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* n order to understand the mathematical approaches used through-
. out this book, a basic knowledge of calculus is needed. Initially some
kinetic expressions will be derived. However, with some exceptions,
mathematical derivation will be kept to a minimum. Helpful inte-
grating procedures, such as the Laplace transform, must be used to
solve rate equations for complex pharmacokinetic expressions. However, the

ing of pharmacokinetics and its uses. Therefore, only minor emphasis will be
placed on derivations, and major emphasis will be placed on the meaning and
application of pharmacokinetic principles.

Drug input, elimination, and transfer between pharmacokinetic compart-
ments will be assumed to be first-order and linear. This assumption is consistent
with the modeling approach. In later chapters, departures from this general
approach will be described, but the principal arguments will be developed assum-
ing first-order, nonsaturable, and either reversible kinetics (e.g,, between spatial
compartments) or irreversible kinetics (e.g., between chemical compartments, and
also absorption and elimination).

To reiterate a comment in Chapter 1, the pharmacokinetic compartment can
be used to describe both spatial and chemical states. For example, if a drug appears
{0 distribute in a heterogeneous manner in the body so that overall drug distribution
can be described in terms of two distinct body volumes, then the concentration of
diug in these volumes and its distribution between them are described in terms of
two spatial compartments. On the other hand, if a drug forms a metabolite, particu-
larly if the metabolite 15 active, which makes it of intercst, then the metabokite is
considered to be a separate chemical compartment regardless of whether the metab-
olite occupies the same or different body fuids and tissues as the parent drug. Spa-
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tial and chemical compartments can coexist in the same kinetic model. For an
drug that is metabolized, coexistence is necessarily the case.

Consider the simplest model of all, the one-compartment open mode
Despite its associated simplifications and assumptions, this model is the mos
common for describing drug profiles in bload, plasma, serum, or urine after oral o

intramuscular doses. Following mtravenons bolus doses, an additional drug distri
bution phase is often more readily discernible. This situation will be discussed it
more detail later. In the simple one-compartment model, however, the drug it
assumed to rapidly distribute into a homogeneous fluid volume in the body
regardless of the route of administration (1, 2).

Pharmacokinetic rate constants are based on transfer of amounts of drugs
Rate constants are subsequently applied to concentration changes by dividing the
expressions by the appropriate distribution volumes, Also, on a microscopic basis,
most pharmacokinetic rate constants describe a multiplicity of events. For exam
ple, an absorption rate constant is possibly influenced by dissolution, stomach
emptying, splanchnic blood flow, and a variety of other factors. However, despite
the gross simplifications imvolved, observed rate constants describe the overall
rate-limiting process, be it absorption, distribution, metabolism, or excretion.
How much more mechanistic information can be obtained from such rate con-
stants depends on the drug and the enthusiasm and ingenuity of the investigator

The One- This model, which has been summarized by Gibaldi and Perrier (3], is depicted in

Compartment Scheme 13.1. Because of the generally heterogeneous nature of the body, and the

Open Model with  impact of this on drug distribution, this model is relatively rare. However, exam-

Bolus Intravenous  Ples in the literature include plasma concentrations of prednisolone following

Inj ection bolus intravenous administration to a kidney transplant patient (4), and of tritium
following intravenous administration of tritiated Hirulog 1 (BG 8967), a synthetic
thrombin inhibitor (5, 6).

The box, or compartment, represents the drug distribution volume, and other
values and rate constants are defined in the caption. The value k, is equal to the
sum of all elimination rate constants, including &oma
Smm example only two routes of elimination are
assumed, urinary excretion and metabolism., The curved arrow leading into the
compartment represents instantancous introduction of drug.
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m One-compartment open model with bolus intravenous injection: D is the dose, A is the

amount of drug in the body, C is the concentration of drug in body fluids, and Vis the |
drug distribution volume.




Using this model, equation 13.1 can be written in the following form.

%A;—z;{kc sk skt (13.1)

where A is the amount of drugin the body, t is time, Wﬁ—
nary excretion, and kg, is the rate constant for metabolism. Equation 13.1

describes the rate ot loss of drug from the body. This equation 18 rearranged to

dA
= qdt (13.2)

Equation 13.2, when integrated between. the limits of zero and finite time, with
the value of A varying from Ag, the initial amount of drug in the body, to some
value less than A, becomes

nA-InAy=—kgt (13.3)

The patural logarithms appear in this expression because the integral of the recip-
rocal of any single value X is equal to the natural logarithm of X. Rearrangement of

equation 13.3 yields
A
In| = |=—-kqt (13.4)
(A{,)

Ifboth sides of equation 13.4 are made a power of e, as in equation 13.5, equation
13.6 is obtained.

Ml gkt (13.5)

A X
L _egkt or A= Aog_kclt 13.6
A ( )

Fquation 13.5 converts to equation 13.6 because e to the power of the natural log-
arithm of X is equal to X {e'»X = X). This is analogous to logarithms t0 the base
10. To use a numerical example, the logarithm to the base 10 of 100 is equal t0 2,
and 102 is 100. Thus, 10 raised to the power of the logarithm of 100 is equal to
100, or 10 raised to the power of the logarithm of X is equal to X.

Equation 13.6 can be converted into concentration terms by dividing both
sides of the expression by the distribution volume, ¥ as in equation 13.7, to yield
equation 13.8.
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W Plot of logarithm of drug concentration vs. ime following intravenous bolus injection.

EMATICS, AND APPLICATIONS.
C = Cye kot {13.8)

vihere C is the concentration of drug in the body and Cq is the initial concentra-
tion of drug at zero time. Equation 13.3 can similarly be converted to concentra-
tion form as in

InC=InCy - kgt or logC=logCy- I;fg’ {13.9}

Conversion from natural logarithms to logarithms to the base 10 in equation 13.9
is obtained from the simple relationship that In X = 2.3 log X.

What information can be obtained about a drug by using some of these
expressions? From egquations 13.8 and 13.9, a plot of the logarithm of drug con-
centration against time will be linear. Logarithms to the base 10 will be used in
¢hiis hook because logarithmic graph paper is printed that way, and it is thus more
convenient.

In Figure 13.1, the slope of the line, which will be linear if the data fit the
model, gives the elimination rate constant kg, and the extrapolated intercept at
time zero gives Cy. Actually, the intercept is the logarithm of Cy, but as the actual
concentration values are plotted on semilogarithmic graph paper, the paper con-
verts actual values into logarithmic values. Actual concentration values can there-
fore be read directly from the plots.

The elimination half-life of the drug can also be obtained from the relation-
ship in equation 13.10.

_ In2 _ 0.693
% kcl kcl

(13.10}

/Intercept = Co
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Fquation 13.10 is valid for any first-order rate constant. However, instead of find-
! ing the elimination ratc constant and then calculating the half-life, obtaining

. these values in reverse order is usually morc_convenient when analyzing data
 graphically. For example, the elimination half-life can be obtained by selecting any
i time interval during which the value of C is reduced by one-half. Whichever values

* 0f C are used, the time interval for C to be reduced by one-half will be the same.
! The value of k is then obtained from equation 13.10.

" f the administered dose D is divided by the extrapolated value Co, and if the
© easonable assumption is made that all of the injected dose was absorbed, then the
| drug distribution volume is obtained from

V=" (13.11)

Aword of caution is appropriate here, During this and subsequent exercises, the
* simplifying assumption is made that drugs are not bound, or are bound to only a
. negligible extent, to plasma and tissue proteins or other macromolecules. This
assumption saves considerable time and keeps the mathematics relatively simple.
However, Wﬁam adjustments may be made to

: SMZEM—’ as described in Chapter 8.
The drug elimination half-life, overall elimination rate constant k,, and its
distribution volume have now been calculated from the data in Figure 13.1. Multi-
+ plying the distribution volume, ¥ by the elimination rate constant, kg, as in equa-
tion 13.12, vields the plasma clearance, Cl,.

Cl,=Vky (13.12)

Knowing also the renal clearance and differentiating it from other clearance
processes would be useful information. This information cannot be obtained from
plasma data alone because the information in Figure 13.1 indicates only how rap-
idly drug is leaving the body. The figure provides no information regarding the
route of elimination. However, if all the drug that is excreted in unchanged form
in the urine, A=, were collected, then the renal clearance can be obtained from

CIx_keV_k_e_ﬁ';

cl, kv kg D

(13.13)

where CI,, is the plasma clearance, CI, is the renal clearance, and Az is the total
amount of drug excreted in urine.

The renal clearance is thus related to plasma clearance in direct proportion to
the ratio of total urinary recovery of unchanged drug to the administered dose. As
discussed previously, renal clearance may be equal to or less than plasma clearance,
but never greater. That is, k, can never be greater than ky. Once k, is obtained, k;,
can be calculated simply by subtracting k. from kg, as in equation 13.14.

kp=ka—k, (13.14)
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Another useful pharmacokinetic parameter that can be obtained from intravenous

data, or from any other data for that part, is the area under the plasma level curve,
AUC.

The total area under the plasma curve, that is, the area from zero to infinite
time, is obtained mathematically by integrating the terms in equation 13.8 between
zero and infinite time. This integration, after appropriate cancellations, yields

AUCH>= = j: C=G, j: o3

Co ke o
g ke —eha) (13.15)

Go Gy
= (O - ]) T L
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Because C, can be expressed as D/ equation 13.15 can be written as equation
18.16:

D _D
RO =, (13.16)

This expression. shows that the area under the plasma curve is equal to the dose
divided by plasma clearance. Perthaps more importantly, plasma clearance can be
obtained by dividing the dose by the AUC. However, the area must be the total
area. If a truncated area is used, and this is frequently all that can be determined by
direct observation of the data, overestimation of the plasma clearance will result.
Renal clearance can also be obtained with this approach, provided urinary
recovery of unchanged drug is known. Renal clearance is readily obtained from

__ AL
Bl=ar b (13.17)

Equation 13.17 is analogous to a rearranged form of equation 13.16. Thus,
renal clearance is calculated by dividing the quantity of drug recovered in urine up
to a certain time by the area under the plasma curve up to the same time. {This
time can be infinity but need not be.] The calculation for renal clearance has the
advantage over calculation for plasma clearance in that truncated areas and partial
arine collections can be used. If the values in equation 13.17 are extrapolated to
infinity, then equation 13.18 results.

Ay

Bt (13.18)

Equation 13.8 shows that renal clearance and plasma clearance differ only in
terms of the difference between the administered dose and urinary recovery of
unchanged drug, A7
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Fquations 13.15 and 13.16 describe the area under the plasma curve following
bolus intravenous injection. In many cases, however, area values are measured
directly from the data, for example, in model-independent kinetics, and several
methods are available to do this. These include the trapezoidal rule and the log
trapezoidal rule. The simple trapezoidal rule is described here because it is most
commonly used. The trapezoidal rule is quick and accurate. The accuracy of the
method is directly related to the number of data points used in its calculation.

A trapezoid is a four-sided figure with twe sides parallel and two sides nonpar-
allel. When the length of one of the sides is reduced to zero, the trapezoid becomes
a triangle. If plasma data are plotted on regular graph paper, the area under the
plasma profile can be divided into a series of trapezoids, and the areas of the indi-
vidual trapezoids can be calculated and summed.

The data in Table 13.1 constitute a typical drug profile that might be obtained
following bolus intravenous injection of a drug that has a biological half-lifeof 1 h.
T these data are plotted on regular graph paper, and if the data points are joined by
straight lines, a series of trapezoids is obtained, terminating with a triangle for the
812 h interval. Calculating the area for each segment of the curve and cunmula-
tively adding each successive segment yield the trapezoidal area shown in the
third column of the table. In this example, the sampling time has been extended
until no detectable drug remains in the plasma. Unfortunately, this situation does
not usually occur in practice. In most cases, the plasma sampling time is not
extended for a sufficiently long period to allow plasma drug levels to decline to
zero, so that the area calculated by the trapezoidal rule is the area from time zero
to some time t when drug levels are still present. Thus, a truncated area is
obtained, as in Figure 13.2. The 4-h plasma sample still contains drug, so the total
area under the plasma level curve cannot be calculated.

The truncated area is useful for many types of calculations, but the complete
area under the curve is more useful. For example, the area from time zero to infin-
ity is required to calculate plasma clearance and total absorption and to construct
Wagner—Nelson absorption plots, which will be discussed shortly. So it is impor-
tant to be able to extend the truncated area to infinite time.

A Typical Drug Profile Following Bolus IV Injection

Time (h) Concentration (ug/mL) Cumufative AUC (ug - h/ml)

0 25.0

0.25 21.0 5.75
0.50 17.6 10.58
1.0 12.5 18.11
2.0 6.25 27.49
3.0 303 32.18
4.0 1.56 34.53
6.0 0.40 36.49
8.0 0.10 36.99

12.0 0.0 37.19

The Trapezoidal
Rule

| TABLE 13.1
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KIN AND APPLICATIONS
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W One-compartment open model with zero-order absorption and first-order elimination:

kq is the zero-order rate constant for drug administration.

obeys first-order kinetics, as in the bolus intravenous case. The elimination rate is
dependent on the product of the rate constant, k., and the amount of drug in the
body, A.

During the initial period of zero-order mput, the amount of drug in the body,
A, will be small. Thus the product, kA, will also be small, the rate of drug input
will exceed the rate of drug output, and the quantity of drug in the body will
increase. As the value of A increases, the product kA will also increase, so the
overall rate of drug elimination will approach and eventually become equal to the
rate of input. A steady state is then achieved in which the rate of absorption equals
the rate of elimination.

The infusion may be stopped either before or after the amount of drug in the
body has reached steady state. During the resulting postabsorption phase, drug
levels will decline at a first-order rate as in the intravenous bolus case. The two
possible situations are shown in Figure 13.4.

Integration of equation 13.32 yields equation 13.33, which in concentration
terms becomes equation 13.34.

_ﬁ — g Rt
= e [13.33)
&(%-kd)u-e*aﬂ (13.34

Although two rate constants are involved in the overall drug profile, only one
time-dependent function, e, is invalved, If t=0, e becomes unity and C =
0. As the time after the start of infusion increases, the value e becomes pro-
gressively smaller, the value (1 - ¢~ et | increases, and the accumulation curve in
Figure 13.3 is obtained. If the infusion is continued for 2 sufficiently long period so
that e et approaches or becomes zero, then the parenthetical term becomes unity,
and C = ky/Vk, as in

0
c, =to
= s (13.35)

Because the steady-state concentration is described, C is now expressed as (e
Thus, at steady state, as in Figure 13.4a, the concentration of drug in the dis-
tribution volume is equal to the infusion Tate, ky, divided by the plasma clearance,




Vk,. Because the constant . has units of mass per unit time, and because plasma
clearance is commonly expressed in terms of volume per unit time, C,, has units

of mass per volume, or concentration.

The relationship in equation 13.35 provides considerable information. For
example, knowledge Om,ﬂimwwﬁwﬂw
tiomww in plasma. Alternatively, if ko and C,,
are known, then plasma clearance can be calculated. Similarly, if ky, Cgg 2nd the
elimination ty, are known, then the distribution volume can be caleulated.

If both sides of equation 13.35 are multiplied by the distribution volume, V
equation 13.36 1s obtained.

_k
A= Ty (13.36)

This equation describes the amount of drug in the body at steady state, Ay, In
terms of the absorption and elimination raie constants. Thus, the total body drug
load can be determined by dividing the zero-order infusion rate constant by the
first-order elimination rate constant. Ay can therefore be determined without
knowing Cg,.

As previously noted from equations 13.34 and 13.35, steady-state drug levels
are dependent on both the infusion and elimination rate constants. Faster infu-
sion yields higher blood levels; faster elimination vields lower blood levels. How-
ever, from equation 13.34, ¢the time dependency of the accumulation process is
clearly dependent only on the elimination rate constant, k. No matter how fast a
drug is infused, the time to reach steady state is go@
nation rate constant. How long it will take for a drug level to reach steady state can
be determined from equation 13.34. Because this equation is exponential, steady
state will theoretically take a very long time to achieve. However, because pharma-
cokineticists have to consider practicalities, Mfﬁm&nﬁm@eted
a reasonable approximation given the normal variability of biological data. How

long does a drug need to be infused before drug levels in the blood reach 95% of

(@) b)
INFUSION INFUSION
STOPPED STOPPED
1 ¥
A
TIME TIME

Time course of the quantity of Drug A in the body during and following zero-order infu-
sion. In (a), drug levels had reached steady state before the infusion was stopped, and
in (b), the Jevels had not reached steady state.

" FIGURE13.4.

5= 160 B_ Igéwéj

= l(_?ﬂ%




FIRST OE)E/Z #BSORPTION ~ ERERLLE o0 fukeoscnsocles

| zLA, =5 &0!“!%{ SCHEME g
1—' - f\d« G[—u‘a& ’)ffeb d"’&e/
Vol is obesbbed

Lu,“oW«%(o hpe ~§CL

CS: PROCESSES, MATHEMATICS, AND APPLICATIONS

DRUG IN URINE

METABOLITES

One-compartment open model with first-order absorption and elimination, where F is
the fraction of the dose, D, absorbed from the dosage site into the systemic circulation,
and k, is the first-order rate constant for drug absorption.

After intravenous injection, the parameter F is not pertinent because the
w@ww therefore, F is equal to
unity. However, after oral doses, and also after intramuscular doses in some cases,
bioavailability is not always 100%. Complete absorption from oral doses tends to
be the exception rather than the rule” Incomplete absorption might be expected
because of limited dissolution, degradation or metabolism occurring in the gas-
trointestinal (GI) tract, incomplete membrane penetration, and also presystemic
hepatic clearance. After intramuscular doses, more efficient absorption might be
expected, but this is not always the case. Incomplete absorption from intramuscu-
lar doses may result from degradation of drug at the intramuscular site, drug pre-
cipitation, or slow release of a portion of the drug giving rise to low and perhaps
undetectable drug levels during prolonged periods. Intranmuscularly dosed phe-
nobarbital has been shown to be only 80% bioavailable compared to oral doses in
humans (1), and intramuscularly dosed promethazine has been shown to be
approximately 70-80% bioavailable in dogs compared to intravenously dosed drug
(2). All of the above factors may influence the magnitude and interpretation of the
absorption rate constant, k,.

Suppose that a drug is at the absorption site and is simultancously being
absorbed at a rate governed by an intrinsic absorption rate constant, k., and being
enzymatically degraded at the absorption site at a rate governed by a rate constant,
ky. The overall rate of drug loss from the absorption site is then governed by the

“sum of k,y, and ky. Because k, is used to describe the overall loss of drug from the

absorption site, the amount of drug, X, remaining at the absorption site at any
time is described by

X = FDe kil = Fryg—kit (14.1)

In Chapter 13 the apparent rate constant for appearance of intravenously dosed
drug in the urine was shown to be equal to the overall elimination rate constant,
k. Similarly, the apparent rate constant for appearance of orally or intramuscu-
latly dosed drug into the circulation is equal to the overall rate constant for loss of
drug from that absorption site by all processes. In other words, the rate constant
that is obtained from the drug-concentration curve in plasma is not necessarily
the intrinsic absorption rate constant but may be a constant related to overall loss
of drug from the absorption site. An observed k, may actually be the sum of ky, ky,




' ONECOMPARTMENT C
and any other rate constant that contributes to loss of drug from the absorption
site. Note that the absorption half-life, #,,q), is obtained from Ty iaby = 0.693/k,.

An interesting analogy can be drawn with ocular drug administration (3).
When a drug solution is applied to the surface of the eye, for example from an cye
dropper, more than 95% of the drug is washed from the eve surface by tear move-
ment and is washed down the nasolachrymal duct. Thus, the overall rate of Ioss of
drug from the absorption site at the surface of the eye is high. Absorption of drug
into the eye will continue only as long as drug is available at the absorption site.
Because overall loss of drug from the eye surface is approximately a first-order pro-
cess, the apparent rate constant for drug penetration into the eye is very fast, and
the absorption rate constant calculated from drug levels within the eye may over-
estimate the actual intrinsic absorption rate constant by a factor of 20 or more.
This concept is worth remembering when considering drug absorption kinetics,

From Scheme 14.1, equation 14.2 can be written to describe the rate of
change in the amount of drug, 4, in the body.

-(Z—f:kakaclA (14.2)

Tn this equation, X is the amount of drug remaining to be absorbed as described in
equation 14.1. By substituting for X from equation 14.1 and then integrating,
cquation 14.3 is obtained.

k
A=FD—2__[gkat _ g-hit) 1
ka “‘kel ( ' ( 4.3)

This equation can then be converted to describe time-dependent drug concentra-
tions by dividing both sides by the distribution volume, V to obtain cquation 14.4,
which describes the drug profile shown in Figare 14.1.

._FD 1<“ skt _ =kt
e e o

Now that the kinetic parameters associated with the one-compartment model
with first-order absorption and elimination have been identified, the next step is
to understand how numerical values are assigned to these parameters from a drug-
concentration profile. Understanding the variable relationship between k,, the
absorption rate constant, and kg, the elimination rate constant, is important.
Three different sitwations can ocour:

1. k, may be greater than k,;.
2. k, may be less than ky.

3. The two constants may have the same, or appreximately the same,
numerical value,
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