S e

0 Rdiative Transfer in Movig Atmospheres 14-1  The Transfer Equation in the Observer’'s Frame 4351

aciaiiv
where ¢ is the usual thermalization parameter. Note that in the scattering
integral we can no longer replace [ with J because ¢ is angle-dependent; note
also that the iniensity can no longer be assumed to be symmetric around the
line center, hence the full profile must be considered. The approximation of
complete redistribution becomes questionable for moving media, as the
conditions that help validate it in static media no longer occur; a good
discussion of this point is contained in (273, 87) (this is a superb paper that is
highly recommended to the reader). Recently some work has been devoted
to the problem of partial redistribution in moving atmospheres; it has been
shown that fo treat the problem in the observer’s frame, the full angle-
frequency dependent redistribution function must be emploved. In contrast,
in a comoving-frame method (see §14-3), one can employ static redistribution
functions in the fluid frame, and angle-averaging again yields accurate
results.

Accurate calculation of the scattering integral in equation (14-12) with a
quadrature sum poses a fundamental difficulty in an observer-frame solution
for two reasons. (1} The line-profile ¢p(x — uV) is clearly shifted by an
amount 2V in frequency as p varies from —1 to 1. Thus, in the frequency
quadrature, an amount equal to twice the maximum macroscopic flow
velocity must be added to the bandwidth required to describe the static
line-profile. This requirement is not severe in studies of, say, wave motions in
the solar atmosphere, but becomes prohibitive for atmospheres in supersonic
expansion where v/c & 0.01, or 2(vov/c)/Av =~ 200. (2) The angle-quadra-
ture scheme must employ a large number of angles. Because the argument of
the profile function is (x — uV’), there is an inextricable coupling between the
angular and frequency variations of the intensity. Thus if some maximum
frequency increment Ax,,,,(~3) is required to obtain sufficient precision in
the frequency quadrature, the maximum tolerable angle increment will be
Allpay = AX ./ V, which is quite stringent! These difficulties are ameliorated
by transtorming to the comoving frame.

Equation (14-10) may be cast into second-order form. If the line profile is
symmetric about line center, then ¢{—x + uV) = $(x ~ uV), which sug-
gests that we group the two pencils I{z, i, x) and I(z, —pu, — x) together, for
dr(z, p, X} = dr(z, —p, —x)and S(z, p, x) = S(z, —u, —x). Thus, defining

oppler width in units of the fiducial value;ie,
define line and continuum source functions
- a total source function

where § measures the local D
8(z) = Avp(z)/Av;. We now
S!(Z) = T?.!(Z)/X!(Z)s and Sc(z) = nc(z)/Xc(z)

S(z, p, x) = [z 1, X)S2) + H2SADY[Pz 1, x) + r(2)]  (14-8)

where r(z) = 24202 and an optical depth scale measure along a ray

specified by . -
o ) = ot | e x) d2 (14-9)

where z... denotes the upper surface of the atmosphere. Then the transfer
max ‘

equation becomes

[8l{z, w, x)/ot(z, 1, X)] = Iz, 4w, X) — S(z, p, x) (14-10)

The formal solution of equation (14-10) can be written immediately as

-t L X w0, n. %) - —{z, g, X) dr Z, U, X
1(Zgans Mo X) = 100, p, X)e 0530 4 fo Siz, 1, x)e (z, 1, X)

= (0, g, x)e N0
+ rm w[Blz e X)S(2) + HASL e Vyz) dz
)]
(14-11)

from which we can compute the emergent int.ensity for given sour;:; f}mﬁﬁi
iFor example in LTE, S, = 5, = B;orwe rr.nght. use the values of S, orisin .
the line in a staric atmosphere, an apprgxunation that often 112 suiﬁ o rfo__
accurate as we shall see below.) In equation (14-11) we ha\.f(; ta E:l"l ‘:nﬁmm
sphere to be a finite stab with intensgy 1119;(:1221 :rt rj ; ;)(0 ‘(L)Lr 3) Sfij;:le e
pher t 7{0, 1, X) = o0 and oml (0, i, x).

?g;:;fizﬁczﬁl’ov\‘:s Sj diiecéu ev;iuation of the e’_ffect_s of velomty ﬁeldsd on ?E;E]If;
by accounting for the velocity-induced shifts in the opacity and em

of the material.

oy . . od
The line source function will, in general, contain a scatlering term, a

lati ield; ion can be ]
e deed o e i, B0 0 i - N
i;;grg s)lflr?ace of an atmosphere can displace a i.ine away from a Qark i‘?ssﬁg; 1
tion feature, at the rest position, into the bright nearby contlnuud]; e and p(z, 1, X) = 5 [1z %) — 1z, —p, =] (14-14)
raising J (and ) dramatically. If we assume that photo.ns S(;atteret 0_y13vel |
line are completely redistributed, then the source function for a tw we cbtsin [0 4 3)36(e 7] = ot ) — o ) s

atom becomes At the upper boundary there is no incoming radiation, hence

st =50—0 [, d {' a1 9te )+ 6B (1412 [oulz, 1t X)Pt(z X)), = Ul 1 %) (14-16)
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At the lower boundary we assume either that the incident radiation is
specified, in which case

[6ulz, p, x)/en(z, i, X)].=0 = 1O, &, X) — (0, g, X) (14-17)

or that, in a semi-infinite atmosphere, the lower boundary is chosen to be so
deep that the diffusion approximation is valid {which Fiemands Fhat the
velocity gradient be small enough that y~ {dV/dz) « 1; ie, tl_lere is a neg-
ligible change in the velocity over a photon mean-free-path ], in which case

S ] (14-18)
z=07 X(Z,‘LL,.)C) 6T z=L

As in the static case, we introduce a discrete depth-mesh {z,}, angle-mesh
{#..), and frequency-mesh {x,}, and combine angles and frequencies 11'.1toha
single quadrature set {i, x;} = (i, Xx,) Where 1'.: m+ (n - 1) M, the
angle-points are distributed on the interval [0, 1], while frequencies must now
span a range X, Xpaxls Xmin < 0 and x,,, > 0, large enpugh to contain
both halves of the line profile and to allow for Doppler shifts J_rZI./mX. We
then replace equations (14-15) through (14-18) with difference equations and

write

dT

qulz, . %) aT
dz

0t(z, b, X)

Sa = Slzg, , x) = o jd + Bar (14-19)

where o and §§ are the appropriate combinations of #, ¢, and &, and

L
Ji = Z Wiy, (14-20)

=1

where by = (z; x;, — 1, V). The resulting system ii then of ‘Fhe st.andard
Rybicki form [sec equation (6-47)] and is solved for J as described in §6-3.
An analogous integral-equation solution can also l_ae copstructed (273, 120),
but in application the diflerential-equation method is easier to use. Tl_m wh_o]c
procedure is stable and general, and quite efficient, as the computing time
Ty = cLD* + ¢ D¥is only linear in L, the number of angles and frequencies.
The depth-mesh must be chosen sufficiently fine to assure thgt only modc?st
changes in V{z,), say < %, occur between succc:ss‘ive depth-points; other'wme
the profile function ¢, may change radically with depth anfi le‘fld to inac-
curacies in the optical depth increments. Except for supersonic winds, this is
not a stringent requirement. Note also that the same I.nethoc.ls can b}f _used to
construct the formal solution, when S is given, by solving a single tridiagonal
system (at each angle-frequency point desired) of the ff)rm.T_,ui = §,; here
the computing time required is only T = ¢L D, which is minimal.
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LINE-FORMATION WITH SYSTEMATIC MACROSCOPIC
VYELOCITIES IN PLANAR ATMOSPHERES

The eflects of velocity fields on fine-formation m planar atmospheres
have been studied by a number of authors; we shall review some typical
results here. Basic insight into effects of motions can be gained by using just
the formal solution. Consider, for example, a semi-infinite atmosphere with
a line formed in LTE, with r = constant, and S, = S, = B, = By(1 + any),
where 7; denotes the static line optical depth. Choose a velocity field of the
form v(z,) = vo/[1 + (1,/1,)], taken to be positive toward the observer (ie.,
toward increasing z). Then it is easy to calculate the emergent intensity
1{u, x) over the surface of the star, and to construct the flux F(x) by integrating
over u; results for models with ¢ = 3 x 1072, r=1072 ¢, = (0, 1, 3,
5,10}, and 7, = (1, 10, 100) are displayed in Figure 14-1. There we see that
the Tine flux profile shows an asymmetry toward the blue, Similar asymme-
tries result even if there is no vetocity gradient and the atmosphere is assumed
to expand with constant velocity, because of the way velocities and intensities
are weighted in the flux integral (Cf. Exercises 14-] and 14-2).

Exercise 14-1;  (a) For a linear limb-darkening law Gl = /I = 1 + fp
show that the function normalized to give unit flux is ¢* () = (1 + Buis + &5,
{b) Assume that a weak line is formed on the surface of an atmosphers expanding
with velocity v,, and that the line depth, as a fraction of the continuum, does not
vary with x4 Derive an expression for the radial velocity measured from observa-
tions of the flux in a spectrogram. In particular, show that for the grey-body limb-
darkening law, in the Eddington approximation, Vops = {17/24)z,. What is the
ratio of vy, /v, for § = 0; for f = o9

Exercise 14-2:  Calculate the flux profile from a line, idealized as a delta-function
of constant depth, on a stellar surface expanding wilh constant velocity vy; 1., take
I, x) = (1 + Bt — ayd(x — wVolli& + 45). Derive an explicit expression for
F(x; g, i, V), and plot the profile in the limiting cases ff = Q, B = . (b)Extend
the analysis to a line with a Gaussian profile, and compute numerically a typical
fiux profile.

The formal solution can be used to evaluate proposed velocity-diagnostic
techniques by computing profiles for given velocity fields, subjecting these
profiles to the diagnostic analysis, and comparing the inferred with the
originally-assumed fields. For cxample, the “bisector shift” technique has
been examined (373) for a vartety of cases. This method supposes that the
displacement éx, from the static line-center, of the position of the point
midway between two points of equal intensity in the line-profile, gives the
Doppler shift caused by velocities in a layer at unit optical depth for a {static)
line frequency Ax, where 2Ax is the full distance between the two points on
the profile. It is found that the inferred velocities are in fuir agreement with
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the input velocities for measurements in the line-core, but that spurious
velocities at great depths are inferred from the wings. [t is easy to see why this
is so. Suppose that the atmosphere moves with velocity v, on the range
0 < 1, < 1y, and is at rest for r, > 7. It is clear that the shift of the line in
the upper layer forces the line-wings to be asymmetric, because opacity from
the upper layer intrudes into the wing and absorbs radiation from below.
By assuming that radiation at frequency displacement Ax from line-center
arises from depths 7, ~ 1/p(Ax), velocities will automatically be ascribed to
these depths even if ; > 7. This example shows that care must be taken in
inferring velocity fields!

A further example of such problems is shown in (321) where a calculation
is made [using the Riccari method (544)] of the non-LTE source function of
a line with ¢ = 107 % and r = 0, in a differentially expanding finite slab of
total {static) optical depth z,,,,, = 50. The expansion is taken to be symmetric
about the midpoint of the slab (assumed to be at rest) with a linear velocity
law of the form V(t} = ¥, + V.t;; the medium is effectively thin, and simu-
lates an expanding nebuila. Line profiles are shown in Figure 14-2. Therc we
see that the usual central reversal arising in the material nearest the observer
is blue-shifted, and thus obliterates the blue emission peak, while the red
peak is enhanced because photons more casily emerge from below; the line
as a whole appears red-shifted even though the average velocity of the
material is zero! One cannot, therefore, immediately conclude that a small
observed red shift implies a receding emitter.

To evaluate the effect of velocity fields on the source function one must
solve the transfer equation self-consistently. Some of the early work on this
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Normally-emergent intensity from differentially
expanding slab with total (static) thickness 1,,,, = 30, for
alinewithe = 107 %and r = 0. Abscissa: x = AvfAvp.
Curves are labcled with vy, velocity of expansion at
surface; velocity law is lincar in = and gives zero velocity
at slab center.  From (23, 215).
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problem (370; 371) treated the case of an isothermal atmosphere with a
velocity jump A at a depth 7, with constant velocities above and below. The
transfer equation was solved in the Eddington approximation, for a two-
level atom, using a discrete-ordinate method. When A = 0, the static solution
for the appropriate values of & and 7 is obtained. As A becomes greater than
about 4, the lines {(which have Doppler profiles) in the upper and lower regions
are sirongly shifted with respect to one another and no longer interact. The-
atmosphere then acts as if it consists of two independent parts: (a) a finite
upper layer of optical thickness 7, and (b) an underlying semi-infinite atmo-
sphere in which © = 0 at the depth, 1, of the velocity jump. Tn this limit, the
source functions in the two layers both achieve their respective static limits,
Thusfor A = 0and A — oo, one recovers profiles identical to those computed
from static source functions, the major effect just being the Doppler shift of
the line-center in the formal solution. This result is strengthened when there
is an appreciable background continuum [see also (372)]. For A on the range
of 2 to 3, the two layers interact strongly and a full solution must be found.

A more realistic problem (273, 120) is presented by an atmosphere with a
“chromospheric” Planck-function rise at the surface (see Figure 14-3a) and
with velocity laws of the form {r;) = 10/[1 + (z;/to)], where 7; is the static
optical depth in the line. The resulting source functions for a line with
»— 10 *and ¢ = 10~ 2 and various values of ¢, are shown Figure 14-3a,
while emergent intensity profiles are shown in Figure 14-3b, and flux profiles
in Figure 14-3c. The striking result seen in Figure 14-3a is that the line source
fimction is only weakly affected by the velocity field, even though the profiles
show drastic changes. The basic reason for this result is that photon-escape
through the outer layess is increased in the red wing, but decreased in the
violet wing—and, to a large measure, these effects nearly cancel [see also
(18, 53)]. On the whole, the photon-escape probability Is slightly enhanced
by the atmospheric expansion, which explains why S, tends to lie below its
static value for 1 S 7, £ 102, In the case 7, = 10, the value of S, increases
for 7, < 10 because the line intercepts underlying continuum radiation while
it is optically fairly thin, which leads to an increase in J; for larger values of
7¢. the line becomes optically thick above the velocity rise, and the effect
vanishes. When 1, 2 107, the point of the velocity rise already lies below the
thermalization depth of the line; line-formation in the upper (effectively
thick) tayer then proceeds as if the atmosphere were static, and the static
value of S, is recovered very closely. The flux profiles for 7, = 10? to 10°
show “P-Cygni” features with red emission components and violet-shifted
absorption. Here the emission, however, arises from the assumed tempera-
ture rise, and not from the geometrical effects that occur in extended atmo-
spheres. To a high degree of approximation, one would find the same
profiles from a velocity-dependent formal solution using static source
functions.
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The results described above apply to expansion, where an increased
escape probability in one wing can be compensated by a decrease in the

other. In fluctuating velocity fields, however, the coherence of shifts from one -

point in the atmosphere to another is lost, and effects similar to a marked
depth-variation of the line profile are produced. The effects of fluctuating
mesoscale velocity fields on line-formation have been- studied (568) for
sinusoidal waves with V(z,1) = fsin[2n{4 " log, st + )], and for “sawtooth”
waves; the latter simulate steepened shock-like structures. Using the Rybicki-
type method described earlier, the transfer equation was solved at times
spaced equally over a period, and time-averaged profiles were found for
various values of fand A The limit 4 — 0 corresponds to a “microturbulent”
regime, while 2 — oo yields a “macroturbulent” limit. For a given source
function (e.g., S, = B,), the line profiles for finite 1 invariably lie between
those given by the two extremes 2 = Oand 2 = oo. The lines computed with
a given f and A = 0 are always stronger than those for 4 = oo, as expected.
When non-ITE cases are considered, the source functions are modified by
the velocity field; characteristically, S; shows ripples as a function of 7, and
the departure of the results for finite A from the microscopic limit (4 = 0)
are larger at smaller values of e. The primary result found for non-LTE
isothermal atmospheres is a significant rise in the core intensity of the time-
averaged profile for finite 4; the profile lies between the limiting (4 = 0,
4 = oo} profiles only in the wings, and is much brighter than both in the
core (by a factor of 2.5 for § = 2.5 and / = 4). The same behavior of the
line core is also found in computations using the HSRA, and substantial
changes in the source function occur. In particular, even though a collision-
dominated source function is used, S, rises above B, (as it can for photo-
ionization-dominated lines), because velocity shifts allow the line to intercept
bright continuum radiation. The brightening of the line core appears to
improve greatly the agreement between the observed and computed selar
Na I D-lines at disk center, without recourse to unusually high densities as
hitherto required; this result may also offer an explanation for similar dis-
crepancies observed in the solar Ca I and Fe I lines. Further work in this
area will be quite rewarding.

The results discussed above take no account of possible effects of the
velocity field on the state of the gas. Recently a study has been made (291) of
effects of acoustic pulses on formation of the solar Ca IT lines, allowing for
the temperature and density changes the pulses produce in the gas. These
computations show that, if changes in the physical variables are ignored,

the velocity field alone produces little change in the source function, and the -

correct profile is predicted using the static source function in a velocity-
dependent formal solution; a similar conclusion was reached in (185). In
contrast, the changes in T and N produced by the pulses have major effects on
S, and hence on the profiles. In particular, both T and n, increase together,
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and increase the locai coupling of §; to B, ; this, in turn, leads to substantial
increases first in the violet, and then the red, emission peaks of the doubly-
reversed profile. These results again point to the need for a dyramical theory
for the velocity fields.

SPHERICAL ATMOQSPHERES: LOW-VELOCITY REGIME

Observer’s frame calculations in the low-velocity regime have been
carried out for radially expanding spherical atmospheres (375). Such an
approach can be useful in studying line formation in the deeper layers of
expanding atmospheres, but for the large-velocity regime a comoving-frame
formulation is preferable. The method is similar to that described in §7-6 for
static atmospheres, and carries out a ray-by-ray solution in the same (p, z)
coordinate system. The transfer equation along the ray is

+[dl*(z, p, x)/0z] = nlz, p, x) — x(z, p, xH "z, p, ) (14-21})

where y(z, p, X) = (i) + z(r)¢(z, p, x), and a similar expression defines
%(z, p, x); we use the relations (z, p) = (2 + p*}¥ and u(z, p) = z/(z*> + p*)*.
The profile is defined as @(z, p. x} = ¢[r(z, p); x — p(z, p)V{r)]. The velocity
V(r) is positive in the direction of increasing r. Introducing the optical depth
along the ray

oz px) = [ (2 b0 d (14-22)
1
and defining u(z, p, x) = 3 [I"(z, p, x) + I (z, p, —x)] (14-23)
S _
and v(z, p, x) = 5 Uz p.x) = I"(z p, —x)] (14-24)

we may rewrite equation (14.21) in second-order form:
[8%u(z, p, x)/dr(z, p, x)’] = ulz, p, x) — S{z, p, %) (14-25)

where S(z, p, x) = nlz, p, x)/x(z, p, x) has the general form S(z, p, x) =
a(z, p, x)J[r(z, p)] + Blz. p, x). Here « and f contain combinations of the
line parameters ¢ and v, = y./y;, and the profile function ¢(z, p, x), while

— X e 1
J@) = f_xmm dx fo dp lr; x — pV(n) Julz(r, ), plr, p), x] (14-26)
In formulating the boundary conditions a difficulty arises. On the axis z = 0
we can no longer write 1{0, p, x) = 0 because two frequencies (£ x) of radia-
tion are involved. We may circumvent this problem by following the ray for
its entire length—ie., we consider the whole interval [ — Zag, Zmax |- The lower



460 Radiative Transfer in Maoving Atmospheres

and upper boundary conditions for rays that do not intersect the core then

become |
[Fm(z, P, x)/é“c(z, P X)]z= tEma ili{Z, b, X}I:: £ 2 mux (14'27)

For rays that intersect the core, p < r,, we either (a) apply a diffusion
approximation at an opaque core (stellar surface), which yields v(z,, P, X)
directly, or (b} for a hollow core {(nebular case), apply equation (14-25) at
Z,, (forcing the points at +z,,, to be identical), and equation (14-27} at the
ends of the ray.

To solve the system we introduce the same discrete meshes {r,} and {p;}
used in §7-6 to solve the static problem. The frequency mesh now includes
the whole profite {x,}, n= +1, ..., £N,withx_, = —x,we shall, how-
ever, be able to eliminate half of these (see below). We again obtain equations
of the form of (6-27) and (6-48), and hence can apply the Rybicki method to
obtain J. Because J(r,) need be defined only for {r,}, 1 < d < D, while
Uy = U(zZg Pin X,) 18 defined on a mesh {z,,}, di=1,..., Dy which runs
the whole length of the ray, it now turns out that, while the tridiagonal
T-matrix is square, the U-matrix is rectangular, and 1is a chevron matrix,
Solution of these systems for each choice of (i, n) yields an expression of the

form B
u, = A,J + B, {14-28)

Equation (14-26) defining J can be written in the discrete form

N Iy

J(ry) = Z Wy Z adiﬁb["d; x, — plrg, pi)V(rd)]“din (14-29)

n=-—-N i=1

But, from the spherical symmetry of the problem, I Nz, p, x)= I~z p, x),
and thus u(z, p, —x) = u(—2z p, x), and vz, p, —x) = —v{~z,p, x); these
relations allow elimination of the values of u at negative x and positive z, in
equation (14-29), in terms of u at positive x and negative z Thus

N I
J = z Wy Z adi{¢[7‘d; Xy = MaiVilthas + ‘i’f’[”d; X, + Mded]”d'in} (14-30)
r=1

i=1

whered’ = D, + 1 — d. Equation (14-30), when used in the Rybicki method,
yields V-matrices that are rectangular chevron matrices. Using equations
(14-28) for all values of i and nin equation (14-30), we obtain a final system
for J, which is then solved. The computing time required for the solution
scales as Tp = <N D? + ¢ D?: this is less favorable than the result for the
planar case, because now there are about as many angles (i.e., impact param-
eters) as there are depths. The method is stable and easy to use for small
velocities (ie., a few times thermal). For larger velocities, the number of
depth-points required to resolve the velocity field becomes large, and the
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computing time is prohibitive; in this case one may use a comoving-frame
method. An advantage of the observer-frame method is that it can be used
for arbitrary variations in the velocity fleld (e.g., nonmonotone flows), which
is not true for comoving-frame methods, as currently formulated.

Exercise 14-37  (a) Verily the symmetry relations quoted above for I, u, and o,
and the reduction of (14-29) to (14-30). {b) Sketch the form of the rectangular
chevron matrices U,, and V,, in the Rybicki scheme, and show that the dimensions
of the matrices mesh in the correct way to allow a solution.

The method described above has been applied (375) to highly idealized
spherical atmospheres with power-law opacities and linear velocity laws of
the form V(r) = V(R)}{(r — r /(R — r.). Calculations were made in extended
isothermal models with R/r, = 30, for a line with ¢ = 1072 and 10™* and
zero background continuum, with V(R) = 0, 1, and 2, The results include
the f[ollowing. (a) The source {unction is more strongly affected by ex-
tension than by small velocity fields; to a first approximation, one may use
the static spherical source-function in a velocity-dependent profile com-
putation. {b) The eflects of extension and velocities are more signilicant
for smaller values of &. (c) The dominant effect of the velocity field is to
reduce photon trapping, and hence to increase the photon escape probability.
(d) The line profiles become skewed to the red as the central absorption
feature obliterates the violet emission peak [true also in planar geometry,
cf. Figure (14-2}]. In a second sequence of models, the maximum velocity was
held fixed, V{R) = 2, and R/r, was chosen to be 3, 10, and 30; B =%
e =10"* y./m = 107% and y, = Cr™ 2 The effects of velocities on the
source function are small compared to the changes produced by spherical
geometry, and the relative departure [rom static results increases as R de-
creases, probably because the velocity gradient increases. The emergent
profiles all show a strong P-Cygni character. A final calculation worthy of
mention is a case in which the velocity is constant throughoui the atmosphere;
Le., V(ri = V,. For a planar medium the source function would, of course,
be unchanged (though the flux profile computed by averaging over the surface
of a star changes; rccall Exercise 14-1). For a spherical medium however, the
radii diverge from the center, leading to a transverse velocity gradient that
decreases photon trapping; as a result, the escape probability increases, and
the source function decreases. Even a modest constant velocity of expansion
has quite dramatic effects on emergent flux profiles.

EFFLCTS OF LINES ON ENERGY BALANCE IN MOVING MEDIA

The energy balance in the outer [ayers of an atmosphere can be dominated
by spectral-line contributions, Hence Doppler shifts, which may move a line
away from its rest position and allow it to interact with the continuum (in
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which the intensity can be markedly diflerent), can significantly alter the
temperature distribution. Qualitatively, we can expect thres effects to be
present, over and above the usual boundary-temperature change and back-
warming that occur in static media. (1) Lines Doppler-shifted away from
their rest frequencies can intercept continuum photons from deeper layers;
we may call this the irradiation effect. The absorbed continuum flux provides

additional energy input to the gas and, because the color temperature of the -

flux exceeds the ambient temperature locally, irradiation will lead to a net
heating of the outer layer. The effectiveness of the input is determined by the
strength of the coupling of the lines to the thermal pool; thus heating will
be greatest when ¢ = 1, and should be negligible for & — (. (2) As the lines
shift away from their rest positions, photons that would have been trapped
in the deeper layers by overlying line absorption now encounter only con-
tinuum opacity, and hence may diffuse freely to the surface and escape; we
may refer to this effect as escape-enhancement. In general, an increase in
photon escapes will lead to a cooling of deeper layers. (3) A velocity gradient
in the atmosphere smears the lines over a larger bandwidth, thus impeding
the free flow of photons; we may call this the bandwidth-constriction effect.
At depth in the atmosphere, where the diffusion approximation is valid, a
velocity gradient causes little, if any, change in the temperature structure
when the scale of the velocity variation is large compared to a photon
mean-free-path. But if a veloeity shift of the order of a Doppler width occurs
in a mean-free-path, then bandwidth constriction leads to a decrease in-the
effective radiation—diflusion coefficient, and hence to increased backwarming.
In the extreme limit of an abrupt velocity step near the surface, photons
emerging from lower layers in formerly-open continuum bands encounter
opague material, and have their escape impeded; this might more appro-
priately be termed a “backscattering” or “reflector” effect.

Studies of the influence of line-shifts on gnergy balance have been made for
highly schematic picket-fence models, in planar geometry with an abrupt
velocity jump {428), and in spherical expanding atmospheres (445). The
velocity-step can be regarded as a caricature of a shock front. The escape-
enhancement and irradiation effects show very clearly for the velocity-jump,
where the layers above the jump heat markedly (one case gives AT ~ 1100°K
for T.;; = 10,000°K), and a cooling of a few hundred degrees occurs imme-
diately below. For the expanding spherical atmospheres one obtains large
irradiation-effect rises at the surface, and substantial backwarming below.
The irradiation-effect temperature rise is larger for extended models than
for nearly-planar models; this is because the discrepancy between the color
temperature of the flux, and the ambient temperature characteristic of the
local energy density, becomes larger as atmospheric size increases. For one
extreme case, the velocity field produces a change AB/B ~ 3, which implies
AT/T = 033, or AT ~ 10,000°K for an O-star.
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Even though the models upon which the results guoted above are based
are very schematic, it is clear that velocity-field effecis on line-absorption can
lead to very substantial changes in the energy balance of the outer layers of
stellar-atmospheres. These changes could, in principle, influence the hydro-
dynamics of the flow. Thus, in a pulsating atmosphere, energy deposition in
the lines produces a kind of radiative precursor that could affect shock
propagation; for expanding atmospheres, significant energy deposition could
gceur in the transsonic flow region, which might alter the nature of the stellar
wind. [t is also possible that velocity-dependent line-absorption contributions
to energy balance could affect the flow-dynamics of novae, supernovae, and
mass-exchange in binaries. Much further work remains to be done on this
subject.

LINE-FORMATION IN TURBULENT ATMOSPHERES

As mentioned earlier, the dichotomy of velocity-field effects on spectrum
line-formation into the “microturbulent™ and “macroturbulent” lmits is
obviously oversimplified. In these two extreme limits, the effects of the velocity
field upon line strengths and profiles may be predicted from simple phenom-
enological arguments. To study the influence of velocity fields that have a
scale which is neither zero, nor infinite, with respect to a photon mean-free-
path, a detailed computation must be made. One could, in principle, specify
a particular run of the velocity, solve the equation of transfer, and average
over as many realizations of the velocity field as are necessary to embrace
the possible ranges of its inherent degrees of freedom. Such an approeach,
however, would be costly, and would not yield direct insight into the problem.
An attractive alternative (motivated by the expectation that in stellar atmo-
spheres the velocity field is chaotic, and possibly even turbulent in the hydro-
dynamic sense) is to assume that the velocity is a random variable, described
locally by a probability distribution for the amplitude, and nonlocally by a
characteristic correlation length.

Considerable progress in solving the transfer equation in turbulent media
has recently been made with two distinct approaches. One formulation,
developed by the Heideltberg group (70, 325; 234, 235; 236, 557), employs
the joint probabiliiy Piz; v, I} that, at point z, the velocity lies in the range
(v, v + dv), and the intensity in the range (I, I + dI), for Markov-process
variations of v and I. P, or some other suitable distribution function derived
from P, is found by solving a Fokker-Planck equation. This method is
powerful and general, and allows the treatment of velocity ficlds that are
continuous functions of depth. However, the resulting partial differential
equations are difficult to solve, and a succinct description of the method
would presume considerable familiarity of the reader with the mathematical
methods for treating Markov processes. A rather different formulation has
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been developed by the Nice group (49; 226: 227). The flow is conceiv:ed as
consisting of turbulent eddies or cells. The velocity is taken to be uniform

within each cell, and to jump discontinuously at sharp boundaries that separate

the cell from neighboring cells with uncorrelated velocities.; this descriptipn
is called a Kubo—Anderson process. Although the discm.xtinulty of the velqc;ty
structure is unphysical and introduces some artifical high-order correlations
in the field (49; 70, 325), this approach n;vgrtheless has l:hej adva}ltaggs_ of
yielding exact analytical results in certain limits, and of expository simplicity.
We shall therefore describe the Nice method here, but quote results from both
bodies of work. _

We assume that the cell boundaries, at which the v;:lomty change_s, are
located at random continuum optical depths {z,}, distrlbpted accord1ng to
a Poisson law characterized by an eddy density n(t), which gives the remprogal
of the correlation length [ (in continuum optical depthlumts) of the \felO_Clty
field. The probability that no jump has occurred on the 1r}terva1 (:c', 1) is given
by exp[ — [% ait”) dr”]. Let vy{z) denote the hydrodynamic velocity of the cell
at 7; these velocities are independently distributed according toa probability
distribution function P(v,), which we shall take to be Gaussian. Let DyplT)
denote the thermal velocity of the fine-forming atoms at , anc'i measure .all
velocities in thermal umits, w,(1) = v, (t)/v(7), and frequencies from line
center in unifs of the corresponding Doppler widths, x = Av/AvD(r). Charac-
terize the turbulent field by a dispersion £ (in thermal units); then

Plu,) = exp(— w2 /E(m*e) (14-31)
The transfer equation to be solved in
u[1(z, 1, x)/32) = — (e + 10z 1 %) + xS+ pS (14-32)

where ¢, {z) = ¢[x — puy(c}]. Equation (14-32).is a stochastic equation—i.e.,
the coefficients in the equation are random variables. We now assume thzlit
the turbulent velocity field influences only the line absorption coefﬁ.ment via
Doppler shifts; fluctuations in the continuous opacity, source functions, and
occupation numbers are expected 1o be of secgndary importance, and are
ignored here. We adopt LTE and ignore scattering, so that S; = 5. = B,{1),
and employ a Voigt fine-profile so that

[0 ()] /20 = BH[alz), x — gy (0)] (14-33)
where By = (e mo) fm@( — ¢ NG Avple)] (14-34)
and aft) = T/dn Avp(1) {14-35)

Here T is the damping width, and »; denotes the occupation number of the
lower level of the transition.
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We may obtain an analytical solution of the problem if we introduce the
following additional assumptions: (1) set B,(z) = By(l + wz); (2) use a
Milne-Eddington model-—i.e., f = constant,g = constani, Av, — constant;
(3) adopt a constant eddy density n(z) = n. All of these assumptions may be
relaxed if the problem is solved numerically (49; 226). To simplify the treat-
ment still further, we consider the intensity emergent at disk-center, and set
u = 1. The transfer equation thus becomes

[6i(z, x)/or] = [1 + BH (t)][i(z, x) — Byl + a1)] {14-36)

where H,{t) denotes Hfu, x — u,(7)] and is constant between successive
jump-points. If we define

4(1) = exp {— [on + pHE) ah:} (14-37)
then the emergent intensities in the continuum and the line are

I = fo“‘ Bo(l + at)e™" do (14-38)
and I(0, x) = fo‘” Byl + an)g (0[] + BH.(1)] dz (14-39}

[t is easy to show that I, = By(1 + «), and that the intensity in a line of in-
finite strength (§ — o) is By; the absorption depth of such a line will be
A = ofi + ¢). Then, in general, the line absorption depth «, =
[I. — 10, x}]/I, can be written

(@fdo) =1~ [ g0z (14-40)

0

The ensemble average of the line profile over all possible realizations of the
velocity field is thus

ad/M =1~ |7 g0 de (14-41)
while the average of the reduced equivalent width is

(W5 = (Wifdo gy = 474 [ <ay dx (14-42)

Thus the crux of the problem is the calculation of {g.(7)>.

The function {g.(7)}> can be found from the solution of an integral equa-
tion, which is obtained by the following arguments. First, at a given point ,
the probability that no jump has occurred on (0, 1) is exp{—nt); the cor-
responding contribution to {g,(t}> is then exp{—nt){g.(z)>5, where the
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static average 1$
(g ()>s = exp[ —(1 + BHIT])
= f:o expl —~[1 + BH(a, x — )]t} Plw,) du,  (14-43)

Here u,, (and hence ) is consiant over the entire interval (0, 7). On the other
hand, suppose that one or more jumps have occurred on the interval (0, 7),
and Iet /(< 1) denote the last jump point. On the interval (7, 7), H, will be
constant, hence

g{7) = exp[—(z — T}l + BH,}]q.(7) (14-44)

The probability that the last jump, at 7', occurs between ¢ and v’ + dv’ is
exp[ —n(r — ©')]n dr’; thus averaging (14-44), and summing over all v, we
obtain the contribution to {g.(7)> from jumps on (0, 7), namely

(Gl s = J1 <exp[— (& = )1 + BHIJae)) exp[ —nfz — 7)]ndv
(14-45)

Now all steps in H,{(z") on the interval 0 < " < ¢’ are independent of the
value of H, on the interval {7/, 1), hence

Cexp[ —(r — )1 + PH)gt)> = {exp[—(z — 7)1 + SH) (gD
= gz — 05T (14-46)

Adding the static and jump contributions we have, finally,

(g = g ads + [ T <gule — s T de (14-47)

Because we have taken # to be depth-independent, the integral in equation
(14-47) is a convolution integral, and we may apply a Laplace transformation
to obtain the solution, Thus let

0.5) = [ e a0 dn (14-48)

and
5.9 = [ e au@sde = [ du Plw) [ expl~(t + pH)cle ds

= {{s+ 1+ BHJTY (14-49)
Then from equation {14-47) we find

0.(s) = Su(s + ny[L — nS.(s + )] (14-50)

Exercise {4-4; Derive equation (14-50).
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We do not require the inverse transform of Q, because, as can be seen by
comparison of equations (14-48) and (14-41), the residual intensity can be
expressed entirely in terms of @ {(0). Thus we have the general result that

{agpfde =1 = n+ 1+ BH) D1 = n{(n + 1 + pH,) H]*
(14-51)
We can recover the macroturbulent limit by taking the correlation length

[ = o0, or n = 0, so that the entire atmosphere along the ray moves with
constant velocity. From equation (14-51) we find

<ax(B)>macro = AO()BHX/(I + ﬁHx]> (14_52)

This result agrees with our intuitive expectations when we recognize that
the argument in the bracket is just the emergent residual intensity of a line
in the Milne-Eddington model (cf. §10-3), shifted bodily by a velocity u,,
and then averaged over the probability distribution of u,. We may express
the general result in terms of the macroturbulent limit as

{a (B = (n + 1Ia[B/n + D mecal 1 + 4o~ a [ A1 + D]Dmacro]
(14-53)
To obtain the microturbulent limit, we let n — co. First, note that for § — 0,

equation (14-52} can be expanded as {a.(f)Dmacre & Ao(fCHY — B2(HY),
which yields

Ao™ (B miore = PCH(a, x))/[1 + BCH(a, X)) ] (14-54)

where  (H{a, x)> = (72! J‘_Z Ha, x — ) exp(—u,2/E%) du,  (14-55)

Because the Voigt functien is a convolution of a Lorentz profile with a
Gaussian [cf. equation (9-34)], we obtain, from an interchange of the order
of integration,

(H(a, x)p = (1 + )73 H[a(l + 73 x(1 + )74 (14-56)

That is, in the microturbulent limit the Doppler width Av, is increased by a
factor of (1 + &%),

In the limijt of zero turbulence the standard Milne-Eddington curve of
growth is given by [cf. equation (10-38)]

Wita, ) = [ BHia x)[1 + BH{a, 0] dx (14-57)
Now, substituting equation (14-52) into (14-42) and interchanging the order

of integration, we find W2, . (g, ) = {Wiia, ))> = Wila, p); ie, in the
macroturbulent limit the curve of growth is unchanged—which, of course,
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is the expected result. In the microturbulent limit, by gubstitution of equa-
tions (14-54) and (14-56) into (14-42), we obtain immediately
Wiida B) = (1L + EPFWE[afl + 29, AL + &

micro

This shows that the linear and damping parts c:f the curve are ur.laf'fected,
while the flat part rises by a factor of {1 + élz)?. Between_ these limits Fhe
curve of growth is found by numerical integration of equanoz (_14.-42), using
equation (14-53). In addition fo EXPressions for.<ax.> and W " it is _possﬂ?le
to derive an expression for g, the rms fluctuation in the residual intensity
that would be seen along the slit in a spectrogram of perfect resolution;

ie, 0, = Ay '(a > — a >N [see (49)].

<ax>f‘A0

FIGURE 14-4

Absorption depth in line with § = 100, ina turbulent atmosphf:re
with turbulent velocity ¢ = 1, and eddy-density 1 = 10. /.lhscfzssa:
x = Av/Avg. Solid curve: average profile from all realizations of
velocity distribution. Dashed curves: average profile + the yms
fluctuation seen by spectrograph of perfect resolution.  From (49},

by permission.
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Results for the average depth, and its dispersion, of a strong line in an
atmosphere with the turbulent-velocity parameter ¢ equal to the thermal
velocity, and a density of 10 “eddies” per unit continuum optical depth, are
shown in Figure 14-4. Curves of growth for £ = 1 are shown in Figure 14-5.
There we see that the dependence of the theoretical curve upon the eddy
density, n, implies that a comparison of an observed curve to a theoretical
curve with ¢ = 0 cannot lead to a unique value for £. In general, the value of &
deduced in the microturbulent limit will be a lower bound on the actual value,
Note that this effect is opposite to that produced by departures from LTE—
which, typically, raise the flat part of the curve of growth even when no
velocities are present (cf. §11-4).

Detailed calculations, using a realistic solar atmosphere, have been made
for the O T 227771, 7774, 7775 lines, and the Fe T 215576, 5934, 6200 lines
(235); an excellent fit to observed profiles is achieved. In the fitting procedure,
the loci of points in the (&, ) plane [/ = 1/ (km)] that match the observed

log W*

| | 1 | ;
0 1 2 3 4

log f§

MGURE 14-5

Curves of growth in turbulent atmospheres with & = 1. Ordinate: Logarithm
of reduced equivalent width W* = (W, /4y Av).  Abscissa: Logarithm of line-
strength § = 7/ Curves are labeled with depth-independent eddy density.

From (49), by permission.
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intensities at several values of A/ from line center, as well as the equivalent
width, intersect at almost a unique point. Thus it proves possible to deter-
mine both ¢ and [ = 1/n (km) uniquely; numerically £ ~ 2.2 km s_l,.and
[ = 150 km. The velocity is larger than that usually adopted as a micro-
turbufent velocity; the correlation length is of the same order as the photo-
spheric scale height. Tt would be of interest to ascertain whether the apparent

near-equality of the correlation length with the scale height has hydro- -

dynamic significance, or is mere coincidence. .

Allowance for a finite scale in the velocity structure also has important
implications for the interpretation of the center-to-limb variation of so?ar
line profiles. A long-standing problem has been that the pFOﬁleS at disk
center have a characteristic V-shaped appearance, suggestive of macro-
turbulence, while those at the limb have a U-shaped appearance, suggestwe
of microturbulence. Moreover, the microturbulent velogities derlveq from
limb profiles are typically larger than those derived from the same lines at
disk center.

This result has been advanced as evidence for anisotropic turbulence (a
situation difficult to understand hydrodynamically). Both of these :?ffects can
be understood, at Jeast qualitatively, in terms of a finite eddy density for the
velocity field (226). If n(z) gives the eddy density at u = 1, then the appro-
priate density at other values of u is no(t)/u; this follows from the require-
ment that the turbulence be isotropic, so that we encounter the same eddy
density per unit path-length along the ray. If the density is dgpth-mdependem,
equation (14-53) is unaltered except that we rep.lace n with ng, and now
Ao = ogell + o) ! In general, ng(t) must vary with . Suppose we demazlii
that the eddies have constant geometrical size L; then ngfz} = [XC(T)J%] .
For the HSRA y.(t) o¢ 7, hence ngft) o 7~ '. Thus the eddy density pertinent
to observations near the limb must be higher than at disk center, and this
result provides at least a qualitative explanation of the center-to-limb effects
mentioned above. An analysis of the Mg T 24571 line has been performe.d
(226} using the HSRA. A good fit to the profiles is obtained with isotropic
turbulence characterized by £ = 1.2 km s 'and [ = 70 km. The smallcr
value for I quoted here, compared to the results for O I and Fe I mentioned
earlier, may reflect the fact that this analysis is based on a Kubo-Andesson
discontinuous velocity field while the other uses a continuous field. It turns
out that for a given &, a given line-strength is always achieved at a smaller
value of [ in the discontinuous case {237).

Non-LTE effects produce line profiles that are deepe%' i1_1 the core, and
approach the LTE profile in the wing (227; 236). The deviations of the non-
LTE profiles from their LTE counterparts become }arger as the turbulent
velocity parameter ¢ jncreases, and as the correlation 1ength [ decreases.
Much useful information about the nature of velocity fields in stellar atmo-
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spheres will undoubtedly emerge from further detailed application of the

methods described above to the analysis of the solar spectrum, and to stellar
spectra where possible.

14-2  Sobolev Theory

The existence of large-scale, rapid (sometimes violent) expansion in stellar
atmospheres is well established observationally. Probably the first objects
in which such motions were unequivocally recognized were the novae (and
later the supernovae). In their spectra, after the explosive increase in the star’s
luminosity, one observes absorption lines strongly violet-shifted from their
rest positions, indicating material flowing rapidly toward the observer. These
lines are accompanied by extensive red-shifted emission features, resulting
in characteristic P-Cygni profiles resembling those in Figure 14-6. In nova
spectra these features are transients, and indicate episodes of violent ejection
of the outer layers of the star. In other objects [the classical P-Cygni stars
(79;366)], these lines, though variable, are more-or-less permanently present
in the spectrum, and indicate persistent outflow of material. Beals first
recognized (75; 77) that the great breadths of lines in WR spectra {indicating
velocities of the order of 3000 km s~ ') could be interpreted in terms of rapid
outflow of material. He suggested that the flow was driven by radiation
pressure, a conclusion supported by current dynamical models. Similar
conclusions can be reached for the Of stars. We know today that in the WR
and Of stars, and in many early-type supergiants, there are transsonic stellar

25
A
HD1%0603 /
1.5 FIGURE [4-6
P-Cygni profiles of the hydrogen lines in
Ha the spectrum of HD 190603 as observed by
FalyF, 10 \/ Beals (79).  Ordinate: observed Aux in
HE units of the continuum (successive profiles
1.0 //\"‘ are displaced for clarity). Abscissa:
\-/ displacement from line center in velocity
10 Hy units—ie, v = ¢ Alj2
0.5

—200 0 4200

v (kmsee™1)
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winds (cf. §15-4), that have vanishingly-small outward velocities in the dee-p_er
layers, and a large outward acceleration producing very large velocities
(v/c &~ 0.01) at great distances from the star. . ' o

The solution of the transfer equation in a spherical expanding medium is
difficult, and in the early work by Beals (75; 7677 78), Chandrasekhar (149),
Gerasimovic (243), and Wilson (674) it was assumed that. the material was
optically thin so that transfer effects could be ignored. This approach, while
obviously oversimplified, has nevertheless contributed a good deal .to our
basic picture of the physical situation. A major advance occurred with the
brilliant realization by Sobolev (590; 581; 15, Chap. 28) that the presence
of the velocity gradient in an expanding medium actually simplifies line-
transfer problems, for it dominates the photon escape and thermalization
process, and implies a geometric localization of the source function not present
in static problems. In Sobolev’s theory the solution of the transfer prpblem is,
in effect, replaced by the calculation of escape probabilities; the basic theory
has been refined and extended by Castor (134), and has been applied to
fairly realistic calculations of spectra from multilevel atoms in WR envelopes
(139; 140).

SURFACES OF CONSTANT RADIAL VELOCITY

Consider a sphericaily-symmetric, radially-expanding envelope sur-
rounding a star with a fairly well-defined photospheric su.rfac'e, as sketch;d
in Figure 14-7. With this basic model we can explain qualitatively _the main
features of P-Cygni profiles such as those in Figure 14-6. For the discussion
in this subsection, we shall assume that the envelope is essentially transparent,
so that every photon emitted towards an external observer can be received.
This approach yields insight, and results that will be useful later. Th.rogghout
the discussion we make use of the fact that most of the line emission (or
absorption) occurs at line center; thus radiation from a given region, as
received by an external observer, appears mainly at the line-center frequenc_:y,
Doppler-shifted by an amount corresponding to the velocity of the material
along the line of sight.

The material behind the stellar disk is in an occulted region, and cannot
be seen by an external observer. The matter projected on the steilgr disk
can either (a) simply emit radiation without significant reabsorptlon. as
occurs in, e.g., a forbidden line in a nebula or in a thermally excited medlgm
where T, > T, (the color temperature of the radiation from the underlying
photosphere), or (b) absorb the incident photospheric radiation and scatter
it out of the line of sight. From this material, in case (a) we would obtain a
violet-shifted emission feature, while in {b) we obtain a violet-shifted absorp-
tion dip characteristic of P-Cygni profiles. From the matter in the emission
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FIGURE 14-7
Schematic diagram of expanding envelope surrounding a stellar surface. The

material in the occulted region is blocked from view by the stellar disk, and cannot
be seen by an extcrnal observer.

lobes to the sides of the disk, we receive photons either emitted thermally
or scattered from both the stellar and diffuse (from the envelope itself)
radiation fields. The velocities along the line of sight in the emission-lobe
material range from positive through negative values, and produce a sym-
metric emission feature extending from a wavelength to the violet of the
rest-wavelength, to redder wavelengths. Because material is occulted by the
star, the maximum redshifts that could be produced wili not be observed,
and, in general, we expect to derive information about the maximum flow
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selocities from the position of the blueward edge of the absorption feature
{or emission feature if no absorption is present). The volume of the emitting
region can be enormous compared to that of the star, and the integrated
contributions to the observed emission line from this volume may far out-
weigh the amount of energy received from the stellar disk. As a result, the
peak intensities in strong emission lines may be several times the background
continuum value (see Figures 14-6 and 14-9). Also, when the size of the stellar
disk is much smaller than that of the emission region, occultation effects
become unimportant. Finally, some lines are much more opague than others
and may, therefore, have a larger effective volume for emission; thus in
Figure 14-6 we see a transition from quite strong emission at He, to practically
no emission at Hy, where we see essentially the photospheric Hy absorption-
line.

To make these notions more quantitative, we can compute the energy
received at frequency v by an external observer as

E, = J'V n(r, ) d (14-58)
where the integration is carried out over the entire unocculted volume. In
performing the integration we may use, s was done in our earlier work in
spherical geometry, either (r, B} coordinates with the axis of symmetry from
the center of the star through the observer, or (p, z) coordinates (sec Figure
7-27). Equation (14-58) can be made more explicit if we write #(r, v) =
iinelv — volt + 4iv,/¢)], which accounts for the shift of line center, as seen
by an external observer, to voll + v./c), where v, = v, is the velocity along
the line of sight resulting from the expansion velocity v,. If we suppose that
7(r) = nol(p/po), (Where reasonable values for « lie in the range 0 < o < 2)
and, further, assume v = Bo(r/ro)" then from the requirement of continuity,
oo = pobery?, we obtain finally 7(r) = no(r/ro)~ ¢ 2% Choose units such
that r, = v, = 1 {these quantities referring to values at the photospheric
surface), and measure frequency displacements from line center in units
x = (v — vp)/Avp, where Avy = valg/c. Then

E. = 1o fv olx — uu()]r D P (14-59)

In principle V refers to the entire unocculted volume; in actuality the volume
of infegration can be defined more precisely.

Most of the emission observed at frequency x will arise from regions where
the line center frequency, after Doppler shifting, is at tbe observed value.
The observed flow velocities (up to 3000 km s~ ') in WR and Of atmospheres
vastly exceed the thermal velocity (~ 30 km s~ ). Therefore the geometrical
region from which the emission at any one frequency arises must be a very
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thin zone, centered on a surface of constant vadial velocity such that v, =
uv, = x. (NOTE: here the term “radial velocity” has the usual astronomical
meaning of velocity along the line of sight, not the more fundamental meaning
of the velocity v, measured from the center of the star.) In the idealized limit
that the width of the line profile is negligible (because 2yyermar < Unow). the
zones degenerate to the radial velocity surfaces themselves, which therefore
play a basic role in the theory.

The shape of these surfaces depends upon the nature of the velocity
field—which, ultimately, must be obtained from dynamical calculations. We
can gain insight, however, by consideration of some simple velocity laws of
the form v = ¢ (in units v, = #, = 1). (a) Suppose v, = constant. This
law could apply to a thin spherical shell (e.g., a planetary nebula at large
distance from the star), or in high-velocity flows nearing terminal velocity
[see (c) below]. (b} Suppose v = r. This law could apply in the case of an
explosive ejection that started at some time ¢, such that (¢t — tp) = #fv; here
the faster-moving particles outrun the slower ones, giving the linear relation
of v with r. (c) Suppose the gas leaves the star with velocities greater than
escape velocity. We then can write v = v,,(1 — r, /rE, which provides a crude
simulation of a transsonic wind; the flow accelerates everywhere on the range
r, < r < oo, (d) If the material is ejected with just the escape velocity and
is decelerated by gravity, we may take v = # * Each of these laws has a
distinctive set of constant radial-velocity surfaces.

Exercise 14-5:  Shaw that the surfaces v, = constant for cases (a) and (b) are the
cones § = cos™ ! g = constant, and the planes z = constant, respectively, in the
usual (1, ) and (p, z) coordinate systems.

The constant-radial-velocity surfaces for laws of the form (c) and (d) are
shown in Figure 14-8 {(a and b).

From what has been said above, some far-reaching conclusions can be
drawn. The fact that the surfaces of constant radial velocity extend over
large regions (infinite if the flow is not decelerating) implies a complete
breakdown of the Eddington—Barbier relation for expanding atmospheres.
We can no longer associate a given frequency in the line profile with a
specific position # in the envelope, but only with a wide range of values
(r,ir + Ar). From the viewpoint of an outside observer, geometric localization
occurs only if variations in total particle density and ionization-excitation
equilibria confine the region of high emissivity. What is worse, this conclusion
is independent of the intiinsic line-strength (317). So we can no longer, in
principle, obtain a depth-analysis of atmospheric structure, with a precision
betier than the characteristic Ar defined above, by examining weak and strong
lines. Clearly these considerations Imply severe modeling and diagnostic
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problems for expanding atmospheres. The problems are even more severe
in the case of decelerating flows where, as can be seen in Figure 14-8b, a
particular line of sight may intersect a surface of constant radial velocity at
two distinct points; hence two regions, which may have vastly different
physical properties, contribute to the information received by the observer.
Furthermore, in this case these two distinet regions can also interact radia-
tively, and the Sobolev method to be described below requires reformulation.

Taking into account the geometry of the surfaces of constant radial
velocity, equation (14-59) can be applied to calculate observable line profiles.
For instance, as Beals first showed (75; 76; 77, 78), if we can ignore ccculta-
tion, then the profile from an optically thin shell expanding with v =
constant is flat-topped; an example of such a profile appears in Figure 14-9,
where the 25696 line of C 11T and the 45808 line of C IV in the spectrum of
the hot WR star HD 165763 are shown. The rounded profile for the C 1V
line indicates it is optically thick (see below). Beals’s result can be seen by
inspection of equation {14-59} using an (r, 0) coordinate system. We note
that radiation at each value of v, {and hence of x in the line profile) is con-
tributed by a conical volume element centered on y = cos # = x, in a range
dy; the volumes of all such elements are manifestly identical. Results for
other velocity laws may easily be derived so long as the line is optically thin,
this approximation will not be true in general, and the need for it is overcome
by Sobolev’s method.

T T T T T T T

HD165763
WCS

Fi)

HMGURL 14-9

Observed prefiles of C TIT 45696 and C TV 45808 in the
WC5 star HD 165763, Notice the flat-topped prolile for
the transparent 23696 line, and the rounded profile for
the optically-thick 45808 linc. From (369), by pcrmission.
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Exercise 14-6: (&) Suppose that the intrinsic line profile is ¢(x) = 8{x). Consider
an envelope for which v = »; = L. lgnoring occuitation, show that £, = Ey =
constant for —1 € x < 1,and E, = 0 for |x| > 1. Derive expressions for 7, [rom
equation (14-59), and show that different results are obtained for o < 1.5, o = 1.5,
and o > 1.5. Show that for # < 1.5 the envelope must be bounded, r € R, but that
no restriction is required for ¢ > 1.5. Accounting for occultation, show that £, = 0
for x < Xy, where X, = —(1 — R™%)%, and write an expression for E, on the
range X, < x < 0. (b) Perform a similar analysis for v = r; determine E, for
appropriale ranges of w, and derive analytical expressions for the profiles of E_/E,,
including occultation effects.

ESCAPE AND THERMALIZATION IN AN EXPANDING MEDIUM

Consider now the formation of a line in an optically-thick expanding
envelope surrounding an opaque core of radius r,; assume that the effects of
a background continuum can be ignored. If we now transformto a coordinate
system at rest with respect to a particular fluid element, and inquire what
happens as we look along a given ray, it is clear that (as a result of the velocity
gradient) there will be a differential Doppler shift of each successive sample-
point along the ray relative to the test-point. Eventually this shift becomes
so large that no line photon emitted within the effective bounds of the line
profile (assumed to be limited by some =+ X.,,,) can interact with the line
profile at the test point. The velocity field has mtroduced an intrinsic escape
mechanism for photons; beyond the interaction limit (measured from the
point of emission) they no longer can be absorbed by the material (even if it
is of infinite extent !) but escape freely to infinity. Thus there is a definite limit
to the size of the region within which photons emitted, or scattered, can have
any effect upon the intensity within the line at the test-point. In the limit of
large velocity gradients the interaction region will be small, and may, there-
fore, be presumed to be nearly homogeneous in its physical properties
(temperature, density, ionization state, etc.). The theory then can be for-
mulated in terms of local quantities, and a parameter § that gives the
probability of photon escape summed over all directions and line-frequencies.
In the limit of negligible transfer effects, we can therefore write

Jr) = (1 = BSG) + Bl (14-60)

The first term is derived [rom the value that J would have in the limit of no
escapes, namely 7 = S, corrected for velocity-induced escapes. The param-
cter §, measures the probability of penetration (summed over frequency
and angle) of the specific intensity I, emitted from the core, to the test-point.
We must now calculate ff and £
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As was done earlier, we measure velocities in units of a thermal velocity
[ie. ¥(#) = v(r)/vy, | and frequency displacements from line center in Doppler
units, [Le, x = {v — vp)/Av,, where Avy, = vyu,/c]. The optical depth along
a ray to.an observer at infinity can then be written [cf. equation (14-22)]

7(z, p, X) = f“ e px)de = f” n(re(x) dz’ (14-61)

where v = (2% + p*)E, 4 = (z/¥), and

i

X=X px)=x - V()= x - V) (14-62)

The main contribution to the integral in equation (14-61) must come from
the region where x” = O0—ie., from z’ = z4(p, x), where z, is chosen such that
zoro” ' Virg) = x; here ry = (20> + p»* The surface z4(p, x) is, of course,
just a surface of constant radial velocity. To a good approximation, we can
then replace x,(+) with y;(vo), and remove this factor from the integral. We
now change the variable of integration from z' to x'; in view of equation
(14-62) the transformation is

—(0x'/0z), = (0V/0z), = (@{ulz, p)V[r(z, p)]}/éz),
= pH@Vior) + (1 — p?)(V/r) = O, p) (14-63)

Where pand r are again understood to be functions of z and p. If the interac-
tion region is small, the transformation coefficient written above may be
assumed to be essentially constant and may be evaluated at the resonance
point z = zg{p, x). Then il we define

P(&) dC (14-64)
where clearly ®(—w) = 0, and ®{c0) = 1, we can rewrite equation (14-61)
as

t(z, p, x) = 1(— oo, p, X)O[x'(z, p, x)] (14-65)

where x'(z, p, x) is defined by equation (14-62) and

t(—oo, p, x) = xlre)/Qro, pto) = tolire)/{1 + p’[(dIn VidInr) — 1]},
(14-66)

Here Xilro) = (Resznc)ﬁj[”i(ro) — (@:fgn(ro)}/Avp (14-67)

and Tolro) = 2ro)/(Virke (14-68)
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In equations (14-66) through (14-68) it should be borne in mind that r, and
Ho are functions of p and x, i.e, v = rof zo(p, x), pl and po = po[zo(p, x), pJ-

Let us now choose a fixed value of r and calculate fi(#); because of spherical
symmetry, integration over p can be effected by using the above results for
various values of p. The escape probability along any ray is just exp( —At,,)
where Az, denotes the optical path length from the test-point to infinity.
Thus, summing over angle and frequency, we have

i) = fjl du fﬁ dx @[x(z, p, x)] exp{ —t[z(r, @), pl(r, ), x]}  (14-69)
Here we have assumed that photons that hit the opaque core are absorbed
and hence lost. To evaluate equation (14-69), we use equations (14-64)
through (14-67), and assume that the material in the interaction region is
sufficiently homogeneous that the distinction between r, and r may be
ignored. Then

b0y =5 [ die [} a® expl —19/00 0]

=270 |, (1 oxp[—x/Q0, W} dy (14-70)

For the special case that V' = kr, Q(r, ») = &, and equation (14-70) reduces
considerably to

Br) = {1 — exp[ —7olr) ]} /olr) (14-71)

where now to(r) = k™! y,(r). The same result is obtained if the angle-depen-
dent terms in equation (14-63) are merely ignored.

To calculate §,, assume that the test point is relatively far from the core
(ie., that the surface of the core is at - o). Then, from its physical meaning,
B. can be written

50 = 5 [ duf’s 4 exol ~ 110700, ]

1
= W5 J, {1 — expl = 2000, WO W du (1472)

where p, = [1 — (r./r)*]*. Again, for the special case of a linear velocity law
we obtain a considerable reduction, namely 3.(r) = Wp(r), where W is the
usual dilution factor given by equation (5-36). The result just quoted is what
would be expected physically, because W is the fraction of the full sphere
contained in the solid angle subtended by the disk, while § measures the
probability of penetration from the disk to the test point.
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Note that both f and §, are defined essentially in terms of local quantities:
the local opacity and velocity gradient. Given these values, one can compute
J from equation (14-60) without actually solving a transfer equation; thus
we see the enormous simplification that has been achieved. For the particular
case of a two-level atom, where the source function {assuming complete
redistribution) is given by § = (1 — &)J + &B, we may use equation (14-60)
to write

§=1[(1 —epd. + eB]J/Il — &)f + ¢] {14-73)

which shows that knowledge of § and f, is sufficient to determine S. Further,
if we ignore the continuum contribution (8.1, = 0), equation (14-60) allows
us to write the net radiative bracket for each line of a multilevel atom im-
mediately, namely Z; = f,;; we shall exploit this result in the discussion of
multilevel atoms.

It is very instructive to consider a uniformiy expanding plane-parallel
atmosphere, for then we can obtain expressions that show the effects of the
velocity gradient on the thermalization of the source function in a particu-
larly transparent way [see (273, 87} and (406)]. Let t denote the integrated
line optical depth defined for a medium at rest; assume the velocity gradient
p = ¢¥/d1 is everywhere constant. The specific intensity at a test point ©
il direction y is

o , _ (t'—1) ; '
Hegwx) = [ S@)exp [— [T+ dc} $Lx + ulr — v deu
(14-74)
Thus the source function for a two-level atom is given by the integral equation

S@ = (1 — §J(0) + 2Bx) = (1 — &) |7 K, |t — 1 () de’ + eBl)

(14-75)
where the kernel function

Kyls) = % [ s [ au u (0dx + ppss) exp [—w 2 gt + yun) dr]
(14-76)

Tt is easy to show that, unfike the static case where the kernel is normalized
to unity, in the present case the effects of escapes lead to

[ Klede=1-p (14-77)
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where f is the planar-atmosphere escape probability that follows from
equations (14-70) and (14-63) in the limit that 1/r — 0, namely

1
B =it [ (1 = exp[—14y] 1201 }0% du (14-78)
Exercise 14-7:  Verily equations (14-77) and (14-78).

Equation (14-75) may be cast into the standard form for a two-level
atom by renormalizing the kernel to K*(r) = Ky(t)A1 — f), and defining
1 —¢*={1 — )1 — g and B*(z) = £B(1)/s* Then

S(r) = (1 — &9 f”w K* |2 — | S(¢)de' + &*B¥z)  (14-79)

When thermalization is achieved, § varies slowly and may be removed from
under the integral to yield S(t) = B¥(t} = e¢B(t){e + § — &f). For & » f,
S(z) = B(z}, as expected. But for § » ¢, escapes dominate and S(t) — £B(t)/p,
showing that S decreases to the local creation rate ¢B as # — 1, which is
reasonable on physical grounds. If the medium has a boundary surface
and B is constant, then [cf. (406)]

S(0) = (e*)*B* = ¢B/(e*)* (14-80)

Thus when & > f we recover the usual static result $(0) = £*B, while [or
B e, we find S(0) = eB/f* = %S, where S, denotes the asymptotic
value for § at depth.

LINE PROFILES

Let us now derive expressions for the line profiles seen by an external
observer. The flux emergent at frequency x is proportional to

i

F.=2rn fow oo, p, x)p dp

2n fmS(I’D){l —exp[—t(—o0, p, x)]}pdp

Fe

+ 27 J; S(re)il — exp[ —t(— oo, p, x}(x,)]}p dp
+ 2al, ﬁ) exp[ —t(— o0, p, X)(x,)]p dp o {14-81)

where, as above, r, denotes the value of r at the surface of constant radial
velocity specified by x, and x, is the value of x" giver by equation (14-62)
at ¥ = r.and p' = [1 — (p/r.)*]*. The first term gives the emission from
the part of the envelope seen outside the disk (1.e, p > r.). The second term
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gives the emission from the part of the envelope superposed on the core,
the factor ®(x,} correcting for occultation of material by the core. Note
that, for an expanding atmosphere, ®(x,) equals zero for x < 0 and will
be essentially unity for x > 0, showing immediately the effect of core occul-
tation on the red wing of the profile. The last term gives the continuum
contribution from the core; in view of the properties of @(x,) just mentioned,
we see that it is unattenuated in the red wing, and more or less heavily
attenuated in the blue wing of the line. The flux in the continuum outside
the line is proportional to

F, = 2zl fo pdp = mr 2l (14-82)

Transforming the variable of integration from p to r on surfaces (z/#}V(r) = x,
equations (14-81) and (14-82) can be combined to yicld an expression for
the line profile R, = (F, — F.)/F,, namely

R = 20217 |

“min{x)

Szor)/e(— <0, p. x)]{1 — exp[ — (= c0, p, x)]}r dr
= 20,2107 [ St {exp[— o~ 0, p. x)B(x,)]

— exp[ —t(—c0, p, X)]}p dp
=202 [T = exp[ — 1l o0, p )] }p dp (14-83)

where r,;,(x) is the radius at which (¢} = x, and p is regarded as p(r, x).
Note the change in sign convention [relative to equation (8-2)] that has been
made to give positive numbers for emission lines. Each term in equation
(14-83) can be interpreted in parallel with terms in equation (14-81).

If we ignore the last two terms, from the core, in equation (14-83), we
consider a two-level atom for which the envelope is so thick that the source
function achieves its asymptotic value S = ¢B/B, and we replace t(— oo, p, x)
with 7, then, in view of equation (14-71), we may write

_ $eBrgy pw Bty 2rdr  AdeBry)
- IC Fe <8BTO> ."‘C2 N I

R (14-84)

where {eBt,) Is a typical value of ¢Bz,; here the quantity 4 denotes the
effective emitting area measured in core units. For sufficiently large effective
emitting areas, the line can become quite bright relative to the continuum.
In fact, most strong emission lines result largely from this geometrical effect.

Another interesting result follows easily from equation (14-81) [see, e.g.,
(15, Chap. 28}]. Consider an envelope with constant velocity of expansion V;
then Q(r, «) = (V/r) sin? 6, and the surfaces of constant radial velocity are
given by cos (! = (x/V) = constant. The transformation from p to r Is



4 T T T i
ir o
FiF, 21 -1
1
0 ! 1 1 | i | ! !
10 08 06 04 02 0 —02 —-04 —-06 —-08 —1.0
() (¢ Av/vpby,)
1.3 T T T T T T
FiE,
0.5+ -
0 } | | | | |
10 08 06 04 02 0 —02 —04 —06 —08 —10
{b) {c Avfvory)
10 T T T T T
S i
F/IFC
1
0 1 i 1 | ! | ! !
1.0 08 06 04 02 0 —02 —04 —06 —08 —10
{c) (& Avfvgry,)
FIGURL 14-10

Calcutated line profiles in expanding spherical atmospheres.
(a) & = 0.0092 and t(max) = 13. (b) & = 0.002 and to{max) = 0.5
(c)e = 0.021 and vo{max) = 2. From (134), by permission.
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p = rsin §, and in the limit that we can neglect the contribution from the
core,

F, = 2usin® ¢ fo " S — exp[ — 7V sin? )]} rdr  (14-85)

If the envelope is opaque, the exponential term vanishes, and the integral
becomes a constant, so that F, = Csin* 8 = C[1 — (x/V)?]; the line pro-
file in this case is rounded {specifically, it is parabolic). This conclusion is of
importance because it shows that rounded profiles occur naturally, as a
result of optical-depth effects, even if the velocily is constant. In contrast,
an interpretation based upon an analysis that assumes the lines are optically
thin would necessarily have involved an accelerating, or decelerating,
velocity field (which would, of course, have quite different dynamical im-
plications). We thus see that the spectroscopic diagnostic procedure must
be carried out with care, and to a high degree of consistency, if physically
meaningful results are to be derived.

Detailed calculations of flux profiles, using equation (14-83), have been
made (134} using the two-level-atom source function of equation (14-73),
along with assumed distributions of V{(r), <4(r), and the constants & and
B/I_ (the latter chosen always.to have the numerical value 5). The velocity
law was taken to be of the form V(r) = V_(1 — r/¥F*. The adopted distri-
butions of 74(r) all are characterized by a maximum on the range 1.1 <
(r/r.) < 4. if monotone decreasing distributions are used, very asymimetric
profiles (not observed) result. Presumably this indicates that the lines
observed in real stars arise in shell-like zones, produced by variations in the
ionization equilibrium that yield a dominance of a particular ton in a definite
range of radii. A wide variety of profiles can be produced by suitable choices
of the parameters. Three characteristic types of profiles, smmilar to those
observed in WR stars, are shown in Figure 14-10: (a) rounded emission
with violet absorption, such as observed in the C ITT 24650 and N TIT 26438
lings; (b) flat-topped emission with violet absorption, such as seen in the
He 1 lines; (c) very intense rounded emission with no absorption, such as
observed in the He II lines. In each case the intensity of the emission is
proportional to A{eBz, /1, as expected from equation (14-84); note that the
flat-topped profile results from an optically thin line,

MULTILEVEL ATOMS: APPLICATION TO WOLF-RAYET STARS

In the spectra of Wolf—Rayet stars, extensive series of extremely strong
emission lines can be observed. The spectra fall into two broad classes:
WC, in which lines of C and O are prominent while those of N seem to be
practically absent; and WN, which have prominent lines of N and essentially
no lines of C. The He Il Pickering series (n = 4 — n’) is very strong and, by
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comparison of lines with odd »' (not oveﬂapp_e(li by a hydrogen line) and
even n’ (blended with a hydrogen Balmer line), it is found that the hydroge:n_
emnission is weak, and hence we conclude that the hydro.gen-to hehum ra_tlo
must be significantly less than unity. To derive quaniitative 1nformat}0n
about these interesting abundance anomalies, as well as about the ph)lfsxcal
structure of the envelope, it is necessary to carry out a complete multilevel

analysis of the spectrum. At present it is not possible to specify the atmo- -

spheric structure in detail, and studies (139;‘ i40) have been carri.ed ohut in
the spirit of a coarse analysis (making a fair number of apprommatxpns),
with the goal of obtaining estimates of the physical properties at a single
ical point m the envelepe.
ty%l;ils}iatistical equilibrium equations are of the form 4, + ¢, = 0 where
A&, and 4, are, respectively, the net rates at which level i is pppulated by
radiative and collisional processes. We have one such equation for. egch
lavel of the ion under consideration, plus one additional equation specifying
a total abundance for the chemical species. The net collision rate can be

written (cf. §5-4)
4 = z [”j - (nj/ni)*”ijcji + z [(”f/“j)*”j - ”i]ij + (1 — 1) Gy

J<i i=i

(14-86)

while the net radiative rate is

&, = Z [”j(Aﬁ + B_;‘Jz;) - niBijjij] + Z [”ijijjf — n{A;; + Bijjji)]
j=i i<i

+ n¥dn Lw o () () BT — exp(—hv/kT,)] dv

— ndn f“’ ()~ L — b, expl(—hv/kT)] dv (14-87)
Here T, denotes the envelope temperature, and nf = n,cn(?d)ix(Te) [Cf equa-
tion (5-14)] where n, is the actual ion density. The expression for € 1s qseful
as written, for a given value of T, and n,, but that for %, must be 1‘elwr1tten.
To simplify the bound-bound rates we use equation (14-60} to obtain

HJ(AJI + BJ‘Ij!J) - nI'Bijjij = [njAﬁ - (njBij — HJBJI)WB\(TL)])BU (14_88)
where f;; i given by equation (14-71), and 1;; (called 1, there) is given by
equations (14-67) and (14-68); in equation (14-88) we have used the approx-
imate result f, ~ Wp, and have parameterized I, in terms of a radiation
temperature T,. The bound-{ree terms are somewhat harder to rpduce,
because the Doppler shifts produced by expansion scarcely ?Lﬂec.:t qontmuum
formation, and no essential simplification is introduced by intrinsic escapes,
as it is for lines; in fact, a solution of the static transfer problem is, in principle,
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required. To circumvent the need for a detailed solution, write J, = J ., +J.%,
where J,° represents the radiation emitted by the stellar core, and J .7 is the
diffuse field from the envelope. Allowing for absorption, we adopt

JS & WB(T Je ™ {14-89)

wherc a representative optical depth between the test-point (R) and the core
(r.) is taken to be

7y = mo (M1 — b~ exp(—hv/kT )R — r.) {14-90)

Further, if we assume that (a} the envelope is homogeneous, and (b) the
optical depth from the test point to the boundary in any direction is 7,
we then may adopt )

JA S, M1 —e ™) {14-91)

where S, (v) = (2hv?/c®)]b; exp(hv/kT,) — 1]~ . With these approximations
we have rate equations of the form «/n = 28 where .of and 28 contain rate
coefficients, line escape probabilities, and analogous continuum quantities.
To solve the system, the parameters that must be specified are T,, r, R,
wR), T., n,, and the total number density n,,,, of the species under con-
sideration, Most of these quantities can be specified from independent con-
siderations, and typically only T,, n,, and n,,,,, are free parameters to be
determined from model-fitting. The system of statistical equilibrium equa-
tions is nonlinear because the optical depths 7;;, t,, and the departure
coeflicients b; in the continuum terms, depend upon the solution; it is neces-
sary, therefore, to solve the system iteratively. The iteration may be effected
using a Newton—Raphson procedure, which yields swift convergence.

To compute line-strengths we use equation (14-83) and, in the spirit of
coarse analysis, we assume that §;; and 7;; are constant for r, < r < R,
and ignore angular factors. Then the three contributions to the line profile
are constant, and areequalto (a) R, = (Rz/rcz)[Sij/Bv(Tf)](l — e “Nfrom
the emission component; (b) Ry = —[5;;/B,(T,)](1 — e~ ™} from the oc-
culted material;and ()R, = —(1 — e *) from the absorption component.
The btue half and red half of the line profile each has a width, in wavelength
units, of AL = Av(R)/c. Thus the equivalent width (taken positive for emis-
sion} is

W, = (ofe)(l — ¢ ) {[@Rr2) — 1][Sy/BAT)] — 1} (14-92)

If occultation and absorption effects are ignored, the two terms involving
“— 17 in the above formula are suppressed. Equation (14-92) is only approxi-
mate, because of the assumption of homogenetity of the envelope, and could
be in error by as much as a factor of two. The above results can be used to
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compute intensities and line strengths if S;; and 1;; (i.e., the level-populations)
are known, or, alternatively, may be used in diagnostics to determine these
quantities. '
The methodology developed in this section has been applied (140) in a
thorough analysis of the He II spectrum of two WIN6 stars: HD 192163 and
HD 191765. As a first siep, the total line intensities (which show neither
absorption components nor occultation effects) are used to establish the
level populations empirically. For the line (# — [) the total intensity is

Lo o [ A B AV o< [n,008,0) dV
o f SulM[vor()/e]{1 — expl — ()]} dV (14-93)

where equation (14-71) was used for f;, and equations (14-67) and (14-68)
for 7;,. Therefore, assuming homogeneity,

(La/va®) = K{l — exp[ =1, (R)] }/[(guin/gm.) — 1] (14-94)

where K Is the same for all lines. For any line that is optically thick, we can
sel the exponential term to zero; this is expected to be true for 14686
(h = 3 — n = 4). From the observed intensities, the “reduced intensities”
(relative to A4686).7, = (I,/v)/(L4a/v42") can be formed. From equation
(14-94),

I = [1 — exp(—=r )] [{gansfgsny) — U{gm/gm,) — 1] (14-95)

where we have set exp(— 134} = 0. Further, we can write

1 = Aln/g) — (/a.)(g0 S nafge) (14-96)
where A = (re*fme)(ng Jg) R/(R)] (14-97)

If we now assume that both the A3203 (5 — 3) and the 2110124 (5 — 4} lines
are also opaque, we may solve for the numerical value of (gunafgany) =
Fsull — Fs3)/F 53, and S, in each star. The three Jines considered thus far
are, in fact, opagque, but this need not be true for higher series members which
have much smaller f~values. Suppose, however, we presume that all Pickering-
series line are opaque; then from equation (14-95) we can obtain empirical
values for (g4n,/g.n4). At reasonable values of i, and T, the upper levels of
the He™ ion should become dominated by collisions, and their occupation
numbers should have the LTE values

(nu/gu) = Hioafle %(iizfzﬁi?li(t]—e)g eXP(Xu/kTe) (14_98)
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for u 2 10. Because z,/kT, « 1 foru » 1, (n,/g,) should approach a con-
stant value. This, however, is not found for the empirical values just obtained;
but rather (n,/g,) oc (f2)4,. as expected for optically thin linés because of the
factor {1 — exp(—74,)] & 74, o (f )4, for 7,, « 1. We thus conclude that
the upper Pickering-sevies lines are optically thin; this implies an upper bound
on the parameter 4 defined in equation (14-97). By imposing the physically
reasonable requirements that (n,/g,) {(a) be a monotone decreasing function
of u (i.e., no population inversions), and (b) become constant for u > 10,
we may sct limits on A; the results are 3 < 4 < 6 for HD 192163, and
2< A4 <8 for HD 191765,

As a next step, one may use the known absolute magnitude M, to obtain,
from standard relations, the absolute continuum flux at 15500 A ; if we adopt
T, ~ 40,000°K, as indicated observationally, we can then deduce v, & 13R,.
Using the observed ratio F (14686)/F {A5500), we find F.(44686); then using
the observed value of the emission line strength R,(i4686) we can find R2S,,,.
This in turn yields R &~ 70 R because S,; 1s already known. The ratio
(Rfr.) = 5-06 is in agreement with direct interferometer measures for the
WC star y* Vel, and also explains the absence of any occultation effects in the
profiles. If we adopt v(R) = 1000 km s~ from the observed linewidths, and
use the known values of A and R in equation (14-97), we deduce a numerical
value for (ny/g,), and hence for all (n,/g,), from the empirically determined
ratios (gun,/g,ng). If these values are used in the Saha equation (14-98) for
u 2 10, and if we adopt T, ~ 10° K and set n, = 2#; (i.e., a completely
ionized atmosphere of helium), we find #, =~ 5 x 10! ¢m?®, which implies
that the optical depth of the envelope in ¢lectron scattering is 7, & n,6,R =
1.5. Finally, knowing that the upper lines are optically thin, the observed
excess emission in Pi 14 (which is blended with H 7) relative to Pi 15 can be
used to estimate a(H¥)/mn(He™ ™) ~ n(H)/m(He) < 0.5; in these stars the
helium-to-hydrogen ratio is thus enhanced by a factor of 20!

Having fixed r,, T, R, u{R), and n,, the rate equations can be solved
for various assumed values of T, and n(te); the results yield theoretical values
of 4 and (n;/g;). Calculations (140) were done for a 30-level atom. Good agree-
ment with the empirical results are obtained for n(He) = 2.5 x 10*! cm ™3
and T, = 10° °K (the fit is not unique). The calculations show that the upper
levels are indeed collision dominated, and that b, — 1 for # » 1. Further,
because T, > T,, it appears that a nonradiative sousce of energy input is
required to maintain the excitation of the envelope.

A second application of the methods described above has been made in an
analysis of the C 1II line strengths (in the ultraviolet, visible, and infrared)
observed in the WC & star > Vel (139). In this work, independent estimatcs
could be made of the parametersr,, T,, R,andu(R). Thevaluesof T,, n,.
and n(C™ ") were determined by fitting the observed equivalent widths for
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10 lines to theoretical widths obtained from equation {14-92), using occupa-
tion numbers from a model atom consisting of the lowest 14 terms of C* .
Transitions to higher levels and to the continuum were ignored; this com-
promises somewhat the accuracy of the upper-state populations. Good
agreement with observations was obtained for

T, =22000°K, n,=4x 10"cem 3 and a(C**)=1 x 10°cm™3

[having adopted T, = 30,000°K, (R/r,) = 3.6, and o(R) = 900 km s~ '].
The lowest four excited states are found to have a Boltzmannian distribution
relative to the ground state, while the higher levels are underpopulated.
Assuming that o/l the carbon is in the form C**, and that all the electrons
come from hydrogen, a lower bound is found for the ratio n(C)/n(H}—namely,
2.5 x 1072, This value exceeds the normal cosmic abundance by a factor of
8, and suggests that the carbon abundance in WC stars 1s indeed enhanced,
and that the prominence of the carbon lines in the spectrum is a result of this
enhancement. Allowing for other ions of carbon and for electrons from other
sources {e.g., He) would raise the lower limit mentioned above. For y* Vel,
T, < T,, which does not present a compelling argument for nonradiative
energy deposition, and even offers the possibility that the envelope may be
in radiative equilibrium.

14-3  The Transfer Equation in the Fluid Frame

The formulations of the transfer equation discussed in the preceeding sections
of this chapter are all based in the stationary frame of the observer, who views
the stellar material as moving. As we have seen, the complication in this
approach is that the opacity and emissivity of the material become angle-
dependent, owing to the effects of Doppler shifts and aberration of light.
There results an inextricable coupling between angle and frequency that
presents severe difficulties in the calculation of scattering terms with a discrete
quadrature sum. It then becomes attractive to treat the transfer problem in
a frame comoving with the fluid.

There are two strong motivations for working in the moving frame of the
material. (1) From the point of view of the transfer equation itself, there is
the advantage that both the opacity and the emissivity are isotropic in the
comoving frame. Further, in problems involving partial redistribution effects,
we may use the standard static redistribution functions. In addition, in the
calculation of scattering integrals we need consider only a frequency band-
width broad enough to contain fully the line profile; this bandwidth is
independent of the fluid velocity. Finally, the angle quadrature may be chosen
on the basis of the angular distribution of the radiation alone.  (2) Dynamical
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calculations in spherical flows (2.g., pulsation, expansion) can be handled
accurately in a Lagrangian coordinate system (i.¢., the comoving frame). The
Lagrangian equations of gas dynamics are easy to formulate, and offer many
physical-and computational advantages. Obviously it is desirable to be able
to treat the radiation field in a closely parallel way. On the other hand, a
disadvantage of the comoving-frame formulation is that present methods
of solution work only for relatively simple velocity fields; otherwise it be-
comes too difficult to pose boundary conditions on the problem (cf. Exercise
14-12 below).

In the comoving frame we shall develop both (1} the monochromatic
equation of transfer, used for calculating, c.g., line profiles, and (2) fre-
quency-integrated moment equations, which specify the total radiative contri-
butions to the energy, momentum, and pressure of the gas-plus-radiation
fluid.

To obtain expressions describing how the selevant physical variables
change between the rest and the comoving frames, Lorentz transformations
are applied. Here we encounter a problem: strictly speaking, a Lorentz
transformation applics only when the velocity v of one frame relative to the
other is uniform and constant. But In stellar atmospheres we are concerned
with situations where v = v{r, t), and hence the fluid frame is not an inertial

Jframe. We must then imagine transformations taking place from uniformly-

moving frames that instantaneously coincide with the moving fluid. Actually,
the difficulty just mentioned introduces considerable complication into the
analysis. It is easy to show that the form of the transfer equation is the same

in two uniformly moving frames (ie., the transfer equation is covariant),

providing we account for the effects of Doppler shifis and aberration of
photons when we calculate atomic properties. Further, it is straightforward to
derive the behavior under transformation of the atomic properties them-
selves. But for unsteady or steady differential flows, new terms appear in the
equations that account, in effect, for changes in the Lorentz transformation
from one point in the medium to another; these terms can be derived by
application of the differential operator {¢~! ¢/dr + n-V) in the transfer
equation to the transformation coefficient of the specific intensity.

THE LOCAL FREQUENCY TRANSFORMATION

Before discussing the details of transformation of the physical variables
in the transfer equation, it is worthwhile to extract the essential physical
flaver of the problem in simplest possible terms. A velocity field produces a
Doppler shift and aberration of photons, and gives rise to advection terms
describing the “sweeping up” of radiation by the moving fluid. Formally, these
terms are all of order {(v/¢). However, in the case of line-profiles, the effect
of a frequency shift Av becomes important not when Av/y = v/c is significant,
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but rather when Av/Avy = (v/v,,) is significant {L.e., of order unity); in gssence,
velocity-field Doppler effects are amplified a factor of (¢/vy,) by the swift
variation of the line profile with frequency. To a first approximation, then,
it is sufficient to consider only Doppler shifts and to ignore aberration and

advection. -
If v is a frequency seen in the observer's frame, then vo = v(1 — pv/c) is

the corresponding comoving-frame frequency. The differential operator

1{¢/3z) in the observer’s frame (for a time-independent, planar atmosphere)
is evaluated at constant frequency v; but if we move a distance Az, holding v
fixed, vy = vo(v, 2} will change because v changes. Thus (¢/dz), — (9/¢2),, +

(Ovo/D2)(8/EV0),,. Clearly (vo/dz), = —(voio/CHév/dz), to order (v/c). Substi-

tuting into the transfer equation we thus obtain
liu[a‘ro(zn Has "0]/6‘2] - [(MOZVO/C)@U/(?'Z)] [6‘10(2, Has 1’0)/5"0]
= 1°(z, vo) — 1°(z, vol °(z, jto» o) (14-99)

The corresponding result for spherical gcometry is

9y — ) e ) o {In v
uoﬂ-—(]’#o’%] P et A (]’!LO’--}‘ﬂ(L"—b) [(l — 1o?) + o’ (ﬁ ﬂ

or ¥ ALty cr dlnr

. '
o LN _ s ) 00,3 s ) (14-100)
Yo

Exercise 14-8: Derive equation (14-100,

Several points should be noticed about equations (14-99) and (14-100).
(1) The variables 1, g, and v are now all in the comoving frame, and in that
frame y and # are isotropic. {(2) Tt is clear that any scattering terms nf:ed
be evaluated only on a (small) definite range of vo.  (3) The transfer equation
is now a partial differential equation. The frequency derivative accounts
for the change, with position, of a given photon frequency vq in the comoving
frame, as seen by an external observer—or, equivalently, for the frequency
shift of photons as seen in the comoving frame. In particular, suppose the
atmosphere is expanding so that dv/dz {or dv/dr} 1s greater than zero; we
then see that photons arc always systematically redshifted as they transfer
from one point in the atmosphere to another, as expected intuitively. Note
that in planar geometry only velocity gradients matter; in spherical geometry
4 net effect occurs even when o(r) = constant, because divergence of the
rays still implies a transverse velocity gradient in this case. (4) From a
mathematical point of view, equations (14-99) and (14-100) yield a hyperbolic
system of equations [cf. (181, Chap. 5; 330, Chaps. 9 and 12; 462, Chap. 4],
and pose an initial-boundary-value problem requiring boundary condirior_m
in the spatial coordinate and initial conditions in frequency to effect their
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solution. We shall discuss a numerical method for solving these equations
below.

Equations (14-99) and (14-100) contain all the essential physics of the
transfer problem, but there are additional angle-dependent terms that have
been omitted by our neglect of aberration and advection; to obtain these
terms (which are important for the fluid equations), we must now develop
the transformation properties of the relevant variables.

LORENTZ TRANSFORMATION OF THE TRANSFER EQUATION

We consider here transiormations between the rest system, specified by
the four coordinates (x*, x%, x* x" = (x, y, z ict), and the fluid system
(Xgs ¥a» Zos iCto), moving relative to the rest system with a constant velocity v
in the z-direction. This choice for v is the one most physically important to
our work, and simplifies the calculation; generalizations for an arbitrary
orientation of v are given in (621). Changes from one system to the other
are effected by means of a Lorentz transformation, which corresponds to a
proper rotation in four-dimensional space-time. Physically the Lorentz trans-
formation is chosen in such a way that the equation for the wavefront of a
light wave is of the same form (covariant) in both systems (i.e., such that the
velocity of light is always =c in both reference frames).

The mathematical form of the transformation is x,* = Lﬁ“x“ (o=1,...,4)
where the Einstein convention of summing over repeated indices is employed.
The transformation can be represented [cf, e.g, (392, 29; 253, 191)] by
the matrix

10 o 0
01 0 0

L= 14-101
00y i (14-100)
0 0 ~ify vy

where y = (I — v*/c?)"% and § = (v/c). Note that L is Hermitian; ie.,
L = L7 where “t” denotes the adjoint (ie., conjugate transpose). Note also
that L™ = LY where “T” denotes the ordinary transpose. In matrix notation,
xp = Lx, where x, and x are column veciors, Clearly x = L™ 1x, = L'x;
equivalently, x* = (L™ )"

The Lorentz transformation can be applied to arbitrary four-vectors and
to four-tensors of rank two. The transformation rules of tensor analysis
assure that these quantities are covariant under the Lorentz transformation
(because it is a proper rotation in four space); hence physical laws written
in terms of four-vectors and four-tensors are automatically covariant. The
transformation of an arbitrary contravariant four-vector A [e.g., a space-time
increment (Ax, Ay, Az, icAf)T] is defined such that A% = (dx,%/dx") A% =
Lﬁ“Aﬂ, or, in matrix notation, A; = LA, A = L™!A,. The transformation
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of a covariant four-vector B (e.g., the gradient operator [d/dx, &/éy, 0/dz,
(ic)"* &/ér]") is defined such that (Bg), = (6xP[0xo") By = (L™"),” B;—which,
in matrix notation, is equivalent to B," = B'L™! or, transposing, By =
(L"*)'B = LB;also,B = L~ 1B,. Finally, the transformation of C*, a con-
{ravariant tensor of rank two, is defined such that Cy* = L *L,C?, which (in
matrix notation) is equivalent to C; = LCL" = LCL ! (ie., the transfor-
mation is a similarity transformation); also we have C = L'CoL = L™'CoL..
(Note: The word covariant describing the four-vector B is used in a
different sense from that used two sentences earlier in relation to physical
faws, where it meant “of the same form”; this double meaning, however
deplorable, is standard usage.) .
Equipped with the transformation rules given above, we can now derrve
4 number of important results. First, applying the transformation to the
coordinates themselves it is easy to show that the measurement of intervals
perpendicular to the z-axis is unaffected by the relative motion of the two
frames—i.e., Ax, = Ax and Ay, = Ay. But an object of length Az at rest
in the fixed frame will be measured by an observer in the moving frame to

have a length
Azy = v 1Az (14-102a)

This result is the celebrated Lorentz~Fitzgerald contraction effect. Likewise a
time-interval At measured in the fixed frame will be measured by an observer

in the moving frame to be
Aty = 7 At (14-102b)

This is the time-dilation effect. From these results we conclude that a space-
time volume element is invariant; ie.,

AV dt = dV, di, (14-103)

a result we shall use repeatedly below. Next, applying the Lorentz trans-
formation to the four-gradient (a covariant vector), we obtain

T

d 0 13 a 0 é fay v{?a e d
ox’ 8y ézicdr) on’éyo") dzq € Oty) ic\Clp dzg

(14-104)

Let us now turn to the fransformation of the radiation field and transfer-
related variables [further discussion can be found in (521; 551; 621)]. For
any particle, the four-momentum is P* = (p,, p,, P iE/c)", where p; is the
jth component of the ordinary momentum, and E is the total energy of the
particle. If the particle has rest mass m, then pret 4+ (mge?)? = E?, where
p? =p.2 + p,? + p.”. Photonshavem, = Oand E = v, hencep = hv/c, and

P* = (vjo)(ny, ny, m, F = (hv/e)n, i) (14-105)
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Here n is the direction of photon propagation, and (1, n,, n,) = (sin 6 cos @,

sin & sin b, cos ). Applying a Lorentz transformaiion to equation (14-105)
we find '

(v_onxo, von,*s voit,%, ivo) = [vag, vir, vp(n, — B), ivp(l — n8)]  (14-106)

which 1s equivalent to

(o (1 — 16?5 ptos vo
= [¢;y7 (1 — @/ — pf)s(u — B — uh;vy(l — pP)] (14-107)

The inverse transformation gives

[(L— p®v] = [p M — o™V + poP; (o + B + o) var(1 + pof)]
(14-108)

Equations (14-106) through (14-108) contain the familiar results for Doppler-
shift and aberration; the classical results can be derived by keeping only
terms of O{v/e), (i.e, by setting y = 1). From equations (14-107) and {14-108),
it is easily seen that dvq = (vo/v) dv and du, = (v/vy)? du; hence, using
dep = sin 8 df d¢p = du dg, we find

vdvda = vy dvg dwyg {14-109)

To establish the transformation properties of the specific intensity we
calculate (621) the number of photons passing through an area dS oriented
perpendicular to the z-axis, in frequency interval dv, into solid angle deo,
propagating at angle 0 = cos™ ' u to the z-axis, in a time dt. We supposc
that ¢S is stationary in the rest frame; then N = [I{g, vi/hv] dov dv dS cos 8 dt.
This must be the same number that would be counted passing through the
same surface element by an observer in the comoving frame, namely
No = [T%(1tgs o) hvy ] dwg dvg x (dS cos 8y diy + ¢~ dS v dty); here the first
term gives the number that would have been counted if dS had been stationary
in the comoving frame, and the second gives the density of photons (I°/hv,c)
times the volume {dS v dz,) swept out by dS in a time dt,,. Using equations
(14-102), (14-108), and (14-109), we find

I, v) = (0/volI(po, vo) (14-110)

Next, consider the emissivity. The sumber of photons emitted from a given
volume, into a specified solid angle and frequency-interval, in a definite
time interval, must be the same in both frames, hence

(n, dov dv AV dt)fhv = (n,° devg dvg dV, dig)/hvg,

which implies that
i v = (v/vo)*n°(vo) (14-111)
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{where we have noted explicitly that 5 is isotropic in the fluid frame). To be
able to establish energy balance in any frame, we must be able 1o balance
emission losses with absorptions; hence, from equations {14-110) and

(14-111), we conclude that
2 v) = (/M2 (o) (14-112)

Finally, between two frames moving uniformly with xespect to one another,
the differential operator in the transfer equation transforms, using equation

{14-104) and (14-106), to
¢ Y@J3t) + (n+ V) = (vo/)[e T HO/0t) + (- V] (14-113)

We can now show that the transfer equation is, in fact, covariant, for we see
from equations (14-110) through (14-113) that

"Y1 4 (0 W, =, — 1y (14-114a)
fransforms to

(ol @/0t) + (- VOII/v0)* [N pto, vo)]
= (el [n°(ve) = 10} (1o o]

which, if (v/ve) is @ constant—as it will be if the two frames are in uniform
motion with respect to one another (and only then)—can be wriiten as

[e 1(8/6tg) + @° - YOIk, vo) = n°(vo) = 7o) o, vo)  (14-114b)

Obviously equations (14-114a) and {14-114b) are of the same Sform. Two
points must be stressed.  (a) Despite the similz‘ir f(?rm of the two equgtlons,
equation {14-114b) (at rest relative to the fluid) is actually. much s1mpler
because of the isotropy of 7°(vs) and 7%(vo).  (b) The reduction of equation
(14-114a) to equation (14-114b) is not valid if the n.va frames do not move
uniformly with respect to each other; ie., this equation does not apply in,
say, an expanding of pulsating atmosphere. . ' ‘

One approach to coping with the shortcomn.lg mentioned above is to‘legve
the streaming terms described by the differential operator, and tﬁhe radlatm_)n
field itself, in the observer’s frame, but to use first-order expansions to write
the source-sink terms in the comoving frame (521, Chap. 6). Thus, using
equations (14-111), {14-112), and (14-107) we can write

[~ 4a/an) + (n- V) (g, v) = n°0) = 20 v)
F (- v/ 20°0) — vian®/av) + 00 + v@g en]i(e vy (14-115)

This approach may be adequate for continud, where the frequency derivati;«es
are well defined and nearly constant, but will not be accurate enough for fines
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where the changes in #, and y, are so swift that a first-order expansion is not
sufficient. A complication in application of equation (14-115) is that both
even and odd terms in y appear on the righthand side, so that the usual
reduction te a second-order transfer cquation is not possible; a satisfactory
numerical scheme can, nevertheless, be devised using a staggered mesh
[see, e.g., (460)].

TRANSFORMATION OF MOMENTS OF THE RADIATION FIELD

The total energy density, energy flux, and radiation pressure in the field
are specified by the frequency-integrated quantitics [ cf. equations (1-7), (1-19),
(1-28)]

Eelr. = [ dvsﬁ.stw om, v, 1) {14-116a)
7= [’ dvgﬁdm I, n, v, On (14-116b)
and Py =c [ dvgidco I(r, 0, v, )nn (14-1160)

These are related by the frequency-integrated moment equations [cf. equa-
tions (2-73) and (2-68)]

6—2((')57'/&) T V-P=¢c"! JA: dv é dolnir, v, 1) — xr, v, OI(r, v, t}]n

{14-117a)
and

(@nfo) + V-7 = " dv §§ doo[n(r, v ) — 70 v, 1(r, v, 0] (14-117b)

As written, equations (14-117) are alrcady covariant. One way this may
easily be seen is to exploit the results of electromagnetic theory in which one
finds [see, e.g., {331, Chap. 12; 386, Chap. 4; or 494, Chap. 21)] that the
momentum-energy conservation laws of electrodynamics can be written in
the covariant form

0T oyt = —f* (14-118)

Here T is the stress-energy tensor of the electromagnetic field, and f* is
a four-vector giving, per unit volume, the three components of the Lorentz
forces of the field on charged matter, and (i/¢) times the rate of work done
by the field on charges and currents. The stress-energy tensor is a contra-
variant four-tensor of rank two, namely

~-™ 4G
T= 14-119
(icG ) ( )
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where T is the Maxwell stress tensor (cf. §1-5), G is the momentum density,
and W is the energy density of the field.

We have seen in Chapter 1 that a one-to-one correspondence between |

electromagnetic field quantities and moments of the radiation field can be
made; specifically, ™ = —P, G = ¢™°#, and W = Ep. We thus conclude
that the stress-energy tensor of the radiation field must be

p N B fdv@dco Inn chivggciw In
R={, .. g = (
S #F i if(ivsf)da) In wj‘civggdmf

We can se¢ by inspection that R is actually a four-tensor merely by noting
that it is formed from the outer product of the four-vector (v, iv) [recall
equation (14-105)] with itself, times the invariant I see equations (14-109) and
(14-110¥] (I dv dew/v?), integrated over all angles and frequencies. Similarly,
the Lorentz force can be identified with the rate at which momentum 1s
transferred from radiation to matter, and the rate of work with the rate of
energy input of the radiation into the matter. Thus we conclude that we can

write
gy — ¢! Udv 99 de (T — ), ifcivSBdcu (ol ~ }7)} (14-121)

as a four-vector. This can again be seen to be the case, for gg is composed of
the four-vector (vm, iv) times the invariants (I dv dew)/v or (i dv dw)/v. The
four-divergence of a four-tensor is automatically a four-vector, hence

14-120)

OR*oxP = —gp* (14-122)

is, in fact, a covariant representation of the conservation relations for the
radiation field. One can see immediately that equation (14-122) produces
equations (14-117a) and (14-117b), when the latter is multiplied by (- ic), and
that these cquations are, therefore, covariant between frames MOoving umi-
formly with respect to one another; for nonuniform motion, additional terms
will appear in the comoving-frame moment equations.

In working with the equations of radiation hydrodynamics (§15-3), it will
be useful to have transformations accurate to O(v/c) of Ex, &, and P (or,
equivalently, J, H, and K) between the fixed and comoving frames. These
are most easily obtained by using equations {14-109), (14-110), and (14-107),
and expanding to first order in {v/c). Thus, setting y = 1, we find readily that
L0 dvy dwg = (vp/vP 1, dv do = (1 = 2], dv dw, from which it [ollows
that

J?=J — 2BH (14-123a)

Similarly, I,%0 dvg deorg = (u— BH1 — ) dvdeo = Tp— (1 + L dv (?m,
and 1,%,> dv, dog = (0 — BP1 dvdo = (0 = 2uf)I, dv dw, from which
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it follows that
H = H - (J + K) (14-123b)
and K=K — 28H (14-123¢)
The inverse transformations yield
(J, H K) = [J° + 2pH°, H° + BUJ° + K°), K® + 2BH"] (14-124)

Notice that these transformations are valid only for the frequency-integrated
moments,

Exercise 14-9: Derive equalions (14-123) and {14-124) by applying a Lorentz
transformation to the stress-energy tensor [equation {14-120)] and expanding the
result to O(p/c}.

THE COMOVING-FRAME EQUATION OF TRANSFER

The full transformation of the equation of transfer {including the diffet-
ential operator) for a2 nonuniform velocity field can be done rigorously using
covariant differentiation (399; 135; 278); however this approach requires
considerable familiarity with tensor calculus. We shall instead use a simple
first-order expansion method that yields results correct to O(v/c}. The equa-
tions of transfer that we consider are (in planar and spherical geometry,
respectively)

[e™ ' @/00) + p(@/en][v/ve)*1°(ro, pos vo, to)]

= (v/voP[1°e) — 2°o)I%(ro, o, vo, £0)] (14-125a)
and [e™'(6/60) + u(@/or) + (1 — iR tor Yor )]

= (vvoP[n(va) — x°(vo)I %o, tios o, Lp)]  (14-125D)

We consider one-dimensional flows, and apply a local Lorentz transforma-
tion to a frame that instantaneously coincides with the moving fluid. We shall
ignore terms of O(v?/c?), and sct y = 1. We then have

P =71 {14-126a)

Cfo(T', t)

ct — ¢! fo o(, 1) di’ (14-126b)

Equation (14-126a) states that space increments will be judged to be the same
by observers in both frames (i.e., no Lorentz contraction). Equation (14-126b)
accounts for the finite propagation velocity of light and accounts for the
classical retardation effect. [ The significance of this term can be understood
more fully by the following thought-experiment. Suppose clocks at a number
of stations around some point r, in the rest frame are initially synchronized.
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Then suppose that ai some fime , all these stations simultancously emit
pulses of light received by (a) an observer at restat ry, and (b) an observer at
r, moving with velocity v. Observer (a) will receive the pulses synchronously,
while observer (b) receives pulses from directions r > r, sooner than from
r < r;. He thus concludes that the emission times (ro) were earlier forr > r;
than for # < ry, as is shown by equation (14-126b) (for simplicity consider
the case of v = constant).} The vetardation effect is, in one sense, not a
relativistic term, but merely acknowledges a finite light-propagation speed;

its significance from a relativistic viewpoint is, of course, profound.
To evaluate the derivatives in equations (14-125) the chain rule is applied.

0 é org il Bitg ]
“J=1— = | == — 4= —
ar O J vt O Jywt O O Jyw Gito
dv 0 ot 8
Yy () 4 (14127a)
Or Jum 0o Or Jum Otg
5 - 57 B a-"o 6 + (6#0 6
61”' - 51”‘ vt alu it arO \alu' rvl a.u()
av 0 ot ]
+ = L2y = (14-127b)
EM rvi 6‘vO a;u (353 OtO
A _ {tro é N g o
at)  \@thu  \ @ OFg Bt e Ot
av 0 Ot é
+ (TO) — + (TO) — (14-127¢)
Gt Fuv (/VO ot rav Gro

We use the first-order expressions (v/vo) = U+ Bug, (vo/vy=1- fu
bo = (1 — P — Bt and p = (o + PUL + fug) ', and make the
additional approximation that fluid accelerations (which are identically
zero for steady flow) are so small that the change in any velocity during the
time of a photon flight, over a mean-free-path, is negligible compared 10
the velocity itself. We then neglect (fv/1) and derivatives of the form (Gx/01)
for xo = Fo. to, OF vy, and retain only (81,/01) = 1. The remaining coefficients
in equations (14-127), to O(/c), are easily derived from equations (14-126)
and the first-order relations written above. One finds

5 - . - "
(T) (o Hon Vor fo) = [, ¢~ Hg” — 1{Gv/dro), —¢ Lpgvo(dv/dro), — B/c]
vt

Gr

(14-128a)

(;ﬂ) (Fo» g Vo» fo) = [0 41 + 2ueB), —vof, 0] (14-128b)
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Starting with equation (14-125a), rewritten with the approximation
mentioned above as

fvfvolle™ /a0 + plfen] + 3uf d(vfve)/er H (rg, tos Yas L)
= 1%, — ZO("O)IG(J"Oa Has Vo Lo)s

substituting from equations (14-127) and {14-128) and the first-order ex-
pressions for (v/v,). elc, and retaining only terms of first-order in {v/c),
one obtains:

18 N\ & polpet — vy @
T 4+ - povt0 A T
‘:C ato (HD C) 51‘0 + C 6?'0 5#0

\ 2 ] 2 2

Voo™ [ €0\ O 3ug”  Ov o

J— P - [ 1= [
e (arﬂ) Bvo + ¢ \org I¥(ro, to, Voo o)

= n(ve) — ZO(VO)IO("o: Has Vo» Lo) (14-129}

For spherical geometry we have the additional term

(o) (1 — pA0@em(v/vo)* ]
= (pv)r 11 — phHErfon + 3 (L — iAo/ voloul 1
Again expanding to first order in {(p/c), and using the result from equation

(14-107) that v¥(} — u%) = o1 — pp?), and also [(v/vo)/du] = (v/c), we
obtain for these additional terms

f'0_1(1 - #02){[(1 + Buold/ouo) — ﬁ"o(ﬁ/a“o)] + 3ﬁ}10

Thus the comoving-frame transfer equation to order O(z/c) in spherical
geometry is

1@ vy 0 (1 — o) LigU dinv 3
- b I L I B B Erewantl B =
{c Oty + (MO " c) arg o N ¢ dlnry/ | CUg
Vol dinv é
S Al I I RS i
(cr'()) [ o ( dlIn rO)} &vo
3v dlnv
(LTO) [1 — o’ (1 - d—ln—f;)}} 1%(ro, fos Yo» Lo)

= 7%ve) — 720l (ro, tigs You fo) (14-130)

Exercise 14-10;  Verily equations (14-129) and (14-130) in detail.




502 Radiative Transfer in Moving Atmospheres

Equations (14-129) and (14-130} are the comoving-frame equations in-
cluding all terms of O{v/c), and were first derived consistently by Castor (135).
The time-derivative written in these equations is, in essence, still in the fixed
frame (though it allows for retardation); the Lagrangian time derivative,
which follows the motion of a fluid element (cf. §15-1) consists of the two
terms (D/Di) = (6/d1) + (v/c)(8/0r), the second term being the advection
term. For steady flows, the terms in (&/6t) are identically zero. The equations
just derived are obviously fairly complicated. As we shall see, it is important
to retain all of the terms in the moment equations. However, for a solution
of the transfer eguation itsell, it is sufficient for most astrophysical flows
[as verified by a detailed calculation (446)] to retain only the frequency-
derivative terms because of the effective amplification of these terms by
(¢/vy), as discussed earlier. In this limit, equation (14-129) for steady flow
reduces to equation (14-99), while equation (14-130} reduces to (14-100). We
shall describe a numerical method for solving equation (14-100) in the next
subsection.

For problems of radiative transfer invelving partial redistribution, it is
useful to derive frequency-dependent moment equations from equations
{14-129) and (14-130). For spherical geometry we obtain

ag,° aJ.° 1 arH? ; 1 3
1000 vl LA (b)(”f ~ K9+ (0 + K%
ot ¢ or P or cr ¢
d 1/2v  av\ 0(voK,°
+ (U) — [‘}0(3‘1{1‘0 o Jvo]] - (L + ;) O(VE ¥ )
CFj Gvg ¢ ¥ or Vg
= 7%vo) — %°(vo}J,° (14-131a)

for the zero-order moment, and for the first-order moment

aH.° ; ) SR | 2 6
L O R ke 00+ 2 (P YAy
¢ o ¢ ar ar r c\r  or
N {20 &\ 2(voN,°
+ () O L3N — B9 — (—” n ﬁ) COON.) g2
cr/ dvy c\r or Evg
(14-131b)
oLt 3
where N =3 ) T oy v, Dito” dutg (14-132)

and, for brevity, we have written J,° = J%r, vy, 1), etc., and suppressed the
suffix “0” on r and t. Again, for practical transfer calculations with steady

14-3  The Transfer Equation in the Fluid Frame 503

fiow, it is sufficient to replace equations (14-131a) and {14-131b) with
2P HOy o] — a6, — K.2ovy + BEK,f2ve)] = 1°0) — 7%rg)J.°
' (14-133a)

and  (@K.%&r) + 7 H3K.0 — 0.9 — a[o(H,° — N,%dvy + bEN,%/dv,)]
= —3"(vg)H," (14-133b)

where a = (vov/eriand b = (d In v/d In #) [sce @447)].

For problems of radiation hydrodynamics we require the frequency-
integrated moment equations, which follow immediately from equations
(14-131):

(CER/21) + v(CERYar + 1 2[e(2F OYor]
T+ WNBERS ~ pe®) + @o/eE + pa’)
= dn [ [°v0) — £l 2 vy (14-134)
ATl + 0/ PNOFOfer + (@pe/in) + Gpa® — Ex)r

+ 2o/t + (dInyidinn]F® = —¢71 JML

0

(o) dvy  {14-134D)

where Ex° = (dn/c) [ J%vo) dvy = (4m/c)J® and pp° = (4n/c)KC. In planar
geometry, equations completely analogeus to (14-131) through (14-134) can
also be written down, Equations (14-134) contain additional velocity-
dependent terms on the lefthand side compared to their counterparts [cf.
equations (14-117)] in the fixed frame. But this is more than adequately
compensated by the tremendous simplification of the righthand side, where
the isotropy of the opacity and emissivity in the comoving frame allows the
integrals to be expressed in terms of the moments themselves, instead of as
double integrals over the specific intensity. The only question remaining to
be faced is: “How do we actually solve the comoving-frame transfer equation
for I%(r, 1y, vo) and its moments?” '

SOLUTION FOR SPHERICALLY SYMMETRIC FLOWS

Let us now consider metheds for solving the comoving-frame transfer
equations in the limit that only Doppler shifts are taken into account—1e.,
equations of the form of {14-99) and (14-100). As was mentioned carlier,
the transfer equation in the comoving frame is a partial differential equation,
which was first obtained by McCrea and Mitra (414). Chandrasekhar (156;
157) obtained solutions of these equations for planar geometry, with a linear
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velocity law, a two-stream description of the radiation ﬁ§id, gnd strictly
coherent scattering; generalizations of this approach are given in (1; 2: 3;‘
276, 199). Lucy (403} solved the equations in planar geometry, wit'h cc_)herent
scattering, in the high-velocity limit, by ignoring the Spa.tiai derivative and
treating the equation as an ordinary differential equation in frequency algne.
An integral-equation method for planar geometries has also b_een devised
(574); this method is restricted to linear velocity la_ws and hence is not useful
for realistic models. A general and flexible numerical method developed by
Noerdlinger and Rybicki (478) solves the equations in planar geometry usipg
a Feautrier-type elimination scheme; this method can treat‘problems n-
volving partial redistribution. In a ray-by-ray solution for spherical geom;try,
the number of angles must be of the same order as the number of depth~p01nt_s,
and a Feautrier-type solution becomes costly. If complete redistribution is
assumed, we can construct an efficient Rybicki-type solution (444), as will
be described here: for partial redistribution we use moment equations [e.g.,
equations (14-133)], thereby eliminating the angle-variable, in which case
a Feautrier-type solution again becomes practical (447). ‘ .
In spherical geometry we adopt the {p, 2) coordinate.systcm introduced in
§7-6. Then, along a ray specified by constant p, equation (14-100) becomes

oI5z, p, vyéz] — Tz P12, p, vWav] = nir, v) — 7 vz p, v)
(14-135)
where F(z, p) = [ve(rier][] — p*(d1n v/d In r)] (14-136)

and r = (p> + 2% p = (z/r). In equations (14-135) and (1{1—136) we have
suppressed the suffix “07 for notational simplicity (and continue to -do $0
henceforth in this chapter), but it is to be stressed that all quantities are
evaluated in the comoving frame. Now introducing the optical depth along

the ray, dz(z, p, v) = —y(z, p, v) dz, and the variables
1 _
u(z, p,v) = 3 [I*(z, p,v) + I (2, p, V)] (14-137)
1 _
and vz, p,v) = 5 [z, p.v) — I {z, p, )] {14-138)

we can obtain from equation (14-135) the system
[oulz, p, v)/ér(z, p, V)] + 7z p, V[ @v(z, p, v)év] = viz p,v) (14-139)

and  [8u(z, p, v)fdt(z, p,v)] + 2z ps v dulz, p, vijavl = ulz, p,v) — S(z, p.v)
(14-140)
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where y(z, p, v) = Wz, p)/¥(z, p, v}, and the source function is assumed to have
the form for an equivalent-two-level-atom with complete redistribution—i.e.,
S(z, p,v) = S[r(z, p),v] = alr, v)J(¥) + B(r). The coefficients « and § contain
the thermalization parameter ¢, the opacity ratio y./y, and the profile
function, while

Jr) = J‘: dv ¢(v) J: dpul 2(r, 1), plr, ), v] (14-141)
In equation (14-141), v, and v,,, are chosen to contain the whole lne
profile as seen in the comoving frame. Note particularly in equations (14-137)
and (14-138) that, because we are working in the comoving frame, we can now
average I™ and I~ at a given value of v, in contrast to the situation in an
observer’s-frame formulation [ cf. equations (14-23) and (14-24)].

Spatial boundary conditions are now required: At the outer radius r = R
I~ = 0; therefore u = », hence

[Su(z, p, v)/0T(z, p, Voo + Wemae Py VI [(Zmags Po VWV] = ulz, ., p V)
{14-142)

At the plane of symmetry z = 0, we can now write o{0, p, v) = 0, hence for
rays that do not intersect the core,

[Gu(z, p, v)/ét(z, p, v)].oo = 0 (14-143)

For rays that intersect the core (e, p < r.) we (a) apply the diffusion
approximation for an opaque core (stellar surface), which specifies v, or
(b} set v = 0 (by symmetry) for a hollow core (nebular case).

In addition, an initial condition in frequency is required. For an expanding
atmosphere [ie, one in which v > 0 and (dv/dr) > 0], it is obvious that
the high-frequency edge of the line profile (in the comoving frame) cannot
intercept line photons from any other point in the atmosphere, because
they will all be systematically red-shifted; any photon incident at the high-
frequency edge must be a continuum photon. To specify the required initial
condition we may therefore either (a) solve equations (14-139) and (14-140)
in the continuum, omitting the frequency-derivative terms (which vields the
standard second-order system) to obtain u(z, p, v,...) = ey umuams OF (D) fix
the derivative (6u/év),, to any prespecified value given by the slope of the
continuum; in particular, the choice (éu/dv) = 0 leads to equations identical
to option (a) just mentioned.

The system is now discretized using the same grids {r,}, {p;}, {z,} as
were employed in §7-6 and §14-1. We now choose the frequency grid {v,}
{n =1,..., N)in order of decreasing values (v, > v, > -+ > vy} because
the initial condition is posed at the highest frequency. We replace equation
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(14-141) with a quadrature sum

n=1 i

N Ia .
j(rd) - z Wy Z adi(f)(ra‘b vn)u[z(r(b pi): Pis 1’”] {] 4_144)
=1

Equations (14-139) and (14-140) are replaced with difference approximations

— Uy AT 4 in = Vit in + Od+—5.i,u—%(0d+‘i, i T/a+5,s,n-1)

(14-145)

(ud+ 1,in

and (yd+"—. i T Va-g, i?!)/ATdili = Uy — Sdin + 5di, uf%(udin - udi‘ufl)
(14-146)
where u is presumed to be defined on the mesh-points z, = z(ry. p;), and

ile v 1 - ned on the interstices
gy = U(Zas Pir Vb while » is presumed to be defi MR
=d(zy + zgz4) and yrg i = v(2zaz 5, i V). Further, we have de

Lty =72
Fati.in = Yoty in + Kain) {14-147)
ATgro in = datd, inlzd — Zix 11 (14-148)
Atdin = %(ATdJr‘z.in + AT({*%_M) {14—149)
and adi.n—-ﬁ— = Vtiin/{“’,n—l - Vn) (14"150)

Similar difference equations may be written to represe.nt t-ht? boundary
conditions {@44). In equations (14-145) and {14-146), an implicit frequency
differencing is used to assure stability (444?; 462 ; 530). _

Equation (14-145) can be solved analytically for ¢4 ; i, 10 yield

1 1 > —1
Ugvg,in— {[(M¢!+ 1, Mdm)//—\'fﬁ%, m] -+ 5d+§,i,n—-gvd+5-, i,n—u/(l +‘Sd+i. in T)
(14-151)

Organizing the solution into vectors thzlt specify the depth-variation along
a particular ray at a given frequency—1<.,

Wy, = (gis Haim - - -2 U, )t (14-152a)
and Vi = (Ua s - -5 Ui 2. b (14-152b)
equation (14-151) can be written in the form

Vin = Ginuin + Hin“,n*l {14—153)
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where G is bidiagonal and H is diagonal. Equations {14-151) can be used to
eliminate v,., ;, from (14-146); we then obtain a set of second-order

equations for u,, namely
{etger,in = Uz TATG 1 0ll + Oy i u-3)]
| — Aty = Ug—1, [ ATa 3, a1 + Sy i 0= D))}/ ATa
= (1 + 5di, n—%)udin — Sy — (Sdi,nfé Hgi on—1
+ [5d*%,i,n*§(1 + 5::—%, i.n*’i)ilva’*%,i,nfl
— Ogpy in—y (1 + 5d+%,i,n—%)_lvd+%,s,n—1:|/ATdin

(14-154)
Adding the boundary conditions to equation (14-154) we obtain the system
T:'nuin + Uinui, n—1 + Vinvi, n—1 + Winj = Xin (14_]55)

where T,, is tridiagonal, U,, and W, arc diagonal, V,, is bidiagonal, and
X, is a vector.

Exercise 14-17: Verify equations (14-151) and (14-154), and sketch the forms of
the G, U, and V matrices.

To solve the complete system, we choose a definite ray, specified by a
given p,, and carry out a frequency-by-frequency integration procedure,
with n ranging from 1 to N. This is effected by noting that the initial condition
in frequency implies that U;y, V;; and H;; are all exactly zero; thus we can
obtain expressions of the form u; = A;; — B;;J and v;; = C;; — D;,J,
where A;; = T:;'X,; is a vector, B;; = T7'W,; is a matrix, C;; = Gy A,
and D;, = G;;B;,. Similar substitutions are carried out for successive values
of n, to yield

u, = A, — B, J (14-156)
and v, =C, — D,J (14-157)
where Ay = Ti X, — UyA; o — VoCimy) (14-158)
B, = T,*(W,, — U;B; .., — VD, ,_)) (14-159)
Cin = GuA, + H,C (14-160)
and D, = G;,B;,, + H;,D; ,_, (14-161)
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Each result, of the form of equation (14-156), for every frequency v,, along
every ray p;, is substituted into equation (14-144) to obtain a final system
for J of the form

(I + Z Fr’rzBin) j = Z FinAin (14-162)

i,n

where the F's contain the quadrature weights. The solution of this final
system yiclds J, and hence S(r, v), and u(z, p, v) and uv(z, p, v) from equations
{14-156) and (14-157). Knowledge of u(z, p, v) implies knowledge 0‘1“ ulr, g, vl
so it is clear that we can calculate J%(, v) and K°(r, v) in the comoving frame;
similarly we can calculate the flux H(r, v) from u(#, @, v)- T_hus we obtai1:1 a
complete solution for the radiation field and its moments in the comoving
frame. . .

The number of operations required to obtain A and B, In equation
(14-156) is proportional to D%, so summing over all frequencies on all rays
one obtains T = ¢N D + ¢ D? as an estimate of the computing tme
required. Note that this time is linear n the number of frequencies. A similar
formulation can be written down for planar gecometry; in this case we dispense
with the rays and use M fixed angles {g. In planar geometry the computil_lg
time required for the solution is Tp = ¢NM D* + ¢ D* For par-tia} redis-
tribution in spherical geometry one would use a Feautrier solution of the
moment equations (447), obtaining the Eddington factors from a ray—by-r_ay
formal solution with a given estimate of the source function. For partial
redistribution in planar geometry the method of Noerdlinger and Rybicki
(478) is applicable.

FExercise 14-12:  Consider flows with monotonic velocity fields [ie., (dv/dr) every-
where =0 ot cverywhere €0]. (a) In planar geometry show that the choice of
the initial condition in frequency is unique and depends only on the sign of (dv/dr)
[cf. (451) for a discussion of non-monotonic velocity fields]. {b) ln spherical
geometry show that unigue conditions can be found only if [v = 0, (do/dr) > 0] ot
[v < 0, (dvo/dr) < 0], and that, owing to prajection effects along a ray at the plane
of symmetry {z = 0), velocity distributions of the form [v > 0, (dv/dr) < O] or
[0 < 0, (dv/d) > 0], though monotone in the radial direction, produce non-
monotonic fields along tangent rays.

The method outlined above has been used to calculate source functions
and line profiles in idealized model atmospheres (444). Each atmospher_e is
characterized by an outer radius R (in units of r, = 1), a continuum optical
depth T, (at r = r.), a static line optical depth T, opacities y, ¢ #~* and
4. o 2, and constant Planck function B = 1. The two-level-atom thermal-
ization parameter was set to ¢ = 2/T;. The velocity field was chosen to be
either (a) dv/dz = constant, or (b) v{r) = v [tan™ Yar + b) — tan™ ' (a + .b)],
which gives a sharp rise at the point r, = —(h/a), and has constant terminal
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FKIURE 14-11

Line source functions in expanding atmospheres for various values of outer radius R
(in units of r.), and terminal velocity v, (in thermal velocity units), For all models
T.=2 T,=10°, B=1ande=2 x 1073 Abscissa: log of static line optical
depth. The dashed line gives the mcan intensily in the continuum. The curves are
labeled with v, = s(R). From (444}, by permission. '

velocity at large . Form (b) is a caricature of stellar-wind solutions. Results
for the source function in several medels are shown in Figure 14-11; for
thesemodels 7, = 10°, T.=2, r,=(R+1)/2, B=1l,ande=2 x 103,
We see that the basic effect of the velocity gradient at depth is to increase
the cscape probability; hence the source function drops below its static
value and, for large values of v, S, approaches J,, the mean intensity
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FIGURE 14-12

Line profiles (emergent fluxes integrated over the disk) from
expanding spherical atmospheres. Ordinate: fAux relalive to
continuum (ux.  Abseissa: AvjAvp. Tor all models, R = 300,
T.,=2 B=1 &= 2T, and (defdry) = — J00;T,. From
(444), by permission.

in the continuum (dashed line). Near the sutface, the enhanced escape
probability competes with interception of continuum yadiation by the
Doppler-shifted line. In planar geometries the latter effect dominates, and
produces an increase in S;; in very extended atmospheres the former effect
dominates, and S, decreases. Flux profiles, as seen by an exiernal observer,
are shown in Figure 14-12 for models with parameters specified in the
figure caption. Characteristic P-Cygni profiles are obtained with both the
emission intensity and the absorption depth increasing with increasing
optical depth.

The solution of the comoving-frame transfer equation by the method
described above is convenient, efficient, and easily generalized to realistic
stellar models. The method can also be extended to apply to multilevel
atoms, and should permit the computation of line spectra for realistic model
atoms in expanding atmospheres. Accurate theoretical spectra, when com-
pared with observation, should assist in the determination of the physical
structure of the atmospheres of stars with expanding envelopes and stellar
winds.

15

Stellar Winds

The outermost atmospheric layers of many stars are in a state of continuous
rapid expansion, and the material lost from a star in such a flow is called a
stellar wind. These winds have a wide range of properties. At one extreme
are very massive flows {mass-loss rate ~ 107% 4 5/year} that are optically
thick in spectral lines {and even in some continua) and produce emission
lines and P-Cygni profiles; at the other are relatively tenuous flows such as
that of the Sun, which is optically thin and inconsequential in terms of mass-
loss (107 1% .# o /year), but still of great importance to the solar angular
momentum balance. In Chapter 14 we discussed the problem of spectrum
formation in a given flow ; here we shall examine the dynamics of the wind and
analyze questions of momentum and energy balance. We shall find that there
are two primary mechanisms for producing stellar winds. (1} In stars with
hydrogen convection zones (such as the Sun), the outer atmosphere is a
mechanically-heated corona of very high temperature. Here we find that the
corona cannof establish a static pressure balance with the interstellar medium,
but must inevitably expand supersonically, driving the flow by tapping the
thermal energy of the gas.  (2) In early-type high-luminosity stars, the radia-
tion field is so intense that momentum imparted to the gas by photons drives
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the material in a franssonic flow. (There is also some observational evidence
that there may be a corona near the surface of these stars, and our theoretical
maodels for their winds are only preliminary.) '

Stellar winds have important implications for many astrophysical prob-
lems. In some cases, the mass-loss rate is so large as to produce a significant
change in the star’s mass on a thermonuclear-evolution time-scale, and hence
directly to affect the star’s evolution track. In other cases, the possibility of
noncatastrophic mass-loss over its entire lifetime may permit a star to
evolve to a white-dwarf configuration without becoming a supernova.
Stellar winds act as brakes on stellar rotation, and hence strongly influence
the angular momenium centent of stars. Further, stellar winds represent
important sources of mass- and energy-input into the intersteilar medium,
and thus help to determine its composition and thermodynamic state. In this
book we shall consider only winds from single, isolated, stars. Stellar winds
can alse occur in binaries, where they may induce rapid mass-exchange that
radically alters the course of stellar evolution, or, in some cases, produce
exotic objects such as X-ray sources; although space does not permit a dis-
cussion of these phenomena, the material presented here is basic to a study
of the more complex cases just mentioned, and provides a background for an
approach to the literature.

15-1 The Equations of Hydrodynamics
for an Ideal Compressible Iluid

11 this section we shall develop briefly the equations of hydrodynamics for
an ideal (nonviscous) compressible fuid, which is taken to be a perfect gas.
We shall ignore ionization effects, and assume that the material is already
essentially completely ionized. No attempt will be made to discuss the equa-
tions in great depth, as numerous excellent texts and monographs on the
subject of hydrodynamics are readily available (385; 692; 104; 490). For
expository convenience, the equations will be derived in Cartesian coordi-
nates when explicit reference to a coordinate system is required, then restated
in vector—tensor notation, and finally rewritten in spherical coordinates
(assuming spherical symmetry) for application to the stellar wind problem.

KINEMATICS

Let us first consider some of the basic kinematic properties of the fluid.
We consider the gas to consist of a mixture of particles of different species
(e.g., protons, electrons, heavy ions). Each specics k has a mass m,, and a
space and velocity distribution function fi(r, V, i), defined such that Tt dxy
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dxy dxy dVy dVs dV; gives the number of particles of type k in the volume
element (r, ¥ + dr) = [{x, x; + dxy), (X5, x5 + dx,), (X3, x5 + dx3}], with
velocities on the range '

(V,V + dVy = [(V, Vi + dV), (W, Vy + dVo), (Vs, Vs + dVy)]

at time t. The plasma is assumed to be chemically homogeneous, so that the
relative numbers of particles of different species are the same throughout the
gas. The velocity distribution is characterized physically in terms of macro-
scopic flow velocities and a microscopic thermal distribution; the [ormer
describe the aquerage motions of particles (and hence the bulk fluid motion)
asseen in a fixed laboratory frame, while the latter gives the random individual
particle motions relative to the average. We assume that the Coulomb colli-
sion rate in the plasma is so large that (a) there is no drift of any species
relative to any other, and (b) on the microscopic level there is perfect
equipartition of energy at each point, so that alf species have the same thermal
distrubtion specified by a unique temperature T(r). Further, the microscopic
velocity distribution 1s assumed to be isotropic.
The number density (cm ™) of particles of species k is given by

nylr, 1) = fi. v, fj; av, ff'm AV, fir, V, 1) (15-1)
The mass density of species k is mynfr, 1), and the total density (gm cm™?) is

p(ra l) = Z }nknk(rs t) (15_2)
k
The average velocity (i.e., the fluid-flow velocity) in the ith direction is

Vo= [T avi [ av, [7 v, fie 0w, (15-3)

As mentioned above, (V> is taken to be the same for all species, hence the
subscript may be omitted. The [ull velocity component V; of any particular
particle may now be written as ¥, = (V> + V|, where V| is the random
thermal velocity in the ith direction. Clearly {¥{> = 0. The complete fluid
velocity 1s

vlr, 1) = Vi + Vg + (Vadk

vy{r, O + o,5(r, 0] + vafr, 0k (15-4)

i

il

The motion of the (uid results in mass transport and the mass flux is given
by
Y ma KV 1+ (Vo) + (Vadk) = (Z mkn.k) v = pv (15-5)
k k
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Similarly, the particies carry momentum, and the rate of transport of the ith
component of momentum, across a surface oriented perpendicular to the
jth direction, by particles of species k, 15

Mp 0 = m [ avi 7 av, |7, dvi e v.0ny,
m, fir dv, J‘_:C dVy J‘fm dVs file, Vo i)o + Vide; + Vi)

mgnr, (e + 5V + 0V + ViV
= m(r, O + VIV (15-6)

il

I

The quantity { V¥, is the average of the ith and jth components of the
random thermal velocity, and because the thermal distribution 1s isotropic
and the individual components are uncorrelated,

<V£V}>k = <(Vi)2>k 5:',-' = (T/my) 5ij (15-7)
Hence 7‘
L = myow; + (kT o = mund; & pi 0y (15-8)
where p, is the partial pressure from species k. Summing over all species, the
total momentum flux tensor is given by

IT; = (Z mknk) v+ (Z pk> O = poiw; + p & (15-9)
4 k

where p is the total gas pressure.

Finally, there are two useful (and conceptually rather different) schemes
for describing the changes that occur in the fluid as a result of material
motions. As an external observer views the fluid, the natural description of
its properties will be to write a(x;, X, X3, 7) for any property «. The variation
of o, a