\partial t}\right) + v\left(\frac{\partial E_{R}^{0}}{\partial r}\right) + \left(\frac{\partial \mathscr{F}^{0}}{\partial r} + \frac{2\mathscr{F}^{0}}{r}\right) + (E_{R}^{0} + p_{R}^{0})\frac{\partial v}{\partial r} + (3E_{R}^{0} - p_{R}^{0})\left(\frac{v}{r}\right) = 4\pi \int (\eta_{v}^{0} - \chi_{v}^{0}J_{v}^{0}) dv$$ (15-119) by virtue of equation (14-134a). Equation (15-117) is thus identical to the comoving-frame equation (15-97). Finally, it is useful to combine the momentum and gas-energy equations into a total energy equation that displays the effects of radiative momentum and energy inputs in a transparent way. Let q_R be the rate of net gain of energy density by the material from the radiation, and let \mathbf{f}_R be the force per unit volume exerted by radiation. Then, from equations (15-97) and (15-13), $$\rho(De/Dt) + p(\nabla \cdot \mathbf{v}) = q_R \tag{15-120}$$ and from equation (15-103), by forming the scalar product with v, $$\rho \left[D(\frac{1}{2}v^2)/Dt \right] + (\mathbf{v} \cdot \mathbf{\nabla})p = \mathbf{v} \cdot (\mathbf{f} + \mathbf{f}_R)$$ (15-121) By addition of equations (15-120) and (15-121), and use of equation (15-17), $$\left[\hat{c}(\frac{1}{2}\rho v^2 + \rho e)/\hat{c}t\right] + \mathbf{\nabla} \cdot \left[\left(\frac{1}{2}\rho v^2 + \rho e + p\right)\mathbf{v}\right] = q_R + \mathbf{v} \cdot (\mathbf{f} + \mathbf{f}_R)$$ (15-122) For a steady $(\partial/\partial t \equiv 0)$ spherically symmetric flow, integration of equation (15-122) with the usual gravity force gives $$(4\pi r^{2}\rho v)\left[\frac{1}{2}v^{2} + e + (p/\rho) - (G\mathcal{M}/r)\right] + 4\pi \int_{r}^{\infty} (q_{R} + \mathbf{v} \cdot \mathbf{f}_{R})r^{2} dr = E = \text{Constant} \quad (15-123)$$ which is analogous to equation (15-59) with added radiative terms. For later work it will be convenient to denote the first set of terms by E_0 and to write $$E_0(r) + 4\pi \int_r^{\infty} (q_R + \mathbf{v} \cdot \mathbf{f}_R) r^2 dr = E = \text{Constant}$$ (15-124) ## 15-4 Radiatively Driven Winds Observational evidence gathered over the last decade has demonstrated compellingly that rapid mass loss via transsonic winds is ubiquitous throughout the high-temperature, high-luminosity portions of the Hertzsprung-Russell diagram. The basic theoretical framework within which such flows are explained involves winds driven by momentum input into the gas from the intense radiation fields of these luminous stars. Although the basic outlines of the theory seem fairly well established at present, this is a very active and rapidly developing field, and a number of important questions remain open, awaiting future study. We shall, therefore, confine attention to admittedly idealized models that illustrate the basic physics; detailed fitting of computed models to observed data is only beginning, and the reader should turn to the current research literature to follow these developments. # OBSERVATIONAL EVIDENCE FOR TRANSSONIC WINDS IN EARLY-TYPE STARS A large number of characteristic features (e.g., P-Cygni profiles, emission lines, line asymmetries) in the visible spectra of many O and early B stars (particularly supergiants, Of, and WR stars) have long provided evidence that these objects have extensive envelopes, and that the material being observed in the lines is flowing outward from the stellar photosphere [see, e.g., (261, Chap. 10)]. The case for actual mass loss was not unequivocal, however, because the observed velocities measured from the short-wavelength edge of the absorption in P-Cygni features (typically 200–400 km s⁻¹) did not exceed the surface escape velocity $$v_{\rm esc} = 620 (M/M_{\odot})^{\frac{1}{2}} (R/R_{\odot})^{-\frac{1}{2}} \,\mathrm{km \ s^{-1}}$$ (15-125) which is of the order of 1000–1500 km s⁻¹ for a main-sequence O-star, and 600–900 km s⁻¹ for an OB-supergiant. The data obtained from ground-based observations suffer from a fundamental limitation: all of the lines observed are *subordinate transitions* that arise from levels with *high excitation potentials*, and hence with small populations outside the regions of high temperature and density. The column density of absorbers in these lines is therefore quite small, and one observes only the *innermost* layers of the envelope, just outside the photosphere. In contrast, complementary information is obtained from the ultraviolet region of the spectrum accessible to observation from space, which contains resonance lines arising from the ground states of the dominant ionization stages of abundant light elements. The column densities in these lines are so large that one may sample the outermost parts of the envelope. Decisive direct evidence of mass loss was thus first provided when Morton (467) discovered displacements corresponding to outflow velocities in the range 1500-3000 km s⁻¹ in the P-Cygni profiles of the ultraviolet resonance lines of Si IV \(\lambda\)1402.8 \(\hat{A}\) and C IV \(\lambda\)1549.5 \(\hat{A}\) in spectra obtained from rockets [see also (468; 469; 470; 129; 600; 579; 580)]. Combining the ultraviolet and ground-based data, we infer a transsonic flow in the expanding envelope. The measured resonance-line velocities are, in fact, only lower limits on the actual terminal velocity of the flow, because variations in the ionization equilibrium may cause the absorbing ion to vanish at some level in the envelope (or the material may just become optically thin and produce features below the detection threshold). Recently, results of great accuracy and sensitivity have been obtained for ultraviolet OB spectra from the orbiting observatory Copernicus (589). Further evidence for mass loss is provided by infrared and radio continuum observations (of several OB and WR stars), which are most readily interpreted in terms of free-free emission from an extended, optically-thick envelope having a density profile consistent with steady outflow of the material (171; 241; 277; 685). The ground-based
data are of great importance for they, in principle, provide information in the region where the flow passes through the sonic velocity. The hydrogen $H\alpha$ line and the He II $\lambda 4686$ line are among the strongest lines in the visible spectrum of OB stars, and hence usually provide the first indications of atmospheric extension and expansion by coming into emission. Extensive observational surveys have been made of both lines. $H\alpha$ is found (537) to show emission in luminous B-stars of all types from B0 to A3. There are well-defined lower limits to the luminosity at which $H\alpha$ emission first becomes conspicuous, namely $M_{\nu} \approx -5.8 \ (M_{\rm bel} \approx -8.8)$ near spectral type B0, and $M_v \approx -6.8$ ($M_{\rm bol} \approx -7.3$) near spectral type A0, and there is a definite relation between the net emission strength of $H\alpha$ and the stellar luminosity. There is clear evidence for differential expansion of the atmosphere for stars about 0.5 mag less luminous than those that show conspicuous $H\alpha$ emission. For the O-stars (177) there is generally a close correlation between the emission strength of He II $\lambda 4686$ and that of $H\alpha$, and emission at either line is an indicator of an extensive envelope around the star. Further, it is found that the luminosity at which $H\alpha$ weakens, or comes into emission, is $M_v \approx -6$ ($M_{\rm bol} \approx -9$). The $H\alpha$ profiles typically exhibit P-Cygni characteristics, or show an extended blueward absorption wing indicating expansion; typical velocity widths are of the order of \pm 600 km s⁻¹. As the expanding envelope of an OB star becomes more extended and dense, a definite series of other spectroscopic effects are manifested, and a useful qualitative assessment of the state of the atmosphere can be obtained by an examination of the particular effects that do appear (328). Measurements of the radial velocities (in the usual spectroscopic sense) indicated by different lines of various ions in Of spectra (326; 327), show some interesting features. (1) There is a velocity progression with line-series (e.g., the Balmer lines), with the strongest lines showing the largest velocities of approach; this indicates an accelerating outward flow, for the outermost layers are seen in the strongest lines. By theoretical fitting of the observed profiles it is possible, in priniciple, to infer the variation of velocity with radial distance from the star. If such information can be obtained reliably, it is of great value, for it can provide important constraints on possible theoretical models in the crucial transsonic flow regions. For one star (HD 152236), it was found (327) that the velocity rises sharply outward, from a value near the sound speed ($\sim 25 \text{ km s}^{-1}$) to $v \sim 300 \text{ km s}^{-1}$ in about 0.5 stellar radii above the photosphere; for two other stars this rise is much more gradual, with velocities of a few hundred km s⁻¹ being attained at two or three stellar radii above the photosphere. We shall note the significance of these results later in this section. (2) There is a clear correlation of larger velocities with smaller lower-level excitation potentials for the lines. If the excitation were presumed to be in LTE, this correlation would imply that the temperature decreases outward in the envelope (as would be expected if the envelope is in radiative equilibrium, or is expanding adiabatically). Of course, LTE is not likely, and probably the correlation reflects increasing dilution of the radiation field (hence lower radiative excitation rates) or decreasing densities (hence lower collisional excitation rates). Both sets of results mentioned here urgently need to be refined with trustworthy diagnostics, based on careful solutions of the coupled transfer and statistical equilibrium equations, for various flow models. Finally, it should be mentioned that broad, faint emission features have been observed (678) underlying the relatively narrow, bright, emission lines of He II λ 4686, C III λ 5696, and N III λ 4634–40 in some Of spectra. These features have total velocity widths up to 4000 km s⁻¹, and if real (they are not seen by all observers) could possibly result from emission originating in the extensive, rapidly-expanding outer envelope of the star. A large body of ultraviolet data has now been accumulated, thanks to the possibility of making long-term observations from the satellite Copernicus (589). Because the observed resonance lines are intrinsically strong and easily detected, they provide extremely sensitive indicators of stellar winds. From an examination of ultraviolet spectra of 47 O-, B-, and A-stars (see Figure 15-4 for an example), it is found that mass loss occurs over a much wider range of temperature and luminosity than indicated by effects seen in the spectrum visible from the ground. Essentially all stars with luminosities greater than 3 \times 10⁴ L_{\odot} (a reduction of a factor of 15 relative to the ground-based limit) are found to show mass loss. The observed terminal velocities FIGURE 15-4 Far-ultraviolet scan of the spectrum of ζ Pup (O5f) obtained from the satellite *Copernicus*. Ordinate gives flux (in arbitrary units), and abscissa gives wavelength in Å. The positions of the C III λ 1175.7, Si III λ 1206.5, H I λ 1216, and N V λ 1238.8, 1242.8 lines are marked with vertical arrows. The smooth upper curve is an estimated "continuum" level, drawn for illustrative purposes only; note the marked P-Cygni character of the C III and N V lines. From (589), by permission. are all clearly larger than the *surface* escape velocity (and hence much larger than $v_{\rm esc}$ at great distance from the star), and range from 300 km s⁻¹ to 3500 km s⁻¹. There does not appear to be a significant correlation of v_{∞} with stellar temperature, luminosity, gravity, or rotation velocity. A wide variety of ions are observed, ranging from Mg II and C II in the coolest stars, through C IV, Si IV, and N V in the hotter stars. Lines arising from excited states (e.g., N IV $\lambda 1718.5$ at 16.1 eV, or He II $\lambda 1640$ at 40.6 eV) show lower velocities (470), again indicating decreasing excitation with increasing distance from the star; as noted above, this probably reflects decreasing densities and radiation fields. In several stars the O VI \(\lambda 1032\) and 21038 lines are observed (533; 589). These lines are unexpectedly strong, and indicate a higher density of O5+ than would be estimated from the color temperature of the stellar radiation field. If it is assumed that the ionization equilibrium is established by collisions (coronal case), the temperature derived is about 2×10^5 °K, which is taken as evidence for coronal heating in these stars. On the other hand, an upper bound of about 3×10^5 °K on T follows from observations of lower ionization stages (e.g., C III and N III) in the flow, and from comparisons of upper limits of X-ray fluxes to Ha emission strengths (145). We shall see below that temperatures in this range are too low to drive the flow by a coronal-wind mechanism and produce terminal speeds in the observed range. Mass-loss rates have been estimated from the observed line-strengths (468) and profiles (329) for the Orion supergiants δ , ε , and ζ Ori, yielding values of about 1 to $2 \times 10^{-6} \, \mathcal{M}_{\odot}/\text{year}$. Detailed fits to line profiles for ζ Pup (O5f) yield a mass-loss rate of $7 \, (\pm 3) \times 10^{-6} \, \mathcal{M}_{\odot}/\text{year}$ (383). #### BASIC DYNAMICS OF RADIATION-DRIVEN WINDS The first question that arises is whether the flows observed in early-type stars can result from coronal expansion of the kind considered in §15-2. As recognized by Lucy and Solomon (404), the answer to this question is probably negative. To begin, the OB stars are thought not to have extensive convection zones, and are not expected a priori to have coronae. But even if they did have coronae for some reason, then equations (15-59), (15-62), and (15-64) imply that the critical-point temperature T_c required to drive the flow must satisfy the relation $2kT_c \approx \frac{1}{2}mv_{\infty}^2$. Adopting $v_{\infty} \sim 3 \times 10^3$ km s⁻¹, we find $T_c \sim 3 \times 10^7$ °K, a value that is completely excluded by (a) the absence of soft X-ray emission from the stars, and (b) the presence of lines from ions such as C IV, N V, and Si IV (observed to exist in the flow at velocities from $\sim \frac{1}{2}v_{\infty}$ to v_{∞}), which would be destroyed by collisional ionization at temperatures greater than about 3×10^5 °K. We must therefore seek an alternate mechanism to drive the wind. Lucy and Solomon (404) suggested that this mechanism is direct momentum input into the gas through the absorption of radiation by the strong resonance lines observed in the ultraviolet spectrum. The momentum input results when photons are absorbed by certain ions from the stellar radiation field, which is strongly outward-directed, and then scattered *isotropically*. Because the emission process is isotropic, it produces zero net change in the momentum of the material; hence there is a net gain of outward momentum from the incident radiation field. The absorbing ions are thus accelerated radially, and they then suffer collisions with all other particles in the medium; in this way the momentum gained by the particular ions absorbing the radiation is shared with the other atoms in the gas, and accelerates the material as a whole. The outward acceleration experienced by the gas is then $$g_R = (4\pi/c\rho) \int_0^\infty \chi_\nu^0 H_\nu^0 d\nu$$ (15-126) where χ_{ν}^{0} denotes the absorption coefficient per unit volume from all sources (continua, electron scattering, and lines); H_{ν}^{0} is the incident flux.
The outward radiative acceleration is to be compared with the inward acceleration of gravity, $g = (G\mathcal{M}/r^2)$; if g is everywhere greater than g_R , then the atmosphere remains in hydrostatic equilibrium and does not expand. We therefore must investigate the circumstances under which g_R will exceed g; for convenience we shall define $$\Gamma \equiv (g_R/g) \tag{15-127}$$ In O-stars the continuous opacity is dominated by electron scattering in those spectral regions where most of the flux emerges. Pure Thomson scattering is frequency independent, and the resulting Γ can be written immediately as $$\Gamma_e = (s_e L / 4\pi c G \mathcal{M}) \tag{15-128}$$ where $s_e = (n_e \sigma_e/\rho)$ is the electron-scattering coefficient per gram. Recalling the results of Exercise 7-1, $\Gamma_e \approx 2.5 \times 10^{-5}$ (L/L_{\odot})(M_{\odot}/M); for an O-star (L/L_{\odot}) $\approx 10^6$, (M/M_{\odot}) ≈ 60 , and $\Gamma_e \approx 0.4$. It is thus clear that continuum absorption alone cannot produce a force that exceeds gravity. (We shall see below that it is essential for a transsonic wind that it does not!). We must therefore look to the spectral lines to produce the required force. At great depth in the atmosphere the diffusion approximation is valid, and $H_{\nu} \propto \chi_{\nu}^{-1}$ [cf. equation (2-91)]; in this limit the product $\chi_{\nu}H_{\nu}$ appearing in equation (15-126) is independent of the value of χ_{ν} ; i.e., in the diffusion limit the lines are no more effective than the continuum in delivering momentum to the gas. Thus at depth, Γ remains essentially equal to Γ_{e} as given by equation (15-128). On the other hand, at the surface of the atmosphere H_{ν} may rise far above its diffusion-approximation value, because intense radiation emerges from the material below, and none is incident from above. To estimate the maximum force that can result from a single line, we assume that the line intercepts unattenuated continuum radiation—i.e., $F_v = F_c = B_v(T_{\rm eff})$. Then an upper limit to the acceleration of the material by a single line of an atom of chemical species k, in excitation state i, of ionization stage j, is $$g_R^0 = (\pi^2 e^2/mc^2) f_{il} B_{\nu} (T_{\text{eff}}) (n_{ijk}/N_{ik}) (N_{ik}/N_k) (\alpha_k X/m_H)$$ (15-129) where n_{ijk} is the population of the particular level, N_{jk} is the total number of atoms in all excitation states of ionization stage j, N_k is the total number of all atoms and ions of species k, α_k is the abundance of species k relative to hydrogen, and X is the mass fraction of the stellar material that is hydrogen. Lucy and Solomon considered the C IV line at $\lambda 1548$ Å, and adopting f=0.2, $T_{\rm eff}=25{,}000^{\circ}{\rm K}$ (to maximize $B_{\rm v}$), $\alpha_{\rm C}=3\times10^{-4}$, X=1, and $(n_{ijc}/N_{iC})=1$, they found $$\log(g_R^{\circ})_{\lambda 1548} = 5.47 + \log(N_{iC}/N_C) \tag{15-130}$$ For a typical O-supergiant, $\log g \approx 3$; hence the upper limit on the force (obtained when $N_{\rm jC}/N_{\rm C}=1$) from even this one line exceeds the force of gravity by a factor of 300. Of course, the estimate just derived is (purposely) a gross upper limit, because the carbon atoms in the photosphere of the star produce a dark absorption line in which $F_v \ll F_c$. To account for this, Lucy and Solomon solved the transfer equation approximately, and found that above a certain critical level in the atmosphere the radiation force, computed using equation (15-126) for the C IV λ 1548 line, still exceeded gravity. [Interestingly, similar results had also been found in standard plane-parallel, static, model-atmosphere calculations (7; 298). For early-type stars, the radiation force on a realistic line spectrum exceeded gravity at the surface of the model; but this was regarded as "nonphysical" for the purposes of model construction and was suppressed in the calculation!] In summary, one finds that, for O-stars, the forces obtained when the atmosphere is assumed to be static are incompatible with that assumption; hence hydrostatic equilibrium in the outermost layers is not possible, and an outflow of material must occur. Once the uppermost layer begins to move, the lines will be Doppler-shifted away from their rest positions and will begin to intercept the intense flux in the adjacent continuum; this enhances the momentum input to the material and hence increases the acceleration. The underlying layers must expand to fill the rarefaction left by acceleration of the upper layers. Furthermore, the lines in these lower layers become unsaturated (because the absorption lines in the upper layer have been Doppler-shifted); hence these underlying layers also begin to experience a radiative force that exceeds gravity. In this manner, a flow can be initiated; it remains to be shown that (a) the *amount* of mass loss produced is significant, and (b) the variation of the radiation force with depth is consistent with transsonic flow. Let us consider the latter point first. To obtain a transsonic flow, certain conditions at the sonic point must be met (408; 132), as is the case for coronal winds. For steady flow, mass conservation is expressed by equation (15-16), while the momentum equation (15-103) can be written, using equation (15-127), as $$v(dv/dr) + \rho^{-1}(dp/dr) = -G\mathcal{M}(1 - \Gamma)/r^2$$ (15-131) Here Γ is assumed to be a given function of the radius r. The pressure may be expressed in terms of the density and isothermal sound speed a [cf. equation (15-37)] as $p=a^2\rho$; a is assumed to be a function of the radius r. Then using the equation of continuity (15-14), we find $$\rho^{-1}(dp/dr) = (da^2/dr) - (2a^2/r) - (a^2/v)(dv/dr)$$ (15-132) Substituting equation (15-132) into equation (15-131), we obtain $$\frac{1}{2}[1 - (a^2/v^2)](dv^2/dr) = (2a^2/r) - (da^2/dr) - G\mathcal{M}(1 - \Gamma)/r^2 \quad (15-133)$$ For simplicity, assume the envelope is isothermal (a good approximation), so that the term in (da^2/dr) may be omitted. Then it is clear that, if we are to obtain a smooth transition from subsonic flow at small r to supersonic flow at large r, the righthand side of equation (15-133) must (1) vanish at some critical radius $r = r_c$, where v = a; (2) be negative for $r < r_c$; and (3) be positive for $r > r_c$. The condition for $r < r_c$ can be met only if $\Gamma < 1$ in that region; i.e., in the subsonic-flow region the radiation force must be less than that of gravity. If Γ is greater than unity everywhere (which implies that the whole star is unstable), transsonic flow becomes impossible, and one has either an initially subsonic flow that decelerates, or a supersonic flow that accelerates. For $r > r_c$ in transsonic flows, Γ may become arbitrarily large; indeed the larger it is, the greater is the momentum input into the gas, and the larger (dv/dr) will be. This is, of course, of great interest for early-type stellar winds, for we have seen that Γ can become very large in the supersonic-flow region, where the lines are sufficiently displaced from their rest frequencies that they absorb continuum radiation; indeed it is just these large values of Γ that lead to the high values of v_{∞} that are observed. Because the flow is already supersonic where Γ exceeds unity, information about the momentum input cannot propagate back upstream, and the flow at the sonic point itself is essentially unaffected. It is important to recognize that the radiation force on the continuum and on spectrum lines has precisely the right properties, as delineated above, to produce the desired transsonic wind. That is, Γ is less than unity inside the star where the diffusion approximation is valid, approaches unity as the lines desaturate, becomes greater than one when the lines are optically thin, and reaches very large values when the lines shift into the continuum. We shall find below that, to a good approximation, the force depends upon a power of the velocity gradient; this dependence allows the force, and the flow it produces, to accomodate to one another, so that a steady transsonic wind can be obtained. Before leaving the question of how the flow is achieved, it is worthwhile to comment on some other points that have been made in the literature. Cassinelli and Castor (132) studied the problem of energy input into an optically thin flow with continuum opacity only. They reached several important conclusions. (a) A flow can be driven by thermal energy-input from radiation into the gas via true absorption processes near the critical point. Such a mechanism deposits energy in an extended region, analogous to the solar corona, with radiation now playing the role conduction has at coronal temperatures. It was noted that the term E_0 in equation (15-124) is negative near the star, but must become positive at large distances for finite v_{∞} . It was argued that this change must be brought about by the integrated absorptive energy input (q_R) , and was concluded that true absorption is essential to effect the transition from subsonic to supersonic flow. This conclusion, however, is too restrictive (307), for it is clear from equation (15-124) that, although appropriate thermal energy input can drive the flow, the work done by radiative forces can serve equally well. In fact, it is precisely this work that drives the winds calculated by Lucy and Solomon (who assumed that the lines scatter the radiation conservatively, so that $q_R \equiv 0$, as well as those described later in this section. (b) In the event that the wind is driven by true absorption, then virtually every early-type star has a wind, but in most cases the sonic point is so far from the stellar surface that the mass-flux is miniscule (the density continues to fall with an essentially hydrostatic scale-height inside
the sonic point). Only if unrealistically large values for the absorption coefficient and the parameter Γ (assumed constant) are adopted do significant winds result. These difficulties are overcome entirely when a realistic representation of the radiative force on lines is used (see below). (c) The time required by the material to gain and lose energy radiatively is short compared to the time a fluid element requires to move through a density scale-height. Therefore, to a high degree of approximation, the energy balance is given by radiative equilibrium; this result is exploited in the models described later. The first successful radiatively-driven wind models for O-stars were constructed by Lucy and Solomon (404). They assumed (1) planar geometry (adequate for the flow inside the sonic point); (2) constant temperature; (3) and ionization equilibrium fixed by equation (5-46) with $W=\frac{1}{2}$, and T_c and T_e equal to $0.7T_{\rm eff}$ (the effective temperature of the model photosphere); and (4) that the radiation force is dominated by absorption in resonance lines of a few ions (C III, C IV, N III, N V, Si IV, S III, S IV, and S VI). The momentum equation was written as $$\frac{1}{2}[1 - (a/v)^2](dv^2/dr) = -g_{\text{eff}}$$ (15-134) where $g_{\rm eff} \equiv g_* - g_{R,l}$; $g_* \equiv g - (\pi F s_e/c)$, which allows for the radiation force from electron scattering; and $g_{R,l}$ is the radiation force on the lines. To calculate $g_{R,l}$, the lines were treated as pure scatterers, illuminated from below by a photospheric intensity $$I_{\nu}(0, \mu) = \sigma B_{\nu}(T_{\text{eff}})/[\sigma + \gamma_{l}(\nu)] \qquad (15-135)$$ where $\sigma=n_e\sigma_e$, the electron scattering coefficient per unit volume. Equation (15-135) gives a rough representation of the emergent intensity in the profile of a pure scattering line formed in the photosphere. In calculating the intensity higher in the envelope, re-emissions were ignored because, on the average, they contribute nothing to the *force* exerted by radiation on the material. In this case $I_{\nu}(\tau_{\nu})$ decays exponentially, and we can write $I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \exp(-\tau_{\nu}/\mu)$, where τ_{ν} is the optical depth, at frequency ν , from the base of the envelope to the test point, allowing for Doppler shifting of the line profile along the path. Then $$g_{R,\,l} = (2\pi/c\rho) \sum_{l} \int_{0}^{1} d\mu \int_{0}^{\infty} d\nu \, \chi_{l}(\nu) I_{\nu}(0) \mu e^{-\tau_{\nu}/\mu}$$ (15-136) where the sum extends over all lines. The density ρ_0 at the base of the envelope is taken from a model atmosphere. Then a trial value is chosen for the velocity v_0 ; this fixes the mass-flux $J=\rho_0v_0$. The mass-flux is an eigenvalue of the problem: if too large a value is chosen, then at the sonic point, where v=a, the radiation force will be too small [essentially because τ_v in equation (15-136) will be too large], and $g_{\rm eff}$ will be >0, making a continuous transition to supersonic flow impossible. Likewise, if J is chosen too small, $g_{\rm eff}$ at the sonic point will be <0. For precisely the right value of J, the condition $g_{\rm eff}=0$ will be met, and transsonic flow is possible. A large number of solutions, for a range of stellar parameters, were obtained in this way, and it was found that they gave mass-loss rates of the order of 10^{-8} $\mathcal{M}_{\odot}/{\rm year}$ (or less), which is about a factor of 100 smaller than the observed values, despite the fact that reasonable terminal velocities, $v_{\infty} \approx 3300 \ {\rm km \ s^{-1}}$, were obtained. Let us now inquire: "How large a mass-flux can be driven by radiation from a star?" Suppose that the spectrum contains a large number of lines, each of which totally removes the momentum from the radiation field at each frequency where it absorbs. Assume that the material is accelerated from v=0 to $v=v_{\infty}$ in the process, so that a line at frequency v_i is spread over a frequency range $\Delta v_i = (v_i v/c)$. Then the maximum mass-loss that can be driven is obtained by putting the material momentum-flux equal to the radiative momentum absorbed in the lines (assuming perfect efficiency); i.e., $$\hat{\mathcal{M}}v_{\infty} = (4\pi r^2/c) \sum_{i} F(v_i) \, \Delta v_i \qquad (15\text{-}137)$$ where the sum extends over all lines. Lucy and Solomon argued that the sum would be dominated by a single line located near the maximum of the flux distribution, and wrote $\mathcal{M}v_{co} = (4\pi r^2/c) \cdot F_{\text{max}}(v_{\text{max}}v_{cr}/c)$, or $$\dot{\mathcal{M}} = (4\pi r^2/c^2)F_{\text{max}}v_{\text{max}} \approx (4\pi r^2/c^2)F = (L/c^2),$$ where F denotes the integrated flux, and L is the stellar luminosity. This yields $\mathcal{M} = 7 \times 10^{-14} (L/L_{\odot}) \mathcal{M}_{\odot}/\text{year}$, or about $7 \times 10^{-8} \mathcal{M}_{\odot}/\text{year}$ for $L = 10^6 L_{\odot}$. Lucy and Solomon considered this result to be an *upper limit* to the mass loss; actually it is more nearly a *lower limit* (627), for in essence it is obtained by accelerating a single line across the entire spectrum, to drive the material (formally) to the speed of light. A better estimate (132) is obtained by replacing $(4\pi r^2) \sum F(v_i) \Delta v_i$ in equation (15-137) with L; then $$\dot{M} \leq (L/v_{\infty}c) = 7 \times 10^{-12} (L/L_{\odot}) (3000/v_{\infty}) M_{\odot} / \text{year}$$ (15-138) where v_{∞} is expressed in km s⁻¹. For $L=10^6L_{\odot}$, $\mathcal{M}=7\times10^{-6}\,\mathcal{M}_{\odot}/$ year, which is the observed value for ζ Pup. This result presumes that all the momentum carried by stellar photons is converted into mass-loss in a single scattering; in actuality only some fraction ε will be so converted, but observations indicate that ε may be substantial, perhaps as large as 0.5. Thus it appears that adequate mass-loss rates can be obtained, if (and only if) enough lines are included in the calculation of g_R [see also the discussion in (145)]. A still larger bound on \mathcal{M} may be obtained when account is taken of the possibility that some photons may scatter several times in the envelope, passing back and forth to regions on opposite sides of the central star between successive scatterings. Quantitative estimates of the importance of this effect have yet to be made. ### LINE-DRIVEN WINDS IN Of STARS The most complete and internally consistent theory for radiatively driven stellar winds at present is that of Castor, Abott, and Klein (138; 145). The physical parameters employed make this theory applicable to Of stars. The flow is assumed to be time-independent and spherically symmetric; the gas is taken to be a single fluid; and conduction and viscosity are neglected. The gas is assumed to absorb momentum from the radiation field in spectral lines according to a particular force law discussed below. The single-fluid approximation can be justified (145) by a comparison of the fluid-flow velocity to the drift velocity of the ions absorbing the radiative or momentum (relative to the remainder of the material with which they suffer Coulomb collisions). For a representative electron density of $n_e \sim 10^{11}$ and temperature $T \sim 40,000^{\circ}$ K, the drift velocity of C⁺³ ions is found to be 0.7 km s⁻¹, which is clearly negligible in a medium with a flow velocity of 1000 km s⁻¹. Also the lines of all chemical species are observed to span the same velocity range, indicating that there is no systematic separation of the material, and supporting the single-fluid picture. To justify the neglect of viscosity, one computes the Reynolds number $\mathcal{R} \equiv (vl/v)$, where l is a characteristic length-scale in the flow at density ρ and velocity v, for a fluid with kinematic viscosity v. The Reynolds number essentially gives the ratio of inertial to viscous forces (490, 19; 385, 62); at very large values of \mathcal{R} , the fluid may be regarded as inviscid. In an Of wind the minimum calculated value of \mathcal{R} is found (145) to be of the order of 10^{10} , which assures that viscosity can be neglected. Finally, because the temperature of the material is not extremely high, the thermal conductivity is low; and further, because the mass flux is large (108 times the solar wind), the conductive flux is found (145) to be about eight orders of magnitude smaller than heat transport by bulk motions, and hence it can be ignored. Let us now consider how to calculate the force exerted by the radiation on the material; the essential point is to account for saturation of the lines, so that the transition between the optically thick and thin limits is handled correctly. This problem has been treated in detail by Castor (137); his analysis leads to a simple result, for which a heuristic argument that contains the essence of the physics will be presented here. Suppose that the absorbing lines are confined to a discrete layer overlying the photosphere. Let the continuum flux incident from below be πF_c , and approximate the momentum absorbed (per unit mass) from the unattenuated continuum, by a line of opacity χ_l and width Δv_D , as $g_{R,l}(0) = (\pi F_c \chi_l \Delta v_D/c\rho)$. To account for attenuation we note that (as only the net momentum input is needed) remissions, which are presumed to be isotropic, can be ignored. In this case the incident flux decays as $e^{-\tau_l}$ where τ_l is the line optical depth computed allowing for Doppler shifts. Thus the average rate of momentum input into the layer is $$\tau_l \langle g_{R,\,l} \rangle = g_{R,\,l}(0) \int_0^{\tau_l} e^{-\tau'} \, d\tau'$$ (15-139) $\langle g_{R,l} \rangle = (\pi F_c \chi_l \, \Delta v_D / c \rho) (1 - e^{-\tau_l}) / \tau_l$ (15-140) In their work, Castor, Abott, and Klein replace the term $\tau_i^{-1}(1 - e^{-\tau_i})$ with min $(1, \tau_i^{-1})$, which
provides an adequate approximation. At a given *observer's-frame* frequency, the effective optical thickness τ_t will be limited by (a) the amount of material in the line-layer if the medium is *static*, in which case $$\tau_t = \int_R^\infty \chi_t \, dr \tag{15-141a}$$ where R is the photospheric radius, or (b) by the velocity gradient (which Doppler-shifts the line from its rest frequency) in a *moving* medium, in which case $\tau_l \approx \chi_l v_{\text{th}} (dv/dr)^{-1} \tag{15-141b}$ where $v_{\rm th}$ is the thermal velocity of the absorbing atoms. Equation (15-141b) is derived from considerations similar to those employed in development of the Sobolev approximation, and is the planar equivalent of equations (14-61) and (14-62). It is more convenient to have a depth-scale that is independent of linestrength, so we introduce $\beta_l \equiv (\chi_l/\sigma)$, and calculate an equivalent electron optical depth scale $t \equiv \tau_l/\beta_l$, which for an expanding atmosphere is defined to be $$t = \sigma v_{\rm th} (dv/dr)^{-1} \tag{15-142}$$ We shall use equation (15-142) throughout the wind, even though it becomes invalid in the stellar photosphere, for the radiation force on the lines becomes negligible there anyway. The total line force is obtained by summing equation (15-140) over all lines, and can be written $$g_{R,1} = (\pi F \sigma / c \rho) M(t) = (s_e L / 4\pi c r^2) M(t)$$ (15-143) where $$M(t) \equiv F^{-1} \sum_{l} F_{c}(\nu_{l}) \, \Delta \nu_{D, \, l} \, \min(\beta_{l}, \, t^{-1})$$ (15-144) is the radiation-force multiplier. The calculation of the radiation force is thus reduced to the evaluation of M(t), which is a function of only one parameter (t). Castor, Abott, and Klein evaluated M(t) on the assumption that the line spectrum is the same as that of C III (for which an extensive set of f-values was available), and by assigning a total abundance of C^{++} relative to hydrogen of 10^{-3} (which is the total abundance of C, N, and O taken together). The occupation numbers were computed using LTE. Although these assumptions are somewhat rough, the results are certainly qualitatively correct. The numerical values of M(t) are found to be well fitted by the formula $M(t) = kt^{-\alpha}$, with $k \approx \frac{1}{30}$ and $\alpha = 0.7$. In more recent work (145), all elements from H through Ni are included, and the coefficients k and α are allowed to depend on the relevant physical variables (but these refinements will not be considered further here). Using equations (15-142) and (15-143), and the formula for M(t), we find finally $$g_{R, i} = \left(\frac{s_e L k}{4\pi c r^2}\right) \left(\frac{1}{\sigma v_{\text{th}}} \frac{dv}{dr}\right)^{\alpha} = \frac{C}{r^2} \left(r^2 v \frac{dv}{dr}\right)^{\alpha}$$ (15-145) where the equation of continuity has been invoked, and the constant C is $$C = (s_e Lk/4\pi c) \left[4\pi/(s_e v_{th} \dot{\mathcal{M}}) \right]^{\alpha}$$ (15-146) Using equation (15-145) for the line contribution to the radiation force, the equation of motion [cf. equation (15-133)] becomes $$\frac{1}{2}\left(1 - \frac{a^2}{v^2}\right)\frac{dv^2}{dr} = \frac{2a^2}{r} - \frac{da^2}{dr} - \frac{G\mathcal{M}(1 - \Gamma_e)}{r^2} + \frac{C}{r^2}\left(r^2v\frac{dv}{dr}\right)^x \quad (15-147)$$ Or, defining the new variables $w \equiv \frac{1}{2}v^2$ and $u \equiv -r^{-1}$, equation (15-147) is equivalent to $$F(u, w, w') \equiv (1 - \frac{1}{2}a^2w^{-1})w' - h(u) - C(w')^{\alpha} = 0$$ (15-148) where $w' \equiv (dw/du)$, and $$h(u) \equiv -G\mathcal{M}(1 - \Gamma_e) - 2a^2u^{-1} - (da^2/du)$$ (15-149) Equation (15-147) [or equation (15-148)] has a singular point at which solutions terminate, have cusps, or show other discontinuities; this point is not the sonic point. At the sonic point, where r=a, it is easily seen that the lefthand side of equation (15-147) vanishes, and that the righthand side can be made to vanish as well with a suitable choice of (dv/dr), which need not be infinite or discontinuous. This difference from standard coronal-wind theory results from the force depending on (dv/dr) instead of just r itself. The critical-point analysis is relatively complicated, compared to the theory described in §15-2, because the equation is nonlinear in (dv/dr). Detailed study (138) of the situation shows that the locus of singular points is specified by $$\left[\partial F(u, w, w')/\partial w'\right] = \left(1 - \frac{1}{2}a^2w^{-1}\right) - \alpha C(w')^{\alpha - 1} = 0 \qquad (15-150)$$ But not every point on this locus yields an acceptable solution; if w' is to be *continuous* the additional condition $$(\partial F/\partial u) + w'(\partial F/\partial w) = 0 (15-151)$$ must also be satisfied. Equations (15-148), (15-150), and (15-151) determine (u, w, and w') if C is given, or (w, w', and C) if u is given. Analytical expressions can then be obtained for the rate of mass-loss, the velocity law, and the acceleration (dv/dr). In the limit $v \gg a$ these are quite simple: $$\dot{\mathcal{M}} = \left(\frac{4\pi G \mathcal{M}}{s_e v_{\text{th}}}\right) \alpha \left(\frac{1-\alpha}{1-\Gamma_e}\right)^{(1-\alpha)/\alpha} (k\Gamma_e)^{(1/\alpha)} \tag{15-152}$$ $$v^{2} = [2G\mathcal{M}(1 - \Gamma_{e})\alpha/(1 - \alpha)][(1/r_{s}) - (1/r)]$$ (15-153) and $(r_c/r_s) = 1 + \{-\frac{1}{2}n + [\frac{1}{4}n^2 + 4 - 2n(n+1)]^{\frac{1}{2}}\}^{-1}$ (15-154) where r_s is the sonic radius (essentially equal to R, the photospheric radius), and r_c is the critical radius. Equation (15-154) is based on the assumption that $T \propto r^{-n}$; likely values for n lie between 0 (isothermal) and $\frac{1}{2}$ (radiative equilibrium), which implies that $1.5 \lesssim (r_c/r_s) \lesssim 1.74$. The stellar model is parameterized by a choice of L, \mathcal{M} , and R, and by an assumed relation for T(r) [or $a^2(r)$]. The mass-loss rate is fixed almost entirely by \mathcal{M} and L (via Γ_e); the characteristic temperature $T_{\rm eff}$ also enters into $v_{\rm th}$. In practice, the model is determined by guessing a value for r_e from equation (15-154) with $r_s=R$; equation (15-147) is then solved numerically, and the exact relation between radius and optical depth is computed. The value of r_e is then adjusted until a reasonable photospheric optical depth ($\approx \frac{2}{3}$) is attained at r=R. Having constructed a dynamical model, one may use the resulting density structure in a spherical model-atmosphere code to adjust the temperature structure in such a way as to satisfy the requirement of radiative equilibrium. The new temperature structure is then employed to reconstruct a new dynamical model, and the process is iterated. In practice the dynamics—and hence the velocity, density structure, and mass-loss rate—is insensitive to the temperature structure, and the iteration process converges rapidly. Castor, Abbott, and Klein have published (138) a solution for parameters appropriate to an O5 star: $\mathcal{M}=60\mathcal{M}_{\odot}$, $L=9.7\times10^5L_{\odot}$, $R=9.6\times10^{11}$ cm = $13.8R_{\odot}$. $T_{\rm eff}=49,300^{\circ}{\rm K}$, $\log g=3.94$, $\Gamma_e=0.4$. The resulting mass-loss rate is $\dot{\mathcal{M}}=6.6\times10^{-6}\,\mathcal{M}_{\odot}/{\rm year}$, a value appropriate to a star like ζ Pup. The terminal velocity is $v_{\infty}=1500\,{\rm km\,s^{-1}}$, so $\dot{\mathcal{M}}\approx\frac{1}{2}(L/v_{\infty}c)$, which shows that about one half of the momentum originally carried by radiation has been transferred to the matter. Furthermore, about one-half of the continuum radiation field is blocked by the lines; this value appears to be in good agreement with observation (304). Standard stellar evolution theory (606) gives main-sequence lifetimes at this mass of about 3×10^6 years, which implies a total mass-loss of about $\frac{1}{3}$ the original mass; it thus appears that the stellar winds of these stars will have very significant effects on their evolution. The density and velocity structures of the model described above are shown in Figures 15-5 and 15-6; the letters P, S, and C designate the photosphere, sonic point, and critical point respectively. The striking characteristic of the solution is the "core-halo" nature of the density structure: inside the sonic point the model has a nearly hydrostatic density gradient, while outside the critical point, $\rho \propto r^{-2}$. The model inside r_c is essentially planar. The velocity rise outside r_s is abrupt and, in fact, the predicted gradient is much steeper than than those inferred observationally for some Of stars (326; 327); however, these empirical analyses are rather rough, and a much more accurate study is urgently needed. The velocity variation is, of course, fundamental to FIGURE 15-5 Variation of velocity (in km s⁻¹) with radius (in cm) in an Of stellar-wind model. From (138), by permission. FIGURE 15-6 Variation of density (in gm cm⁻³) with radius (in cm) in an Of stellar-wind model. From (138), by permission. FIGURE 15-7 Variation of radiation force multiplier *M* with continuum optical depth in an Of stellar-wind model. From (138), by permission. the dynamics, and its empirical determination strongly merits any efforts necessary to yield accurate results. The variation of the radiation-force multiplier is shown in Figure 15-7. There one sees that in the outer envelope $M \approx 5$, which implies that the radiation force on the lines is about twice the force of gravity; adding the acceleration from electron scattering (and subtracting the force of gravity), we see that the material experiences a net *outward* acceleration of about 1.4 times gravity. The emergent relative flux distribution from the wind model is almost identical to that from a planar static model with $T_{\rm eff}\approx 50{,}000^{\circ}{\rm K}$. However, the outer envelope has an electron-scattering optical depth of about 0.16, and this layer (which scatters
conservatively and hence does not affect the relative energy distribution) increases somewhat the observed radius of the star (measured interferometrically), and thus reduces the absolute flux. A critical discussion (304) of both the visible and ultraviolet data for ζ Pup (allowing for interstellar reddening effects and line-blanketing) shows that, if both the observational data and the theoretical models are pushed to the allowable limits, agreement is obtained with the Castor–Abbott–Klein model. Earlier work had suggested the need to consider sphericity effects in an extended atmosphere to fit the flux distribution. Finally, a calculation of the $H\alpha$ and He II $\lambda 4686$ line profiles from the wind model yields profiles of shape similar to those observed, and with emission strengths and redshifts in qualitative agreement with typical values measured for Of stars; these need to be refined with a more accurate calculation. On the whole, the Castor–Abbott–Klein model appears to give a fairly satisfactory picture of the basic dynamics of Of atmospheres; but many questions remain open. #### FRONTIERS The theory of radiatively driven winds is at an early stage of its development, and many interesting (and challenging) problems remain to be attacked. Within the framework of the Castor–Abbott–Klein theory, refinements of the force law to include the complete spectrum, a more realistic ionization–excitation equilibrium, and more accurate treatment of the transfer (accounting for the fact that a photon scattered at one point in the envelope can subsequently interact with the material at some other point), should yield more precise and reliable results. A more difficult problem is posed by the question of how to treat properly the energy equation and thereby determine the temperature structure of the flow. The observations (533) of O VI lines, described earlier in this section, have been interpreted (assuming collisional ionization only—an assumption that requires further consideration) as requiring temperatures of the order of 2×10^5 °K, which is much higher than can be produced radiatively. This suggests that there may be mechanical energy deposition that produces a (relatively cool) corona. Mechanisms for producing a mechanical flux (which presumably dissipates and heats the outer layers) have been proposed in (289; 290; 404), but these are not entirely satisfactory in their present form. If the flow were to become turbulent (see below), energy dissipation and heating could occur and, because $\rho v^2 \gg kT$, even a rather low efficiency in the conversion of flow energy to heat could have a large effect on the temperature. Nevertheless, it must be stressed that, although current models do not convincingly determine the temperature structure, the dynamics of the flow will remain essentially unaltered for $T \lesssim 3 \times 10^7 \, {}^{\circ} \mathrm{K}$ (a value that seems completely excluded observationally), unless the energy deposition changes the topology of the solution [e.g., by the introduction of additional critical points (307)] and, thereby, even the qualitative nature of the solution. These possibilities all await further exploration. One of the problems that will ultimately have to be faced by the "core-halo" models is that evidence has been presented for atmospheric extension effects in the *continuous* energy distribution of the *most extreme* Of stars (367; 466). Unless it can be shown that there are errors in the observations or in their reduction (e.g., in the allowance for interstellar reddening), it will be necessary to find ways to construct models showing a slower outward rise of the velocity. Such models seem essential for WR stars, where a critical analysis (304) of the energy distribution of HD 50896 (WN5) seems absolutely to require an extended subsonic-flow region; some models of this type have been constructed (133), but only with ad hoc force laws, and much further work remains to be done before they can be regarded as satisfactory. Although all theoretical models of radiatively driven winds assume that the flow is steady, there is ample evidence that the spectrum (and hence the wind) of Of stars is time-variable. A wide range of time-scales (176; 536) has been noted. It appears, in fact, that essentially all early-type supergiants that show emission lines are intrinsic spectrum variables (537). In a few cases, pathological spectra with transient *inverse* P-Cygni profiles (presumably indicating temporary *inflow* of the material) have been observed (173). If the time-scale of the variations is long compared to the time a fluid parcel requires to move from the photosphere to the critical point, then one can argue that the flow can be considered as a sequence of quasi-stationary states, each of which is well approximated by steady flow. The only problem then remaining would be to understand the mechanism leading to the variations. On the other hand, if very short time-scales are ever observed, then a fully time-dependent treatment might be required, and this would introduce staggering difficulties into the problem. Although the assumption of spherical symmetry of the wind is a reasonable starting point, it may not adequately describe the flow for some stars. In particular, if the star is rapidly rotating, then centrifugal forces can appreciably lower the effective surface gravity, to the point where it barely exceeds even continuum radiation-forces. This may lead to enhanced mass loss from the equatorial regions of the star (409), in which case the flow becomes axisymmetric instead of spherically symmetric. The divergence of streamlines away from the equatorial plane again introduces the possibility of a radical alteration of the topology of the solution (307). Furthermore, rotation implies that the flow has nonzero vorticity and, in the presence of rotational shear, the flow may disintegrate and become *turbulent*, as suggested by the very large Reynolds numbers mentioned earlier in this section. In this event, gross inhomogeneities may develop in the wind, and again the theoretical complexity becomes overwhelming. Finally, there is the question of whether magnetic fields play a significant role in winds from early-type stars. The O-stars are very young, and have only recently formed from the interstellar medium. Presumably any fields present in the medium could persist as weak fields in the atmospheres of these stars. There would then be the possibility of a region of forced corotation out to an Alfvenic point, with subsequent radial expansion. Could this give rise to the profiles with broad emission wings extending beyond the shortwavelength edge of the P-Cygni absorption feature, as observed in some stars? Could such fields produce structural inhomogeneities with flow-tube divergences such as are seen in the solar corona and wind (307)? Could they ### 568 Stellar Winds provide structures against which shear (as a result of rotation) with consequent turbulence can develop? The present observational detection threshold for stellar magnetic fields is several hundred gauss; much weaker fields (a few tens of gauss) in the atmosphere could have major effects on the flow. It should be clear from the points raised above that there remains much to be learned about the physics of stellar winds for early-type stars. Without doubt it is unrealistic to suppose that these issues can be decided on the basis of theoretical considerations alone. It is obvious that a thorough analysis of the spectroscopic data, at a high level of internal consistency, with the goal of diagnosing the physical conditions in the flow semiempirically, is required, and that such efforts will be immensely rewarding. ## References - 1. Abhyankar, K. 1964. Astrophys. J. 140:1353. - 2. _____. 1964. Astrophys. J. 140:1368. - 3. _____. 1965. Astrophys. J. 141:1056. - 4. Abramowitz, M., and I. Stegun. 1964. *Handbook of Mathematical Functions*. Washington, D.C.: U.S. Dept. of Commerce. - Abt, H., A. Meinel, W. Morgan, and J. Tapscott. 1969. An Atlas of Low-Dispersion Grating Stellar Spectra. Kitt Peak National Observatory, Steward Observatory, and Yerkes Observatory. - 6. Adams, T., D. Hummer, and G. Rybicki. 1971. J.Q.S.R.T. 11:1365. - 7. Adams, T., and D. Morton. 1968. Astrophys. J. 152:195. - 8. Alder, B., S. Fernbach, and M. Rotenberg (eds.). 1967. *Methods in Computational Physics*, Vol. 7. New York: Academic Press. - 9. Allen, C. 1973. Astrophysical Quantities, 3rd ed. London: Athlone Press. - 10. Aller, L. 1956. Gaseous Nebulae. New York: Wiley. - 11. _____ 1963. The Atmospheres of the Sun and Stars, 2nd ed. New York: Ronald Press. - 12. _____. 1965. Advances in Astron. and Astrophys. 3:1. - 13. Aller, L., and J. Greenstein. 1960. Astrophys. J. Supp. No. 46 5:139. - Aller, L., and D. McLaughlin (eds.). 1965. Stellar Structure. Chicago: Univ. of Chicago Press. - Ambartsumyan, V., (ed.). 1958. Theoretical Astrophysics. London: Pergamon Press. - 16. Athay, R. 1964. Astrophys. J. 140:1579. - 17. Athay, R. 1970. Astrophys. J. 161:713. - 18. ____. 1972. Radiation Transport in Spectral Lines. Dordrecht: Reidel. - 19. .____(ed.). 1974. Chromospheric Fine Structure. Dordrecht: Reidel. - ____. 1976. The Solar Chromosphere and Corona: Quiet Sun. Dordrecht: - Athay, R., and R. Canfield. 1969. Astrophys. J. 156:695. - 22. Athay, R., and B. Lites. 1972. Astrophys. J. 176:809. - 23. Athay, R., J. Mathis, and A. Skumanich (eds.). 1968. Resonance Lines in Astrophysics. Boulder: National Center for Atmospheric Research. - 24. Athay, R., and A. Skumanich. 1968. Astrophys. J. 152:141. - ____. 1968. Astrophys. J. 152:211. - 26. ____. 1968. Solar Phys. 3:181. - 27. ____. 1968. Solar Phys. 4:176. - 28. ____. 1971. Astrophys. J. 170:605. - 29. Athay, R., and R. Thomas. 1958. Astrophys. J. 127:96. - 30. Auer, L. 1967. Astrophys. J. Letters 150: L53. - 31. ____. 1968. Astrophys. J. 153:783. - 32. _____ 1971. J.Q.S.R.T.
11:573. - 33. ____. 1973. Astrophys. J. 180:469. - 34. ____. 1976. J.Q.S.R.T. 16:931. - 35. Auer, L., and J. Heasley. 1971. Unpublished Yale Univ. Observatory Report. - 36. Auer, L., J. Heasley, and R. Milkey. 1972. Kitt Peak Natl. Obs. Contr. No. 555. Tucson: Kitt Peak National Observatory. - 37. Auer, L., and J. Heasley. 1976. Astrophys. J. 205:165. - 38. Auer, L., and D. Mihalas. 1968. Astrophys. J. 151:311. - ____. 1968. Astrophys. J. 153:245. - 40. ____. 1969. Astrophys. J. 156:157. - 41. ____. 1969. Astrophys. J. 156:681. - 42. ____. 1969. Astrophys. J. 158:641. - 43. ____. 1970. Astrophys. J. 160:233. - 44. ____ 1970. *M.N.R.A.S.* **149**:60. - 45. ____. 1972. Astrophys. J. Supp. No. 205 24:193. - 46. ____. 1973. Astrophys. J. Supp. No. 223 25:433. - 47. ____. 1973. Astrophys. J. 184:151. - 48. Auman, J. 1969. Astrophys. J. 157:799. - 49. Auvergne, M., H. Frisch, U. Frisch, C. Froeschlé, and A. Pouquet. 1973. Astron. and Astrophys. 29:93. - 50. Avery, L., and L. House. 1968. Astrophys. J. 152:493. - 51. Avrett, E. 1966. Astrophys. J. 144: 59. - 52. ____. 1971. J.Q.S.R.T. 11:519. - 53. Avrett, E., and D. Hummer. 1965. M.N.R.A.S. 130:295. - 54. Avrett, E., and W. Kalkofen. 1968. J.Q.S.R.T. 8:219. - 55. Avrett, E., and M. Krook. 1963. Astrophys. J. 137:874. - 56. Ayres, T., J. Linsky, and R. Shine. 1974. Astrophys. J. 192:93. - 57. ____. 1975. Astrophys. J. Letters 195: L121. - 58. Ayres, T., and J. Linsky. 1975. Astrophys. J. 200:660. - 59. ____. 1976. Astrophys. J. 205:874. - Baker, J., and D. Menzel. 1938. Astrophys. J. 88:52. - 61. Bappu, M., and J. Sahade (eds.). 1973. Wolf-Rayet and High-Temperature Stars. Dordrecht: Reidel. - Baranger, M. 1958. Phys. Rev. 111:481. - ____. 1958. Phys. Rev. 111:494. - ____. 1958. Phys. Rev. 112:855. - Baranger, M., and B. Mozer. 1959. Phys. Rev. 115:521. - Barnard, A., J. Cooper, and L. Shamey. 1969. Astron. and Astrophys. 1:28. - Barnard, A., and J. Cooper. 1970. J.Q.S.R.T. 10:695. 66. - Barnard, A., J. Cooper, and E. Smith. 1974. J.Q.S.R.T. 14:1025. 67. - Baschek, B., W. Kegel, and G. Traving (eds.). 1975. Problems in Stellar Atmospheres and Envelopes. Berlin: Springer-Verlag. - 71. Baschek, B., and J. Oke. 1965. Astrophys. J. 141:1404. - ____ (ed.). 1962. Atomic and Molecular Processes. New York: Academic 72. Bates, D. 1952. M.N.R.A.S. 112:40. - 74. Bates, D., and A. Damgaard. 1949. Phil. Trans. Roy. Soc. (London) 242A: - Beals, C. 1929. M.N.R.A.S. 90:202. - 76. 1930. P. Dominion Astrophys. Obs. Victoria 4:271. - 77. ____. 1931. *M.N.R.A.S.* **91**:966. - 1934. P. Dominion Astrophys. Obs. Victoria 6:95. - ____. 1950. P. Dominion Astrophys. Obs. Victoria 9:1. - 80. Bell, R. 1970. M.N.R.A.S. 148:25. - 81. ____. 1971. M.N.R.A.S. 154:343. - 82. Bell, R., and D. Gottlieb. 1971. M.N.R.A.S. 151:449. - 83. Bell, R., and S. Parsons. 1974. M.N.R.A.S. 169:71. - Benett, S., and H. Griem. 1971. Univ. of Maryland Technical Report No. 71-097. College Park: Univ. of Maryland. - Berger, J. 1956. Astrophys. J. 124:550. - Berman, P., and W. Lamb. 1969. Phys. Rev. 187:221. - 87. Bethe, H., and E. Salpeter. 1957. Quantum Mechanics of One- and Two- - Bhatnagar, P., M. Krook, D. Menzel, and R. Thomas. 1955. Vistas in Astron. - Biermann, L. 1946. Naturwiss. 33:118. - _____ 1948. Z. für Astrophys. 25:135. - 91. ____. 1951. Z. für Astrophys. 29:274. - 92. ____. 1953. Mem. Roy. Soc. Sci. Liege 13:291. - 94. Billings, D. 1966. A Guide to the Solar Corona. New York: Academic Press. - Blaha, M. 1969. Astrophys. J. 157:473. - Bless, R., A. Code, and E. Fairchild. 1976. Astrophys. J. 203:410. - Bode, G. 1965. Die Kontinuierliche Absorption von Sternatmosphären. Kiel: Institut für Theoretische Physik. - Böhm, K.-H. 1961. Astrophys. J. 134:264. - 99. Böhm, K.-H. 1963. Astrophys. J. 137:881. - 100, _____. 1963. Astrophys. J. 138:297. - 101. _____. 1969. Astron. and Astrophys. 1:180. - 102. Böhm-Vitense, E. 1973. Astrophys. J. 181:379. - 103. Bolton, C. 1970. Astrophys. J. 161:1187. - Bond, J., K. Watson, and J. Welch. 1965. Atomic Theory of Gas Dynamics. Reading, Mass.: Addison-Wesley. - 105. Bradley, P., and D. Morton. 1969. Astrophys. J. 156:687. - 106. Brandt, J. 1964. Icarus 3:253. - 107. _____. 1970. Introduction to the Solar Wind. San Francisco: W. H. Freeman and Company. - 108. Brandt, J., and J. Cassinelli. 1966. Icarus 5:47. - 109. Branscomb, L., and B. Pagel. 1958. M.N.R.A.S. 118:258. - 110. Brechot, S., and H. Van Regemorter. 1964. Ann. d'Astrophys. 27:432. - 111. ______. 1964. Ann. d'Astrophys. 27:739. - 112. Breene, R. 1961. The Shift and Shape of Spectral Lines. Oxford: Pergamon Press. - 113. Brown, R., J. Davis, and L. Allen. 1974. M.N.R.A.S. 167:121. - 114. Brucato, R. 1971. M.N.R.A.S. 153:435. - 115. Brucato, R., and D. Mihalas. 1971. M.N.R.A.S. 154:491. - 116. Brueckner, K. 1971. Astrophys. J. 169:621. - 117. Buckingham, R., S. Reid, and R. Spence. 1952. M.N.R.A.S. 112:382. - 118. Burgess, A. 1964. Astrophys. J. 139:776. - 119. _____. 1965. Astrophys. J. 141:1588. - 120. Burgess, A., and M. Seaton. 1960. M.N.R.A.S. 120:121. - 121. Burgess, A., and H. Summers. 1969. Astrophys. J. 157: 1007. - 122. Burgess, D. 1970. J. Phys. B. 3: L70. - 123. Burgess, D., and C. Cairns. 1970. J. Phys. B. 3: L67. - 124. _____. 1971. J. Phys. B. 4:1364. - 125. Cameron, R., (ed.). 1967. The Magnetic and Related Stars. Baltimore: Mono Book Corp. - 126. Carbon, D. 1974. Astrophys. J. 187:135. - 127. Carlson, B., and K. Lathrop. 1968. In *Computing Methods in Reactor Physics*, ed. H. Greenspan, C. Kelber, and D. Okrent. New York: Gordon and Breach. - 128. Carrier, G., and E. Avrett. 1961. Astrophys. J. 134: 469. - 129. Carruthers, G. 1968. Astrophys. J. 151:269. - 130. Cassinelli, J. 1971. Astrophys. J. 165:265. - 131. _____. 1971. Astrophys. Letters 8:105. - 132. Cassinelli, J., and J. Castor. 1973. Astrophys. J. 179:189. - 133. Cassinelli, J., and L. Hartmann. 1975. Astrophys. J. 202:718. - 134. Castor, J. 1970. M.N.R.A.S. 149:111. - 135. _____. 1972. Astrophys. J. 178:779. - 136. _____. 1974. Astrophys. J. 189:273. - 137. _____. 1974. *M.N.R.A.S.* **169**:279. - 138. Castor, J., D. Abbott, and R. Klein. 1975. Astrophys. J. 195:157. - 139. Castor, J., and H. Nussbaumer. 1972. M.N.R.A.S. 155; 293, - 140. Castor, J., and D. Van Blerkom. 1970. Astrophys. J. 161:485. - 141. Cayrel, R. 1961. Ann. d'Astrophys. 23:235. - 142. _____. 1963. C.R. Acad. Sci. Paris 257:3309. - 143. _____. 1966. J.Q.S.R.T. 6:621. - 144. Cayrel, R., and G. Cayrel de Strobel. 1966. Ann. Rev. Astron. and Astrophys. 4:1. - 145. Cayrel, R., and M. Steinberg (eds.). 1976. *Physique des Mouvements dans les Atmospheres Stellaires*. Paris: Centre National de la Recherche Scientifique. p. 363. - 146. Cayrel, R., and G. Traving. 1960. Z. für Astrophys. 50:239. - 147. Chamberlain, J. 1961. Astrophys. J. 133:675. - 148. Chandrasekhar, S. 1934. M.N.R.A.S. 94:443. - 149. _____. 1934. *M.N.R.A.S.* **94**: 522. - 150. _____. 1936. *M.N.R.A.S.* **96**:21. - 151. _____. 1943. Rev. Mod. Phys. 15:1. - 152. _____. 1944. Astrophys. J. 99:180. - 153. _____. 1944. Astrophys. J. 100:76. - 154. _____. 1945. Astrophys. J. 101:95. - 155. _____. 1945. Astrophys, J. 101:328. - 156. _____. 1945. Astrophys. J. 102:402. - 157. _____. 1945. Rev. Mod. Phys. 17:138. - 159. _____. 1948. Proc. Roy. Soc. (London) A192: 508. - 160. _____. 1957. An Introduction to the Study of Stellar Structure. New York: Dover. - 161. _____. 1960. Radiative Transfer. New York: Dover. - 162. Chandrasckhar, S., and F. Breene. 1946. Astrophys. J. 104:430. - 163. Chapman, R. 1966. Astrophys. J. 143:61. - 164. Chapman, S., and V. Ferraro. 1931. Terr. Magn. and Atm. Elec. 36:77. - 165. _____. 1940. Terr. Magn. and Atm. Elec. 45: 245. - 166. Chapman, S. 1959. Proc. Rov. Soc. (London) A253:450. - 167. Chapelle, J., and S. Sahal-Brechot. 1970. Astron. and Astrophys. 6:415. - 168. Chipman, E. 1971. S.A.O. Special Report No. 338. Cambridge, Mass.: Smithsonian Astrophysical Observatory. - 169. Code, A., J. Davis, R. Bless, and R. Brown. 1976. Astrophys. J. 203:417. - 170. Cody, W., K. Paciorek, and H. Thacher. 1970. Math. Comp. 24:171. - 171. Cohen, M., M. Barlow, and L. Kuhi. 1975. Astron. and Astrophys. 40:291. - 172. Condon, E., and G. Shortley. 1963. *Theory of Atomic Spectra*. Cambridge: Cambridge Univ. Press. - 173. Conti, P. 1972. Astrophys. J. Letters 174:L79. - 174. _____. 1973. Astrophys. J. 179:161. - 175. _____. 1974. Astrophys. J. 187:539. - 176. Conti, P., and S. Frost. 1974. Astrophys. J. Letters 190:L137. - 177. Conti, P., and E. Leep. 1974. Astrophys. J. 193:113. - Cooper, J. 1966. Proceedings of Workshop Conference on the Lowering of the Ionization Potential [J.I.L.A. Report No. 79]. Boulder: Joint Institute for Laboratory Astrophysics. - 179. _____. 1967. Rev. Mod. Phys. 39:167. - 180. Cooper, J., and G. Oertel. 1969. Phys. Rev. 180: 286. - 181. Courant, R., and D. Hilbert. 1962. Methods of Mathematical Physics, Volume II: Partial Differential Equations. New York: Interscience. - 182. Cowley, C., and A. Cowley. 1964. Astrophys. J. 140:713. - 183. Cowley, C. 1971. Observatory 91:139. - 184. Cox, A., J. Stewart, and D. Eilers. 1965. Astrophys. J. Supp. No. 94 11:1. - 185. Cram, L. 1972. Solar Phys. 22:375. - 186. Cram, L., and I. Vardavas. 1977. In press. - 187. Cuny, Y. 1967. Ann. d'Astrophys. 30:143. - 188. Dalgarno, A., and J. Browne. 1967. Astrophys. J. 149:231. - Dalgarno, A., and D. Williams. 1962. Astrophys. J. 136:690. - 190. Davis, J., and J. Webb. 1970. Astrophys. J. 159:551. - 191. Dekker, E. 1969. Astron. and Astrophys. 1:72. - 192. De Loore, C. 1970. Astrophys. and Space Sci. 6:60. - 193. Deridder, G., and W. van Rensbergen. 1976. Astron. and Astrophys. Supp. 23:147. - 194. Deutsch, A. 1970. Astrophys. J. 159:985. - 195. Dietz, R., and L. House. 1965. Astrophys. J. 141:1393. - 196. Dirac, P. 1925. M.N.R.A.S. 86:825. - 197. _____. 1958. The Principles of Quantum Mechanics. Oxford: Clarendon Press. - 198. Dumont, S., and N. Heidmann. 1973. Astron. and Astrophys. 27:273. -
199. Dupree, A., and L. Goldberg. 1970. Ann. Rev. Astron. and Astrophys. 8:231. - 200. Durney, B. 1971. Astrophys. J. 166:669. - 201. Durney, B., and P. Roberts. 1971. Astrophys. J. 170:319. - 202. Durney, B., and N. Werner. 1972. Astrophys. J. 171:609. - 203. Ecker, G. 1955. Z. für Phys. 140:274. - 204. ____. 1955. Z. für Phys. 140:292. - 205. ____. 1957. Z. für Phys. 148:593. - 206. ____. 1957. Z. für Phys. 149:254. - 207. Einstein, A. 1917. Phys. Z. 18:121. - 208. Epstein, P. 1916. Ann. d. Phys. 50:489. - 209. Feautrier, P. 1964. C.R. Acad. Sci. Paris 258:3189. - 210. ____. 1967. Ann. d'Astrophys. 30: 125. - 211. ____. 1968. Ann. d'Astrophys. 31:257. - 212. Finn, G. 1967. Astrophys. J. 147:1085. - 213. _____. 1971. J.Q.S.R.T. 11:477. - 214. _____. 1972. J.Q.S.R.T. 12:35. - 215. ____. 1972. J.Q.S.R.T. 12:149. - 216. _____. 1972. J.Q.S.R.T. 12:1217. - 217. Finn, G., and J. Jefferies. 1968. J.Q.S.R.T. 8:1705. - 218. _____. 1969. J.Q.S.R.T. 9:469. - 219. Finn, G., and D. Mugglestone. 1965. M.N.R.A.S. 129:221. - 220. Fischel, D., and W. Sparks. 1971. Astrophys. J. 164:355. - 221. Foley, H. 1946. Phys. Rev. 69:616. - 222. Fowler, R., and E. Milne. 1923. Phil. Mag. 45:1. - .____. 1924. M.N.R.A.S. **84**:499. - 224. Fransden, S. 1974. Astron. and Astrophys. 37:139. - 225. Friere, R., and F. Praderie. 1974. Astron. and Astrophys. 37:117. - Frisch, H. 1975. Astron. and Astrophys. 40:267. - 227. Frisch, H., and U. Frisch. 1976. M.N.R.A.S. 175:157. - 228. Fuhr, J., G. Martin, and B. Specht. 1975. Bibliography on Atomic Line Shapes and Shifts (July 1973 through May 1975) [N.B.S. Special Pub. No. 366, Supp. 2]. Washington, D.C.: U.S. Dept. of Commerce. - 229. Fuhr, J., L. Roszman, and W. Wiese. 1974. Bibliography on Atomic Line Shapes and Shifts (April 1972 through June 1973) [N.B.S. Special Pub. No. 366, Supp. 1]. Washington, D.C.: U.S. Dept. of Commerce. - 230. Fuhr, J., and W. Wiese. 1971. Bibliography on Atomic Transition Probabilities: July 1969 through June 1971 [N.B.S. Special Pub. No. 320, Supp. 1]. Washington, D.C.: U.S. Dept. of Commerce. - 231. _____. 1973. Bibliography on Atomic Transition Probabilities: July 1971 through June 1973 [N.B.S. Special Pub. No. 320, Supp. 2]. Washington, D.C.: U.S. Dept. of Commerce. - 232. Fuhr, J., W. Wiese, and L. Roszman. 1972. Bibliography on Atomic Line Shapes and Shifts (1889 through March 1972) [N.B.S. Special Pub. No. 366]. Washington, D.C.: U.S. Dept. of Commerce. - 233. Fullerton, W., and C. Cowley. 1970. Astrophys. J. 162:327. - 234. Gail, H., E. Hundt, W. Kegel, J. Schmid-Burgk, and G. Traving. 1974. Astron. and Astrophys. 32:65. - 235. Gail, H., and E. Sedlmayr. 1974. Astron. and Astrophys. 36:17. - 236. Gail, H., E. Sedlmayr, and G. Traving. 1975. Astron. and Astrophys. 44:421. - 237. ____ 1976. Astron. and Astrophys. 46:441. - 238. Gebbie, K., and R. Thomas. 1968. Astrophys. J. 154:285. - 239. ____. 1970. Astrophys. J. 161:229. - 240. ____. 1971. Astrophys. J. 168:461. - 241. Gehrz, R., and J. Hackwell. 1974. Astrophys. J. 194:619. - 242. Geltman, S. 1962. Astrophys. J. 136:935. - 243. Gerasimovič, B. 1934. Z. für Astrophys. 7:335. - 244. Gibson, E. 1973. The Quiet Sun. Washington, D.C.: National Aeronautics and Space Administration. - 245. Gieske, H., and H. Griem. 1969. Astrophys. J. 157:963. - 246. Gingerich, O. 1963. Astrophys. J. 138: 576. - 247. _____ (ed.). 1969. Theory and Observation of Normal Stellar Atmospheres. Cambridge, Mass.: M.I.T. Press. - 248. Gingerich, O., and C. de Jager. 1968. Solar Phys. 3:5. - 249. Gingerich, O., R. Noyes, W. Kalkofen, and Y. Cuny. 1971. Solar Phys. 18:347. - 250. Goldberg, L. 1935. Astrophys. J. 82:1. - 251. .___. 1936. Astrophys. J. 84:11. - 252. Goldberg, L., E. Müller, and L. Aller. 1960. Astrophys. J. Supp. No. 45 5:1. - 253. Goldstein, H. 1969. Classical Mechanics. Reading, Mass.: Addison-Wesley. - 254. Gordon, W. 1929. Ann. Phys. 2:1031. - 255. Grant, I., and A. Peraiah. 1972. M.N.R.A.S. 160:239. - 256. Gray, D. 1976. The Observation and Analysis of Stellar Photospheres. New York: Wiley. - 257. Green, L., P. Rush, and C. Chandler. 1957. Astrophys. J. Supp. No. 26 3:37. - 258. Greene, R., and J. Cooper. 1975. J.Q.S.R.T. 15:1037. - 259. _____. 1975. J.Q.S.R.T. 15:1045. - 260. Greene, R., J. Cooper, and E. Smith. 1975. J.Q.S.R.T. 15:1025. - Greenstein, J., (ed.). 1960. Stellar Atmospheres. Chicago: Univ. of Chicago Press. - 262. Griem, H. 1960. Astrophys. J. 132:883. - 263. _____. 1962. Astrophys. J. 136:422. - 264. _____. 1964. Plasma Spectroscopy. New York: McGraw-Hill. - 265. ____. 1967. Astrophys. J. 147:1092. - 266. _____. 1968. Astrophys. J. 154:1111. - 267. _____. 1968. Phys. Rev. 165:258. - 268. _____. 1974. Spectral Line Broadening by Plasmas. New York: Academic Press. - 269. Griem, H., M. Baranger, A. Kolb, and G. Oertel. 1962. Phys. Rev. 125:177. - 270. Griem, H., A. Kolb, and K. Shen. 1959. Phys. Rev. 116:4. - 271. _____. 1962. Astrophys. J. 135:272. - 272. Griem, H., and K. Shen. 1961. Phys. Rev. 122:1490. - 273. Groth, H., and P. Wellmann (eds.). 1970. Spectrum Formation in Stars with Steady-State Extended Atmospheres. Washington, D.C.: U.S. Dept. of Commerce. - 274. Gustafsson, B. 1971. Astron. and Astrophys. 10:187. - 275. Gustafsson, B., and P. Nissen. 1972. Astron. and Astrophys. 19:261. - 276. Hack, M., (ed.). 1967. Modern Astrophysics, A Memorial to Otto Struve. Paris: Gauthier-Villars. - 277. Hackwell, J., R. Gehrz, and J. Smith. 1975. Astrophys. J. 192:383. - 278. Haisch, B. 1976. Astrophys. J. 205:520. - 279. Harman, R., and M. Seaton. 1964. Astrophys. J. 149:824. - 280. Harrington, J. 1970. Astrophys. J. 162:913. - 281. Harris, D. 1948. Astrophys. J. 108:112. - 282. Hartle, R., and P. Sturrock. 1968. Astrophys. J. 151: 1155. - 283. Harvard-Smithsonian Conference on Stellar Atmospheres. 1964. *Proceedings of the First Conference* [S.A.O. Special Report No. 167]. Cambridge, Mass.: Smithsonian Astrophysical Observatory. - 284. _____. 1965. Proceedings of the Second Conference [S.A.O. Special Report No. 174]. Cambridge, Mass.: Smithsonian Astrophysical Observatory. - 285. Hayes, D. 1968. Unpublished Ph.D. thesis, Univ. of California, Los Angeles. - 286. _____. 1970. Astrophys. J. 159:165. - 287. Hayes, D., and D. Latham. 1975. Astrophys. J. 197: 593. - 288. Hayes, D., D. Latham, and S. Hayes. 1975. Astrophys. J. 197: 587. - 289. Hearn, A. 1973. Astron. and Astrophys. 23:97. - 290. _____. 1975. Astron. and Astrophys. 40:355. - 291. Heasley, J. 1975. Solar Phys. 44:275. - 292. Heasley, J., and F. Kneer. 1976. Astrophys. J. 203:660. - 293. Heitler, W. 1954. Quantum Theory of Radiation. Oxford: Clarendon Press. - 294. Helfer, L., G. Wallerstein, and J. Greenstein. 1959. Astrophys. J. 129:700. - 295. Henyey, L. 1946. Astrophys. J. 103:332. - 296. Henyey, L., and W. Grassberger. 1955. Astrophys. J. 122:498. - 297. Herzberg, G. 1944. Atomic Spectra and Atomic Structure. New York: Dover. - 298. Hicock, F., and D. Morton. 1968. Astrophys. J. 152:203. - 299. Higginbotham, N., and P. Lee. 1974. Astron. and Astrophys. 33:277. - 300. Hiltner, W., (ed.). 1962. Astronomical Techniques. Chicago: Univ. of Chicago Press. - 301. Hindmarsh, W. 1959. M.N.R.A.S. 119:11. - 302. _____. 1960. M.N.R.A.S. 121:48. - Hindmarsh, W., A. Petford, and G. Smith. 1967. Proc. Roy. Soc. (London) A297:296. - 304. Holm, A., and J. Cassinelli. 1977. Astrophys. J. 211:432. - 305. Holtsmark, J. 1919. Ann. d. Phys. 58:577. - 306. Holstein, T. 1950. Phys. Rev. 79:744. - 307. Holzer, T. 1977. J. Geophys. Res. 82:23. - 308. Hooper, C. 1966. Phys. Rev. 149:77. - 309. _____. 1968. Phys. Rev. 165:215. - 310. _____. 1968. Phys. Rev. 169:193. - 311. Hudson, R., and L. Kieffer. 1971. Atomic Data 2:205. - 312. Hulst, H. van de. 1957. Light Scattering by Small Particles. New York: Wiley. - 313. Hummer, D. 1962. M.N.R.A.S. 125:21. - 314. _____. 1965. Mem, R.A.S. 70:1. - 315. _____. 1968. M.N.R.A.S. 138:73. - 316. _____. 1969. M.N.R.A.S. 145:95. - 317. ______. 1976. In *Be and Shell Stars* [I.A.U. Symposium No. 70], p. 281. Dordrecht: Reidel. - 318. Hummer, D., and D. Mihalas. 1967. Astrophys. J. Letters 150:L57. - 319. _____. 1970. M.N.R.A.S. 147:339. - 320. Hummer, D., and G. Rybicki. 1966. J.Q.S.R.T. 6:661. - 321. _____. 1968. Astrophys. J. Letters 153:L107. - 322. _____ 1970. M.N.R.A.S. 150:419. - 323. _____. 1971. *M.N.R.A.S.* **152**: J. - 324. Hundhausen, A. 1972. Coronal Expansion and Solar Wind. New York: Springer-Verlag. - 325. Hundt, E., K. Kodaira, J. Schmid-Burgk, and M. Scholz. 1975. Astron. and Astrophys. 41:37. - 326. Hutchings, J. 1968. M.N.R.A.S. 141:219. - 327. _____. 1968. *M.N.R.A.S.* **141**:329. - 328. _____. 1970. *M.N.R.A.S.* 147:161. - 329. _____, 1970. *M.N.R.A.S.* **147**:367. - 330. Hynek, J., (ed.). 1951. Astrophysics: A Topical Symposium. New York: McGraw-Hill. - 331. Jackson, J. 1962. Classical Electrodynamics. New York: Wiley. - 332. Jacobs, V. 1973. Photoionization from Excited States of Helium [NASA Report X-641-73-317]. Greenbelt, Md.: National Aeronautics and Space Administration. - 333. Jefferies, J. 1960. Astrophys. J. 132:775. - 334. _____. 1968. Spectral Line Formation. Waltham, Mass.: Blaisdel. References - 335. Jefferies, J., and R. Thomas. 1958. Astrophys. J. 127:667. - 336. ______. 1959. Astrophys. J. 129:401. - 337. _____. 1960. Astrophys. J. 131:695. - 338. Jefferies, J., and O. White. 1960. Astrophys. J. 132:767. - 339. Jockers, K. 1970. Astron. and Astrophys. 6:219. - 340. John, T. 1967. Astrophys. J. 149:449. - Johnson, H. 1974. NCAR Technical Note No. NCAR-TN/STR-95. Boulder: National Center for Atmospheric Research. - Johnson, H., R. Beebe, and C. Snedden. 1975. Astrophys. J. Supp. No. 280 29:123. - 343. Joos, G. 1959. Theoretical Physics, 3rd ed. New York: Hafner. - 344. Jordan, S., and E. Avrett. 1973. *Stellar Chromospheres*. Washington, D.C.: National Aeronautics and Space Administration. - 345. Kalkofen, W. 1966. J.Q.S.R.T. 6:633. - 346. ____. 1968. Astrophys. J. 151:317. - 347. _____. 1974.
Astrophys. J. 188:105. - 348. Kalkofen, W., and S. Strom. 1966. J.Q.S.R.T. 6:653. - 349. Kamp, L. 1973. Astrophys. J. 180:447. - 350. Kaplan, S., and S. Pikelner. 1970. *The Interstellar Medium*. Cambridge, Mass.: Harvard Univ. Press. - 351. Karp, A. 1972. Astrophys. J. 173:649. - 352. Karzas, W., and R. Latter. 1961. Astrophys. J. Supp. No. 55 6:167. - 353. Kepple, P. 1968. Improved Stark Profile Calculations for the First Four Members of the Hydrogen Lyman and Balmer Series [Univ. of Maryland Report #831]. College Park: Univ. of Maryland. - 354. _____. 1972. Phys. Rev. A6:1. - 355. ______. 1972. Stark Profile Calculations for Ionized Helium Lines [Univ. of Maryland Report No. 72-018]. College Park: Univ. of Maryland. - 356. Kepple, P., and H. Griem. 1968. Phys. Rev. 173:317. - 357. Klinglesmith, D. 1971. *Hydrogen Line Blanketed Model Stellar Atmospheres*. Washington, D.C.: National Aeronautics and Space Administration. - 358. Kneer, F. 1975. Astrophys. J. 200:367. - 359. Kondratyev, K. 1969. Radiation in the Atmosphere. New York: Academic Press. - 360. Kosirev, N. 1934. M.N.R.A.S. 94:430. - 361. Kourganoff, V. 1963. Basic Methods in Transfer Problems. New York: Dover. - 362. Kraft, R. 1967. Astrophys. J. 150:551. - 363. Kramers, H. 1923. Phil. Mag. 46:836. - 364. Krishna-Swamy, K. 1961. Astrophys. J. 134:1017. - 365. Krook, M. 1955. Astrophys. J. 122:488. - 366. Kuan, P., and L. Kuhi. 1975. Astrophys. J. 199:148. - 367. _____. 1976. *P.A.S.P.* **88**:128. - 368. Kudritzki, R. 1973. Astron. and Astrophys. 28:103. - 369. Kuhi, L. 1973. Astrophys. J. 180:783. - 370. Kulander, J. 1967. Astrophys. J. 147:1063. - 371. _____. 1968. *J.Q.S.R.T.* **8**:273. - 372. _____. 1971. Astrophys. J. 165:543. - 373. Kulander, J., and J. Jefferies. 1966. Astrophys. J. 146:194. - 374. Kunasz, P., and D. Hummer. 1974. M.N.R.A.S. 166:19. - 375. _____. 1974. *M.N.R.A.S.* **166**; 57. - 376. Kunasz, P., D. Hummer, and D. Mihalas. 1975. Astrophys. J. 202:92. - 377. Kuperus, M. 1965. The Transfer of Mechanical Energy in the Sun and the Heating of the Corona. Dordrecht: Reidel. - 378. _____. 1969. Space Sci. Rev. 9:713. - 379. Kurucz, R. 1971. S.A.O. Special Report No. 309. Cambridge, Mass.: Smithsonian Astrophysical Observatory. - 380. _____. 1974. Solar Phys. 34:17. - 381. Kurucz, R., E. Peytremann, and E. Avrett. 1974. Blanketed Model Atmospheres for Early-Type Stars. Washington, D.C.: Smithsonian Institution. - 382. Kusch, H. 1958. Z. für Astrophys. 45:1. - 383. Lamers, H., and D. Morton. 1976. Astrophys. J. Supp. 32:715. - 384. Lamers, H., and M. Snijders. 1975. Astron. and Astrophys. 41:259. - 385. Landau, L., and E. Lifshitz. 1959. Fluid Mechanics. Reading, Mass.: Addison-Wesley. - 386. ______. 1962. The Classical Theory of Fields, 2nd ed. Oxford: Pergamon Press. - 387. Larson, R. 1969. M.N.R.A.S. 145: 297. - 388. Lathem, E. 1969. *The Poetry of Robert Frost*. New York: Holt, Rinehart and Winston. - 389. Lawrence, G. 1967. Astrophys. J. 147:293. - 390. Leckrone, D. 1971. Astron. and Astrophys. 11:387. - 391. Leckrone, D., J. Fowler, and S. Adelman. 1974. Astron. and Astrophys. 32:237. - 392. Leighton, R. 1959. Principles of Modern Physics. New York: McGraw-Hill. - 393. Leighton, R., R. Noyes, and G. Simon. 1962. Astrophys. J. 135:474. - 394. Lighthill, M. 1952. Proc. Rov. Soc. (London) A211:564. - 395. _____. 1954. Proc. Roy. Soc. (London) A222:1. - 396. Limber, D. 1958. Astrophys. J. 127:363. - 397. Lindholm, E. 1941. Arkiv f. Math. Astron. och Fysik 28B(no. 3). - 398. _____. 1945. Arkiv f. Math. Astron. och Fysik 32A(no. 17). - 399. Lindquist, R. 1966. Ann. Phys. 37:341. - 400. Linsky, J. 1970. Solar Phys. 11:355. - 401. Linsky, J., and E. Avrett. 1970. P.A.S.P. 82:169. - 402. Lotz, W. 1968. Z. für Physik 216:241. - 403. Lucy, L. 1971. Astrophys. J. 163:95. - 404. Lucy, L., and P. Solomon. 1970. Astrophys. J. 159:879. - 405. Maeder, A. 1971. Astron. and Astrophys. 13:444. - 406. Magnan, C. 1974. J.Q.S.R.T. 14:123. - 407. Mark, C. 1947. Phys. Rev. 72:558. - 408. Marlborough, J., and J.-R. Roy. 1970. Astrophys. J. 160: 221. - 409. Marlborough, J., and M. Zamir. 1975. Astrophys. J. 195:145. - 410. Massey, H., and E. Burhop. 1969. *Electronic and Ionic Impact Phenomena*, 2nd ed. (4 vols.). Oxford: Clarendon Press. - 411. Matsushima, S. 1969. Astrophys. J. 158:1137. - 412. Matsushima, S., and Y. Terashita. 1969. Astrophys. J. 156:203. - 413. McCrea, W. 1928. M.N.R.A.S. 88:729. - 414. McCrea, W., and K. Mitra. 1936. Z. für Astrophys. 11:359. - 415. Menzel, D., (ed.). 1962. Selected Papers on Physical Processes in Ionized Plasmas. New York: Dover. - 416. (ed.), 1966. Selected Papers on the Transfer of Radiation, New York: Dover. - 417. Menzel, D., and C. Pekeris. 1935. M.N.R.A.S. 96:77. - 418. Merzbacher, E. 1970. Quantum Mechanics, 2nd ed. New York: Wiley. - 419. Michard, R. 1949. Ann. d'Astrophys. 12:291. - 420. Mihalas, D. 1964. Astrophys. J. 140:885. - 421. _____. 1965. Astrophys. J. Supp. No. 92 9:321. - 422. _____. 1965. Astrophys. J. 141:564. - 423. _____. 1966. Astrophys. J. Supp. No. 114 13:1. - 424. _____. 1966. J.O.S.R.T. **6**:581. - 425. _____. 1967. Astrophys. J. 149:169. - 426. _____. 1967. Astrophys. J. **150**:909. - 427. ______. 1968. Astrophys. J. 153:317. - 428. _____. 1969. Astrophys. J. 157: 1363. - 429. _____. 1971. Astrophys. J. 170; 541. - 430. _____. 1972. Astrophys. J. 176:139. - 431. _____. 1972. Astrophys. J. 177:115. - 432. ______. 1972. NCAR Technical Note NCAR-TN/STR-76. Boulder: National Center for Atmospheric Research. - 433. _____, 1973, P.A.S.P. **85**:593. - 434. _____. 1974. Astron. J. 79:1111. - 435. Mihalas, D., and R. Athay. 1973. Ann. Rev. Astron. and Astrophys. 11:187. - 436. Mihalas, D., and L. Auer. 1970. Astrophys. J. 160:1161. - 437. Mihalas, D., L. Auer, and J. Heasley. 1975. NCAR Technical Note NCAR-TN/STR-104. Boulder: National Center for Atmospheric Research. - 438. Mihalas, D., A. Barnard, J. Cooper, and E. Smith. 1974. Astrophys. J. 190:315. - 439. _____, 1975. Astrophys. J. 197;139. - 440. Mihalas, D., and D. Hummer. 1973. Astrophys. J. 179:827. - 441. _____. 1974. Astrophys. J. Letters 189: L39. - 442. _____. 1974. Astrophys. J. Supp. No. 265 28: 343. - 443. Mihalas, D., D. Hummer, and P. Conti. 1972. Astrophys. J. Letters 175; L99. - 444. Mihalas, D., P. Kunasz, and D. Hummer. 1975. Astrophys. J. 202:465. - 445. _____. 1976. Astrophys. J. 203:647. - 446. ______, 1976. Astrophys. J. 206: 515. - 448. Mihalas, D., and W. Luebke. 1971. M.N.R.A.S. 153:229. - 449. Mihalas, D., and D. Morton. 1965. Astrophys. J. 142:253. - 450. Mihalas, D., B. Pagel, and P. Souffrin. 1971. Theorie des Atmospheres Stellaires. Geneva: Observatoire de Genève. - 451. Mihalas, D., R. Shine, P. Kunasz, and D. Hummer. 1976. Astrophys. J. 205:492. - 452. Mihalas, D., and M. Stone. 1968. Astrophys. J. 151:293 - 453. Miles, B., and W. Wiese. 1969. Critically Evaluated Transition Probabilities for Ba I and Ba II [N.B.S. Technical Note No. 474]. Washington, D.C.: U.S. Dept. of Commerce. - 454. _____. 1970. Bibliography on Atomic Transition Probabilities: January 1916 through June 1969 [N.B.S. Special Pub. No. 320]. Washington, D.C.: U.S. Dept. of Commerce. - 455. Milkey, R., T. Ayres, and R. Shine. 1975. Astrophys, J. 197: 143. - 456. Milkey, R., and D. Mihalas. 1973. Astrophys. J. 185:709. - 457. _____. 1973. Solar Phys. 32:361. - 458. _____. 1974. Astrophys. J. 192:769. - 459. Milkey, R., R. Shine, and D. Mihalas. 1975. Astrophys. J. 199:718. - 460. _____. 1975. Astrophys. J. 202:250. - 461. Milne, E. 1924. Phil, Mag. 47:209. - 462. Mitchell, A. 1969. Computational Methods in Partial Differential Equations. London: Wiley. - Modisette, J. 1967. J. Geophys. Res. 72:1521. - 464. Molnar, M. 1973. Astrophys. J. 179:527. - 465. Morgan, W., P. Keenan, and E. Kellman. 1943. An Atlas of Stellar Spectra. Chicago: Univ. of Chicago Press. - 466. Morrison, N. 1976. Astrophys. J. 200:113. - 467. Morton, D. 1967. Astrophys. J. 147:1017. - ______, 1967. Astrophys. J. 150:535. - 469. Morton, D., E. Jenkins, and R. Bohlin. 1968. Astrophys. J. 154:661. - 470. Morton, D., E. Jenkins, and N. Brooks. 1969. Astrophys. J. 155:875. - 471. Morton, D., and G. Van Citters. 1970. Astrophys. J. 161:695. - 472. Mozer, B., and M. Baranger. 1960. Phys. Rev. 118:626. - 473. Münch, G. 1945. Astrophys. J. 102:385. - 474. _____. 1946. Astrophys. J. 104:87. - 475. ______, 1948. Astrophys. J. 108:116. - 476. _____. 1949. Astrophys. J. 109:275. - 477. Newkirk, G. 1967. Ann. Rev. Astron. and Astrophys. 5:213. - 478. Noerdlinger, P., and G. Rybicki. 1974. Astrophys. J. 193:651. - 479. Nordlund, A. 1974. Astron. and Astrophys. 32:407. - 480. Norris, J. 1970. Astrophys. J. Supp. No. 176 19:305. - 481. _____. 1971. Astrophys. J. Supp. No. 197 23: 193. - 482. O'Brien, J., and C. Hooper. 1972. Phys. Rev. A5:867. - 483. Oertel, G., and L. Shomo. 1968. Astrophys. J. Supp. No. 145 16:175. - 484. Oke, J. 1960. Astrophys. J. 131:358. - 485. _____. 1964. Astrophys. J. 140:189. - 486. _____. 1965. Ann. Rev. Astron. and Astrophys. 3:23. - 487. Oke, J., and R. Schild. 1970. Astrophys. J. 161: 1015. - 488. Olson, E. 1974. P.A.S.P. 86:80, - 489. Omont, A., E. Smith, and J. Cooper. 1972. Astrophys. J. 175:185. - 490. Owczarek, J. 1964. Fundamentals of Gas Dynamics. Scranton: International Textbook. - 491. Pagel, B. 1959. M.N.R.A.S. 119:609. References - 492. Pagel, B. 1968. Proc. Roy. Soc. (London) A306;91. - 493. _____. 1973. Space Sci. Rev. 15:1. - 494. Panofsky, W., and M. Phillips. 1962. *Classical Electricity and Magnetism*, 2nd ed. Reading, Mass.: Addison-Wesley. - 495. Pannekoek, A. 1922. Bull. Astr. Inst. Netherlands 1:107. - 496. Parker, E. 1958. Astrophys. J. 128:664. - 497. _____. 1960. Astrophys. J. 132:821. - 498. _____. 1963. Interplanetary Dynamical Processes. New York: Interscience. - 499. _____. 1965. Astrophys. J. 141: 1463. - 500. Parsons, S. 1969. Astrophys. J. Supp. No. 159 18:127. - Payne, C. 1925. Stellar Atmospheres. Cambridge, Mass.: Harvard
Univ. Press. - 502. Peach, G. 1962. M.N.R.A.S. 124:371. - 503. _____. 1967. Mem. R.A.S. 71:13. - 504. _____. 1970. Mem. R.A.S. 73:1. - 505. Pecker, J.-C. 1951. Ann. d'Astrophys. 14:383. - 506. _____. 1965. Ann. Rev. Astron. and Astrophys. 3:135. - 507. Peraiah, A., and I. Grant. 1973. J. Inst. Math. Applies. 12:75. - 508. Peters, G. 1976. Astrophys. J. Supp. 30:551. - 509. Peterson, D. 1968. S.A.O. Special Report No. 293. Cambridge, Mass.: Smithsonian Astrophysical Observatory. - 510. Peterson, D., and M. Scholz. 1971. Astrophys. J. 163:51. - 511. Peterson, D., and S. Strom. 1969. Astrophys. J. 157:1346. - 512. Peytremann, E. 1974. Astron. and Astrophys. 33: 203. - 513. _____. 1974. Astron. and Astrophys. Supp. 18:81. - 514. _____. 1975. Astron. and Astrophys. **38**:417. - 515. Pfennig, H., and E. Trefftz. 1966. Z. für Phys. 190:253. - 516. Philip, A., and D. Hayes. 1975. Multicolor Photometry and the Theoretical HR Diagram [Dudley Obs. Report No. 9]. Albany, N.Y.: Dudley Observatory. - 517. Pierce, A., and J. Waddell. 1961. Mem. R.A.S. 58:89. - 518. Placzek, G. 1947. Phys. Rev. 72:556. - 519. Placzek, G., and W. Seidel. 1947. Phys. Rev. 72:550. - 520. Planck, M. 1959. The Theory of Heat Radiation. New York: Dover. - 521. Pomraning, G. 1973. Radiation Hydrodynamics. Oxford: Pergamon Press. - 522. Preston, G. 1971. P.A.S.P. 83:571. - 523. _____. 1973. Ann. Rev. Astron. and Astrophys. 11:115. - 524. Prokof'ev, V. 1962. Soviet Phys.—Doklady 6:861. - 525. Proudman, I. 1952. Proc. Roy. Soc. (London) A214:119. - 526. Ralston, A. 1965. A First Course in Numerical Analysis. New York: McGraw-Hill. - 527. Reichel, A. 1968. J.Q.S.R.T. 8:1601. - 528. _____. 1969. Math. Comp. 23:645. - 529. Reichel, A., and I. Vardavas. 1975. J.Q.S.R.T. 15:929. - 530. Richtmyer, R., and K. Morton. 1967. Difference Methods for Initial-Value Problems, 2nd ed. New York: Interscience. - 531. Roberts, P. 1971. Astrophys. Letters 9:79. - 532. Roberts, P., and A. Soward. 1972. *Proc. Roy. Soc.* (London) A328:185. - 533. Rogerson, J., and H. Lamers. 1975. Nature 256:190. - 534. Rohrlich, F. 1959. Astrophys. J. 129:441. - 535. _____. 1959. Astrophys. J. 129:449. - 536. Rosendhal, J. 1973. Astrophys. J. 182:523. - 537. _____. 1973. Astrophys. J. 186:909. - 538. Ross, J., and L. Aller. 1968. Astrophys. J. 153: 235. - 539. Roueff, E. 1970. Astron. and Astrophys. 7:4. - 540. _____. 1975. Astron. and Astrophys. 38:41. - 541. Roueff, E., and H. Van Regemorter. 1969. Astron. and Astrophys. 1:69. - 542. Russell, H. 1929. Astrophys. J. 70:11. - 543. Rybicki, G. 1971. J.Q.S.R.T. 11:589. - 544. Rybicki, G., and D. Hummer. 1967. Astrophys. J. 150:607. - 546. Saha, M. 1920. Phil. Mag. 40:472. - 547. _____. 1921. *Proc. Roy. Soc.* (London) **A99**:135. - 548. Sahal-Brechot, S. 1969. Astron. and Astrophys. 2: 322. - 549. Sahal-Brechot, S., and E. Segre. 1971. Astron. and Astrophys. 13:161. - 550. Sahal-Brechot, S. 1974. Astron. and Astrophys. 35:319. - 551. Sampson, D. 1965. Radiative Contributions to Energy and Momentum Transport in a Gas. New York: Interscience. - 552. Sargent, W. 1964. Ann. Rev. Astron. and Astrophys. 2:297. - 553. Scarf, F., and L. Noble. 1965. Astrophys. J. 141:1479. - 554. Schatzman, E. 1962. Ann. d'Astrophys. 25:18. - 555. Schild, R., D. Peterson, and J. Oke. 1971. Astrophys. J. 166:95. - 556. Schmeltekopf, A., F. Fehsenfeld, and E. Ferguson. 1967. Astrophys. J. Letters 148: L155. - 557. Schmid-Burgk, J. 1974. Astron. and Astrophys. 32:73. - 558. _____. 1975. Astron. and Astrophys. **40**:249. - 559. Schmid-Burgk, J., and M. Scholz. 1975. Astron. and Astrophys. 41:41. - 560. Scholz, M. 1972. Vistas in Astron. 14:53. - 561. Schrödinger, E. 1926. Ann. d. Phys. 80:437. - 562. Schuster, A. 1905. Astrophys. J. 21:1. - 563. Schwarzschild, K. 1916. Sitzber. Deutsch. Akad. Wiss. (Berlin), p. 584. - 564. Schwarzschild, M. 1948. Astrophys. J. 105:1. - Sears, F. 1953. Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics. Reading, Mass.: Addison-Wesley. - 566. Seaton, M. 1958. M.N.R.A.S. 118:504. - 567. Shimooda, H. 1973. P.A.S. Japan 25:547. - 568. Shine, R. 1975. Astrophys. J. 202:543. - 569. Shine, R., and J. Linsky. 1974. Solar Phys. 39:49. - 570. Shine, R., R. Milkey, and D. Mihalas. 1975. Astrophys. J. 199:724. - 571. _____. 1975. Astrophys. J. 201: 222. - 572. Shore, B., and D. Menzel. 1968. *Principles of Atomic Spectra*. New York: Wiley. - 573. Shoub, E. 1977. Astrophys. J. Supp. 34:259. - 574. Simonneau, E. 1973. Astron. and Astrophys. 29:357. - 575. Skumanich, A., and B. Domenico. 1971. J.O.S.R.T. 11:547. - 576. Slater, J. 1960. Quantum Theory of Atomic Structure, Vol. 1. New York: McGraw-Hill. - 577. 1960. Quantum Theory of Atomic Structure, Vol. 2. New York: McGraw-Hill. - 578. Smirnov, B. 1967. Soviet Phys. J.E.T.P. 24:314. - 579. Smith, A. 1969. Astrophys. J. 156:93. - _____. 1972. Astrophys. J. 176:405. - 581. Smith, E., J. Cooper, and C. Vidal. 1969. Phys. Rev. 185:140. - 582. Smith, E., C. Vidal, and J. Cooper. 1969. J. Res. Nat. Bur. Standards 73A: - Smith, M., and S. Strom. 1969. Astrophys. J. 158:1161. - 584. Smith, M., and W. Wiese. 1973. J. Phys. Chem. Ref. Data 2:85. - 585. Sneden, C., H. Johnson, and B. Krupp. 1976. Astrophys. J. 204:281. - Snijders, M., and H. Lamers. 1975. Astron. and Astrophys. 41:245. - 587. Snijders, M. 1977. Astron. and Astrophys. 60:377. - _____. 1977. In press. - 589. Snow, T., and D. Morton. 1976. Astrophys. J. Supp. 32:429. - 590. Sobolev, V. 1957. Soviet Astron. 1:678. - 591. _____. 1960. Moving Envelopes of Stars. Cambridge, Mass.: Harvard Univ. Press. [Russian edition, 1947.] - 592. Somerville, W. 1964. Astrophys. J. 139: 192. - 593. _ ____ 1965. Astrophys. J. 141:811. - 594. Spiegel, E. 1971. Ann. Rev. Astron. and Astrophys. 9:323. - 595. _____. 1972. Ann. Rev. Astron. and Astrophys. 10:261. - 596. Spitzer, L. 1943. Astrophys. J. 98:107. - 597. ______ 1944. Astrophys. J. 99:1. - 598. _____. 1956. Physics of Fully Ionized Gases. New York: Wiley. - 599. Stacey, D., and J. Cooper. 1971. J.Q.S.R.T. 11:1271. - 600. Stecher, T. 1970. Astrophys. J. 159:543. - 601. Stein, R. 1968. Astrophys. J. 154:297. - 602. Stein, R., and J. Leibacher. 1974. Ann. Rev. Astron. and Astrophys. 12:407. - 603. Stewart, A., and T. Webb. 1963. Proc. Phys. Soc. (London) 82:532. - 604. Stilley, J., and J. Callaway. 1970. Astrophys. J. 160:245. - 605. Stone, P., and J. Gaustad. 1961. Astrophys. J. 134: 456. - 606. Stothers, R. 1966. Astrophys. J. 144:959. - 607. Strom, S. 1967. Astrophys. J. 150:637. - 608. Strom, S., and E. Avrett. 1965. Astrophys. J. Supp. No. 103 12:1. - 609. Strom, S., O. Gingerich, and K. Strom. 1966. Astrophys. J. 146:880. - 610. Strom, S., and W. Kalkofen. 1966. Astrophys. J. 144:76. - 611. ____. 1967. Astrophys. J. 149:191. - 612. Strom, S., and R. Kurucz. 1966. J.Q.S.R.T. 6:591. - 613. Strömgren, B. 1935. Z. für Astrophys. 10:237. - 614. Struve, O. 1929. Astrophys. J. 69:173. - 615. _____. 1929. Astrophys. J. 70:85. - 616. _____. 1946. Astrophys. J. 104:138. - 617. Struve, O., and C. Elvey. 1934. Astrophys. J. 79:409. - 618. Sturrock, P., and R. Hartle. 1966. Phys. Rev. Letters 16:628. - 619. Sykes, J. 1951. M.N.R.A.S. 111:377. - 620. Terashita, Y., and S. Matsushima. 1966. Astrophys. J. Supp. No. 121 13:461. - 621. Thomas, L. 1930, Quart. J. Math. 1:239. - 622. Thomas, R. 1957. Astrophys. J. 125:260. - 623. ____. 1960. Astrophys. J. 131:429. - 624. ____ (ed.). 1960. Aerodynamic Phenomena in Stellar Atmospheres [I.A.U. Symposium No. 12]. Bologna: N. Zanichelli. - 625. _____. 1965. Astrophys. J. 144:333. - 626. _____. 1965. Some Aspects of Non-Equilibrium Thermodynamics in the Presence of a Radiation Field. Boulder: Univ. of Colorado Press. - 627. _____. 1973. Astron. and Astrophys. 29:297. - 628. Thomas, R., and R. Athay. 1961. Physics of the Solar Chromosphere. New York: Interscience. - 629. Traving, G. 1960. Über die Theorie der Druckverbreiterung von Spektrallinien. Karlsruhe: Verlag G. Braun. - 630. Ulmschneider, P. 1967. Z. für Astrophys. 67:193. - 631. ____, 1971. Astron. and Astrophys. 12:297. - 632. ____. 1971. Astron. and Astrophys. 14:275. - 633. Underhill, A. 1949. M.N.R.A.S. 109:563. - 634. Underbill, A., and J. Waddell. 1959. Stark Broadening Functions for the Hydrogen Lines [N.B.S. Circular No. 603]. Washington, D.C.: U.S. Dept. of Commerce. - 635. Unno, W., and M. Kondo. 1976. P.A.S. Japan 28:347. - 636. Unsöld, A. 1931. Z. für Astrophys. 1:138. - 637. ____. 1943. Vierteljahresschrift der Astron. Gess. 78:213. - 638. ____. 1955. Physik der Sternatmospharen, 2nd ed. Berlin: Springer-Verlag. - 639. Van Regemorter, H. 1962. Astrophys. J. 136:906. - 640. Vardavas, I. 1976. J.Q.S.R.T. 16:1. - 641. _____. 1976. J.Q.S.R.T. 16:715. - 642. Vardavas, I., and L. Cram. 1974. Solar Phys. 38:367. - 643. Vardya, M. 1965. M.N.R.A.S. 129:205. - 644. ____. 1967. Mem. R.A.S. 71:249. - 645. Vernazza, J., E. Avrett, and R. Loeser. 1973. Astrophys. J. 184:605. - 646. _____. 1976. Astrophys. J. Supp. 30:1. - 647. Vidal, C., J. Cooper, and E. Smith. 1970. J.Q.S.R.T. 10:1011. - 648. _____. 1971. J.Q.S.R.T. 11:263. - 649. ____ 1971. Unified Theory Calculations of Stark Broadened Hydrogen Lines Including Lower State Interactions [N.B.S. Monograph No. 120]. Washington, D.C.: U.S. Dept. of Commerce. - 650. ____. 1973. Astrophys. J. Supp. No. 214 25:37. - 651. Vitense, E. 1951. Z. für Astrophys. 28:81. - 652. ____. 1953. Z. für Astrophys. 32:135. - 653. ____. 1958. Z. für Astrophys. 46:108. - 654. Voigt, H., (ed.). 1965. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, new series, group VI, vol. I. Berlin: Springer-Verlag. - 655. Waddell, J. 1962. Astrophys. J. 136:231. - 586 References - 656. Waddell, J. 1963. Astrophys. J. 138:1147. - 657. Walborn, N. 1971. Astrophys. J. Supp. No. 198 23:257. - 658. Wallerstein, G., and P. Conti. 1969. Ann. Rev. Astron. and Astrophys. 7:99. - 659. Weber, E., and L. Davis. 1967. Astrophys. J. 148:217. - 660. _____.
1970. J. Geophys. Res. 75:2419. - 661. Weisskopf, V. 1932. Z. für Phys. 75:287. - 662. _____, 1933. Physik, Z. 34:1. - 663. ____. 1933. Observatory 56:291. - 664. Wendroff, B. 1963. Los Alamos Scientific Laboratory Report No. LAMS-2795. - 665. Weymann, R. 1960. Astrophys. J. 132:380. - 666. _____. 1962. Astrophys. J. 136:476. - 667. Whang, Y., and C. Chang. 1965. J. Geophys. Res. 70:4175. - 668. Whang, Y., C. Liu, and C. Chang. 1966. Astrophys. J. 145:255. - 669. White, O. 1968. Astrophys. J. 152:217. - 670. Wiese, W., and J. Fuhr. 1975. J. Phys. Chem. Ref. Data 4:263. - 671. Wiese, W., D. Kelleher, and D. Paquette. 1972. Phys. Rev. A6:1132. - 672. Wiese, W., M. Smith, and B. Glennon. 1966. *Atomic Transition Probabilities*, *Vol. 1: Hydrogen through Neon* [NSRDS-NBS-4]. Washington, D.C.: U.S. Dept. of Commerce. - 673. Wiese, W., M. Smith, and B. Miles. 1969. Atomic Transition Probabilities, Vol. 2: Sodium through Calcium [NSRDS-NBS-22]. Washington, D.C.: U.S. Dept. of Commerce. - 674. Wilson, O. 1934. Astrophys. J. 80:259. - 675. _____. 1963. Astrophys. J. 138:832. - 676. Wilson, O., and V. Bappu. 1957. Astrophys. J. 125:661. - 677. Wilson, O., and A. Skumanich. 1964. Astrophys. J. 140:1401. - 678. Wilson, R. 1958. P. Roy. Obs. Edinburgh 2:61. - 679. Wilson, S., and K. Sen. 1965. Ann. d'Astrophys. 28:348. - 680, _____. 1965. Ann. d' Astrophys. 28:855. - 681. Wolff, C., J. Brandt, and R. Southwick. 1971. Astrophys. J. 165:181. - 682. Wolff, S., L. Kuhi, and D. Hayes. 1968. Astrophys. J. 152:871. - 683. Woolley, R. 1938. M.N.R.A.S. 98:624. - 684. Woolley, R., and D. Stibbs. 1953. *The Outer Layers of a Star.* Oxford: Clarendon Press. - 685. Wright, A., and M. Barlow. 1975. M.N.R.A.S. 170;41. - 686. Wright, K. 1948. P. Dominion Astrophys. Obs. Victoria 8:1. - 687. Wrubel, M. 1949. Astrophys. J. 109:66. - 688. _____. 1950. Astrophys. J. 111:157. - 689. 1954. Astrophys. J. 119:51. - 690. Zanstra, H. 1941. M.N.R.A.S. 101:273. - 691. _____. 1946. *M.N.R.A.S.* **106**:225. - 692. Zeldovich, Ya., and Yu. Raizer. 1966. *Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena* (2 vols.). New York: Academic Press. - 693. Zinn, R. 1970. Astrophys. J. 162:909. - 694. Zirin, H. 1966. The Solar Atmosphere. Waltham, Mass.: Blaisdell. ## Glossary of Physical Symbols Physical symbols used in the text are listed below, along with a brief description of their meaning and the page number on which each first appears. Standard mathematical symbols, dummy variables and indices, and notations used only in one location are not included. | а | Ratio of damping width to Doppler width, $\Gamma/4\pi \Delta v_D$ | 279 | |-------------|---|-----| | a | Isothermal sound speed | 519 | | a_i | Quadrature weight | 65 | | a_{ii} | Branching ratio $j \rightarrow i$ in radiative decay of state j | 142 | | a_R | Radiation constant in Stefan's law | 7 | | a_s | Adiabatic sound speed | 519 | | a_v | Macroscopic absorption coefficient uncorrected for stimulated emission | 78 | | a_v | Coefficient in linear expansion of Planck function | 148 | | a_0 | Bohr radius | 89 | | $a_j(t)$ | Coefficient of eigenstate ψ_j in expansion of a general state $\psi(t)$ | 85 | | $a_v(\mu)$ | Absorption-depth, relative to continuum, in spectrum-line intensity-profile at angle $\cos^{-1} \mu$ from disk-center, $1 - r_{\nu}(\mu)$ | 269 | | A | Vector potential | 7 | | A | Rate matrix of statistical equilibrium equations | 138 | | A_a | Autoionization transition probability | 134 | | A_i | Atomic weight of chemical species i | 110 | | A_{ji} | Einstein spontaneous-emission probability for transition $j \rightarrow i$ | 78 | | A_s | Stabilization transition probability in dielectronic recombination process | 135 | | $A_{\rm v}$ | Absorption-depth, relative to continuum, in spectrum line flux-profile, $1-R_{\rm v}$ | 269 | | A_0 | Central absorption depth of an infinitely opaque line | 31 | |----------------------|---|-----| | \mathbf{A}_d | Matrix coupling depth-points $d-1$ and d in Feautrier difference-equation solution of transfer equation | 15 | | b_i | Non-LTE departure coefficient (n_i/n_i^*) for level i | 21 | | $b_{ m v}$ | Coefficient in linear expansion of Planck function | 14 | | $b_{\alpha}(\tau)$ | Planck function normalized to value at surface of atmosphere $B_v[T(\tau)]/B_v(T_0)$ | 70 | | $b_v(au_v)$ | Planck function normalized to disk-center intensity, $B_v[T(\tau_v)]/I_v(0, 1)$ | 262 | | В | Magnetic induction | - | | \mathscr{B} | Righthand-side vector of statistical equilibrium equations | 138 | | B_{ij} | Einstein absorption probability for transition $i \rightarrow j$ | 77 | | B_{ji} | Einstein induced-emission (or stimulated-emission) probability for transition $j \rightarrow i$ | 78 | | B_0 | Planck function at $T = T_0$ | 312 | | B_{1} | $(\partial B_{ u}/\partial \overline{ au})$ evaluated at $\overline{ au}=0$ | 312 | | B^* | Equivalent Planck function for recombination emission in non-LTE source function | 360 | | \mathbf{B}_d | Coupling matrix at depth-point d in Feautrier difference-
equation solution of transfer equation | 155 | | B(T) | Frequency-integrated Planck function | 52 | | $B_{ ext{eff}}(au)$ | Effective thermal source in line with overlapping continuum | 352 | | $B_{v}(T)$ | Planck function | 7 | | $B_{v}^{*}[T(au)]$ | Planck function for temperature distribution that gives radiative equilibrium | 179 | | c | Velocity of light | 4 | | C_{ij} | Collisional transition rate from level i to level j | 127 | | $C_{i\kappa}$ | Collisional ionization rate of level i to continuum | 123 | | C_k | Interaction coefficient of kth component of hydrogen Stark pattern | 295 | | C_p | Specific heat at constant pressure | 186 | | C_p, C_3, C_4, C_6 | Coefficient of power-law expression for perturber-radiator interaction | 283 | | C_v | Specific heat at constant volume | 186 | | C_0 | Numerical constant in collision rate formula, $\pi a_0^2 (8k/m\pi)^{\frac{1}{2}}$ | 133 | | \mathbf{C}_d | Matrix coupling depth-points d and $d+1$ in Feautrier difference equation solution of transfer equation | 155 | | \mathscr{C}_i | Net collisional rate into level i | 486 | | d | Electron-impact line shift | 306 | | d | Electric dipole moment | 86 | | d_{i} | Departure of ratio of non-LTE to LTE population of level i from unity, $(b_i - 1)$ | 219 | | | | 219 | | d_{mn} | Matrix element of dipole moment $\langle \phi_m^* \mathbf{d} \phi_n \rangle$ | 86 | |--------------------------|--|-----| | d^3r | Volume element | 8 | | D | Distance from star to observer | 11 | | \cdot D | Debye length, Debye radius | 122 | | . D | Electric displacement | 7 | | $D_{\mathcal{B}}$ | Balmer jump (in magnitudes) | 195 | | D_{P} | Paschen jump (in magnitudes) | 195 | | \mathbf{D}_d | Auxiliary matrix used in developing Feautrier difference-
equation solution of transfer equation | 156 | | (D/Dt) | Fluid-frame or Lagrangian derivative | 514 | | $(D/Dt)_{\rm coll}$ | Time rate of change of distribution function caused by collisions | 33 | | e | Electron charge | 81 | | е | Specific internal energy of a fluid | 517 | | $e(\infty)$ | Residual energy per particle at infinite distance in stellar wind, E/F | 531 | | E | Total particle energy | 494 | | E | Total energy flux in stellar wind | 526 | | \mathbf{E} | Electric field | 7 | | E | Matrix giving definition of \overline{J} in terms of u_i 's in Rybicki difference-equation solution of transfer equation | 159 | | E | Energy in radiation field | 3 | | E_i | Energy of atomic state i relative to ground state | 22 | | $E_{ u}$ | Contribution to emissivity from (fixed) overlapping transitions | 397 | | $E_{ u}$ | Energy received at frequency ν from an expanding atmosphere by an external observer | 474 | | E_0 | Magnitude of electric field | 8 | | E_{0} | Threshold energy of collision process | 132 | | E_R^* | Thermodynamic equilibrium value of radiation energy-
density | 7 | | $E(\omega)$ | Energy spectrum of oscillator | 275 | | $E_c(\infty)$ | Heat-conduction flux at infinite distance in stellar wind | 531 | | $E_n(x)$ | Exponential integral of order n | 40 | | $E_R(\mathbf{r}, v, t),$ | | | | $E_R(\mathbf{r}, v), $ | Monochromatic energy density in radiation field | 6 | | $E_R(v)$ | | | | $E_R(\mathbf{r}, t),$ | | | | $E_R(\mathbf{r}),$ | Total (frequency-integrated) energy density in radiation field | 6 | | E_R | | | | f | Force-per-unit-volume acting on a fluid | 516 | | f_b | Buoyancy force | 188 | |---|--|-----| | f_c | Continuum oscillator strength | 123 | | f_{ij} | Oscillator strength of transition $i \rightarrow j$ | 84 | | f. | Monochromatic flux received by observer | 11 | | f(n', n) | Oscillator strength for transition between states with principal quantum numbers n' and n | 88 | | f(n', l'; n, l) | Oscillator strength for transition from substate l' of state n' to substate l of state n | 88 | | f(t) | Amplitude of time-variation of oscillator | 274 | | $f(\mathbf{v}), f(v)$ | Maxwellian velocity distribution | 110 | | $ \begin{cases} f(\mathbf{r}, \mathbf{p}, t), \\ f(\mathbf{r}, \mathbf{v}, t), \end{cases} $ | Particle distribution function | 32 | | $ \begin{cases} f(\mathbf{r}, v, t), \\ f(z, v, t), \\ f_v \end{cases} $ | . Variable Eddington factor $K_{ m v}/J_{ m v}$ | 18 | |
$f_{jk}(n_e, T)$ | Fraction of chemical species k in ionization stage j , N_{jk}/N_k | 114 | | $f_K(n', n)$ | Kramers'-formula oscillator strength for transition $n' \rightarrow n$ in hydrogen | 90 | | $f_R(\mathbf{r}, \mathbf{n}, v, t)$ | Photon distribution function | 4 | | F | Perturber field-strength | 291 | | F | Particle flux in stellar wind | 525 | | ${f F}$ | Imposed external force | 32 | | F, F | Frequency-integrated flux | 44 | | F_c | Flux in continuum near spectrum line | 269 | | F_{conv} | Energy flux transported by convection | 188 | | $F_{ m rad}$ | Energy flux transported by radiation | 190 | | F^{α} | Four-force | 541 | | F_{0} | Normal field strength | 291 | | $\mathbf{F}_{\mathrm{rad}}$ | Radiative damping force on an oscillator | 82 | | ${\mathscr F}_{\mathtt{BB}}$ | Frequency-integrated flux from blackbody | 12 | | F(v) | Spontaneous recapture probability for electrons of velocity v | 94 | | F(v) | Dawson's function | 280 | | $F(\mathbf{r}, v, t), F(z, v, t), F_{v}$ | $\mathscr{F}_{\sqrt{\pi}}$ Monochromatic "astrophysical" flux of radiation field | 10 | | $F(\omega)$ | Fourier transfrom | 275 | | $F(\omega, T)$ | Fourier transfrom of wavetrain of duration T | 281 | | $\left. egin{aligned} \mathscr{F}(\mathbf{r}, \mathbf{v}, t), \ \mathscr{F}(z, \mathbf{v}, t), \ \mathscr{F}_{\mathbf{v}} \end{aligned} ight.$ | Monochromatic flux of radiation field in direction normal to atmospheric layers | 10 | | $\mathscr{F}(\mathbf{r}, v, t),$ | | | |---|--|-----| | $\mathscr{F}(\mathbf{r}, v),$ | Monochromatic vector flux of radiation field | 9 | | \mathscr{F}_{v} | | | | ${\mathscr F}_{\rm BB}(\nu)$ | Flux from blackbody | 12 | | g | Surface gravity in planar atmosphere | 170 | | $g_{ m crit}$ | Surface gravity at which radiation force exceeds gravitational force in atmosphere | 170 | | $g_{ m eff}$ | Net acceleration, gravitational minus radiative, of stellar atmospheric material | 256 | | g_i | Statistical weight of atomic state i | 77 | | g_{ijk} | Statistical weight of excitation state i of ionization state j of chemical species k | 110 | | g_{nl} | Statistical weight of substate l of state n | 88 | | g_R | Acceleration produced by radiation force | 554 | | $g_{R,l}$ | Radiative acceleration produced by all spectrum lines | 558 | | g_R^0 | Acceleration produced by radiation force in a single spectrum line | 555 | | \mathbf{g}_R | Four-force of radiation on matter | 498 | | $g(\mathbf{n}', \mathbf{n}),$ | | | | $g(\mu', \mu, \phi'),$ | Angular phase functions in scattering process | 29 | | $g(\mu',\mu)$ | | | | $g_{\mathbf{I}}(n', n)$ | Gaunt factor, for bound-bound transition $n' \rightarrow n$ in hydrogen | 90 | | $g_{\mathrm{II}}(n, k), $ $g_{\mathrm{II}}(n, v)$ | Gaunt factor for bound–free transition $n \to k$ in hydrogen | 99 | | $g_{\mathrm{III}}(k, l),$ | | | | $g_{\text{III}}(v,v),$ | Gaunt factor for free-free transitions in hydrogen | 101 | | $\overline{g}_{\rm III}(v,T)$ | | | | G | Newtonian gravitation constant | 255 | | G_{em} | Momentum density in electromagnetic field | 14 | | \mathbf{G}_R | Momentum density in radiation field | 10 | | G(v) | Induced recapture probability for electrons of velocity v | 94 | | G(v), | Generalized statistical weight ratio in stimulated emission | | | $G_{lu}(v)$ | correction | 165 | | h | Planck's constant | 4 | | ħ | Reduced Planck's constant $h/2\pi$ | 85 | | h | Specific enthalpy of a fluid | 518 | | h_{v} | Eddington factor giving ratio $H_{\nu}(0)/J_{\nu}$ at surface of | | | · | atmosphere | 157 | | H | Frequency-integrated Eddington flux | 54 | | H | Pressure scale height | 188 | | H | Magnetic field | . 7 | |---|--|-----| | ${\mathscr H}$ | Nominal Eddington flux, $\sigma_R T_{\rm eff}^4/4\pi$ | 174 | | H_{A} | Hamiltonian for atom | 85 | | H_P | Perturber Hamiltonian | 298 | | H_{v}^{0} , H^{0} | Current value of Eddington flux in Avrett-Krook procedure | 174 | | H_0 | Magnitude of magnetic field | 8 | | H_{0} | Flux-constant in extended atmosphere, $r^2H = L/16\pi^2$ | 245 | | H(a, v) | Voigt function | 279 | | $H(q_i, p_i)$ | Hamiltonian operator | 85 | | $H(\mathbf{r}, v, t),$ | | | | H(z, v, t), | Monochromatic Eddington flux, $\frac{1}{4}F_{v} = \mathcal{F}_{v}/4\pi$ | 10 | | $H_{ u}$ | | | | $H(\mu)$ | Limb-darkening function | 70 | | $H_n(v)$ | Expansion function in power-series expression for Voigt function | 280 | | i | Unit vector in x-direction | 3 | | I | Frequency-integrated specific intensity | 54 | | I | Moment of inertia of a star | 536 | | I_c | Specific intensity emitted from core in expanding, extended atmosphere | 478 | | I_k | Fractional intensity of kth component of hydrogen Stark pattern | 296 | | I_{ul} | Total line intensity in transition $u \to l$ | 488 | | $I_{ m H}$ | Ionization energy of hydrogen | 133 | | $I(\mathbf{r}, \mathbf{n}, v, t),$ | | 100 | | $I_{v}(T,\mu), \left\{ I_{v}(\mu), \left\{ \right\} \right\}$ | Specific intensity of radiation | 2 | | I_{ν} | | | | $I(\omega)$ | Power spectrum of oscillator | 275 | | $I_{v}(p,\infty)$ | Emergent specific intensity along ray with impact parameter p in extended atmosphere | 247 | | $I^{+}(\mu, \nu), I^{+}$ | Specific intensity traveling in $+\mu$ direction | 36 | | $I^{-}(\mu, \nu), I^{-}$ | Specific intensity traveling in $-\mu$ direction | 36 | | j | Unit vector in y-direction | 3 | | j | Current density | 7 | | J | Jacobian of transformation of coordinates | 32 | | J | Total angular momentum of atom | 92 | | J_{v}^{0}, J^{0} | Current value of mean intensity in Avrett-Krook procedure | 174 | | \overline{J} , \overline{J}_{ij} | Mean intensity averaged over line profile, $\int \phi_v J_v dv$ | 129 | | J | Discrete representation of depth-variation of $\overline{J}(z)$ in Rybicki difference-equation solution of transfer equation | 159 | | $J(\mathbf{r}, t), J$ | Frequency-integrated mean intensity, $\int_0^\infty J_v dv$ | 6 | |-------------------------|---|-----| | $J(\mathbf{r}, v, t),$ | | | | $J(\mathbf{r}, v)$, | | | | J(z, v), | Mean intensity | 5 | | $J_{\nu}(\tau)$, | | | | $J_{_{\mathbf{v}}}$ | | | | k | Boltzmann's constant | 7 | | k | Wavenumber | 8 | | k | Continuum-state quantum number for hydrogen | 98 | | k | Unit vector in z-direction | 3 | | k_c | Continuum opacity uncorrected for stimulated emission | 321 | | k_{α} | Root of characteristic equation in discrete-ordinate method | 66 | | K | Frequency-integrated second moment of radiation field | 55 | | \mathscr{K} | Numerical coefficient in hydrogen cross-section | 99 | | \mathbf{K}_{i} | Discrete representation of depth-variation of thermal source terms at angle-frequency point <i>i</i> in Rybicki difference-equation solution of transfer equation | 159 | | $K(\mathbf{r}, v, t),$ | • | | | K(z, v, t), | Second angular moment of monochromatic radiation field | 16 | | K_{ν} | | | | $K_{\beta}(au)$ | Line-formation kernel function for an expanding atmosphere | 481 | | $K_1(\tau)$ | Line-formation kernel function | 339 | | $K_{1,r}(\tau)$ | Kernel for line-formation with overlapping continuum | 351 | | 1 | Azimuthal quantum number | 89 | | I | Continuum-state quantum number for hydrogen | 100 | | l | Convective mixing length | 188 | | l | Correlation length in turbulent velocity field | 464 | | l_{ν} | Photon mean-free-path | 51 | | L | Stellar luminosity | 49 | | L | Photon destruction length | 333 | | L | Rotational angular momentum of a star | 536 | | L | Total orbital angular momentum of atom | 92 | | L, L_{β}^{α} | Lorentz transformation | 493 | | L_{crit} | Critical luminosity at which radiation force exceeds gravitational force in atmosphere | 171 | | L_{α} | Integration constant in discrete-ordinate method | 67 | | \mathbf{L}_d | Source-term in Feautrier difference-equation solution of transfer equation | 155 | | $L_{1,r}(\tau)$ | Continuum kernel function | 351 | | 100 | Mass of electron | 83 | | m | Magnetic quantum number . | 89 | |----------------------|--|-----| | m | Column mass in atmosphere | 170 | | m, | Mass of electron | 89 | | m_p | Mass of proton | 89 | | m_{H} | Mass of hydrogen atom | 170 | | m_0 | Rest (proper) mass of a particle | 494 | | \bar{m} | Average mass per nucleus (atoms + ions) | 170 | | M | Mach number | 520 | | M | Stellar mass | 171 | | M_{α} | Integration constant in discrete ordinate method | 67 | | Àl | Mass-loss rate | 516 | | M(t) | Radiation force multiplier | 561 | | n | Index of refraction | 4 | | n | Principal quantum number | 89 | | n, n' | Directions of radiation propagation | 2 | | n | Occupation-number solution-vector of statistical equilibrium equations | 138 | | n_d | Number density in doubly excited state of dielectronic recombination process | 135 | | n_e | Number density of free electrons | 94 | | n_i | Number density of atoms in state i | 78 | | n_i^* | LTE value of number density of atoms in state i | 79 | | n_{ijk} | Number density of atoms in excitation state i of ionization stage j of chemical species k | 110 | | n_p | Proton number density | 138 | | n _o | Propagation vector of plane wave | 8 | | $n(\tau)$ | Turbulent eddy density | 464 | | $n_k(\mathbf{r}, t)$ | Particle density of particle species k in a gas | 513 | | $n_i(v)$ | Number density of atoms in state i capable of absorbing radiation at frequency
v | 77 | | $\tilde{n}_i(v)$ | Ratio of population in substate v of state i to line profile, $n_i(v)/\phi(v)$ | 436 | | N | Total particle density (all species) | 115 | | N | Number density of perturbers | 282 | | N_{jk} | Number density of atoms in all excitation states of ionization stage j of chemical species k | 111 | | N_k | Number density of atoms of chemical species k in all | | | | excitation and ionization states | 114 | | N_N | Number density of nuclei (atoms + ions) | 115 | | N_v | Third angular moment of monochromatic radiation field | 502 | | \mathcal{N}_{km} | Number of transitions $k \to m$ | 87 | | p | Total pressure | 170 | | p | Impact parameter of ray in extended atmosphere | 247 | |---|--|-----| | <i>p</i> . | Exponent in power-law expression for perturber-radiator interaction | 283 | | р | Momentum of a particle | 32 | | p_e | Electron pressure | 103 | | p_g | Total gas pressure | 115 | | p_i | Generalized momentum coordinate | 85 | | p_i | Pressure in interstellar medium | 533 | | p_{ji} | Cascade probability of state <i>j</i> to state <i>i</i> | 142 | | p_k | Partial pressure of particle species k in a gas | 514 | | p_{ν} | Probability of photoionization at frequency v | 94 | | p_{ν} | Coefficient in linear expansion of Planck function on τ_{ν} scale | 310 | | p(x, x') | Joint probability of absorption from substate <i>x</i> and return to substate <i>x'</i> in a line transition | 277 | | $p(\xi',\xi)$ | Redistribution probability in atom's rest frame | 412 | | $p_R(\mathbf{r}, v, t),$ | | | | $p_R(z, v, t),$ | Monochromatic radiation pressure scalar | 16 | | $p_R(v)$ | F | | | $p_R^*(\mathbf{r}, v, t), $ $p_R^*(z, v, t) $ | Thermodynamic equilibrium value of monochromatic radiation pressure scalar | 17 | | Р | Radiation-pressure tensor | 12 | | P_d | Photon destruction probability | 333 | | P_{ij} | Component ij of radiation pressure tensor | 12 | | P_{ij} | Total transition rate from level i to level j | 128 | | P^{α} | Four-momentum | 494 | | $ar{P}$ | Mean radiation pressure | 13 | | P(t) | Power radiated from accelerating charge | 82 | | $P(u_h)$ | Probability distribution function for dimensionless velocity in turbulent atmosphere | 464 | | $\langle P(\omega) \rangle$ | Average power radiated at circular frequency ω by harmonic oscillator | 82 | | $P_e(au)$ | Photon escape probability | 334 | | $P_{nl}(r)$ | Radial charge density | 89 | | q | Heat delivered to a gas, per unit volume | 517 | | q_i | Generalized space coordinate | 85 | | q_{v} | Sphericality factor in extended atmosphere | 251 | | \mathbf{q}_c | Conductive heat flux | 517 | | q(au) | Hopf function | 55 | | $q_{ij}(T)$ | Collision rate $i \rightarrow j$, per atom in state i , per electron, averaged over Maxwellian velocity distribution at temperature T | 132 | | $q_{x}(\tau)$ | Exponential absorption factor for a turbulent atmosphere | 465 | |------------------------------|--|-----| | $\langle q_x(\tau)\rangle_S$ | Static average of $q_x(\tau)$ | 466 | | Q | Integration constant in discrete-ordinate method | 67 | | Q | Factor correcting for ionization and radiation pressure effects on mean molecular weight of a gas | 188 | | Q_{ij} | Collision cross-section in units of πa_0^2 | 132 | | $Q(r, \mu)$ | Derivative of radial velocity along a line of sight in Sobolev method | 479 | | $Q_x(s)$ | Laplace transform of $q_x(\tau)$ | 466 | | r | Radial distance from center of a star | 3 | | r | Distance between two test points | 4 | | r | Ratio of continuum to line opacity χ_c/χ_t | 36 | | r | Opacity ratio in schematic Lyman continuum problem | 222 | | r | Position in a stellar atmosphere | 2 | | r_c | Core radius in extended atmosphere | 251 | | r_c | Critical radius in transsonic wind | 526 | | r_s | Sonic point radius | 562 | | r_A | Alfvenic radius | 535 | | r_0 | Mean interatomic distance | 111 | | r_0 | Radial coordinate of surface of constant radial velocity, $(z_0^2 + p^2)^2$ | 479 | | $r_{\frac{2}{3}}$ | Radius at Rosseland optical depth $\bar{\tau}_R = \frac{2}{3}$ | 256 | | r_* | Stellar radius | 11 | | ŕ | Unit vector in radial direction | 3 | | $r_{ m v}(\mu)$ | Residual specific intensity, relative to continuum, in spectrum line at angle $\cos^{-1} \mu$ from disk center, $1 - a_{\nu}(\mu)$ | 270 | | R | Stellar radius | 49 | | ${\mathscr R}$ | Rydberg constant | 89 | | ${\mathscr R}$ | Reynolds number | 560 | | R | Stress-energy tensor of radiation field | 498 | | R_{db} | Dielectronic recombination rate $d \rightarrow b$ | 135 | | R_{ij} | Radiative transition rate from state i to state j | 77 | | $R_{i\kappa}$ | Photoionization rate of level i to continuum | 123 | | R_{ji} | Radiative de-excitation rate $j \to i$ scaled to equilibrium value $R_{ji} = n_j^* R'_{ji}/n_i^*$ | 129 | | R'_{ji} | Radiative de-excitation rate $j \rightarrow i$ per atom in upper state | 129 | | $R_{\kappa i}$ | Radiative recombination rate $\kappa \to i$ scaled to equilibrium value $R_{\kappa i} = n_{\kappa}^* R'_{\kappa i}/n_i^*$ | 131 | | $R'_{\kappa i}$ | Radiative recombination rate $\kappa \to i$ per ion in ground state | 130 | | R_{v} | Residual flux, relative to continuum, in spectrum line profile, $1-A_{\nu}$ | 269 | | R_0 | Residual flux at center of infinitely opaque line | 312 | | \mathscr{R}_i | Net radiative into level i | 486 | |---|---|-----| | R(x', x) | Angle-averaged redistribution function in dimensionless frequency units | 427 | | $R(x', \mathbf{n}'; x, \mathbf{n})$ | Redistribution function in dimensionless frequency units | 418 | | R(v', v) | Angle-averaged redistribution function | 28 | | $R(\mathbf{v}', \mathbf{n}'; \mathbf{v}, \mathbf{n})$ | Redistribution function for scattering process | 27 | | $R_c(v',\mathbf{n}';v,\mathbf{n})$ | Redistribution function in laboratory frame for coherent scattering in atom's frame | 418 | | $R_{nl}(r)$ | Radial wavefunction | 89 | | $R_u(v', v)$ | Angle-averaged redistribution function for atom moving with (dimensionless) velocity u | 425 | | $R_{v}(v', \mathbf{n}'; v, \mathbf{n})$ | Redistribution function for atom moving with velocity v | 416 | | S | Path length | 31 | | S | Spin quantum number | 89 | | S_e | Electron scattering coefficient per gram of stellar material | 554 | | S | Surface area | 3 | | S | Frequency-integrated source function | 54 | | S | Poynting vector | 11 | | S | Total spin angular momentum of atom | 92 | | S_{l} | Line source function | 80 | | $S_{ m max}$ | Maximum source function in finite slab | 347 | | \mathbf{S}_d | Discrete representation of source function at depth-point <i>d</i> in Feautrier difference-equation solution of transfer equation | 157 | | S(i, j) | Line strength in transition $i \rightarrow j$ | 88 | | $S(\mathbf{r}, v),$ | 2 | | | $S(z, v), \rangle$ | Source function, η_{ν}/χ_{ν} | 35 | | S_{ν} | THEN | | | $S(\alpha)$ | Normalized Stark profile | 296 | | $S(-\mu)$ | Angular distribution of intensity emergent from grey | | | | atmosphere | 70 | | $\mathscr{S}(\mathscr{L})$ | Strength of line within multiplet | 92 | | $\mathscr{S}(\mathscr{M})$ | Multiplet strength | 92 | | $S_x(s)$ | Laplace transform of $\langle q_x(\tau) \rangle_S$ | 466 | | t | Time | 2 | | t | Current optical depth scale in Avrett-Krook procedure | 174 | | t | Equivalent electron-scattering optical depth in expanding atmosphere | 561 | | t_{c} | Self-relaxation time for electrons in a plasma | 122 | | t_r | Average recombination time | 122 | | T | Absolute thermodynamic temperature | 7 | | Т | Stress-energy tensor of electromagnetic field | 497 | | | | * | d . | | |------------------------------------|---|---|---|--| | T_c | Color temperature | 248 | v_c | Critical velocity in transsonic wind | | T_c | Radiation temperature of core in expanding atmosphere | 486 | $v_{ m esc}$ | Escape velocity from stellar surface | | T_e | Kinetic temperature of electrons | 122 | $v_{ m r}$ | Expansion velocity in radial direction | | $T_{ m eff}$ | Effective temperature | 49 | v_z | Expansion velocity along a ray with impact parameter p | | T_k | Kinetic temperature of atoms and ions | 123 | $ u_{0} $ | Most probable speed | | T_r | Radiation temperature | 360 | v_{∞} | Terminal velocity in stellar wind | | T_{v} , T | Total optical thickness of finite slab | 36 | $v_{ m th}^{*}$ | Fiducial thermal velocity | | T_{0} | Boundary temperature of atmosphere | 61 | \overline{v} | Average speed of convective elements | | T_1 | Temperature perturbation in Avrett–Krook procedure | 174 | Ÿ | Acceleration | | \mathbf{T}_i | Tridiagonal matrix representing differential operator for angle-frequency point <i>i</i> in Rybicki difference-equation | | $v(z, \mathrm{v}, \mu), v_{\mathrm{v}\mu}$ | Antisymmetric angle-average of specific intensity $\frac{1}{2}[I(v, +\mu) - I(v, -\mu)]$ | | | solution of transfer equation | 157 | v(r) | Expansion velocity of atmosphere | | T^M | Maxwell stress tensor | 14 | $v_h(au)$ | Hydrodynamic velocity in turbulent atmosphere
| | $T(k^2)$, $T(X)$ | Characteristic function in discrete ordinate method | 66 | V | Volume | | T(t, 0) | Time development operator | 298 | V | Perturbation potential | | $T_{\mathbf{A}}(t,0)$ | Time-development operator for atom | 301 | V | Velocity of atmosphere in fiducial thermal velocity units, | | $T_{\mathbf{P}}(t, 0)$ | Time-development operator for perturber | 300 | | $v/v_{ m th}^*$ | | $T_R(v, \mu),$ | | | V_i | The ith component of total particle velocity in a gas | | $T_R(v),$ | Radiation temperature | 121 | V_i' | The ith component of thermal velocity of a particle in a gas | | T_R | | | $\langle V_i \rangle = v_i$ | The ith component of fluid (or mean flow) velocity in a gas | | $T_0(t)$ | Current temperature distribution in Avrett-Krook | | V_{mn} | Matrix element of perturbation potential $\langle \phi_m^* V \phi_n \rangle$ | | | procedure | 174 | V^{lpha} | Four-velocity | | u | Velocity in units of thermal velocity $(m/2kT)^{\frac{1}{2}}$ v | 417 | \mathbf{V}_i | Matrix containing depth-variation of quadrature weights | | \mathbf{u}_d | Discrete representation of $u(z_d, v, \mu)$ in Feautrier difference-equation solution of transfer equation | 155 | •• | and profile functions at angle-frequency point <i>i</i> in Rybicki difference-equation solution of transfer equation | | \mathbf{u}_i | Discrete representation of depth-variation of $u(z, v_i, \mu_i)$ in | | $V_{cl}(t)$ | Classical interaction potential | | $u(z, v, \mu), u_{v\mu}$ | Rybicki difference-equation solution of transfer equation
Symmetric angle-average of specific intensity | 157 | ${V}_{cl}^{\prime}(t)$ | Canonical transformation of classical interaction potential to interaction representation | | | $\frac{1}{2}[I(v, +\mu) + I(v, -\mu)]$ | 152 | w | Electron-impact line width | | $u_h(\tau)$ | Hydrodynamic velocity in turbulent atmosphere in units of local thermal velocity $v_h(\tau)/v_{th}(\tau)$ | 464 | w | Doppler width corresponding to thermal velocity $(v_0/c)(2kT/m)^{\frac{1}{2}}$ | | \mathbf{U}_i | Matrix giving depth-coupling to \overline{J} at angle-frequency point | | W_{k} | Quadrature weight | | TI(: 0) | i in Rybicki difference-equation solution of transfer equation | 159 | w_1, w_2 | Relative probabilities of line and continuum bands in picket-fence model | | U(t,0) | Time-development operator in interaction representation | 302 | W | Dilution factor | | $U_i(r, \theta, \phi; n, l, m, s)$ | Electron orbital | 91 | w | Matrix in final system $WJ = Q$ in Rybicki difference-equation solution of transfer equation | | $U_{jk}(T)$ | Partition function of ionization stage j of chemical species k | 111 | W_c | Electron distribution function | | v | Frequency displacement from line-center measured in Doppler widths, $(v - v_0)/\Delta v_D$ | 279 | W_i | Ion distribution function | | 75 | Average relative velocity of colliding particles | 282 | W_{λ}, W_{ν} | Equivalent width of spectrum line | | v | Velocity | 7 | W^* | Reduced equivalent width, $W/2A_0\Delta v_D$ | | v | YOROGRA | 1 | 3 | | | | W(r) | Nearest-neighbor distribution function | 290 | |----------------------|----------------------------|---|-----| | | W(t) | Energy density in electromagnetic field | 8 | | | $W(\beta)$ | Field-strength distribution function | 291 | | 1 | $W(\beta, \delta)$ | Field-strength distribution function allowing for shielding effects | 293 | | | $W(\xi)$ | Distribution function for velocities along line-of-sight | 279 | | | $W_H(\beta)$ | Holtsmark field-strength distribution function | 294 | | $W_{\lambda}(\mu)$, | $W_{\nu}(\mu)$ | Equivalent width of spectrum line at angle $\cos^{-1} \mu$ from disk-center | 270 | | | X | Cartesian coordinate in horizontal direction | 3 | | | X | Frequency displacement from line-center measured in Doppler or damping widths | 338 | | | X_{α} | $1/k_{\alpha}$, where k_{α} is a characteristic root | 69 | | | <u>X</u> | Minimum of absolute value of incident and scattered photon frequencies measured in dimensionless units from line-center | 428 | | | \overline{X} | Maximum of absolute value of incident and scattered photon frequencies measured in dimensionless units from line-center | 428 | | | X_{α} | $x_{\alpha}^{2} = 1/k_{\alpha}^{2}$, where k_{α} is a characteristic root | 69 | | | X_{v} | Generalized optical depth variable in spherical atmosphere | 251 | | | $X_{ u}$ | Contribution to opacity from (fixed) overlapping transitions | 397 | | | X_0 | $u_0/(1 - e^{-u_0})$, where $u_0 = (hv_0/kT)$ | 313 | | X | $\int_{\mathbf{t}} [f(t)]$ | K-integral operator | 41 | | | у | Cartesian coordinate in horizontal direction | 3 | | | Y | Ratio of abundance of helium to hydrogen by number | 138 | | | Y_{ij} | Net collisional bracket | 132 | | Y_{i} | $f^m(\theta,\phi)$ | Spherical harmonic | 89 | | | Z | Cartesian coordinate in vertical direction (normal to atmospheric layers) | 3 | | | Z | Path-length along ray in extended atmosphere | 247 | | $z_0(p, z)$ | $x), z_0$ | The z-coordinate of surface of constant radial velocity corresponding to frequency shift x | 479 | | | Z | Total geometrical thickness of finite slab | 36 | | | Z | Charge number of atomic nucleus | 91 | | | Z_i | Ionic charge | 330 | | | Z_{ji} | Net radiative bracket in transition $j \rightarrow i$ | 129 | | | α | Stark shift in Å per unit normal field strength, $\Delta \lambda/F_0$ | 296 | | | α_k | Relative abundance of chemical species k | 115 | | | α_{ν} | Energy absorption cross-section per atom | 94 | | | α_* | Stellar angular diameter | 12 | | | $\alpha(t)$ | Atomic wave function | 300 | | $\alpha_{ij}(v)$ | Absorption cross-section at frequency ν in bound—bound transition $i \rightarrow j$ | . 128 | |----------------------------|---|-------| | $\alpha_{i\kappa}(v)$ | Absorption cross-section at frequency v in bound–free transition $i \to \kappa$ | 130 | | $\alpha_{\mathrm{DR}}(T)$ | Dielectronic recombination coefficient | 135 | | $\alpha_{RR}(T)$ | Radiative recombination coefficient | 131 | | $\alpha_{\kappa\kappa}(v)$ | Free-free absorption cross-section at frequency v | 165 | | β | Ratio of line to continuum opacity in picket-fence model | 207 | | β | Field strength in units of normal field strength, F/F_0 | 291 | | β | Velocity in units of speed of light | 493 | | β_c | Probability of penetration of core radiation to test point in expanding atmosphere | 478 | | $eta_{ u}$ | Fractional departure of monochromatic opacity from mean value | 74 | | $eta_{ u}$ | Ratio of line opacity to continuum opacity, $\chi_t(\nu)/\chi_c = \chi_t \phi_{\nu}/(\kappa_c + \sigma)$ | 309 | | β_0 | Ratio of line to continuum opacity for line with Voigt profile, $\beta_v = \beta_0 H(a, v)$, $\beta_0 = \chi_0/\chi_c$ | 312 | | $\beta(r)$ | Photon escape-probability in expanding atmosphere | 478 | | γ | Classical damping constant | 82 | | γ | Ratio of specific heats for an ideal gas | 186 | | γ | Convective efficiency parameter | 189 | | γ | Ratio of radiation force to its limiting value in diffusion approximation | 255 | | γ | Fraction of all emission that occurs coherently in atom's rest-frame | 415 | | γ | Velocity gradient $\partial V/\partial \tau$ in uniformly expanding atmosphere | 481 | | γ | Lorentz transformation factor $(1 - v^2/c^2)^{-\frac{1}{2}}$ | 493 | | γ_{ν} , γ | Ratio of monochromatic opacity to mean value or continuum value | 74 | | γ_{ν} | Generalized noncoherent scattering coefficient in non-LTE source function | 223 | | $\gamma(z, p)$ | Coefficient of frequency-derivative in comoving-frame transfer equation using optical depth scale | 504 | | $\widetilde{\gamma}(z, p)$ | Coefficient of frequency-derivative in comoving-frame transfer equation | 504 | | Γ | Ratio of specific heats for non-ideal gas (i.e., including ionization and radiation pressure effects) | 186 | | Γ | Ratio of radiation force to gravity force | 256 | | Γ | Reciprocal lifetime of excited state | 277 | | Γ | Total damping width of a line | 278 | | Γ_e | Ratio of radiation force from electron scattering only to gravity | 256 | | Γ_C | Collisional damping width | 282 | |---|---|-----| | Γ_L , Γ_U | Reciprocal mean lifetime of lower and upper states of transition $L \leftrightarrow U$ | 277 | | Γ_R | Radiative damping width | 282 | | Γ_W | Collisional damping width in Weisskopf theory | 283 | | Γ_3 | Resonance damping width | 287 | | Γ_6 | Van der Waals damping width | 326 | | $\Gamma_{ij}(T)$ | Secondary temperature-dependent factor for collision rates | 133 | | $\delta, \delta_L, \delta_U, \delta_R, \delta_C$ | Reduced damping widths, $\Gamma/2$ in circular frequency units, $\Gamma/4\pi$ in ordinary frequency units | 277 | | δ | Number of perturbers in Debye sphere | 294 | | δ | Ratio of continuum to total opacity averaged over line profile | 351 | | δN , δN_d | Perturbation of total number density (at depth-point <i>d</i>) in linearization procedure | 118 | | δT , δT_d | Perturbation of temperature (at depth-point d) in linearization procedure | 118 | | δN | Perturbation of total number density distribution in linearization method | 184 | | δΤ | Perturbation of temperature distribution in linearization method | 184 | | δ_{ij} | Kronecker δ -symbol | 14 | | δn_e , $\delta n_{e,d}$ | Perturbation of electron density (at depth-point d) in linearization procedure |
117 | | $egin{array}{ccc} \delta n_i, & \delta n_{i,\ d}, \ & \mathbf{\delta n}_d \end{array} brace$ | Perturbation of level-populations (at depth-point d) in linearization procedure | 118 | | $\delta J_{v}, \delta J_{dn}$ | Perturbation of mean intensity (at depth-point d) in linearization procedure | 143 | | $\delta \mathbf{J}_k$ | Perturbation of depth-variation of mean intensity (at frequency v_k) in linearization procedure | 184 | | $\delta(x)$ | Dirac delta-function | 8 | | $\delta(z)$ | Ratio of Doppler width to fiducial Doppler width, $\Delta v_{\rm D}(z)/\Delta v_{\rm D}^*$ | 449 | | $\delta ho, \;\; \delta ho_d$ | Perturbation of mass density (at depth-point <i>d</i>) in linearization procedure | 183 | | $\delta\eta_{v}, \delta\eta_{dn}$ | Perturbation of emissivity (at depth d , frequency v_n) in linearization procedure | 183 | | $\delta\chi_{v}$, $\delta\chi_{dn}$ | Perturbation of opacity (at depth d , frequency v_n) in linearization procedure | 183 | | $\delta \chi_v$ | Change in opacity produced by departures from LTE | 219 | | $\delta \psi_d$ | Perturbation of solution vector in complete linearization method | 231 | | $\Delta B(au)$ | Correction to integrated Planck function at depth τ in Unsöld–Lucy procedure | 63 | | $\Delta H(au)$ | Error in integrated Eddington flux in Unsöld-Lucy | | |---|--|-----| | | procedure | 64 | | $\Delta T(m)$ | Temperature perturbation at depth (column mass) m | 173 | | $\Delta \theta$ | Difference in $\theta_{\rm exc}$ between Sun and a star | 327 | | - Δv | Frequency shift arising from Doppler effect | 279 | | Δχ | Lowering of ionization potential | 112 | | $\Delta \lambda_c$ | Classical damping width in wavelength units | 276 | | $\Delta \lambda_W$ | Wavelength shift produced by perturber located at Weisskopf radius | 296 | | $\Delta v_{ m D}$ | Doppler width in frequency units | 279 | | $\Delta v_{ m D}^{*}$ | Fiducial Doppler width | 449 | | $\Delta au_{d+\frac{1}{2}}$ | Optical depth increment between mesh-points d and $d+1$ in difference-equation solution of transfer equation | 154 | | $\Delta\omega_g$ | Frequency shift from line-center at boundary between impact and statistical-broadening regimes | 289 | | $\Delta\omega_{W}$ | Frequency shift produced by perturber located at Weisskopf radius | 289 | | $\Delta\omega_0$ | Line shift in Lindholm theory | 285 | | $\Delta\omega_0$ | Normal frequency shift | 290 | | $\Delta\omega(t)$ | Instantaneous frequency shift induced by collision with perturber | 283 | | ε | Electric permittivity | 7 | | ε | Fraction of line emission that is thermal (classical theory) | 35 | | ε , ε' | Collisional thermalization parameter in non-LTE source function | 337 | | $\widehat{arepsilon}_{ u}$ | Generalized thermal emission parameter in non-LTE source function | 223 | | $\widetilde{arepsilon}$ | Thermalization parameter in schematic Lyman continuum problem | 224 | | ζ_{v}, ζ_{k} | Non-LTE source function parameter | 226 | | η | Photoionization coupling parameter in non-LTE source function | 359 | | η_0 | Critical phase shift in Weisskopf theory | 283 | | η' | Phase change in time-interval ds | 284 | | $\eta(t)$ | Instantaneous phase shift induced by collision with perturber | 283 | | $\eta(t,s)$ | Change in phase in time interval $(t, t + s)$ | 284 | | $\left. egin{aligned} \eta(\mathbf{r},v,t), \ \eta(z,v,t), \ \eta_{_{\boldsymbol{\mathcal{V}}}} \end{aligned} \right\}$ | Emission coefficient | 25 | | $\eta(\infty), \eta(\rho)$ | Total phase shift produced in collision with perturber at impact parameter ρ | 283 | | $\eta^t(\mathbf{r}, v, t), \eta^t(v)$ | Thermal emission coefficient | 20 | | $\eta^s(\mathbf{r}, v, t), \eta^s(v)$ | Scattering emission coefficient | · 28 | |--|--|------| | $ \eta^*(\mathbf{r}, v, t), $ $ \eta^*(v) $ | Thermodynamic equilibrium value of emission coefficient | 26 | | 0 | 5040/T | 322 | | heta | Polar angle between direction of pencil of radiation and normal to atmosphere layers | 3 | | θ | Recombination source term in non-LTE source function | 359 | | $ heta_{ m eff}$ | $5040/T_{ m eff}$ | 213 | | $ heta_{ m exc}$ | Excitation temperature parameter deduced from curve of growth, $5040/T_{\rm exc}$ | 322 | | $\hat{m{ heta}}$ | Unit vector in direction of change in polar angle for orthogonal spherical coordinate system | 16 | | Θ | Polar angle of a point on a spherical surface | 3 | | Θ | Angle between incident and scattered photons | 416 | | κ | Thermal conductivity | 517 | | $\kappa_{arepsilon}$ | Continuum absorption coefficient | 205 | | $\overline{\kappa}_{J}$ | Absorption-mean opacity | 60 | | $\overline{\kappa}_{\mathtt{P}}$ | Planck mean opacity | 59 | | $\kappa(\mathbf{r}, v, t),$ | | | | $\kappa(z, v, t),$ | Absorption ("true") coefficient | 24 | | $\kappa^*(\mathbf{r}, v, t),$ $\kappa^*(v)$ | Thermodynamic equilibrium value of "true" absorption coefficient | 26 | | î. | Wavelength | 8 | | K | De Broglie wavelength | 300 | | λ_{v} | Ratio of true absorption to total opacity $\kappa_{\nu}/(\kappa_{\nu} + \sigma_{\nu}) = (1 - \rho_{\nu})$ | 148 | | $\lambda_{ u}$ | Fraction of total emission that is thermal in classical line-
formation theory $[(1 - \rho) + \varepsilon \beta_v]/(1 + \beta_v)$ | 309 | | Λ | Thermalization depth | 335 | | $oldsymbol{\Lambda}_{I}$ | Discrete matrix representation of Λ -operator at (v_i, μ_i) | 160 | | $\Lambda_{t}[f(t)]$ | Lambda (mean-intensity) operator | 41 | | μ , μ' | $\cos \theta$ (cosine of polar angle of pencil of radiation) | 3 | | μ | Magnetic permeability | 7 | | μ | Number of atomic mass units per free particle in a gas | 519 | | μ_l | Angle-point in discrete-ordinate method | 65 | | $\mu_{ m H}$ | Reduced mass of hydrogen atom | 89 | | v, v' | Frequency | 2 | | v_{ij} | Frequency associated with transition $i \rightarrow j$ | 22 | | v_n | Threshold frequency for ionization from nth state of hydrogen | 99 | | 21 | Threshold frequency for continuum absorption | 123 | |------------------------------|--|------------| | ν ₀ | Line-center frequency | 278 | | ν _ο
<u>ν</u> | Minimum of incident and scattered photon frequencies | 426 | | $\frac{\nu}{\overline{\nu}}$ | Maximum of incident and scattered photon frequencies | 426 | | | Appelliony vector used in developing Feautrier difference- | 156 | | $_{\cdot}\mathbf{v}_{d}$ | equation solution of transfer equation | 279 | | ٠ | Line-of-sight velocity | 412 | | ξ, ξ' | Photon frequency in atom's rest frame | -,12 | | ξ_{therm} | Most probable line-of-sight thermal speed at temperature T_{exc} deduced from curve of growth | 323 | | ξ_{turb} | Most probable line-of-sight speed of small-scale "turbulent mass motions in atmosphere | 323 | | ξ_x | Photon destruction probability at frequency x from line | 350 | | źχ | center | 225 | | ξ_v, ξ_k | Non-LTE source function parameter | 279 | | ξ_0 | Most probable line-of-sight velocity | 351 | | ξ | Average photon destruction probability in a line | 300 | | $\pi(t)$ | Perturber wave function | 516 | | Π | Gas pressure tensor | 514 | | Π_{ij} | The ijth component of gas pressure tensor | 21. | | Π^k_{ij} | The ij th component of partial pressure tensor for particle species k in a gas | 514
7 | | ρ | Charge density | 170 | | ρ | Mass density | 283 | | ρ | Impact parameter in collision | 298 | | ρ_{j} | Density matrix element | 301 | | $\rho_{ m A}$ | Density matrix for atomic states | 301 | | ρ_{P} | Density matrix for perturber states | 283 | | ρ_W | Weisskopf radius | 203 | | $\rho_{\rm v}$ | Ratio of scattering coefficient to opacity, | 43 | | ry | $\sigma_{\nu}/(\kappa_{\nu} + \sigma_{\nu}) = (1 - \lambda_{\nu})$ | 283 | | $ ho_0$ | Effective impact parameter for collision-broadening | 542 | | $ ho_0$ | Invariant mass density | | | $ ho_{00}$ | Equivalent mass density of invariant mass density plus internal energy of fluid | 542 | | $ ho_{000}$ | enthalpy of fluid | 542
309 | | σ | Continuum scattering coefficient | 106 | | σ_e | Thomson scattering cross-section for free electrons | 84 | | $\sigma_{ m tot}$ | Total scattering cross-section | 285 | | σ_I | Imaginary part of collision integral | 12 | | σ_R | Stefan-Boltzmann constant | 12 | | , , | | 285 | |-----------------------------|--|------------------| | σ_R | Real part of collision integral | 203 | | $\sigma(\mathbf{r}, v, t),$ | . m | 24 | | $\sigma(z, v, t),$ | Scattering coefficient | | | $\sigma_{\rm v}$) | Cross-section for transition $i \rightarrow j$ induced by collisions with | | | $\sigma_{ij}(v)$ | Cross-section for transition $v + y$ included by contract electrons of velocity v | 132 | | τ | Mean time between collisions | 282 | | τ | Proper time | 542 | | τ_c | Continuum optical depth | 271 | | $ au_e$ | Optical thickness of convective element | 189 | | $ au_l$ | Static line optical depth | 453 | | $ au_s$ | Effective impact time | 288 | | $\overline{\tau}_R$ | Rosseland mean optical depth | 58 | | τ_1 | Optical-depth perturbation in Avrett-Krook method | 174 | | $\overline{ au}$ | Mean optical depth | 56 | | $\tau(\mathbf{r}, \nu),$ | | 2.4 | | $\tau(z, \nu),
\}$ | Monochromatic optical depth | 34 | | $\tau_{\rm v}$ | | | | $\tau_0(r_0)$ | Line-of-sight optical depth through uniformly expanding envelope in Sobolev theory | 479 | | ϕ | Azimuthal angle of pencil of radiation around normal to atmospheric layers | 3 | | ϕ | Scalar potential | 7 | | ϕ | Ratio of Paschen jump to Balmer jump, D_p/D_B | 236 | | $\hat{\hat{f \phi}}$ | Unit vector in direction of change in azimuthal angle for orthogonal spherical coordinate system | 16 | | $\phi(s)$ | Reduced autocorrelation function | 284 | | $\phi(v), \phi_v$ | Line absorption profile | 27 | | $\phi_i(\mathbf{r})$ | Time-independent wave function of atomic state i | 85 | | Φ | Azimuthal angle of a point on a spherical surface | 3 | | Φ_{ab} | Matrix element describing broadening of spectrum line $a \rightarrow b$ | 302 | | Φ_{v} | Continuum photon-absorption rate coefficient, $4\pi\alpha_v/hv$ | 223 | | $\Phi(s)$ | Autocorrelation function | 275 | | $\Phi(x)$ | $\int_{-\infty}^{x} \phi(x) dx$ | 479 | | $\Phi_{ijk}(T)$ | Saha–Boltzmann factor of excitation state i of ionization stage j of chemical species k relative to ground-state population of ionization stage $j+1$, $n_{ijk}^* = n_e n_{0, j+1, k} \Phi_{ij}$ | _k 113 | | $\tilde{\Phi}_{ijk}(T)$ | Saha–Boltzmann factor of excitation state i of ionization stage j of chemical species k relative to total number density in ionization stage $j + 1$, $n_{ijk}^* = n_e N_{jk} \tilde{\Phi}_{ijk}$ | 113 | | $\Phi_{\nu}(\mu)$ | Limb-darkening function | 262 | | | Glossary of Physical Symbols | 607 | |---|--|-----| | | • • | 41 | | $\Phi_{\tau}[f(t)]$ | Phi (flux) operator | 35 | | | Opecity in continuum | 316 | | Χe | χ_i resity in transition $i \to i$, $\chi_i(v) = \chi_{ii} \varphi_v$ | 310 | | χ _{ij}
× | - control of state i relative to ground state, or | 110 | | χijk | ionization stage j of chemical species is | 94 | | χ _{ion} , χ _I | Ionization potential | 56 | | <u>X</u> | Mean opacity | 74 | | Σ̄c | Chandrasekhar mean opacity | 57 | | Žr | Flux-weighted mean opacity | 58 | | Zr | Rosseland mean opacity $(x_1, x_2, \dots, x_n) = x_n H(a, x_n)$ | | | χο | Rosseland inean opacity Line opacity assuming a Voigt profile, $\chi_t(v) = \chi_0 H(a, v)$, $\chi_0 = \chi_{ij}/(\pi^{\frac{1}{2}} \Delta v_D)$ | 317 | | $\chi(\mathbf{r}, v, t),$ $\chi(z, v, t),$ | Extinction coefficient, opacity, total absorption coefficient | 23 | | χ _v | | 35 | | $\chi_I(v), \chi_I$ | Line opacity | 283 | | ψ_{n} | Numerical factor in expression for total phase shift | | | ψ_d | Numerical factor in expression d in complete linearization Solution vector at depth-point d in complete linearization | 230 | | | method Wave function of N-electron atom | 84 | | $\psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$ | | 27 | | $\psi(v), \psi_v$ | Line emission profile Time-dependent wave function of atomic state i | 85 | | $\psi_i(\mathbf{r}, t)$ | Natural-excitation line emission profile | 29 | | $\psi^*(v)$ | | 3 | | ω | Solid angle | 8 | | ω | Circular frequency associated with transition $m \to n$ | 86 | | ω_{nn} | Circular frequency associated with the Ratio of line emission profile to absorption profile, ψ_{ν}/ϕ_{ν} | 437 | | $\omega_{\scriptscriptstyle extsf{v}}$ | Resonant frequency of an oscillator | 82 | | ω_0 | Resonant frequency | 276 | | ω_0 | Line-center frequency Logarithmic temperature–pressure gradient in ambient | 107 | | ∇ , ∇ | | 187 | | $\nabla_{\mathbf{A}}, \nabla_{\mathbf{B}}$ | Adiabatic and radiative logarithmic temperature–pressure | | | | gradient Gradient with respect to momentum coordinates | 33 | | ∇_p | | 524 | | \oplus | Earth symbol | 171 | | \odot | Sun symbol | 5 | | ∳ | Integral over all solid angles | | | | | | ## Index See also Line absorption coefficient Aberration of photons, 491-493, 495 and Opacity Absolute intensities method (solar Absorption depth (spectral line), temperature structure), 263-265 269-271, 316-321, 345-346, Absorption, bound-bound, 22 362-365, 371-373, 402-407, Einstein coefficients for, 77-93 465-467 excitation equilibrium, 126-127, Absorption process, 20 128-130 bound-bound absorption, 22, 77-93 non-LTE radiative rates, 128-130 bound-free absorption, 22 spectral line modeling, 167-169, free-free absorption, 22 198-204, 316-331, 361-367, photoexcitation, 22 371–373, 380–384, 401–410, photoionization, 22 442-446, 485-490 See also Opacity Absorption, free-free, 22 Absorption profile, 27, 29, 78, 84, vs. bound-free absorption, 102 273-307, 309, 338, 355-358, by hydrogen, 100-102 423-424 Absorption, negative. See Emission, See also Line profile stimulated Abundance, 115, 323-324, 372-373 Absorption, probability of (Einstein carbon in WC stars, 489-490 coefficient), 77-93 differential curve-of-growth analyses, classical oscillator calculation, 81-84 326-327 net radiative bracket, 129-130 helium, 403-405, 486, 489 non-LTE radiative rates, 128-130 light element, 405-407 proportional to oscillator strength, LTE vs. non-LTE abundances, 372-373, 403-407 quantum mechanical calculation, Population II vs. sun, 326-328 84-93 spectrum synthesis, 329-331, Absorption coefficient, 23 402-407 corrected for stimulated emission, See also Population 95-96 Advection, 491-493 free-free, 101-102 Angular phase function, 29-30, 412, 416-421, 424-425 Atmosphere, Bilderberg Continuum (BCA), 263 Atmosphere, convection in, 185–192 Atmosphere, extended: combined moment equation. 250-251 early-type star models, 255-258 expanding spherical atmospheres. 459-462, 471-485, 502-510, 521-540, 549-568 line formation, 367-371 observational effects, 243, 247, 248-250, 256-258 Sobolev's method, 471-490 solutions of transfer equation, 250-255 transfer equation and moments, 244 Atmosphere, finite slab, 346-349, 354. 365-367 chromosphere, 346-347, 365-367 moving atmosphere, 449–450, 455 Atmosphere, grey, 53–76 boundary temperature comparable to non-LTE temperature minimum, 240 Eddington approximation, 60-63 emergent flux, 73-74 extended spherical atmosphere, 245-250 grey and nongrey atmospheres compared, 56 grey to nongrey atmospheres by means of temperature correction, 60 grey vs. nongrey surface temperatures, 205-207, 212-214 Hopf function, 55, 71-73, Table 3-2 mean opacities, 56-60 Milne's equation, 54 Milne's problem, 54 small departures from greyness, 74-76 temperature correction procedures. 62 - 64Atmosphere, Harvard-Smithsonian Reference (HSRA), 263, 442-444, 458, 470, Table 7-1 Atmosphere, model. See Model atmospheres problem Atmosphere, nongrev: comparison to grey atmosphere, 56 constant frequency variation of opacity at all depths, 74-76, 207, 212-213 convection, 190-192 eigenvalue solution of transfer equation, 150-151 energy balance, 170-181 mean opacities, 56-60, 211-212 nongrey transfer equation in LTE. 35, 75, 181 nongrey vs. grey surface temperature. 205-207, 212-214 picket-fence model, 207-212 transfer equation and moments. 44-46, 56 Atmosphere, plane-parallel. See Atmosphere, finite slab and Atmosphere, semi-infinite Atmosphere, semi-infinite: boundedness condition for transfer equation, 37 definition, 36 diffusion approximation, 49-52 discrete ordinates method, 64–69 moving atmosphere, 449–459 non-LTE line transfer, 345-358. 362-365, 374-410, 438-446 solution of transfer equation. 146-161 uniformly expanding plane-parallel atmosphere, 481–482 Atmosphere, turbulent, 463-471 Heidelberg approach, 463, 469-470 nice approach, 464–471 macroturbulent limit, 467 microturbulent limit, 467-468 Atomic transitions. See Transitions. atomic Autocorrelation function, 275, 284-285, 298 Autoionization, 134-137 Autoionization transition probability. 135-136 Avrett-Krook procedure (temperature correction), 174-175, 220 Backscattering, 462 Backwarming effect, 167, 210, 212, 462 Balancing, detailed, 79, 94, 218-219, 278, 409 collisional, 132 ionization equilibrium, 125 radiative, 130 requirements for LTE, 119-120 two-level-atom model, 337, 358 Balancing, radiative detailed (of spectral line), 130, 218-219 Bands, spectral: color systems, 194, 204-205 non-LTE effects on colors, 234-235. 238, 257-258 photometric, 167 Bandwidth-constriction effect, 462 Bisector shift technique, 453, 455 Blocking effect, 167. See also Backwarming effect and Lineblanketing Böhm-Vitense procedure (constraints), 176-178 Boltzmann equation, 32–33 Boltzmann law. See Excitation equation, Boltzmann Boltzmann statistics, 79, 110–112 Boundary conditions (transfer equation), 36-37, 51-52, 150-155, 181, 251-252, 254, 451-452, 459-460, 505, 507 Boundedness condition (transfer equation), 37. See also Atmosphere, semi-infinite Bracket, net collisional, 132, 376-377, 379, 486 Bracket, net radiative, 129-130, 376-377, 379, 481, 486 Braking, rotational, 534-536 Breeze solution (solar wind), 522, 530-533 Bremsstrahlung, 22 Broadening, collision. See Linebroadening, pressure Calibration, fundamental, 193-195 flux of Vega, 196-198 Cavrel mechanism, 239-241, 265 Characteristic equation, 66-67, 69-70, 209, 215, 343 Characteristic function, 66-67, 69-70, 210-211 Characteristic rays (of partial differential equation), 248 Charge conservation. See Conservation of charge Charge density of electronic wave function, 89, 91-92 Chi operator, 41-42 Chromosphere, 258-260, 263-265, 266, 362–367, 372, 442–446, Table 11-3 Classical path approximation, 299-301 Cluster-expansion method, 295 Coefficient, absorption. See Absorption coefficient Coefficient, departure, 219–223, 228-229, 235-236, 240 Coefficient, Einstein, 77-93 autoionization transition probability, 134-136 net radiative bracket, 129-130 stabilizing emission transition probability, 135-137 Coefficient, emission. See Emission coefficient Coefficient, energy absorption, 78, 94-105, 123, 128-131,
278-279 quantum defect method of calculation, 97-98 Coefficient, extinction. See Extinction coefficient Coefficient, line absorption. See Line absorption coefficient Coefficient, rate. See Coefficient, Einstein Coefficient, recombination. See Recombination coefficient Coefficient, scattering. See Scattering coefficient Collective photon pool, 375, 384-388, 396, 398, 436 Collisional de-excitation parameter. See Coupling coefficient, thermal Collisional destruction probability. See Coupling coefficient, thermal Collisions, three-body. See Recombination, collisional Colocation, spline, 155, 252 Color system. See Bands, spectral Column mass, 170 Comoving frame method (velocity fields), 449, 451, 461, 490-510 assumption, 30 | Comoving frame method (continued) | Lyman continuum formation, | |--|---| | frequency-integrated moment | 222–228 | | equations, 497–499, 503, 546–549 | non-LTE solution by lambda-
iteration, 218–222 | | monochromatic equation of transfer, | opacity, 165–167 | | 491–497, 499–510 | | | | oscillator strength formula, 97, 99 | | Complete linearization procedure | partial linearization method for | | (LTE), 182–185; (non-LTE), | continuum formation, 224–228 | | 230–234, 396–401, 436–437 | Saha ionization equation, 112-114 | | Complimentary error function, 427, | scattering cross-sections, 105-107 | | 432 | slope (in spectrum) indicative of | | Computing time estimates, 157–158, | temperature, 248-250 | | 160–161, 185, 233, 252, 254–255, | solar, 260–263 | | 398, 401, 452, 460–461, 508 | two-level-atom model, 350-355, | | Conductivity, radiative (diffusion | 358–365, 372–373 | | approximation), 52 | continuum controlled line, 353 | | Conductivity, thermal, 517-518, 523, | See also Continuum, Lyman and | | 525–526, 531, 537, 559–560 | Continuum, Paschen and | | Conservation of charge, 115, 138-139, | Schuster mechanism | | 232, 292–293 | Continuum, Balmer, 198-204, 214, | | Conservation of mechanical energy, | 239–240, 242 | | 517, 547 | Continuum, Lyman, 213-215, | | Conservation of particles, 115, | 222–228, 239–242, 260 | | 138–139, 142, 232 | Continuum, Paschen, 194–198 | | Constraint procedures (Energy | discrepancy with Balmer jump, 196 | | balance): | Convection, 185–192 | | Böhm-Vitense procedure, 176-178 | Conversion, photon, 375, 384, | | complete linearization method, | 387–388, 393, 396 | | 180–185, 230–234 | Coordinate system, Lagrangian, 491, | | Feautrier's procedure, 178–179 | 502, 514–517, 544–549 | | partial linearization, 179–180, | Coordinate systems: | | 226–227 | conventions defined, 3 | | Continuity, equation of, 128, 515-517, | impact parameters, 247 | | 525, 528, 544, 561 | Lorentz transformation of, 493–494 | | Continuum: | used in angle-averaged redistribution, | | absorption cross-sections, 96-105 | 424 | | blocking and backwarming, 167–169 | used in Doppler-shift redistribution, | | departures from LTE, 220–222, | 416, 417 | | 223–224, 228–230, 235–239 | Core, line. See Line core | | destruction probability, 334–335, | Core-halo models, 563, 566–567 | | 350–354 | Corona: | | "effective depth" of formation, 62 | | | Einstein-Milne relations, 94–96 | classes of coronae, 540 | | electron velocity distribution, | collisional ionization dominant, | | 121–123 | 124, 141 | | emission coefficient, 25 | conductive transport, 47, 521, | | emissivity, 96, 165–166 | 523–526, 531, 537, 539–540, | | example of source function, 35–36 | 560 | | fitting LTE models to staller and the | coronal holes, 540 | | fitting LTE models to stellar spectra, | dielectronic recombination, 136, 141 | | 193–205 | electron and radiation temperatures | | isotropic, coherent scattering | for the sun. 124 | rate equation, 141 | Corona (continued) | |--| | solar corona, 258–260, 265–267, 293, 444, 511, 521–540 | | 293, 444, 511, 521–540 | | spherical coronal wind models, 525–540 | | breeze solutions, 522, 530, 532 | | isothermal corona, 526–529 | | two-fluid models, 537 | | Correction, bolometric, 198 | | Correction procedures, temperature. | | | | See Temperature correction | | procedures | | Coulomb approximation, 93, 97 | | Coupling, level. See Interlocking | | Coupling, Russell-Saunders, 92 | | Coupling coefficient, thermal, 35–36, | | 206–239, 215–216, 224, 241, | | 308-312, 314-316, 337, 341-353, | | 355–358, 377, 385–387, 391, | | 393–396, 456–457, 462, 481–482 | | depth variations of, 355–358 | | Coupling parameter, thermal, 148-150. | | 215–216, 308–312, 314–316 | | Critical point, Alfvenic, 535, 567 | | Critical radius, 526-529, 539, 553, | | 556, 558, 562–563, 566–567 | | Critical solution, 526–528, 562 | | Cross-section, absorption, 23, 78–107 | | continuum absorption by helium, | | 104–105 | | continuum absorption by hydrogen, | | 98-102 | | continuum absorption by negative | | and other ions of hydrogen, | | 102-104 | | continuum absorption cross-sections, 96–105 | | continuum scattering cross-sections, | | 105–107 | | Einstein coefficients, 77–93 | | classical oscillator calculations,
81–84 | | quantum mechanical calculation, 84–93 | | Einstein-Milne continuum relations, 94–96 | | Einstein relations, 78–79 | | hydrogen cross-sections, 98–102, | | 213-214 | | light element cross-sections, 97–98 | | Rayleigh scattering, 106–107 | | Thomson scattering, 106 | | i nomson scattering, 100 | | | Cross-section, collisional, 131-134 equations for rate estimation, 133-134 Thomson formula, 124, 127 Cross-section, excitation, 122, 131-134 Cross-section, recombination, 122. 130-131, 132 Cross-section, scattering. See Oscillator, harmonic Curve of growth, 270, 373, 447-448. 467-469 empirical, 321-328 Population II vs. Population I abundances, 327-328 theoretical, 316-321 Cycles, Rosseland's theorem of. See Rosseland's theorem of cycles Damping, collision. See Linebroadening, pressure Damping, natural. See Damping, radiation Damping, radiation, 273, 276-278, 282, 305, 343, 413, 415, 442–443, 446. See also Line-broadening Damping, resonance. See Linebroadening, resonance Damping constant, classical (harmonic oscillator), 82, 276 Damping parameter, Weisskopf, 283 Dawson's integral, 281 Decrement, Balmer, 142 De-excitation, collisional, 22, 333-334. See also Thermalization and Cross-section, collisional Degradation, photon, 384-387. See also Rosseland's theorem of cycles Density, radial charge, See Charge density of electronic wave function Density structure, 170-171, 255-257, 264–265. See also Equilibrium, hydrostatic Depth, absorption. See Absorption depth Depth, thermalization, 119-120, 141, 149, 311, 334-335, 341-342, 345-347, 352-355, 387-388, Destruction length (photon), 333–334, Table 11-1 Destruction probability (photon), 333-335, 342, 350-352 Destruction probability, total, 350-352, 366, Table 11-1 Difference equations, 153-161, 171, 181-183, 192, 230-233, 252-255. 398-401, 436-437, 451-452. 504-508 Diffusion approximation, 49-52, 153, 157, 168, 177, 189, 191, 252, 254, 451, 460, 505, 554 consistent with assumptions of Rosseland mean opacity, 58 grey atmosphere, 55 See also Diffusion limit Diffusion limit, 168, 462, 554 boundary condition for semiinfinite atmosphere, 37 form of the radiation field in, 17, 50 - 51See also Diffusion approximation Dilution factor, 120-121, 123-125, 127, 239-240, 244 Discrete ordinates method: grey transfer problem, 64-71 non-LTE line transfer, 343-344 nongrey transfer equation, 150-151 picket-fence model, 208-211. 215-216 Distribution, temperature. See Temperature distribution Distribution function, macroscopic velocity, 442-443, 453-458, 461. 464, 469-471, 508, 563-564 Distribution function, opacity, 167–171, 193, 198, 205. See also Picket-fence model Distribution function, particle, 32 Distribution function, photon, 4, 6, 10, 13 Double-Gauss formula, 65-66 Doublet, resonance (spectral line), 387-390, 393-396 Eddington approximation, 60–63. 148-149, 224, 234, 244 Eddington-Barbier relation, 39, 206, 346, 358, 363, 475 Eddington approximation, 61-62 Eddington factor, variable. See Variable Eddington factor Effective thickness (of atmosphere). 347–348, 366, 369 Eigenstates, 85–90 Eigenvalue solution (to transfer equation), 150-151 Einstein-Milne continuum relations. 94-96 Einstein relations, 79. See also Einstein-Milne continuum relations Emission (thermal), 20 bremsstrahlung, 22 collisional recombination, 22 completely linearized line transfer. 397 free-bound transition, 22, 96 LTE radiative rates, 166 moving medium, 30-31, 449 non-LTE radiative rates, 129-131, 165 Planck mean opacity, 59 probability of spontaneous and stimulated emissions, 78-80 radiative recombination, 22, 130-131 thermodynamic equilibrium, 25-26 See also Emission coefficient and Source function Emission, induced. See Emission, stimulated Emission, spontaneous, probability of, 78-81, 88, 277, 336-337, 376-377, 385-388, 391, 393, 434-438, 486, 488 non-LTE radiative rates, 129, 130 - 131Emission, spontaneous thermal. See Emission (thermal) Emission, stimulated: correction for stimulated emission, 80. 95-96 definition, 24 Einstein coefficient, 78, 88 non-LTE radiative rates, 129, 130-131 partial redistribution, 434, 437-438 Emission, stimulated, correction for, 80, 95–96, 165–166 Emission, stimulated, probability of, 78, 88 non-LTE radiative rates, 129. 130-131 Emission coefficient (scattering) 27-30, 309-310, 423, 435-438 Emission coefficient (thermal): classical line transfer, 309 continuum emissivity, 96, 130-131, 165-166 definition, 25 in comoving frame for velocity fields, 490, 492, 495-496 moving medium, 30-31, 449, 490 proportional to intensity in thermodynamic equilibrium, 26 probability of spontaneous and stimulated emissions, 78 Emission profile, 27-30, 78-80, 423-424 complete noncoherence, 29 complete redistribution, 29, 430-432 partial redistribution, 433-438 See also Excitation, natural. emission profile Emissivity. See Emission coefficient Emitting
area, effective, 367, 483 Energy density (of radiation field): comoving frame method for velocity fields, 497-498, 503, 546-548 definition from electromagnetic theory, 8 fixes surface temperature in LTE, monochromatic and total densities defined, 6 proportional to mean intensity, 6 proportional to mean radiation pressure, 13 specifies radiation pressure tensor in isotropic radiation field, 17 thermal equilibrium, 6–7 zero-order moment of transfer equation, 43-44 Energy distribution (emergent): LTE model atmospheres, 193-205 non-LTE atmospheres, 234-239 Energy equation, total, 517-518, 544-545, 549 Energy transport, 47-49, 163-164, 185, 188. See also Transfer equation and Convection Equilibrium, convective, 47-48, 187, 191-192 Equilibrium, excitation, 126-127. 137-139, 143-145 Equilibrium, hydrostatic, 163, 170-171. 183-184, 232-233, 255-257, 263, 355, 521, 523-525, 554-555, 563 See also Density structure and Equilibrium, ionization Equilibrium, ionization, 123-126. 137-139, 140-142, 143-145 Equilibrium, local thermodynamic. See Local thermodynamic eauilibrium Equilibrium, non-local thermodynamic. See Non-local thermodynamic equilibrium Equilibrium, radiative. See Radiative equilibrium Equilibrium, thermodynamic. See Thermodynamic equilibrium Equivalent-two-level-atom method (for multilevel atom), 375-383, Ergodic hypothesis, 285 Escape-enhancement, 462 Escape probability (photon), 333-335, 341-342, 347, 355-358, 368, 385-388, 478-482, 486-488, 509 Eulerian description (fluid flow), 514 Evaporative model (solar wind), 530 Excitation, natural: definition, 29 emission profile, 423-424, 433, 434 Excitation equation, Boltzmann, 79. 110-112, 322 extended by Saha ionization equation, 112-114 LTE equation of state for ionizing material, 114-119 Exclusion principle, Pauli, 91 Expansion, atmospheric, 447-449, 451, 453-457 comoving frame method, 491-493. 499-510 energy balance, 461-463 infinite plane parallel medium, 481-482 Sobolev's method, 471-490 spherical atmospheres, 459-461, 478-481, 482-485, 503-510 stellar winds, 511-512, 521-540. 549-568 Exponential integral, 40-41 Extinction coefficient, 23-25. See Opacity Extinction coefficient (continued) See also Absorption, Absorption processes. Absorption crosssection, Energy absorption coefficient, Scattering, and Scattering coefficient Feautrier's procedure (constraint), 178-179 Feautrier's solution (of transfer equation), 156-158, 161, 233, 252, 398, 436, 438, 504, 508 complete linearization method, 233 optimum for coherent scattering problems, 158 partial linearization method for non-LTE continuum, 226-227 Field, radiation, See Radiation field Field strength, normal, 291, 296 Fluorescence, 22 Flux, absolute, 12, 194, 198-200, 489 Flux, astrophysical: computation of, 161 definition, 10 grey atmosphere, 55, 73-74 line and continuum, 269, 271, 317, 328-329, 370-371, 402-410 Flux, conductive, 517-518, 525, 530-532 Flux, Eddington: comoving frame method for velocity fields, 497-499, 502-503 emergent flux from transfer equation, 161 first moment of radiation field, 10 plane wave in extended stellar envelope, 17 Flux, emergent: extended grey atmosphere, 247–250 grey atmosphere, 73-74 line in expanding atmosphere, 453-459, 482-485, 510 nongrev atmosphere, 193-205. 234-239, 256-257 spectrum line, 269, 271, 311, 317, 328-329, 370-371, 371-373, 402-410 See also Energy distribution (emergent) and Flux, absolute Flux, energy, 518, 526, 531, 549 Flux, mass, 511, 516, 523, 525–526, 553, 558-559, 562-563 Flux, momentum, 516 Flux, radiation: comoving frame method for velocity fields, 497-499, 502-503 constant in radiative equilibrium for planar geometry, 48 definition, 9 first moment of radiation field, 9-10 interior point of semi-infinite atmosphere, 41, 50-51 observational determination of stellar flux, 11-12 Poynting vector, 11 proportional to momentum density, Flux, residual, 269, 311-313, 316. 328-329, 370-371, 371-373. 403-405 Flux ratio (for model fitting), 193-194, 196-197, 234-239 Force, buoyant, 188 Force, gravitational, 170-171, 255-257. 516, 547 Force, Lorentz, 497 Force, Minkowski, 542 Force, radiation. See Radiation force Force, van der Waals, 283, 287-288, 326 Four-force, 497, 542, 544-546 Fourier transform, See Transform, Fourier Four-momentum, 494 Gas energy equation, 517, 544-545, 547-549 Gaunt factor: bound-bound, 90 bound-free, 99 thermal average of free-free, 101 Gaussian formula ("single-Gauss formula"), 65-66, 69 Geometry, planar: boundary conditions for transfer equation, 36-37 comoving frame equation of transfer, 492, 501 constant flux in radiative equilibrium, 48 conventions in, 3 examples of transfer equation for planar atmospheres, 37–38 Geometry, planar (continued) moments of transfer equation. 43-47 transfer equation for planar atmosphere, 32, 38 Geometry, spherical: boundary conditions for transfer equation, 36-37 conditions for radiative equilibrium, comoving frame equation of transfer, 492, 501-510 conventions in, 3 conventions for extended atmospheres, 243-244, 247, 252-254 differential element of solid angle, 3, 5 equation of continuity, 515-516 impact parameter, 247, 252-253 moments of transfer equation. 44-46 transfer equation for axially symmetric atmosphere, 34 transfer equation for spherically symmetric atmosphere, 33-34 Gravity, surface, 170-171, 193, 195, 204, 234-238, 255-256, 328-330, H-R diagram, 234 Hamiltonian (operator), 85-86, 299-303 multi-electron atom, 91 Hartree-Fock method (transition probability calculations), 91-93 Hartree's self-consistent field method. 91 Heaviside function, 426 Helium: line-broadening, 305–306 non-LTE vs. LTE line transfer, 403-406 opacity, 104-105 Wolf-Rayet stars, 485-486, 488-489 Hermite integration, 155, 252 Holtsmark theory, 291-292, 294-295, Hopf function, 55 Eddington approximation, grey atmosphere, 61-63 exact solution, 71-73, Table 3-2 402 Hydrodynamic equations, 512-521 525-526 energy equation, 517-518, 525-526 equation of continuity, 515-516, 525-526 momentum equation, 516, 525 Hydrodynamics, radiation, 491, 540-549 fluid-frame: energy equation, 503, 544-545 momentum equation, 503, 545-546 inertial-frame, 546-548 stress-energy tensor, 497-499, 541-544 Hydrogen: absorption cross-sections, 98-102 Balmer decrement, 142 calculation of wave functions and oscillator strengths, 88-90 comparison of LTE and non-LTE treatments, 215, 218-230, 234-239, 241-243, 257, 402-404 convection in hydrogen ionization zones, 187 departures from Maxwellian velocity distribution by electrons, 123 effects of temperature on hydrogen and metal atmosphere, 116 H⁻ for solar opacity, 76, 102–104, 260 H I region, 525 H II region, 525 impact theory for hydrogen lines, 303-305 LTE ionization of pure hydrogen gas, 116 model hydrogen atom, 214-215, 220-221, 222-223, 228-230, negative ion cross-sections, 102-104 other hydrogen ion cross-sections, quasi-static ion broadening of hydrogen lines, 295-297 Rayleigh scattering, 107 recombination with electrons, 122 sample equations of state, 138–139 Wolf-Rayet stars, 486, 489 Hydrostatic equation, 170-171, 183-184, 188, 232-233, 255-257, Impact approximation, 288-289, 301-303 Impact parameter, 247, 252-253. 282-286, 288-289, 303 Impact theory of pressure broadening. See Line-broadening, pressure Instability, Rayleigh-Taylor, 524 Integro-differential equation, 32, 36, 65 Intensity, mean: approximate closure for solving transfer equations, 46-47 comoving frame method for velocity fields, 498-499, 502-508 Eddington approximation, 61-63 interior point of semi-infinite atmosphere, 40, 51-52 lambda-operator, 41-43 Peierls's equation, 41 plane wave in extended stellar envelope, 17 proportional to energy density, 6 Schwarzschild-Milne equations, 40 zero-order moment of radiation field defined, 5 Intensity, specific: comoving frame, 495 determination of, from spatially resolved source, 5 first-order moment of, 9-10 invariance property, 4 Laplace transform of source function, 39 macroscopic definition, 2-3 microscopic definition, 4 moments of, 5, 9-10, 12, 43-46 proportional to electromagnetic energy density, 9 second-order moment of, 12 zero-order moment of, 5 Interaction potential, classical, 283, 286-288, 301-302 Interaction region, 333–335, 371–373. 474-477, 478, 480-481 Interlocking (of line radiation fields). 375-378, 384-393, 396-401 Interstellar medium, 524-525, 533-534 Interstellar reddening, 194, 198 Ionization, collisional, 22 dominant in corona, 124, 141 ionization equilibrium, 124-127, 137–139, 140 rate of, 123-124, 132-134 Ionization equation, approximate, 125, 140–141 Ionization equation, non-LTE, 137–139, 140–141, 143–145 Ionization equation, Saha: curve of growth, 322, 327, 330 derivation, 112–114 equation of state for ionizing material, 114–119 negative hydrogen ions, 103 Irradiation effect, 462 Jump, Balmer, 194–196, 213, 220, 235–238, 257, 328–329 discrepancy with Paschen continuum, 196, 220 Jump, Lyman, 213–215, 235, 237 Jump, opacity, 205–206, 212–214 Jump, Paschen, 194, 235–237 Kirchhoff-Planck relation, 26, 50–51, 80, 96, 166 Kirchhoff's law, 26 Klein-Nishina formula, 106 Kubo-Anderson process, 464, 470 Laguerre polynomials, 89 Lambda-iteration: difficulties with, 62-63, 126, 147-150, 172-173, 222-224, 343 LTE model atmosphere, 172-173 non-LTE model atmosphere. 218-220, 222-224, 227-228 temperature correction procedure. 62, 172–173 unsuited to non-LTE transfer equation, 149-150, 222-224, 343 Lambda-operator: Böhm-Vitense constraint method, 176-178 definition, 41 Laplace transform, 39, 71, 280 Legendre functions, 65, 89 Length, conversion. See Conversion, photon Length, correlation, 464, 467, 469–470 Length, Debye, 293-295, 524 Length, destruction (photon), 333-334, Limb-darkening function, 70-71, 314-315 Limb-darkening law, 61, 63, 72, 120-121, 260, 262-263, 442-446, Lindholm approximation, 284-288, Table 9-1 Line, emission, 314, 316, 348-349, 362-367, 370-371, 372, 408-410, 448, 471-478, 483-485, 487-490, 510, 549-553 Line, forbidden, 37, 306 Line, resonance, 143, 167, 313,
358, 380-383, 384-387, 387-388, 413, 415, 428-438, 442-446, 550, 552-553, 555 Line, subordinate, 143, 313, 358 Line absorption coefficient, 77-78, 80, 317, 328, 333, 336 classical line transfer, 309, 317 moving atmosphere, 449-451, 464, 479 partial redistribution, 435, 438 Linearization: complete linearization method. 230-234, 396-401 Newton-Raphson method, 117-119, solution of non-LTE equations of state, 143-145 Linearization method: LTE model atmosphere, 180-185 non-LTE model atmosphere. 230-234 with convection, 192 Linearization procedure, partial, 179–180, 224–230 Line-blanketing, 167–169, 193, 196-198, 205-212, 215-216, 241-243 effect of enhanced line opacity, 200 - 204See also Picket-fence model and Opacity distribution function Line-broadening, 273-307. See also Damping, radiation and Linebroadening, pressure Line-broadening, Doppler, 274, 279-281, 286, 305, 338, 340, 342, 356-358 Line-broadening, pressure, 273-274, 278, 281–307, 324, 326, 328 classical impact theory, 281-289 quantum theory, 297–303 classical path approximation, 299-301 impact approximation, 301-303 statistical theory, 289-297 Debye shielding, 292-295 Holtsmark theory, 291-292, 294-295, 304 nearest neighbor approximation, 290-291 quasi-static ion broadening, 295-297, 303, 304, 305, 306 See also Line broadening Line-broadening, quasi-static ion. 295-297, 303-306 Line-broadening, resonance, 283, 286-287, 305 Line-broadening, statistical theory of pressure. See Line-broadening, pressure Line core, 29, 281, 296, 305, 312. 314, 318-320, 333, 335-336, 341, 348, 367-368, 383, 389-390, 403-406, 419, 429-430, 439, 442, 443-446, 453-455, 458, 470 emission cores, 362-367, 370-371, 372, 383, 443-446 Line profile, 276, 278, 285, 296, 303-307, 311-313, 328-331, 382-383, 404-406, 442-446, 448, 453-459, 461, 471, 482-485, 510, 550, 552 asymmetric, 306, 453-455, 461, 471-474, 482-485, 510 comoving frame for velocity fields, 508-510 doubly reversed, 364, 370-371, 383, 443-446, 458-459 expanding plane-parallel atmosphere, 453-457 flat-topped, 477, 484-485 rounded, 477, 483-485 self-reversal, 348, 365–367, 370–371, 372, 455 Sobolev theory, 482-485 surfaces of constant radial velocity, 472-477, 479 turbulent atmospheres, 464 See also Absorption profile Lines, spectral: absorption depth and residual flux, 269 blocking effect, 167-169, 204-205 | Lines, spectral (continued) | opacity distribution function, | |------------------------------------|---------------------------------------| | center-to-limb variation, 314–315, | 168–169 | | 442–446 | opacity sampling technique, 169 | | chromosphere, 362–367, 372–373 | physics of non-LTE line formation, | | classical line transfer, 308–331 | 332–336, 374–375, 384–388, | | coherent scattering, 30 | 472–475, 478 | | collision and photoionization | picket-fence model, 207-212 | | dominated lines, 361-362, | scattering lines, 215-216 | | 363–365, 372–373 | radiative detailed balance, 130 | | comoving frame theory, 503-510 | redistribution, line transfer with, | | complete redistribution, 29 | 433–446, 504, 508 | | continuum controlled line, 353 | Sobolev theory, 471–490 | | curve of growth, 270, 316-328 | turbulent atmosphere, 463-471 | | effects on temperature structure | See also Absorption profile, | | of non-LTE atmosphere, 241–243 | Emission profile, Line- | | Einstein coefficients, 77–80 | blanketing, Opacity and | | emission with departures from LTE, | Transitions, atomic | | | Lines, spectral (scattering): | | 26, 78–80, 165 | center-to-limb variation, 314–315 | | energy balance in moving media, | | | 461–463 | classical line transfer, 310, 311–312 | | equivalent width, 114–115, 270, | no effect upon surface temperature, | | 316–328, 372–373, 402–404, | 207, 216, 241 | | 406–407, 409, 465–470, | picket-fence model, 215–216 | | 487–490 | Line shift, 284–288, 306–307, | | example of source function, 35–36 | Table 9–1 | | expanding spherical atmospheres, | normal frequency shift, 290–291 | | 459–461, 471–481, 482–490, | See also Shift, Doppler | | 503-510 | Line source function. See Source | | formation in moving planar | function, line | | atmospheres, 449–459, 481–482 | Line strength, 88, 92–93 | | helium lines, 93, 403–406, 488–489 | Line wings, 281, 291, 303–305, 316, | | hydrogen lines, 88–90, 100, 193, | 318–320, 333, 335–336, 340, 343, | | 228–230, 241–243, 328–329, | 345, 352–353, 356–358, 403, 419, | | 402–403 | 429–430, 439–442, 446, 455, 456 | | line absorption coefficient, 80 | Local thermodynamic equilibrium: | | line broadening, 273–307 | assumptions of, 26-27, 108-110 | | lines in the partial linearization | Boltzmann excitation equation, | | solution of non-LTE | 110–112 | | continuum, 228–230 | classical line transfer, 308–331 | | line source function, 80, 309–310, | correction for stimulated emission, | | 336–337, 359–360, 376–378, | 80, 95–96 | | 391–392, 404–405, 435, 437–438 | departures from LTE in continuum, | | LTE spectrum synthesis, 328–331 | 216–243 | | Lyman and Balmer lines, 228-230, | Eddington-Barbier relation, 39 | | 234, 241–243, 402–404, 442, | effects of radiation field upon | | 471, 474, 551 | opacities, 43, 108–109 | | non-LTE line transfer with | equation of state for ionizing | | continuum, 358-367, 376-380, | material, 114–119, 123–127 | | 396-401 | excitation equilibrium, 110–112 | | non-LTE line transfer without | extended grey atmosphere, 245–250 | | continuum, 336–349 | flaws in the theory, 119–121, | | opacity, 167–169 | 123–127, 332–335, 371–373 | | | | Local thermodynamic equilibrium (continued) ionization equilibrium, 112-114 Maxwellian velocity distribution, 110 methods for radiative-equilibrium models, 164-185 construction of models, 170-185 determination of temperature structure, 171-180, 184-185, 205-216 opacity and emissivity, 166 results of models, 192-216 microscopic requirements of, 119-120 non-LTE vs. LTE line transfer, 371-373, 401-410 Saha ionization equation, 112-114 source function in, 80 Lorentz-Fitzgerald contraction effect. 494, 543 Lorentz transformation, 493-495, 541 of radiation field, 495-499 Luminosity, 49, 171, 245, 252, 256 Mach number, 520-521, 522, 534 Alfvenic Mach number, 535 Macroturbulence. See Velocity fields and Turbulent atmospheres Magnetic field (of a star), 534-536, 537-538, 567 Alfven waves, 535 Markov process, 463 Mass loss, 511-512, 521-540, 549-568 See also Mass loss rate Mass loss rate, 511, 516, 523, 526, 531, 536, 540, 553, 558-559, 562-563 Mass motion, 323, 373, 447-510, 511-568. See also Microturbulence. Atmosphere, turbulent, and Velocity fields Maxwell's equations, 7-8 Mean-free-path, 23, 35, 51, 149, 323, 333–336, 350, 371, 447, 452, 462 See also Length, destruction Mean opacity. See Opacity Microturbulence, 323, 327, 373. 442-443, 447-448, 458, 463, 467-470 Milne-Eddington model (for line transfer), 310-316, 317, 321, 465, 467, Table 10-1 Milne's equation, 54 Milne's problem, 54 Mixing-length theory, 48, 187-190 Model atmospheres problem: assumptions, 162-164 convective model atmospheres. 190-192 hydrostatic equilibrium, 170-171, 255-257 methods of LTE model construction, 164-185 non-LTE model construction, 216-234 complete linearization method (non-LTE), 230-234 difficulties, 217 formation of Lyman continuum, 222 - 228lambda-iteration fails, 125-126, 223-224 models for Early-type stars with extended atmospheres, 255-257 partial linearization method for continuum formation, 224-227 solutions of spherical atmosphere transfer equations, 250-255 results of LTE models, 192-216 emergent energy distribution, 193-205 extended grey atmosphere, 248-250 temperature structure, 205-216 results of non-LTE models, 234-243 emergent energy distribution, 234-239 temperature structure, 239-243 temperature distribution with radiative equilibrium, 171-185, 205-216, 239-243, 246-247 treatment of spectral lines, 167-169 Moment, dipole, 86-88, 297-299, 301-303 free-free hydrogen opacity, 100 Moments of the radiation field: astrophysical flux, 10 comoving frame for velocity fields, 497-499, 502-503 Eddington flux, 10 flux defined (first moment), 9-10 Moments of the radiation field (continued) mean intensity defined (zero-order moment), 5 radiation pressure (or stress) tensor (second moment), 12-14 Schwarzchild-Milne equations, 40-43 Momentum, angular, 522, 535-536 Momentum, particle: hydrodynamics, 514, 516, 542-544 Lorentz transformation of, 494 Momentum, photon, 494-495 Momentum density (of radiation field), 10, 497-498 first-order moment of transfer equation, 44-46 fluid flow, 546 Monte Carlo technique, 294, 422 Multiplet, 88, 93, 161, 322, 375, 387-388 solution of transfer equation for, 391-393 source function equality, 384, 387, 388-390, 393-396 Nearest neighbor approximation. 290-292, 294. See Line- broadening, pressure Newton-Cotes formula, 65 Newton-Raphson method. See Linearization Non-local thermodynamic equilibrium: compared to LTE line transfer, 371-373, 401-410 effects of radiation field upon transfer equation, 43, 108–109, 217 line transfer, 336–371, 374–410, 433-446, 449-461, 471-490, 503-510 model atmosphere construction, 216-234 complete linearization method, 230-234 difficulties, 217 formation of Lyman continuum, 222-228 lambda-iteration fails, 125-126, 223-224 partial linearization method for continuum formation, 224–227 results of non-LTE models, 234–243 non-LTE equation of state, 140–145 opacity and emission rates, 80, 95–96, 165, 219, 232 rate equations, 127–145 Oblique rotator model, 200 Observer's frame method (velocity fields), 449-471 spherical atmospheres, 459-461 transfer equation, planar atmospheres, 449-452 velocity fields in planar atmospheres, 453-459 Occupation numbers (of atomic levels). See Population (of atomic levels) Opacity: completely linearized line transfer, constant frequency variation of opacity at all depths, 74-76, 212-213 definition, 23-25 departures from LTE, 26, 78, 80, 108–109, 165, 219, 232 grey atmosphere, 53 helium opacity, 104-105 hydrogen opacity, 100-101, 102 LTE continuum opacity, 166
LTE radiative-equilibrium models. 165-169, 200-204 mean opacities, 56-60, 168 absorption mean opacity, 60, 174 Chandrasekhar mean opacity, 74 - 75flux-weighted mean opacity, 56-57, 174 Planck mean opacity, 59-60. 168, 173-174, 211-212, 214 Rosseland mean opacity, 57-59, 168, 181, 211-212, 214, 255-256 moving medium, 30-31, 449-450, 459, 495-497 negative hydrogen ion 76, 102-104 non-LTE opacity, 80, 95, 165, 219, 232 Opacity (continued) optical depth scale, 34-35 power-law, 246, 461, 508 Rayleigh scattering, 106-107 spectral lines, 167-169 Thomson scattering, 106 See also Absorption, Absorption processes. Cross-sections. absorption, Scattering, Scattering coefficient, and Source function Opacity, absorption mean, 60, 174 Opacity, Chandrasekhar mean, 74-75 Opacity, flux-weighted mean, 56-57. 174 Opacity, Planck mean, 59-60, 168, 173-174, 211-212, 214 optical depth scale, 173 Opacity, power-law, 246, 461, 508 Opacity, Rosseland mean, 57–59, 168. 181, 211-212, 214, 255-256 Opacity distribution function, 167-169, 193, 198. See also Picket-fence model Opacity sampling technique, 169 Operator. See Chi-operator, Lambdaoperator, and Phi-operator Optical depth scale: definition, 34-35 definition of "very large τ ," 140-141, 149, See also Thermalization depth Eddington-Barbier relation, 39 lines and continuum, 271, 328, 368 moving atmosphere, 450, 479, 560-561 Optical depth scale, Rosseland, 49, 58, 181, 191, 210, 367. See also Opacity, Rosseland mean Optical thickness, 36, 38, 346-349, 366 Orbitals, electron, 91–92 Oscillator, classical. See Oscillator, harmonic Oscillator, harmonic, 81-84, 276 Oscillator strength (of atomic transition), 84, 88, 90, 92-93, 133, 326 continuum, 97, 99, 101, 123 P-Cygni (line characteristics), 448, 456, 461, 471–475, 484–485, 510, 523, 538, 550–553, 567 Parasites, 150-151 Partial redistribution. See Redistribution Particle conservation. See Conservation of particles Particle distribution function, 32 Particle number conservation equation. See Conservation of particles Partition function, 111, 298, 322, 326--327 Peierls's equation, 41 Phi-operator, 41-42, 161 Photoexcitation, 22, 126-127, 128-130 Photoionization, 22, 94–105 bound-free vs. free-free absorption, 102 departure from LTE, 125-126 ionization equilibrium, 123-126 non-LTE radiative rates, 130-131 rate of photoionization, 123, 130 Photoionization, probability of, 94-95 Photoionization edges, 99–100. 104-105, 194, 213-214, 235-239 Photon absorption. See Absorption Photon distribution function, 4, 6, 10, 12-13 Photon pool. See Collective photon pool Photon scattering. See Scattering Photosphere, Utrecht Reference, 263 Pickering series, 488-489 Picket-fence model, 207-212, 215-216, 241, 462. See also Opacity distribution function Planck function, 7, 26, 78–79, 94, 96, 119-121, 309, 310, 312, 317, 337, 359–360, 362–365, 372 Poisson law, 282, 464 Poisson's equation, 292 Population (of atomic levels), 78–80, 94-96, 108-109, 220-222, 228-230, 235-237, 403-405, 408-409, 488-490 Boltzmann excitation equation. 110-112 equation of state for ionizing material (LTE), 114-119 non-LTE effects on energy distributions, 234-239, 257, 263 non-LTE effects on spectrum line profiles, 345-346, 348-349, 363-367, 369-373, 380-383, Population (of atomic levels) (continued) 393-396, 402-410, 442-446. 470, 482-485 non-LTE equation of state, 140-145 non-LTE rate equations, 127-139 Saha ionization equation, 112–114 Wolf-Rayet stars, 486, 488-490 Potential, ionization, 94, 112 Potential, Lennard-Jones, 288 Potential, Smirnov, 288 Povnting vector, 11, 14, 82 Pressure, impact, 533 Pressure, radiation. See Radiation pressure Pressure tensor, radiation. See Radiation pressure tensor Probabilities, cascade, 142 Probabilities, transition. See Coefficient. Einstein Probability of absorption. See Absorption, probability of Probability of spontaneous emission. See Emission, spontaneous, probability of Probability of stimulated emission. See Emission, stimulated, probability of Profile, absorption. See Absorption profile Profile, damping. See Profile, Lorentz Profile, Doppler. See Line-broadening. Doppler-shift Profile, emission. See Emission profile Profile, line. See Line profile Profile, Lorentz, 84, 276-278, 282. 285, 305, 338, 340, 342, 346-347, 413 Profile, Voigt. See Voigt function Prony algorithm, 262 Quadrature sum, 65-69, 144, 150, 158-161, 177-180, 192, 208-211, 226-227, 254, 338-339, 343, 392, 400, 436, 451–452, 460, 506 Ouantum defect, 97-98 Quantum numbers, 89, 91-93 imaginary, 98, 100 Ouantum theory of pressure broadening. See Line-broadening. pressure Radial velocity, surface of constant. See Velocity, surface of constant radial Radial wave function, 89, 92-93 Radiation, solar: center-to-limb variation, 5, 61-63, 260, 262–263, 315, 442–446, 470 dielectronic recombination, 136 energy transport in photosphere, 47, 62 partial redistribution in lines, 442-446 radiation pressure, 170 residual flux of lines, 313 resonance broadening of Ha. 287 semi-empirical model atmospheres. 258-266 spectrum, 260, 265, 362-367, 372-373, 380-384, 389-390. 442-446, 458-459, 469-471 temperature and electron density of outer lavers, 124 See also Sun Radiation field: anisotropic and non-Planckian in stellar atmosphere, 121 dilution factor, 120-121, 123-125. 127, 239-240, 244, 480, 486-487 effect of absorption and scattering, 20 - 23energy density defined, 6 energy equation, 44 flux defined, 9-10 interior point of semi-infinite atmosphere, 38, 50-51 macroscopic description using specific intensity, 3 mean radiation pressure, 13 microscopic description using photon distribution function, 4 momentum density defined, 10 momentum equation, 45-46 observational determination of stellar flux, 11-12 Poynting vector, 11 radiation pressure tensor, 12-17 radiation temperature defined, 121 thermal equilibrium, 6-7 Radiation field, second moment of: approximate closure for solving transfer equations, 46-47 Radiation field, second moment of (continued) comoving frame method for velocity fields, 498-499, 502-503, 508 interior point of semi-infinite atmosphere, 41-42, 50-51 plane wave in extended stellar envelope, 17 proportional to radiation pressure (scalar), 16 proportional to variable Eddington factor, 18 Schwarzschild-Milne equations, 40-43 See also Chi-operator Radiation force, 45-46, 57-58, 170-171, 255-257, 498, 544-547, 554-556, 558-561 Radiation-force multiplier, 561-562, 565 Radiation pressure, mean, 13 Radiation pressure (scalar): comoving frame, 503, 547-548 definition, 16-17 equals mean radiation pressure in isotropic radiation field, 13 flux-weighted mean opacity gives correct radiation pressure in transfer equation, 57 hydrostatic equilibrium, 170-171. 181, 255-257 non-isotropic radiation fields, 16-17 proportional to second moment of radiation field, 16 proportional to variable Eddington factor, 18 thermal equilibrium, 17 Radiation pressure tensor: comoving frame, 497–499, 546–548 definition, 12 expressed by scalar radiation pressure and energy density in one-dimensional atmosphere, 16 - 17negative of Maxwell stress tensor. 14-15 relation to volume force, 13-14 See also Radiation field, second moment of Radiation stress tensor, 12. See Radiation pressure tensor Radiative equilibrium, 47-49 complete linearization method for LTE model, 180-185 complete linearization method for non-LTE model, 230-234 conditions for, 47-48 extended grev atmosphere, 245-246 grey atmosphere problem, 54 in early- and late-type stars, 47, 62 partial linearization method for continuum, 226-227 picket-fence model, 207-212, 215-216 temperature structure for LTE model atmosphere, 171–180, 184–185, 205–216, 239–240 temperature structure for non-LTE model atmosphere, 238-243 Radius, Bohr, 86, 89, 111, 132 Radius, critical. See Critical radius Radius, Debye, 122, 293-295, 524 Radius, Weisskopf, 283, 286, 288, 303 Random-walk process, 149, 282, 311, 333-336, 366 Rankine-Hugoniot relations, 519-521, 534 Rate equations, 23, 80, 108-109, 127-139, 219, 223, 391 autoionization and dielectronic recombination, 134-137 collisional rates, 131-134 complete linearization method, 143-145, 233 completely linearized line transfer, 397-398, 400-401 complete non-LTE rate equations, 137–139 continuity equation, 128 equivalent-two-level-atom method, 376-377, 379-380 non-LTE continuum, 225 non-LTE rate equations, 127-139 partial redistribution, 433–438 radiative rates, 128-131 two-level-atom model, 337 two-level-atom model with continuum, 359 Wolf-Rayet stars, 486-487 Ratios, branching, 142, 143, 385 Recombination, collisional, 22, 132, 141 | Recombination, collisional (continued) | |---| | collisional vs. radiative recombina- | | tion, 124–125 | | ionization equilibrium, 125 | | net collisional bracket, 132 | | Recombination, dielectronic, 125, | | 134–137, 141, 265, 408 | | Recombination, radiative, 22, 94-96, | | 122, 130–131, 141 | | induced recapture probability (of | | electrons), 94 | | ionization equilibrium, 125 | | radiative vs. collisional recombina- | | tion, 124–125 | | spontaneous recapture probability | | (of electrons), 94 | | spontaneous recombination, 130. | | See also Saha ionization | | equation | | stimulated recombination, 131 | | See also Recombination, collisional | | and Recombination coefficient | | Recombination coefficient, 131, | | 141–142 | | Redistribution, angle-averaged, 28–29, 451, 508 | | vs. angle-dependent, 422 | | application to line transfer, 433-446 | | definition, 423 | | electron scattering, 432 | | general formulae, 424-427 | | specific cases, 427–433 | | symmetry properties, 432-433 | | Redistribution, complete, 29, 80, 127, | | 159, 309, 335, 411, 415, 419, 420, | | 424, 430, 435, 438–439, 450–451 | | in laboratory frame, 419, 424, 427, | | 429, 430, 435, 439–442 | | Redistribution, partial, in transfer | | equation, 310, 433–446, 490, 504, 508 | | Redistribution by Doppler shifts, 21, | | 411–412 | | angle-averaged, 421–433 | | general
formulae, 424–427 | | specific cases, 427–433 | | electron scattering, 420 | | general formulae for full angular | | and frequency dependence, | | 415–418 | | applications, 422 | | specific cases, 418–422 | | 1 | partial redistribution in transfer equation, 433-446 symmetry properties, 420-422 Redistribution function, 21, 27-30, 310, 411-433. See also Absorption profile and Emission profile Redistribution in atom's frame, 21, 29, 412-415 coherent, 30, 413, 415, 417-418, 419, 421, 425-426, 427-429, 434, 439 noncoherent, 29, 413-415, 420, 424, 427, 430-432, 434-435 See also Redistribution, complete. Redistribution function, and Redistribution in the laboratory frame Redistribution in the laboratory frame. 21, 27-29, 415-446 angle-averaged redistribution functions, 28-29, 423-433 general formulae, 424-427 specific cases, 427-433 symmetry properties, 432-433 coherent, 30, 424, 429, 434, 442 Doppler-shift redistribution. 415-422 applications, 422 general formulae, 415-418 partial redistribution in transfer equation, 433-446 specific cases, 418-422 symmetry properties, 420-422 partial redistribution in transfer equation, 310, 433-446, 490, 504, 508 application to solar and stellar resonance lines, 442-446 idealized models, 438-442 methods of solution, 436-438 two-level-atom, 433-436 Reflector effect, 358, 462 Relaxation time, 122 Residue theorem, 278 Retardation effect, 499-500 Reversing layer, 312 Reynolds number, 560, 567 Riemann zeta-function, 7 Rosseland's theorem of cycles. 142-143, 384 Rybicki's solution (of transfer equation), 158-161, 184-185, 227, 233, 255, 339, 340, 378, Rybicki's solution (of transfer equation) (continued) 392-393, 400-401, 451-452, 459-461, 504-508 Rydberg constant, 89, 91, 93, 98-101 567-568 Saha formula. See Ionization equation, Saha Saturation function, 326 Scale height, pressure, 188, 256, 260, Shift, line, See Line shift 470, 524 Scattering (of photons): absorption profile, 27 angle dependence, 25 causes lambda-iteration to fail, 147-150, 217, 224, 343 Simpson's rule, 65 classical line transfer, 308-312, 314-316, 346 formula by classical oscillator, 83-84 Slater determinant, 92 Snell's law, 4 coherent scattering, 29-30 complete noncoherence, 29 complete redistribution, 29 448, 471-490 Compton scattering, 21 continuum, 106-107, 148, 165-166, 315-316 definition, 20-21 472-478 emission profile, 27-29 Sonic point, 558, 562-563 noncoherent scattering term in See also Critical radius Lyman continuum source function, 223, 226 Rayleigh scattering, 21, 106-107, 148 Source function: classical line, 309-310 redistribution function, 27–30 scattering coefficient, 24, 27, 29-30 Thomson scattering, 21, 106, 148 219, 226 Scattering coefficient, 24, 27, 29–30 Scattering, Compton, 21 definition, 35 Scattering, dipole, 30, 106, 412, 425, 428-430 Scattering, electron. See Scattering, Thomson 376-378, 391-392 Scattering, isotropic, 30, 35, 106, 147, 412, 425 Scattering, Rayleigh, 21, 106-107, 148 Scattering, Thomson, 21, 106, 148, 554 implicit form of, 80, 336 Scattering efficiency. See Oscillator, harmonic Schrödinger's equation, 85-87, 391-392 299-302 Schuster mechanism, 258, 315-316 LTE, 80 Schuster-Schwarzchild model (line moving atmosphere, 449-452, transfer), 312 Schwarzchild-Milne equations, 40-43 481-482, 505 Shielding, Debve, 292-295, 303 Shift, Doppler, 23-25, 411-412, 447-449, 449-461, 461-463. 463-471, 471-485, 490-493. 495-510, 550-553, 553-561, differential Doppler shift, 453-455. 456-457, 478-485, 491-493, 499-503 See also Line-broadening, Doppler Shift, phase (in pressure broadening of lines), 281, 283–286, 289 Shock, stationary. See Shock front Shock front, 169, 462, 519-521, 528 radius of, for solar wind, 533-534 Single-Gauss formula. See Gaussian Sobolev's method (for velocity fields). application to WR spectra, 485–490 opaque envelope, 478-485 surfaces of constant radial velocity, Sound, speed of, 518-519, 527, 556 Sound waves. See Waves, acoustic collision-dominated line, 361-362 continuum, examples of, 35, 147, dependence upon radiation field, 43 Eddington-Barbier relation, 39 effects upon radiation field, 42 explicit form of, 81, 337, 359, for partial linearization, non-LTE continuum, 223, 226 frequency-independent, 336 line source function, 80, 336–337, 358–360, 376–378, 386–388, Lyman continuum, 222-226 | Source function (continued) | Spherical harmonic function, 89, 91 | |---|--| | photoionization dominated line, | Sphericality factor (extended spherical | | 361–362 | atmospheres), 251–252 | | specific intensity is Laplace trans- | Spline colocation, 155, 252 | | form of, 39 | Stability criterion, Schwarzchild, | | transfer equation with sample | 186-187. See also Mixing-length | | source functions, 35–36, 39, 42 | theory | | See also Emission (thermal), | Stabilizing transition probability (for | | Opacity, and Source function, | dielectronic recombination), | | line | 135–137 | | Source function, line, 80, 241 | Standard stars. See Calibration, | | boundary value and depth variation, | fundamental | | 343–348, 353–358, 362–367, | Stark components, 295–297 | | 368–370, 382, 385–388, | Stark effect, 283, 287, 290–291, | | 393–396, 439–442, 442–446, | 295–297, 303–306 | | 456–459, 461, 482, 508–510 | Stark pattern, 296, 303-305 | | in a chromosphere, 362–367, | Stars: | | Table 11-3 | A-, 163, 166–167, 185, 187, 193, | | collision dominated, 361–362, 363–365 | 194, 204, 234, 237, 402, 540, | | equivalent-two-level-atom method, | 552
Ap-, 200–203 | | 376–380 | R- 166 102 105 106 109 200 | | explicit and implicit forms, 80–81, | B-, 166, 193, 195, 196, 198, 200, 220, 228, 234–236, 238, 240, | | 336–337, 359 | 255, 306, 328–329, 402–406, | | frequency-independent source | 523, 550–553 | | function, 336 | early-type stars, 166, 185, 187, 192, | | integral equation form, 339-340 | 198, 218, 241–243, 287, | | iterated source function, 439 | 354–355, 540 | | moving atmosphere, 449-452, | F-, 185, 187, 191, 198, 536, 540 | | 459–460, 481–482, 505 | G-, 166, 204, 239, 266, 326–327, 523 | | multiplets, 387-388, 391-392 | K-, 166, 239, 326, 523 | | net radiative bracket, 129–130, | late-type stars, 166-167, 185, 187, | | 376–377, 379–380 | 205 | | in partial redistribution, 435–438 | M-, 166, 187, 191, 192, 239, 523, 539 | | photoionization dominated, | O-, 166, 170–171, 193, 194, 198, | | 361–362, 363–365 | 220, 221, 234, 237–238, 240, | | "reduced" source function, 386 | 255–256, 306, 316, 362, | | reflector effect, 358 | 402–409, 471, 474, 523, | | source function equality, 384–390, | 550–555, 557, 560, 563, 566, 567 | | 393–396
thermalization double 241, 242, 252 | P-Cygni. See P-Cygni (line | | thermalization depth, 341–343, 352,
Table 11–1 | characteristics) | | two-level-atom with continuum, | planetary nebula stars, 255–256 | | 358–362 | Program 103 106 107 | | two-level-atom without continuum, | Procyon, 193, 196, 197
Sirius, 330 | | 336–338 | solar temperature and cooler stars, | | Spectrum, energy (of an oscillator), | 166–167, 240–241, 258–267, | | 275–276, 281–282 | 287, 324, 331–332, 355, 361–362, | | Spectrum, power (of an oscillator), 275 | 364–367, 446, 536 | | Spectrum lines. See Lines, spectral | supergiants, 170, 192, 234–238, 243, | | Spectrum synthesis (with LTE model | 249, 255–256, 266, 323, 448, | | atmosphere), 328–331 | 471 523 539-540 553 567 | Stars (continued) solar wind, 258, 266-267, 521-540 T-Tauri, 266 temperature minimum, 241, Vega, 196, 197, 198, 220, 237-238. 258-259, 266, 444 329, 330 turbulence, 324, 469-470 WC and WN stars, See Wolf-Rayet See also Chromosphere, Corona, stars and Limb-darkening law WR-, 243, 249, 256, 266, 367, 448, Surface, constant radial velocity. 471, 472, 474, 477, 485-490. See Velocity, surface of constant 523, 550 radial α Leo. 200 α^2 CVn, 202–204 Taylor's expansion, 155 γ Peg, 329 Temperature: θ Aur, 200, 201 effects of lines on surface temperaζ Pup, 552–553, 559, 563, 565 ture, 205-212, 215-216 State, equation of, 114–119, 140–145 effects upon two-element gas, 116 Stationary states. See Eigenstates extended grey atmosphere, 245-247 Statistical equilibrium equations. See grey atmosphere vs. nongrey atmo-Rate equations sphere surface temperatures, Stefan-Boltzmann constant, 12 205-206, 212-214 Stefan's law, 7 in LTE, 109-110 Stochastic equation, 464 non-LTE model atmosphere, 239-243 Stress-energy tensor, 497–498, 542–543 Temperature, color, 248-250, 256 Stress tensor, Maxwell, 14-15, 497-498 Temperature, effective, 48-49, 52, 59. Stress tensor, radiation, 12, See 73, 172, 175, 181, 190–193, Radiation pressure tensor 195-206, 212-215, 234-243. Successive over-relaxation method 328-330, 402-409, 536 (SOR), 401 Temperature, electron, 121-123. Sun: 359-367, 371-372, 382, 442-444, central temperature, 52 487-490, 521-522, 537, 553 chromospheric temperature rise, Temperature, excitation (curve of 259-260, 264-266, 362-367 growth), 322-323, 326-327 coronal wind, 258, 266-267, 521-540 Temperature, kinetic, 121–123, 359, curve of growth abundances. 324-326 Temperature, radiation, 121, 123-125, differential abundance analyses, 141, 239–241, 360–365 326-328 Temperature correction procedures: H⁻ opacity source, 76, 102-104, Avrett-Krook procedure, 174–175, 260, 263 220 ionization of atmosphere, 115, 266, constraint methods, 176-180, Table 7-1 184-185 limb darkening, 260, 262-263 discrete ordinates method, 74-75 magnetic field, 534-535 extends grey to nongrey solution, 60 photosphere, 258, 260, 263-265 lambda-iteration, 62-63, 172-173 radiation pressure, 170–171 in solving LTE radiative transfer solar chromosphere, 122, 258-260, equation, 171–176 263-267, 348, 362-367, 372, Unsöld procedure, 63-64 442-446 Unsöld-Lucy procedure, 174–175 equivalent-two-level-atom method, See also Radiative equilibrium 380-384 Temperature distribution: solar model atmospheres, 258-267 complete linearization method
temperature structure, 241. (LTE), 180-185, (non-LTE), 258-261, 263-266 230-234 | Temperature distribution | |---| | (continued) | | construction of LTE model, 180–185 convective atmosphere, 190–191 | | extended grey atmosphere, 245–247 | | grey atmosphere, 54–55, 61–64, 68, | | 72 | | line strengths determine distribution, | | 206–212, 215–216 mean opacities with temperature | | correction procedures, 60 | | non-LTE atmospheres, 239–243 | | partial linearization solution of | | non-LTE continuum, 226–227 | | radiative equilibrium, 172 | | results from LTE model, 205-216 | | solar distribution, 240–241, | | 258-265, 380-382, 444 | | with Eddington approximation for | | grey atmosphere, 61-63 | | with Rosseland mean opacity, 58 | | Temperature minimum (non-LTE | | atmospheres), 239-241, 266, 444 | | Temperature rise (chromospheric), | | 259–260, 264–266, 362–367, | | 372–373, 382, 456 | | Thermalization (of electrons), 121–122 | | Thermalization (of photons), 20, | | 333–336 | | collisional de-excitation, 22 | | See also Coupling parameter, | | thermal and Thermalization | | depth | | Thermalization (of spectral lines), | | 130, 311, 334–336, 342–346,
353–356, 384–388 | | See also Thermalization depth | | Thermalization depth, 141, 149–150, | | 311, 334–335, 341–342, 352–355, | | 387–388, Table 11-1 | | Thermodynamic equilibrium: | | Boltzmann excitation equation, | | 110-112 | | dependence of temperature upon | | thermal emission, 49 | | description of, 25-27 | | detailed balancing, 79, 94, 119-120 | | emission and absorption coeffi- | | cients, 26 | | Kirchhoff-Planck relation, 26, 80, 96 | | Maxwellian velocity distribution, 110 | | microscopic requirements of, 119–127 | ``` occupation numbers of energy levels, 79, 110-112 See also Local thermodynamic equilibrium and Non-local thermodynamic equilibrium Thickness, atmospheric, 256 Thickness, optical, 36, 38, 346-349. 366, 479-480, 489, 558, 560-561 Three-level-atom, 384–388 Time-development operator, 298–303 Time-dilation effect, 494 Transfer equation, 30-31 axially symmetric medium, 34 as a Boltzmann equation, 32-33 boundary conditions, 36-37, 153 classical line transfer, 309-310 closure problem, 46-47 comoving frame method, 490-510 solution for spherical symmetry, 503-510 transformation into moving frame, 491–493, 495–497, 499-503 complete linearization method for LTE, 181-182 completely linearized line transfer, 396-401 with constraint of radiative equilib- rium, 176-180 difference equation methods for numerical solution, 153-161, 503-510 Eigenvalue methods unsatisfactory, 150-151 with Einstein coefficients for a line, 92, 336, 376-378 equation for non-LTE continuum, 219, 225-226, 232-233 equation for spectral line, 272 equivalent-two-level-atom method, 376-380 examples of transfer equations for planar atmospheres, 37-38, 39 - 40 extended grey atmosphere, 245-246 extended nongrey atmosphere, 244, 250-255 Feautrier's solution, 156-158, 161, 233, 252, 398, 436, 438, 504, 508 formal solution of, 38–39 ``` integrating factor for, 38 Transfer equation (continued) grey, 54-56 interlocking multiplets, 391-393 lambda iteration unsatisfactory, 147-150 lower boundary condition, 36-37, 51 nongrey transfer equation in LTE, 35-36, 75 non-LTE line transfer with continuum, 359-360 non-LTE line transfer without continuum, 336-340, 350-352 numerical solution, 153-161, 252-255, 392-393, 397-401, 435-438, 449-452, 459-461, 503-510 observer's frame method for velocity fields, 449-471 formal solution, 450 spherical expanding atmosphere, 459 - 461turbulent atmosphere, 463-471 one-dimensional planar atmosphere (time dependent), 32, 43 partial redistribution, 435-438 for photoionization, recombination, picket fence, 208-209, 215-216, 462-463 Rybicki's solution, 158-161, 184-185, 227, 233, 255, 339, 340, 378, 392–393, 400–401, 451-452, 459-461, 504-508 second-order form, 151-153 solution at interior point of semiinfinite atmosphere, 38, 50-51 solution by moments, 46–47 solution for emergent intensity, 38 - 39solution in spherical geometry, 250-255 source function, 35 spherically symmetric medium, 33 - 34in static medium, 30-32, 33-34 time dependent, 31 time independent equation, 32 two-point boundary value solution, 151-161 See also Transfer equation, moments of Transfer equation, moments of, 43-47 comoving frame, 502-503 extended atmosphere, 244, 250-252, combined moment equation, 251-252 first-order moment, 44-46 grey atmosphere, 54-56 to solve transfer equation, 46-47, 157-158 zero-order moment, 43-44 Transform, Fourier, 275, 278, 280, 298, 303 energy spectrum of an oscillator, 274-277 reciprocity relation, 275 Transformation, Lorentz, 493–495, 497-499, 542-544 Transitions, atomic autoionization and dielectronic recombination, 134-137 bound-bound, 22 dipole transition selection rules, 134 Einstein coefficients, 77-79 non-LTE collisional rates, 131-134 non-LTE radiative rates, 128-131 probability calculations, 81-93 Transitions, bound-free, 22. See Photoionization and Ionization, collisional Two-level-atom models, 214, 227 with continuum, 358-367, 371-373 without continuum, 336-358 moving atmosphere, 450, 459, 481, 505 partial redistribution, 433-438 See also Equivalent-two-level-atom method Two-stream approximation (for stellar radiation field), 61, 151, 312 definition, 18 Units, Doppler, 279-281, 317-318, 338 ff., 418, 427, 449-450, 479 Units, thermal. See Units, Doppler Unsöld-Lucy procedure (temperature correction), 174-175 Unsöld procedure for temperature correction, 63-64 Variable Eddington factor, 63, 153, 161, 244, 245–246, 397, 435, 508 approximate closure for solving transfer equations, 47 Variable Eddington factor (continued) complete linearization method, 181–185, 233–234 definition, 18 differential equations technique for spherical atmospheres, 250-254 Feautrier's solution of transfer equation, 157-158 interior point of semi-infinite atmosphere, 51 Velocity, critical, 526, 527-529 Velocity, surface of constant radial, 472-478, 479, 482-485 Velocity distribution, electron, 121-123 Velocity distribution, Maxwellian, 110, 119, 121–123, 279, 323 Velocity field: energy balance, 461-463 observer's frame method for lines in planar atmospheres, 449-459 Sobolev's method for spherical expanding atmospheres, 471-479 spherical atmospheres, 459-461, 503-510 stellar winds, 526-534, 562-564 transfer equation in the fluid frame, 490-493, 499-503 turbulent atmospheres, 463-471 Velocity field, random. See Atmospheres, turbulent Velocity field, stochastic. See Atmospheres, turbulent Voigt function, 279-281, 286, 305, 317-318, 320, 338, 340, 342, 346, 347, 349, 354, 366, 419-420, 464-467 WC stars. See Wolf-Rayet stars WN stars. See Wolf-Rayet stars Wave equation, 518 Wave function, 84-85, 277, 297-303 approximate, for light elements, 91-92 approximations for helium, 105 calculation of continuum absorption cross-sections, 97 for hydrogen, 89 Waves, acoustic, 265, 458-459, 519-521, 539-540 speed of sound, 518-519 wave equation, 518 Waves, Alfven. 535 Waves, magnetohydrodynamic, 265 Weighting functions, method of, 326 Weights, statistical, 77, 79-80, 88, 97, 110-114 Weisskopf approximation, 282-284, Width, Doppler (of a line), 279, 305, 317, 323, 338, 356–358 Width, equivalent (of spectral line). 114-115, 270, 316-328, 372-373, 402-404, 406-407, 409 turbulent atmosphere, 465-470 Wolf-Rayet star, 482-485, 487-490 Wilson-Bappu effect, 365-367 Wind, radiation driven, 549-568 dynamics, 553-563 Of stars, 559-568 Wind, solar, 521-540, Table 15-1 radius of shock front, 533-534 rotational braking, 534-536 spherical coronal wind models. 525-533, 536-540 breeze solutions, 527, 530, 532 isothermal corona, 526-529 two-fluid models, 537 Wind, stellar, 447-448, 463, 471-472. 475, 511-568 Wings, line. See Line wings Wolf-Rayet stars, 243, 249, 256, 266, 367, 448, 471, 472, 474, 477, 485-490, 523, 550