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The increasing study of realistic mathematical models in ecology (basically the
study of the relation between species and their environment) is a reflection of
their use in helping to understand the dynamic processes involved in such areas
as predator-prey and competition interactions, renewable resource management,
evolution of pesticide resistant strains, ecological control of pests, multi-species
societies, plant-herbivore systems and so on. The continually expanding list
of applications is extensive. There are also interesting and useful applications
of single species models in the biomedical sciences: in Section 1.5 we discuss
two practical examples of these which arise in physiology. Here, and in the
following three chapters, we shall consider some deterministic models. The book
edited by May (1981) gives an overview of theoretical ecology from a variety of
different aspects; experts in diverse fields review their areas. The book by Nisbet
and Gurney (1982) is a comprehensive account of mathematical modelling in
population dynamics: a good elementary introduction is given in the textbook
by Edelstein-Keshet (1988).

1.1 Continuous Growth Models

Single species models are of relevance to laboratory studies in particular but, in
the real world, can reflect a telescoping of effects which influence the population
dynamics. Let N(¢) be the population of the species at time ¢, then the rate of
change

% = births — deaths -+ migration ; (1.1)

is a conservation equation for the population. The form of the various terms
on the right hand side of (1.1} necessitates modelling the situation that we are

concerned with. The simplest model has no migration and the birth and death
terms are proportional to N. That is

‘Z—IZ =bN—dN = N(t)=Npel-
where b, d are positive constants and the initial population N(0) = Np. Thus

if b > d the population grows exponentially while if b < d it dies out. This
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approach, due to Malthus in 1798 but actually suggested earlier by Euler, is
pretty unrealistic. However if we consider the past and predicted growth estimates
for the total world population from the 17th to 21st centuries it is perhaps less
unrealistic as seen in the following table.

Date Mid 17th  Early 19th 191827 1960 1974 1987 1999 2010 2022
Century  Century

Population

in billions 0.5 1 2 3 4 5 6 7 8

In the long run of course there must be some adjustment to such exponential
growth. Verhulst in 1836 proposed that a self-limiting process should operate
when a population becomes too large. He suggested

dN
4 rN(1 —N/K), (1.2)

where  and K are positive constants. This is called logistic growth in a pop-
ulation. In this model the per capita birth rate is r(1 — N/K), that is, it is
dependent on N. The constant K is the carrying capacity of the environment,
which is usually determined by the available sustaining resources.

There are two steady states or equilibrium states for (1.2), namely N = 0
and N = K, that is where dN/dt = 0. N = 0 is unstable since linearization
about it (that is N? is neglected compared with N) gives dNV, /dt =~ rN, and
so N grows exponentially from any initial value. The other equilibrium N = K
is stable: linearization about it (that is (N — K)? is neglected compared with
|IN — K|) gives d(N — K)/dt ~ —r(N — K) and so N — K as t — oo. The
carrying capacity K determines the size of the stable steady state population
while 7 is a measure of the rate at which it is reached, that s, it is a measure of
the dynamics: we could incorporate it in the time by a transformation from ¢ to
rt. Thus 1/r is a representative ime scale of the response of the model to any
change in the population.

N(Y)
K
No
K/2
No Fig. 1.1. Logistic population growth. Note

the qualitative difference for the two cases
t No<K/2and K > No> K/[2.
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T N(0) = No the solution of (1.2) is

]\(()I{eﬂ’l

NO = K Mo =1

—K as t—o0, (1.3)

and is illustrated in Fig. 1.1. From (1.2), if No < K, N (¢) simply increases
monotonically to K while if Ng > K it decreases monotonically to K. In the
former case there is a qualitative difference depending on whether Ng > K/2 or
Ny < K/[2: with Nog < K, /2 the form has a typical sigmoid character, which is
commonly observed.

In the case where Np > K this would imply that the per capita birth rate
is negative! Of course all it is really saying is that in (1.1) the births plus immi-
gration is less than the deaths plus emigration. The point about (1.2) is that it
is more like a metaphor for a class of population models with density dependent
regulatory mechanisms — a kind of compensating effect of overcrowding — and
must not be taken too Literally as the equation governing the population dynam-
ics. It is a particularly convenient form to take when seeking qualitative dynamic
behaviour in populations in which N = 0 is an unstable steady state and N(t)
tends to a finite positive stable steady state. The logistic form will occur in a
variety of different contexts throughout the book.

In general if we consider a population to be governed by

dN
or = savy, 9

where typically f(IV) is a nonlinear function of N then the equilibrium solutions
N* are solutions of f(N) = 0 and are linearly stable to small perturbations if
F(IN*) < 0, and unstable if F/(N*) > 0. This is clear from linearizing about N*
by writing

n(t) = N(t) - N*, [n@)] <1

and (1.4) becomes

B ) SO AR

d_’t‘ mnf(NY) = n(t) xexplf (V). (1.5)

So n. grows or decays according as f'(N*) >0 or F'(IN*) < 0. The time scale of
the response of the population to a disturbance is of the order of 1/|f' (N*)}: it
is the time to change the initial disturbance by a factor e.

There may be several equilibrium, or steady state populations N* which
are solutions of f(IN) = 0: it depends on the system F(IN) models. Graphically
plotting f(IV) against N immediately gives the equilibria. The gradient ()
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at each steady state then determines its linear stability. Such steady states may,
however, be unstable to finite disturbances. Suppose, for example, that f(N)
is as illustrated in Fig. 1.2. The gradients f'(IV) at N = 0, Ny are positive so
these equilibria are unstable while those at N = Nj, N3 are stable to small
perturbations: the arrows symbolically indicate stability or instability. If, for
example, we now perturb the population from its equilibrium Ny so that IV is
in the range N2 < N < N; then N — Nj rather than returning to Ny. A
similar perturbation from N3 to a value in the range 0 < N < N, would result
in N(t) — Ni. Qualitatively there is a threshold perturbation below which the
steady states are always stable, and this threshold depends on the full nonlinear
form of f(N). For Nj, for example, the necessary threshold perturbation is

Ny — Ny.

1.2 Insect Outbreak Model: Spruce Budworm

A practical model which exhibits two positive linearly stable steady state pop-
ulations is that for the spruce budworm which can, with ferocious efficiency,
defoliate the balsam fir: it is a major problem in Canada. Ludwig et al. (1978)
considered the budworm population dynamics to be governed by the equation

dN N
E_TBN(l—E>—p(N).

Fig. 1.3. Typical functional form of the predation in
the spruce budworm model: note the sigmoid char-
acter. The population value N, is an approximate
threshold value. For N < N, predation is small,
while for N > N, it is “switched on”.
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Here rp is the linear birth rate of the budworm and Kp is the carrying capacity
which is related to the density of foliage available on the trees. The p(IV)-term
represents predation, generally by birds: the qualitative form of if is important
and is illustrated in Fig. 1.3. Predation usually saturates for large enough N.
There is an approximate threshold value N¢, below which the predation is small,
while above it the predation is close to its saturation value: such a functional form
is like a switch with N, being the critical switch value. For small population
densities N, the birds tend to seek food elsewhere and so the predation term
p(N) drops more rapidly, as N — 0, than a linear rate proportional to V. To
be specific we take the form for p(IV) suggested by Ludwig et al. (1978) namely
BN?/(A% + N?%) where A and B are positive constants, and the dynamics of
N(t) is then governed by

dN N BN?
E;—TBN(I—R;)‘W- (16)

This equation has four parameters, rp, Kp, B and A, with A and Kp having
the same dimensions as N, 7p has dimension (time)“1 and B has the dimensions
of N(time)™ . A is a measure of the threshold where the predation is ‘switched
on’, that is N, in Fig. 1.3. If A is small the ‘threshold’ is small, but the effect is
dramatic.

Before analysing the model it is essential, or rather obligatory, to express it in
nondimensional terms. This has several advantages. For example, the units used
in the analysis are then unimportant and the adjectives small and large have a
definite relative meaning. It also always reduces the number of relevant param-
eters to dimensionless groupings which determine the dynamics. A pedagogical
article with several practical examples by Segel (1972) discusses the necessity and
advantages for nondimensionalisation and scaling in general. Here we introduce
nondimensional quantities by

N A K Bt
=2, g=28 oo @

= B’ A’ A

which on substituting into (1.6) becomes

du u u?
G =ru (1—;)—1+u2=f(u;r,q), (1.8)
where f is defined by this equation. Note that it has only two parameters r
and ¢, which are pure numbers, as also is u of course. Now, for example, if
u < 1 it means simply that N <« A. In real terms it means that predation
is negligible in this population range. In any model there are usually several
different nondimensionalisations possible. The dimensionless groupings to choose

depends on the aspects you want to investigate. The reasons for the particular
form (1.7) will become clear below.
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The steady states are solutions of

u 2
fluir,g) =0 = Tu(l—’q~>=1:u2- (1.9)

Clearly u = 0 is one solution with other solutions, if they exist, satisfying

u u
r (1 —;) =Ty (1.10)

Fluwimsa)
0 /\
U»l\/uz u3\ °
(=) ®)

Fig. 1.4a,b. Equilibrium states for the spruce budworm population model (1.8). The positive
equilibria are given by the intersections of the straight line 7(1 — u/q) and u/(1 + u?). With
the solid straight line in (a) there are 3 steady states with f(u;r, ) typically as in (b).

Although we know the analytical solutions of a cubic (Appendix 2), they are often
clumsy to use because of their algebraic complexity; this is one of these cases.
It is convenient here to determine the existence of solutions of (1.10) graphically
as shown in Fig. 1.4 (a). We have plotted the straight line, the left of (1.10),
and the function on the right of (1.10); the intersections give the solutions. The
actual expressions are not important here. What is important, however, is the
existence of one, three, or again, one solution as r increases for a fixed ¢, as in
Fig. 1.4 (a), or as also happens for a fixed r and a varying ¢. When r is in the
appropriate range, which depends on g, there are three equilibria with a typical
corresponding f(u;r, ) as shown in Fig. 1.4 (b). The nondimensional groupings
which leave the two parameters appearing only in the straight line part of Fig. 1.4
is particularly helpful and was the motivation for the form introduced in (1.7).
By inspection u = 0, u = uj are linearly unstable, since 0f/0u > 0 at u = 0,uz,
while u; and us are stable steady states, since at these 8f/0u < 0. There is
a domain in the r,q parameter space where three roots of (1.10) exist. This is

shown in Fig. 1.5: the analytical derivation of the boundary curves is left as an
exercise (Exercise 1).
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One of the deficiencies of single population models ike (1.4) is that the birth rate
is considered to act instantaneously whereas there may be a time delay to take
account of the time to reach maturity, the finite gestation period and so on. We

can incorporate such delays by considering delay differential equation models of
the form

B = svey,we -1y, (1.11)

where T' > 0, the delay, is a parameter. One such model, which has been used,
is an extension of the logistic growth model (1.2), namely the differential delay

equation

%" =rN(t) [1 - K / " - (s) dS] ; (1.13)

—co

where w(t) is a weighting factor which says how much emphasis should be given
to the size of the population at earlier times to determine the present effect
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tion w(t) for an integrated de-
lay effect on growth limitation

s for the delay model represented
0 T t by (L.13).

on resource availability. Practically w(t) will tend to zero for large negative and
positive ¢ and will probably have a maximum at some representative time T.
Typically w(t) is as illustrated in Fig. 1.7. If w(t) is sharper in the sense that
the region around T is narrower or larger then in the limit we can think of w(t)
as approximating the Dirac function 6(T — ¢), where

[ sw-ora=rsm.

Equation (1.13) in this case then reduces to (1.12)

/t §(t—T— s)N(s)ds = N(t —T).

The character of the solutions of (1.12), and the type of boundary conditions
required are quite different to those of (1.2). Even with the seemingly innocuous
equation (1.12) the solutions in general have to be found numerically. Note that
to compute the solution for ¢ > 0 we require N(¢) for all =T < ¢ < 0. We can
however get some qualitative impression of the kind of solutions of (1.12) which
are possible, by the following heuristic reasoning.

Refer now to Fig. 1.8 and suppose that for some ¢ = ¢3, N(#1) = K and that
for some time ¢t < %1, N(t — T) < K. Then from the governing equation (1.12),
since 1 — Nt — T)/K > 0, dN(t)/dt > 0 and so N(¢) at ¢ is still increasing.
When t =43+ T, N(t—T) = N(t;) = K and so dN/dt = 0. For t; + T < t < 1,
N(t —T) > K and so dN/dt < 0 and N (i) decreases until ¢ = ¢ + T since
then dN/dt = 0 again because N(t3 + T — T) = N(¢2) = K. There is therefore
the possibility of oscillatory behaviour. For example, with the simple linear delay

equation
dN T
T ——ﬁN(t—T) = N@E)=A4A 08 5 5

which is periodic in time and which can be easily checked is a solution.

7t
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It is clearly necessary to develop an ecologically acceptable strategy for harvesting
any renewable resource be it animals, fish, plants or whatever. We also usually
want the maximum sustainable yield with the minimum effort. The inclusion of
economic factors in population models of renewable resources is increasing and
these introduce important constraints: see for example the book by Clark (19762).
The collection of papers edited by Vincent and Skowronski (1981) specifically
deals with renewable resource management. The review article by Plant and
Mangel (1987) is concerned with insect pest management. The model we describe
here is a simple logistic one with the inclusion of a harvesting contribution: it was
discussed by Beddington and May (1977). Although it is a particularly simple one
it brings out several interesting and important points which more sophisticated
models must also take into account. Rotenberg (1987) also considered the logistic
model with ha.rthing, with a view to making the model more quantitative. He

mlan amenn i A 4 P S af cacbalia hootla manaenadans il latia,
also examined the effects of certain stochastic parameters on possible population

extinction.

Most species have a growth rate, depending on the population, which more or
less maintains a constant population equal to the environment’s carrying capacity
K. That is the growth and death rates are about equal. Harvesting the species
affects the mortality rate and, if it is not excessive, the population adjusts and
settles down to a new equilibrium state N}, < K. The modelling problem is how
to maximize the sustained yield by determining the population growth dynamics
50 as to fix the harvesting rate which keeps the population at its mazimum growth
rate.

We discuss here a basic model which consists of the logistic population model
(1.2) in which the mortality rate is enhanced, as a result of harvesting, by a term




[image: image10.jpg]1.6 Harvesting a Single Natural Population 25

linearly proportional to IV, namely,
dN N
— = —=|—EN=f(N). 1.41
= (1-) Iy (141)

Here r, K and E are positive constants and EN is the harvesting yield per unit
time with E a measure of the effort expended. K and r are the natural carrying

capacity and the linear per capita growth rate respectively. The new non-zero
steady state from (1.41) is

Ni(B)=K (1 - —’f—) >0 if E<r (1.42)

which gives a yield

v(s) = mNu(m) = 2k (1- ) . (1.43)

r

Clearly if the harvesting effort is sufficiently large so that it is greater than the
linear growth rate when the population is low the species will die out. That is if
E > r the only realistic steady state is N = 0. If £ < r (which was possibly not
the case, for example, with whaling in the 1970’s) the maximum sustained yield
and the new harvesting steady state are, from (1.43) and (1.42),

rK K
Yy =Y(E)lp=rj2 = - Nilyy = 5 (1.44)
Does an analysis of the dynamic behavior tell us anything different from the
naive, and often used, steady state analysis just given here?
Fig. 1.15 illustrates the growth rate f(IN) in (1.41) as a function of N for
various efforts E. Linearising (1.41) about Nj(E) gives
d(N = Ny) i
S N P (E)W — Ni) = (B =)V = Ni) (1.45)

which shows linear stability if £ < r: axrowé indicate stability or instability in
Fig. 1.15.

‘We can consider the dynamic aspects of the process by determining the time
scale of the recovery after harvesting. If E = 0 then, from (1.41), the recovery
time T' = O(1/r), namely the time scale of the reproductive growth. This is the
order of magnitude of the recovery time of N to its carrying capacity K after
a small perturbation from K since; for N(t) — K small and N3(0) = K, (1.45)
shows’

dN-K
(Tl H—r(N-K) = NH-Koxe.
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Fig. 1.15. Growth function F(N) for the logistic model with harvesting according to (1.41).

Note how the positive steady state decreases with increasing £ eventually tending to zero as
E 7,

IfE#0, with 0 < E < r, then the recovery time in a harvesting situation, from
(1.45), is

1
TR(E) =0 (—*E~)

and so

Tr(E) 1
70 ~°\17F) - (1.46)
Thus for 2 fixed r, a !

iXed 7, a larger E increases the recovery time since Tr(E)/Tr(0)
increases with E. When E = /2, the value giving the maximum sustained yield
Yit, Tr(E) = O(2Ta(0)).
The usual definition of a recovery time is the time to decrease a perturbation
from equilibrium by a factor e. Then, on a linear basis,
1 T

Tr(0) = % TE)= =% = Te(B=})=2m0). ()

Since it is the yield ¥ that is recorded, if we solve (1.43) for E in terms of ¥ we
have

Ta(Y) 2
Tr(0) ~

7 (1.48)
1+ [1 -

which is sketched in Fig. 1.16 (a) where Ly and L_ denote the positive and
negative roots of (1.48). It is clearly advantageous to stay on the L. branch and
potentially disastrous to get onto the L_ one. Let us now see what determines
the branch,

Suppose we start harvesting with a small effort E, then, as is clear from
Fig. 1.16 (b), the equilibrium population N, (E) is close to K and Ny(E) > K/2,
the equilibrium population for the maximum yield Yy. The recovery time ratio
Tr(E)/Tr(0) from (1.47) is then approximately 1. So increasing E, and hence
the yield, we are on branch L. As E increases further, Ni(E) decreases towards
K /2, the value for the maximum sustained yield Yjs and we reach the point A
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in Fig. 1.16 (a) when Ny(E) = K/2. As E is increased further, N(E) < K/2
and the recovery time is further increased but with a decreasing yield: we are
now on the L_ branch.

We can now see what an optimal harvesting strategy could be, at least with
this deterministic point of view. An effort E should be made which keeps the
equilibrium population density Ny(E) > K/2, but as close as possible to K/2,
the value for the maximum sustained yield. The closer to K /2 however the more
delicate the situation becomes since we might inadvertantly move onto branch
I_ in Fig. 1.16 (a). At this stage, when Ny(E) is close to K /2 a stochastic
analysis should be carried out as has been done by Beddington and May (1977).
Stochastic elements of course reduce the predictability of the catch. In fact they
decrease the average yield for a given effort.

WO N/K), Y =BNly _ g Bpr)

= ENy(E)

K/2 Ni(E) KN

()

Fig. 1.16a,b. (a) Ratio of the recovery times as a function of the yield for the logistic growth
model, with yield proportional to the population: equation (1.41). (b) Graphical method for
determining the steady state yield Y for the harvested logistic model (1.41).

As an alternative harvesting resource strategy suppose we harvest with a
constant yield Yy as our goal. The model equation is then
dN N
—d—t~—1‘N (l—‘f)~Yg—f(N,r,K,Yb). -(1.49)

Fig. 1.17 (a) shows the graphical way of determining the steady states as Yo
varies. It is trivial to find the equilibria analytically of course, but often the
behavioral traits as a parameter varies are more obvious from a figure, such as
here. If 0 < Yp < 7K /4 = Yy, the maximum sustainable yield here, there are
two positive steady states N1(Yp), No(Yo) > Ni(Yo) which from Fig. 1.17 are
respectively unstable and stable. As Yy — rK /4, the maximum sustainable yield
of the previous model, this model is even more sensitive to fluctuations since if
a perturbation from N takes N to a value N < N the mechanism then drives
N to zero: see Fig. 1.17 (b). Not only that, N — 0 in a finite time since for
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Fig. 1.17a,b. (a) Equilibrium states for the logistic growth harvested with a constant yield Yp:
equation (1.49). (b) Growth rate (V) in (1.49) as the yield Yo increases.

small enough N, (1.49) becomes dN/di =~ —Yp and so for any starting Ny at %o,
N(t) ~ Ng — Yo(t e tg).

For easy comparison with the constant effort model we evaluate the equiva-
lent recovery time ratio Tr(Ya)/Tr(0). The recovery time Tr(Ys) is only relevant
to the stable equilibrium N»(Yg) which from (1.49) is

K ALL
No(Yo) = 5 {”[l”ml , Yo<rK/4.

The linearized form of (1.49) is then

d(N = No(%0)) of _ 1%
dat (N - ) [6N]NM) ~{ - Jh)e [ rk] :
Thus
Lel¥o) _ s e T2 (1.50)
TR(U) (1 _ %,l)l/zv 4 3

which shows that Tr(Ys)/Tr(0) — oo as Yy — Yjs. This model is thus a much
more sensitive one and, as a harvesting strategy, is not very good.

The main conclusion from this modelling exercise is that a constant effort
rather than a constant yield harvesting strategy is less potentially catastrophic.
Tt calls into question, even with this simple model, the fishing laws, for example,
which regulate catches. A more realistic model, on the lines described here, should
take into account the economic costs of harvesting and other factors. This implies
a feedback mechanism which can be a stabilizing factor: see Clark (1976a). With
the unpredictability of the real world it is probably essential to include feedback.
Nevertheless such simple models can pose highly relevant ecological and long

term financial questions which have to be considered in any more realistic and
more sophisticated model.




