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6.1 Pure Birth Process (Yule-Furry Process)

Example. Consider cells which reproduce according to the following

rules:

i. A cell present at time t has probability λh + o(h) of splitting in two

in the interval (t, t + h)

ii. This probability is independent of age.

iii. Events between different cells are independent

Time>
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Non-Probablistic Analysis

n(t) = no. of cells at time t

⇒ λn(t)∆(t) births occur in (t, t + ∆t)

where λ = birth rate per single cell.

n(t + ∆t) = n(t) + n(t)λ∆t

n(t + ∆t) − n(t)

∆t
→ n′(t) = n(t)λ

or
n′(t)

n(t)
=

d

dt
log n(t) = λ

log n(t) = λt + c

n(t) = Keλt, n(0) = n0

n(t) = n0e
λt
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Probabilistic Analysis

N(t) = no. of cells at time t

P{N(t) = n} = Pn(t)

Prob. of birth in (t, t + h) if {N(t) = n} = nλh + o(h)

Pn(t + h) = Pn(t)(1 − nλh + o(h))

+ Pn−1(t)((n − 1)λh + o(h))

Pn(t + h) − Pn(t) = −nλhPn(t) + Pn−1(t)(n − 1)λh + o(h)

Pn(t + h) − Pn(t)

h
= −nλPn(t) + Pn−1(t)(n − 1)λ + o(h) as h → 0

P ′

n(t) = −nλPn(t) + (n − 1)λPn−1(t)

Initial condition Pn0
(0) = P{N(0) = n0} = 1
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P ′

n(t) = −nλPn(t) + (n − 1)λPn−1(t); Pn0
(0) = 1

Solution:

(1) Pn(t) =

(

n − 1

n − n0

)

e−λn0t(1 − e−λt)n−n0 n = n0, n0 + 1, . . .

Solution is negative binomial distribution; i.e. Probability of obtaining
exactly n0 successes in n trials.

Suppose p = prob. of success and q = 1 − p = prob. of failure. Then in
first (n − 1) trials results in (n0 − 1) successes and (n − n0) failures
followed by success on nth trial; i.e.

(2)
(

n − 1

n0 − 1

)

pn0−1qn−n0 · p =

(

n − 1

n − n0

)

pn0qn−n0 n = n0, n0 + 1, ...

If p = e−λt and q = 1 − e−λt

⇒ (2) is same as (1).
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Yule studied this process in connection with theory of evolution; i.e.

population consists of the species within a genus and creation of new

element is due to mutations. Neglects probability of species dying out and

size of species.

Furry used same model for radioactive transmutations.

Notes on Negative Binomial Distribution

The geometric distribution is defined as the number of trials to achieve

one success for a series of Bernoulli trials; i.e.

Geometric Distribution: P{N = n} = pqn−1, n = 1, 2, . . .

N is number of trials for 1 success

φN (s) = E(e−sN ) = p

∞
∑

n=1

e−snqn−1 =
p

q

∞
∑

n=1

(e−sq)n.
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But
∞
∑

n=1

(e−sq)n = e−sq/(1 − e−sq)

φN (s) =
p

q
·

e−sq

1 − e−sq
=

pe−s

1 − e−sq
=

pz

1 − qz
if z = e−s

φN (z) = pz(1 − qz)−1

φ′

N (z) = p{(1 − qz)−1 + z(1 − qz)−2q}

φ′

N (1) = p{(1 − q)−1 + q(1 − q)−2} = 1 +
q

p
=

p + q

p
=

1

p

Similarly φ
′′

N (1) =
2

p2
−

2

p
⇒ V (n) =

1

p2
−

1

p
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Theorem: If Ni (i = 1, 2, . . . , n0) are iid geometric random variables

with parameter p, then N = N1 + N2 + . . . + Nn0
is a negative binomial

distribution having generating function

φN (z) =

(

pz

1 − qz

)n0

, z = e−s

.̇. E(N) = n0/p, V (N) = n0

[

1

p2
−

1

p

]

If p = e−λt and N(t) is a pure birth process

E[N(t)] = n0e
λt

V [N(t)] = n0[e
2λt − eλt]
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6.2 Generalization

In Poisson Process, the prob. of a change during (t, t + h) is independent

of number of changes in (0, t). Assume instead that if n changes occur in

(0, t), the probability of new change to n + 1 in (t, t + h) is λnh + o(h).

The probability of more than one change is o(h). Then

Pn(t + h) = Pn(t)(1 − λnh) + Pn−1(t)λn−1h + o(h), n 6= 0

P0(t + h) = P0(t)(1 − λ0h) + o(h)

⇒ P ′

n(t) = −λnPn(t) + λn−1Pn−1(t)

P ′

0(t) = −λ0P0(t).

Equations can be solved recursively with P0(t) = P0(0)e−λ0t.
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If the initial condition is Pn0
(0) = 1, then the resulting equations are:

P ′

n(t) = −λnPn(t) + λn−1Pn−1(t), n > n0

P ′

n0
(t) = −λn0

Pn0
(t)

Pure birth process assumed λn = nλ.

Change of Language

If n transitions take place during (0, t), we may refer to the process as

being in state En. Changes occur En → En+1 → En+2 → . . . for the

pure birth process.
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6.3 Birth and Death Processes

Consider transitions En → En−1 as well as En → En+1 if n ≥ 1.

If n = 0, we only allow E0 → E1.

Assume that if the process at time t is in En, then during (t, t + h) the

transitions En → En+1 have prob. λnh + o(h), En → En−1 have

prob. µnh + o(h) and Prob. more than 1 change occurs = o(h)

Pn(t + h) = Pn(t){1 − λnh − µnh}

+ Pn−1(t){λn−1h} + Pn+1(t){µn+1h} + o(h)

⇒ P ′

n(t) = −(λn + µn)Pn(t) + λn−1Pn−1(t) + µn+1Pn+1(t)
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For n = 0

P0(t + h) = P0(t){1 − λ0h} + P1(t)µ1h + o(h)

⇒ P ′

0(t) = −λ0P0(t) + µ1P1(t)

If the initial conditions Pn0
(0) = 1 in which case 0 in above is replaced

by n0.

If λ0 = 0, then E0 → E1 is impossible and E0 is an absorbing state.

If λ0 = 0, then P ′

0(t) = µ1P1(t) ≥ 0 so that P0(t) increases

monotonically.

Note: lim
t→∞

P0(t) = P0(∞) = Probability of being absorbed.
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P ′

0(t) = −λ0P0(t) + µ1P1(t)

P ′

n(t) = −(λn + µn)Pn(t) + λn−1Pn−1(t) + µn+1Pn+1(t)

As t → ∞, Pn(t) → Pn (limit) hence P ′

0(t) = 0 for large t and

P ′

n(t) = 0 for large t. Therefore

0 = −λ0P0 + µ1P1

⇒ P1 =
λ0

µ1
P0

0 = −(λ1 + µ1)P1 + λ0P0 + µ2P2

⇒ P2 =
λ0λ1

µ2µ1
P0

⇒ P3 =
λ0λ1λ2

µ1µ2µ3
P0 etc.

Note that dependence on initial conditions has disappeared.
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6.4 Relation to Markov Chains

Define for t → ∞

P (En+1|En) = Prob. of transition En → En+1

= Prob. of going to En+1 conditional on being in En.

Similarly define P (En−1|En).

P (En+1|En) ∝ λn, P (En−1|En) ∝ µn

⇒ P (En+1|En) =
λn

λn + µn

, P (En−1|En) =
µn

λn + µn

Same conditional probabilities hold if it is given that a transition will take

place during (t, t + h) conditional on being in En.
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6.5 Linear birth and death processes

λn = nλ , µn = nµ

⇒ P ′

0(t) = µP1(t)

P ′

n(t) = −(λ + µ)nPn(t) + λ(n − 1)Pn−1(t) + µ(n + 1)Pn+1(t)

Steady state behavior is characterized by

lim
t→∞

P ′

0(t) = 0 ⇒ P1(∞) = 0

Similarly as t → ∞ P ′

n(∞) = 0

If P0(∞) = 1 ⇒ Probability of ultimate extinction is 1.

If P0(∞) = P0 < 1, the relations P1 = P2 = P3 . . . = 0 imply with

prob. 1 − P0 the population can increase without bounds. The population

must either die out or increase indefinitely.
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P ′

n(t) = −(λ + µ)nPn(t) + λ(n − 1)P(n−1)(t) + µ(n + 1)Pn+1(t)

Define Mean by M(t) =

∞
∑

n=1

nPn(t)

and consider M ′(t) =
∞
∑

1

nP ′

n(t).

M ′(t) = −(λ + µ)

∞
∑

1

n2Pn(t) + λ

∞
∑

1

(n − 1)n P(n−1)(t)

+ µ

∞
∑

1

(n + 1)nPn+1(t)

Write (n − 1)n = (n − 1)2 + (n − 1), (n + 1)n = (n + 1)2 − (n + 1)
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M ′(t) = − (λ + µ)

∞
∑

1

n2Pn(t)

+ λ

∞
∑

1

(n − 1)2Pn−1(t) + µ

[

∞
∑

1

(n + 1)2Pn+1(t) + 1 · P1(t)

]

+ λ

∞
∑

1

(n − 1)Pn−1(t) − µ

[

∞
∑

1

(n + 1)Pn+1(t) + P1(t)

]

⇒ M ′(t) = λ

∞
∑

1

nPn(t) − µ

∞
∑

1

nPn(t)

= (λ − µ)M(t)

M(t) = n0e
(λ−µ)t if Pn0

(0) = 1
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M(t) = n0e
(λ−µ)t

M(t) → 0 or ∞ depending on λ < µ or λ > µ .

Similarly if M2(t) =

∞
∑

1

n2Pn(t) one can show

M ′

2(t) = 2(λ − µ)M2(t) + (λ + µ)M(t)

and when λ > µ, the variance is

n0e
2(λ−µ)t

{

1 − e(µ−λ)t
} λ + µ

λ − µ
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