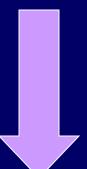
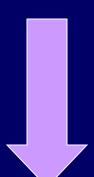
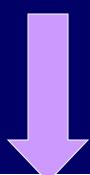
## Cyanobacteria and their toxins: ecological and health risks

Luděk Bláha, Blahoslav Maršálek and co.

Masaryk University, Faculty of Science, RECETOX & Institute of Botany, Academy of Sciences Brno, Czech Republic


<u>www.recetox.muni.cz</u> <u>www.cyanobacteria.net</u>



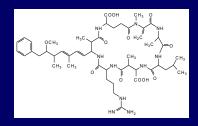

Flos Aquae Foundation









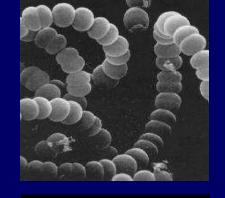

Centrum pro cyanobakterie a jejich toxiny

www.sinice.cz

Centre for Cyanobacteria and Their Toxins

www.cyanobacteria.net










## Blue green algae (CYANOBACTERIA, CYANOPHYTA)

- photosynthetic prokaryota
  - live at various biotops
     (water, soil, ice, rocks, lichens ...)
- cca 3 x 10<sup>9</sup> years old
- formation of the oxygen atmosphere





#### **Cyanobacteria - current problem**

#### **HUMAN ACTIVITIES**

(agriculture, waste waters...)

#### **EU/TROPHICATION**

(=increased concentration of nutrients)

#### **CYANOBACTERIAL MASS DEVELOPMENT**



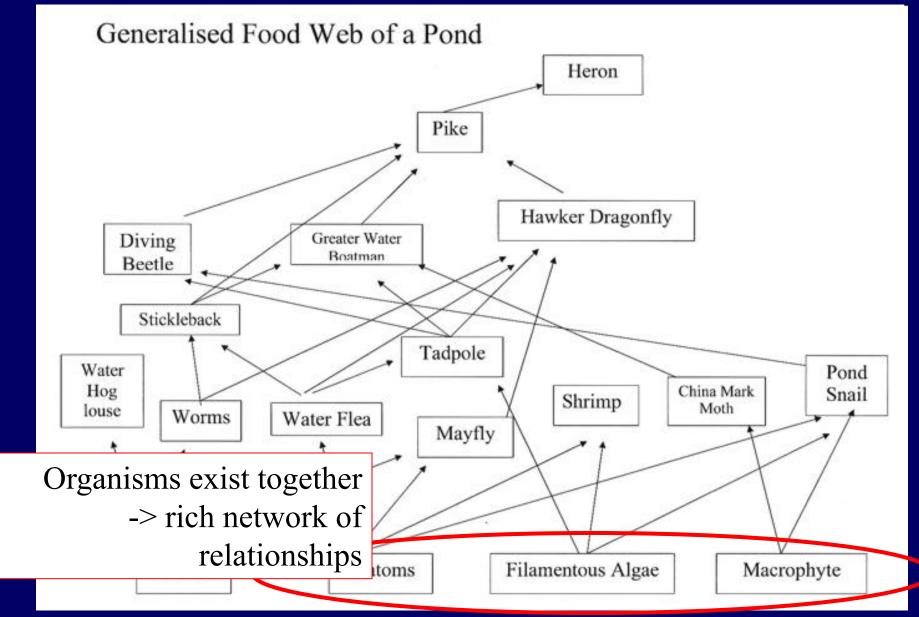






#### Cyanobacterial water blooms – global problem

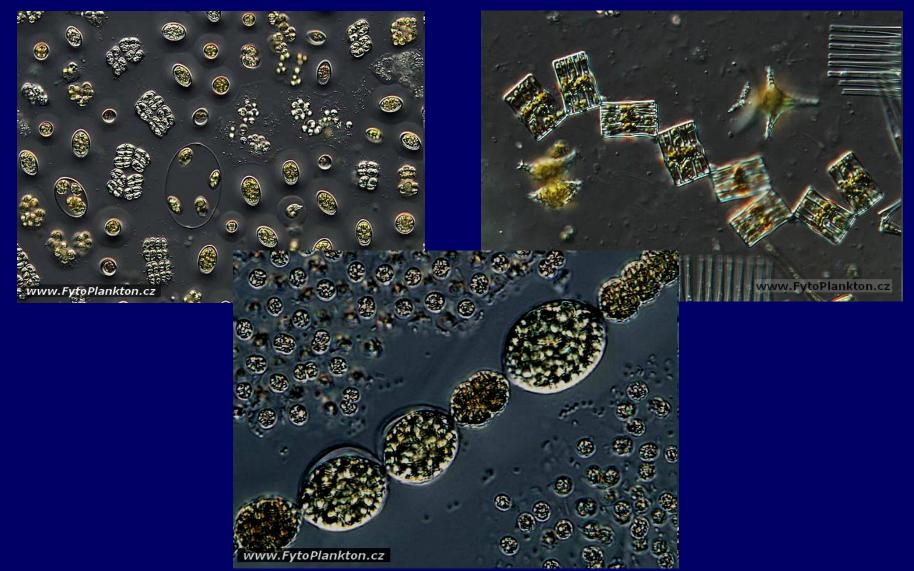



## Talking about "risks" of cyanobacteria

- RISK = probability of the occurrence of HAZARDOUS event
  - "Hazardous events" resulting from eu/trophication of the environment
    - Primary damage to <u>structure</u> and <u>functioning</u> of ecosystems
    - Secondary signs -> ecotoxicity and toxicity

## Ecological "stability"

- Stable and functioning ecosystem
  - Complex and complicated structure (diversity)
  - Many links (food networks) among organisms
    - = ecosystem functioning
      - Including "ecosystem services" to humans: supplies, regulations, cultural / aesthetic, supporting


## Complex ecosystem



# Ecological risk 1: Loss of phytoplankton biodiversity

- Anthropogenic changes in the environment (more nutrients - P,N)
  - -> advantage for "some" phytoplankton organisms
- Complex communities replaced with "monoculture" (often Microcystis aeruginosa, Planktothrix sp.)
- "Monocultures" have secondary effects
  - -> changes in hydrochemistry (higher pH, transparency)
    - -> further indirect impacts on other organisms

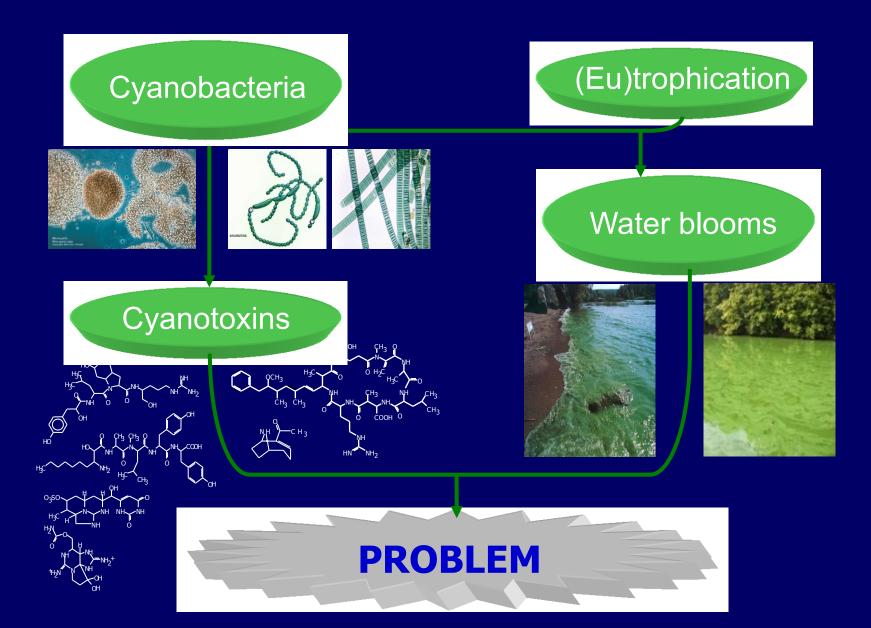
# Ecological risk 1: Loss of phytoplankton biodiversity



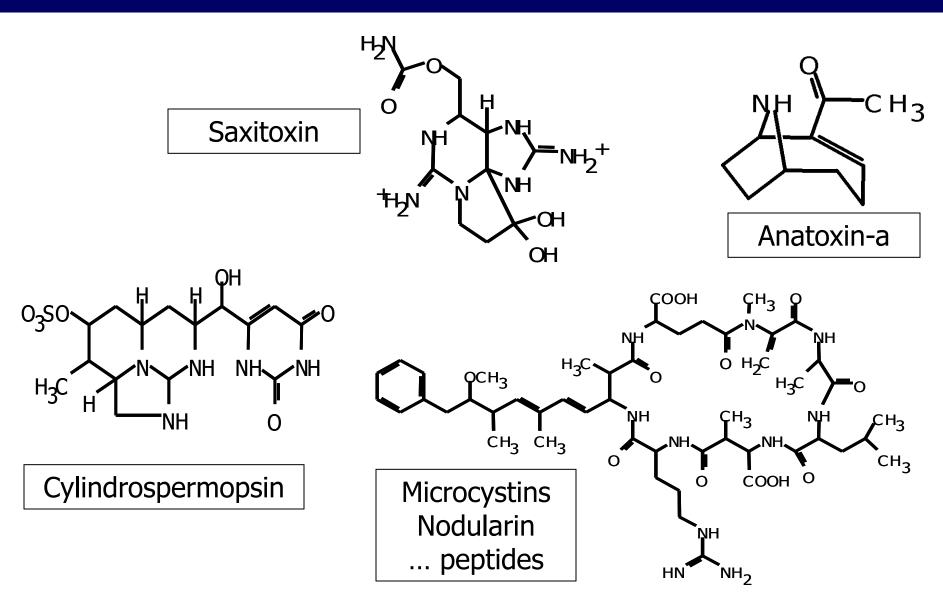
# Ecological risk 1: Loss of phytoplankton biodiversity



## Ecological risk 2: Further ecosystem changes


- Phytoplankton -> changes in the whole network
  - Reported examples ...
    - Changes in the consumers communites zooplankton -> fish -> ...
    - Makrophyte disappearance (reed) (shading -> no germination ...)
      - -> macrophytes
      - = substrate for other organisms ...
- New "expansive" species
  - cyanobacterium Cylindrospermopsis raciborskii (?)
- Water blooms = substrate for "associated bacteria"

## Ecological risk 3: Ecosystem catastrophes


- Sudden disappearance of the producers "monoculture" (rapid environmental changes, "infections" by viruses/phages) -> Ecosystem collapse
- Seasonal changes
  - Cyanobacterial biomass lysis
    - -> bacterial decay -> loss of O<sub>2</sub>
      - -> anaerobic conditions collapse
  - Deaths of aquatic organisms (fish ...)
  - Pathogens (anaerobic Clostridium botulinum)

## Ecological risk 4: Cyanobacterial **toxins**

- Cyanobacteria evolutionary old and important organisms (atmospheric oxygen)
- G- bacteria (10 mil. Cells / mL)
  - G-: cell walls contain lipopolysaccharides (LPS, similar to E. coli, Salmonella sp...)
- Water blooms
  - several complex problems (see previous slides...)
  - just one of the problems = toxin production



## Selected "known" cyanotoxins



## Categorization of cyanotoxins

#### 1. According to the chemical structure

- cyclic and linear peptids
- alkaloids
- lipopolysaccharides

#### 2. According to biological activity

mechanisms of toxicity

- hepatotoxicity, neurotoxicity, cytotoxicity, irritating, immunotoxicity, genotoxicity ...

| TOXIN              | STRUCTURE                                     | STRUCTURE VARIATION | LD50*<br>(µg.kg <sup>-1</sup> ) | TOXICITY                                                       |
|--------------------|-----------------------------------------------|---------------------|---------------------------------|----------------------------------------------------------------|
| Microcystin        | cyclic heptapeptide                           | >60                 | 50-1200                         | hepatotoxicity, tumor promotion, induction of oxidative stress |
| Nodularin          | cyclic pentapeptide                           | 7                   | 50-2000                         | hepatotoxicity, tumor promotion                                |
| Anatoxin           | alkaloide                                     | 2                   | 200-250                         | neurotoxicity                                                  |
| Anatoxin-a(S)      | methylphospho-<br>ester N-hydroxy-<br>guanine | 1                   | 20                              | neurotoxicity                                                  |
| Saxitoxin          | carbamat alkaloid                             | 19                  | 10                              | neurotoxicity                                                  |
| Cylindrospermopsin | guanidin alkaloid                             | 2                   | 200**                           | cytotoxicity, target organs: liver<br>and kidney               |
| Aplysiatoxin       |                                               | 2                   |                                 | dermatotoxicity, tumor<br>promotion                            |
| Lyngbyatoxin       | modified cyclic<br>dipeptide                  | 1                   |                                 | dermatotoxicity, tumor<br>promotion                            |
| Lipopolysaccharide |                                               |                     |                                 | irritate effect                                                |

#### **Cyanobacteria** Toxins produced

<u>Anabaena</u> <u>Anatoxins</u>, <u>Microcystins</u>, <u>Saxitoxins</u>, LPS's

Anabaenopsis Microcystins, LPS's

Anacystis LPS's

Aphanizomenon Saxitoxins, Cylindrospermopsins, LPS's

Cylindrospermopsis Cylindrospermopsins, Saxitoxins, LPS's

Hapalosiphon Microcystins, LPS's

*Lyngbia*Aplysiatoxins, Lyngbiatoxin-a, LPS's

*Microcystis* Microcystins, LPS's

*Nodularia* Nodularin, LPS's

*Nostoc* <u>Microcystins</u>, LPS's

Phormidium (Oscillatoria) Anatoxin, LPS's

Planktothrix (Oscillatoria) Anatoxins, Aplysiatoxins, Microcystins, Saxitoxins, LPS's

Schizothrix Aplysiatoxins, LPS's

*Trichodesmium* yet to be identified

*Umezakia* <u>Cylindrospermopsin</u>, LPS's

#### THE COMPARIOSON OF TOXICITY OF THE NATURAL TOXINS

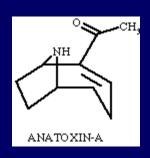
(i.p. injection, acute rat test, LD50 in μg/kg)

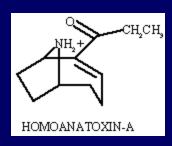
Bacteria-cyanobacteria- animals- fungi- plants

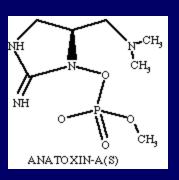
| Amanita phalloides        |
|---------------------------|
| Amanita muscaria          |
| Aphanizomenon flos-aquae  |
| Anabaena flos-aquae       |
| Microcystis aeruginosa    |
| Nodularia spumigena       |
| Clostridium botulinum     |
| Clostridium tetani        |
| Naja naja                 |
| Chondrodendron tomentosum |
| Strychnos nux-vomica      |
|                           |

| fungus 5  | 500     |
|-----------|---------|
| fungus 11 | 00      |
| cyano     | 10      |
| cyano 2   | 20      |
| cyano 4   | 43      |
| cyano !   | 50      |
| bacteria  | 0,00003 |
| bacteria  | 0,0001  |
| snake 2   | 20      |
| plant !   | 500     |
| plant 20  | 00      |





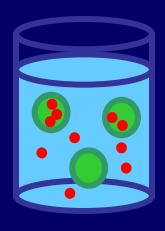




## Anatoxin-A, Anatoxin-A(S)

- neurotoxic alkaloids
- produced by a number of cyanobacterial genera including Anabaena, Oscillatoria and Aphanizomenon.
- LD50s from 20 μg kg-1 (by weight, I.P. mouse) making them more toxic than microcystins.

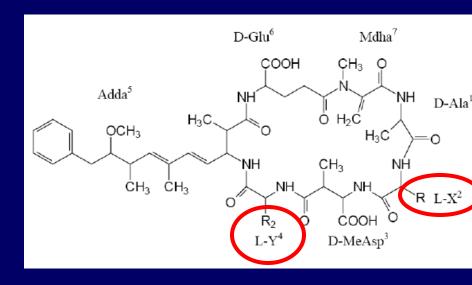







#### SAXITOXINS

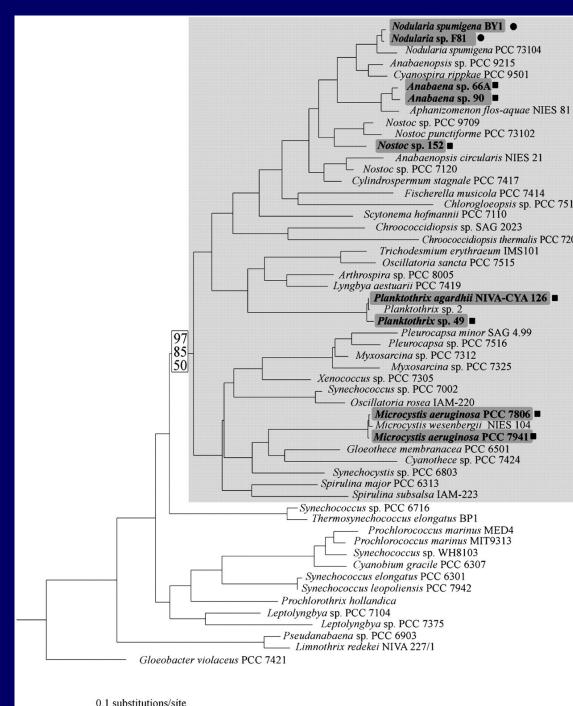
- neurotoxic alkaloids
- also known as PSP's paralytic shelfish poisons due to their accumulation in seafood
- Produced by marine dinoflagellates and cyanobacteria (but also in others such as Aphanizomenon sp.)
- Number of STX variants exist


#### **MICROCYSTINS**

- The most studied and most important
- Produced and present inside cells:
  - Intracellular:
    - up to 10 mg/g d.w. of biomass
       1% dw -> tons / reservoir
  - Extracellular (dissolved): up to 10 ug/L
- Stable in water column, bioaccumulative (?)

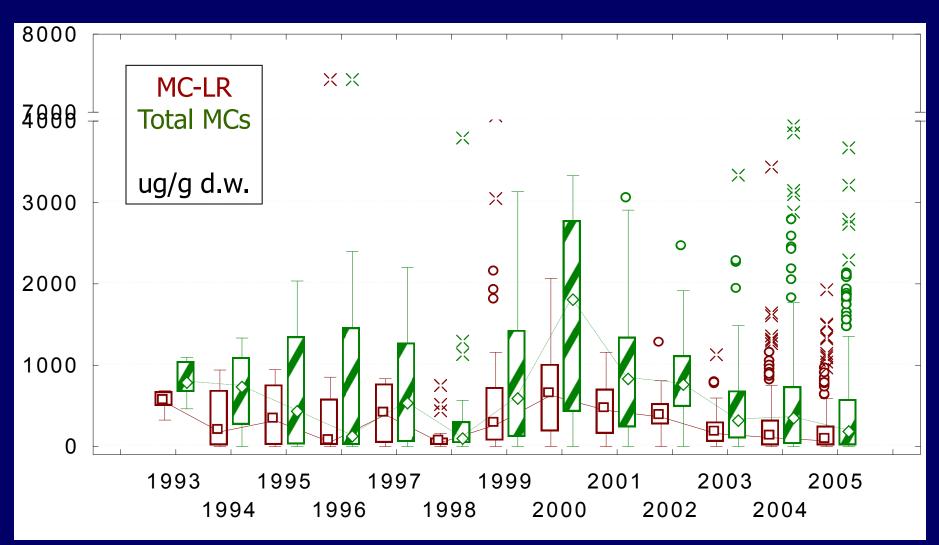


#### **MICROCYSTINS**


- Inhibit regulatory protein phosphatases
  - -> tumor promoter
  - -> hepatotoxic

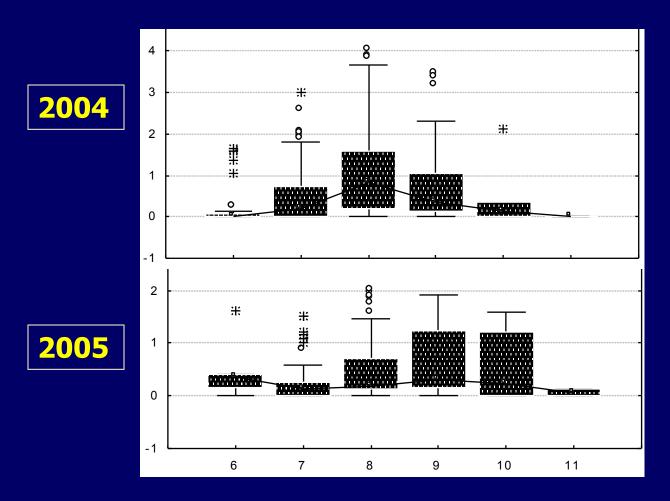


- 70 variants: MC-LR only considered by WHO
  - chronic TDI: 0.04 ug/kg b.w./day
  - drinking water guidline recommendation: 1 ug/L
- Highly toxic to mammals and humans
- Ecotoxicology? Natural function?

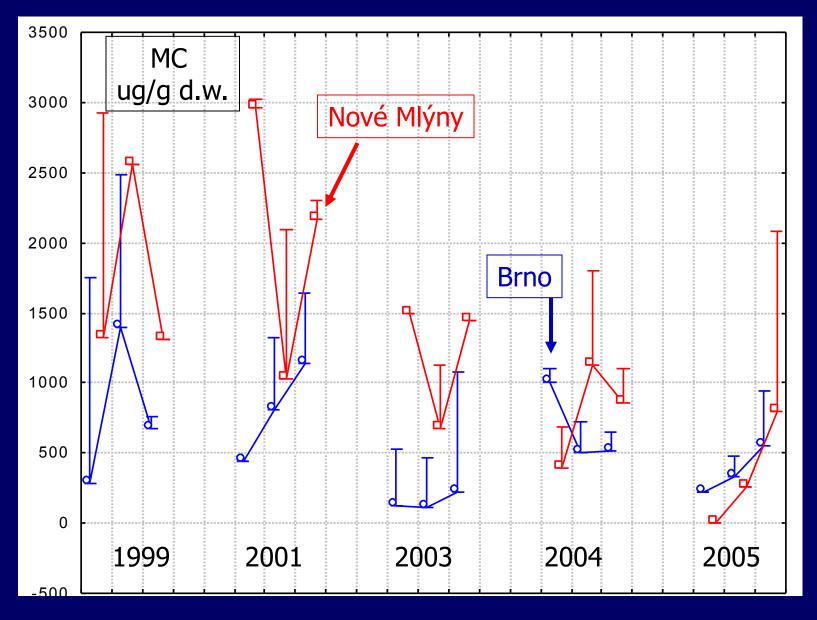

## Microcystin synthesis

- Non-ribozomal polyketide synthetases
- Evolutionary old genes
  - Why remained?
- Horizontal gene transfer

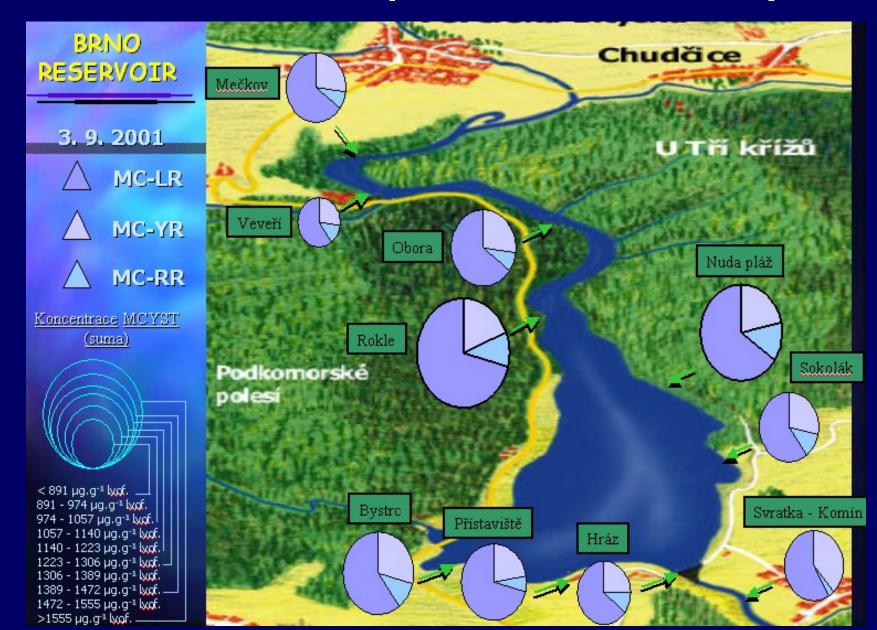



## Microcystins in the Czech Rep.

(Water bloom biomass concentrations ... up to several mg/g dry weight)




## Seasonal variability


 dissolved microcystins in the C.R. (water concentrations)

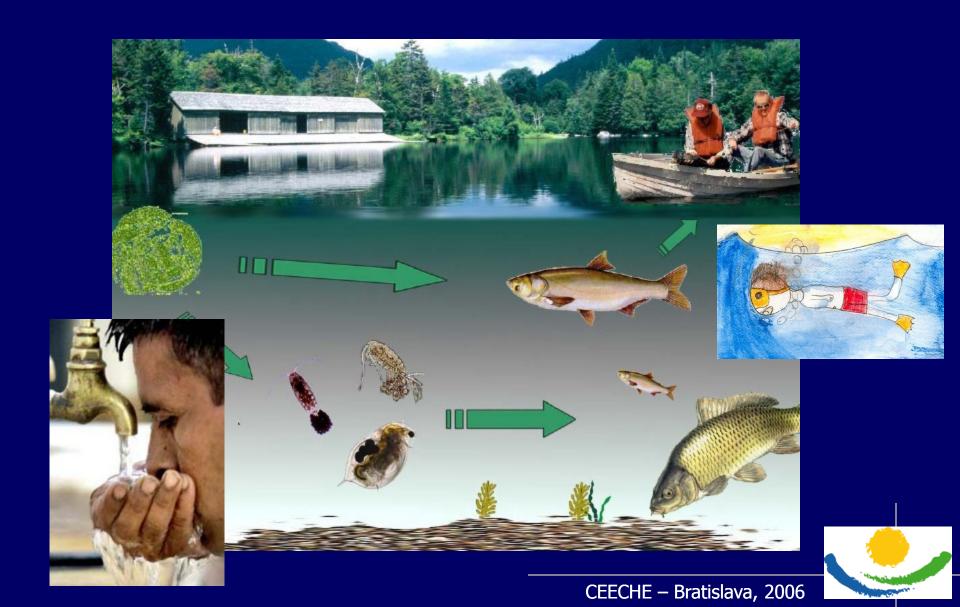


### Reservoir seasonal data



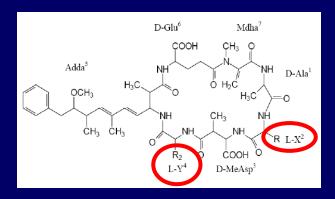
## Reservoir spatial variability




## Microcystins

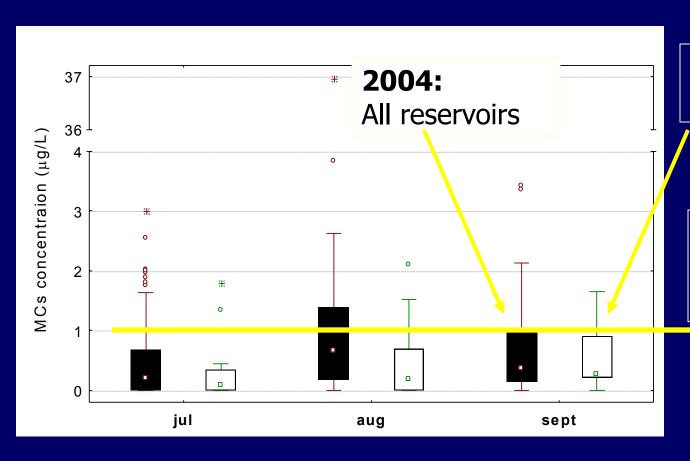
### HUMAN HEALTH RISKS

## **EXPOSURE ROUTES**




## **EXPOSURE ROUTES**




### MICROCYSTINS

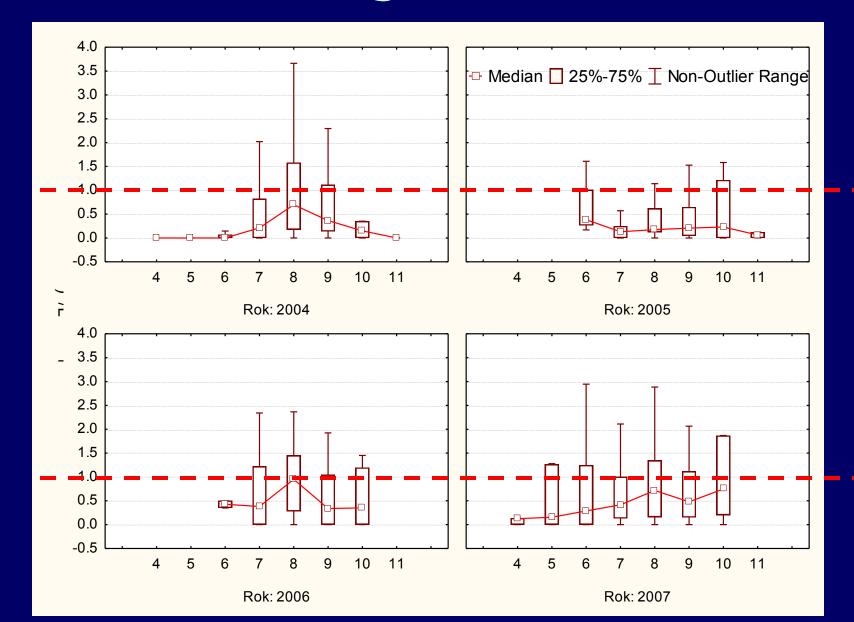
... brief reminder ...



- 70 structural variants:
  - MC-LR only (about 30-50% of MCs) considered by WHO
- Human chronic TDI: 0.04 ug/kg b.w. daily
  - drinking water guideline recommendation: 1 ug/L (usually accepted in national laws worldwide, incl. Czech Rep.)
- High toxicity safety risks: manipulation regulated
   United Nations Bacteriological and Toxin Weapons Convention
   Czech Rep. Law no. 281/2002 Sb. and 474/2002 Sb.

## MCs in drinking water reservoirs




2004: 27 DW reservoirs

WHO recom. for tap waters 1 ug/L

Tap waters up to 8 ug/L (1999)

Bláha & Maršálek (2003) Arch Hydrobiol

## MCs in drinking water reservoirs



# "TOP" MCs in waters (Czech Rep. 2004-7)

| Lokalita                   | Datum odběru | MC [ug/L] |
|----------------------------|--------------|-----------|
| Velké Žernoseky (pískovna) | 1.8.2004     | 37.0      |
| Nechranice                 | 31.7.2004    | 19.0      |
| Dubice, Česká Lípa         | 8.9.2004     | 15.1      |
| Prostřední, Lednice        | 6.9.2005     | 18.7      |
| Lučina                     | 19.7.2005    | 17.3      |
| České údolí VN             | 8.8.2005     | 9.3       |
| Plumlov                    | 15.8.2006    | 24.8      |
| Dalešice                   | 14.7.2006    | 16.3      |
| Hracholusky                | 21.8.2006    | 16.3      |
| Nechranice                 | 26.7.2007    | 29.8      |
| Skalka                     | 22.8.2007    | 19.9      |
| Novoveský                  | 2.10.2007    | 16.3      |

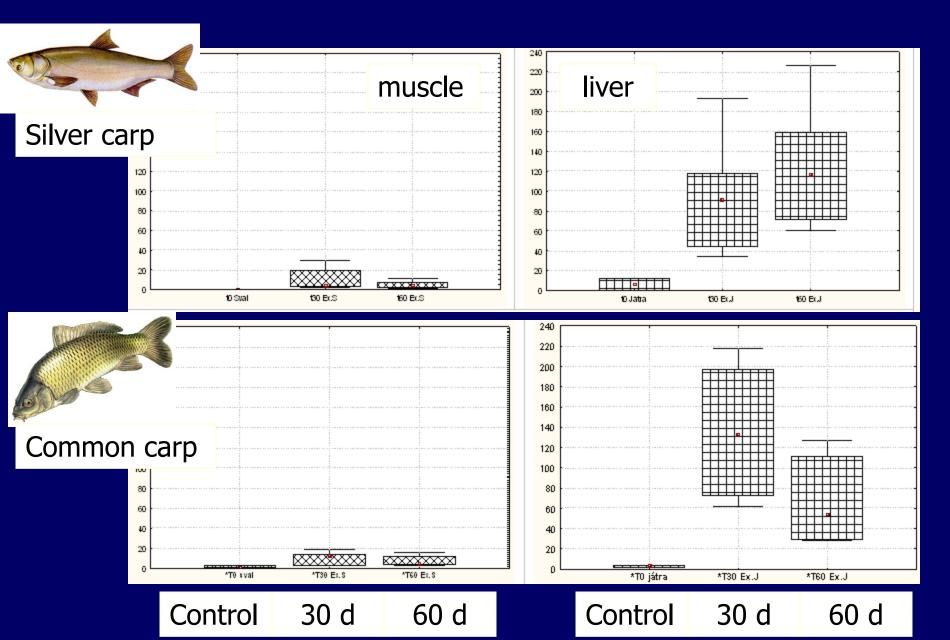
### Risks of MCs in drinking water supplies

| 2 8                             |                                                     |                                                     |                                                     |                                                   |  |
|---------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--|
| concentration o<br>dissolved MC | 20% daily intak<br>of dri                           |                                                     | 100% daily intake from sources of drink.w.          |                                                   |  |
| ratio<br>ed l                   | child (25kg)                                        | adult (70kg)                                        | child (25kg)                                        | adult (70kg)                                      |  |
| MC MC                           | dose MC(µg.kg = 1<br>live wt. day = 1)<br><b>HI</b> | dose MC(µg.kg = 1<br>live wt. day = 1)<br><b>HI</b> | dose MC(µg.kg = 1<br>live wt. day = 1)<br><b>HI</b> | dose MC(µg.kg =<br>*live wt. day =*)<br><b>HI</b> |  |
| median                          | 0.0015                                              | 0.0005                                              | 0.0075                                              | 0.0027                                            |  |
| <b>0.205</b><br>μg/L            | 0.038                                               | 0.014                                               | 0.189                                               | 0.067                                             |  |
| extreme                         | 0.1272                                              | 0.0454                                              | 0.6359                                              | 0.2271                                            |  |
| <b>17.27</b><br>ug/l            | 3.180                                               | 1.136                                               | 15.898                                              | 5.678                                             |  |

- SIGNIFICANT HEALTH RISKS EXIST!
- To minimize risk
  - Addopt appropriate technologies and treatments
  - Establish routine monitoring of MCs during the season

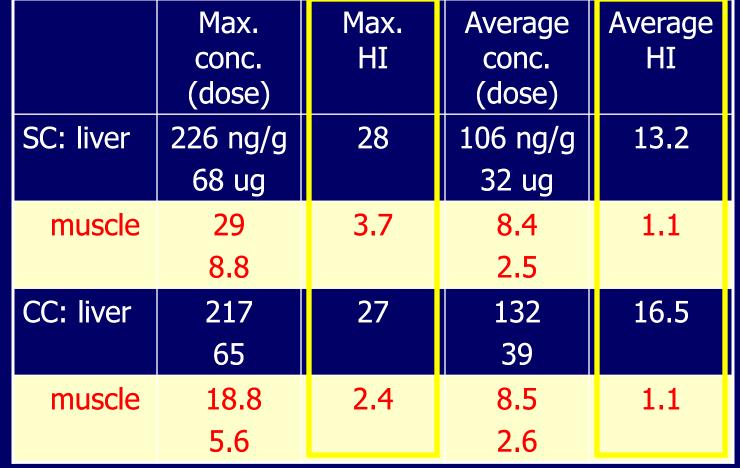
### Accumulation of MCs in fish




Silver carp



Common carp




### Accumulation of MCs in fish



### Risk of MCs in edible fish







100% of food from the contaminated source avg. person: 60kg, food - 300g

TDI: 0.04 ug/kg/day

### MCs in fish [ng/g f.w.] (Czech Republic reservoirs, 2008)

|               | Li      | Muscle  |   |
|---------------|---------|---------|---|
|               | Average | Maximum |   |
| Pike perch    | 15.6    | 22.7    | 0 |
| Amur          | 2.02    | 6.1     | 0 |
| Carp          | 0.57    | 1.8     | 0 |
| Catfish       | 0       | 0       | 0 |
| Silver salmon | 4.14    | 9.5     | 0 |

Exposure to MCs from fish
 Less (if any) significant health risks

#### RECREATIONAL EXPOSURE

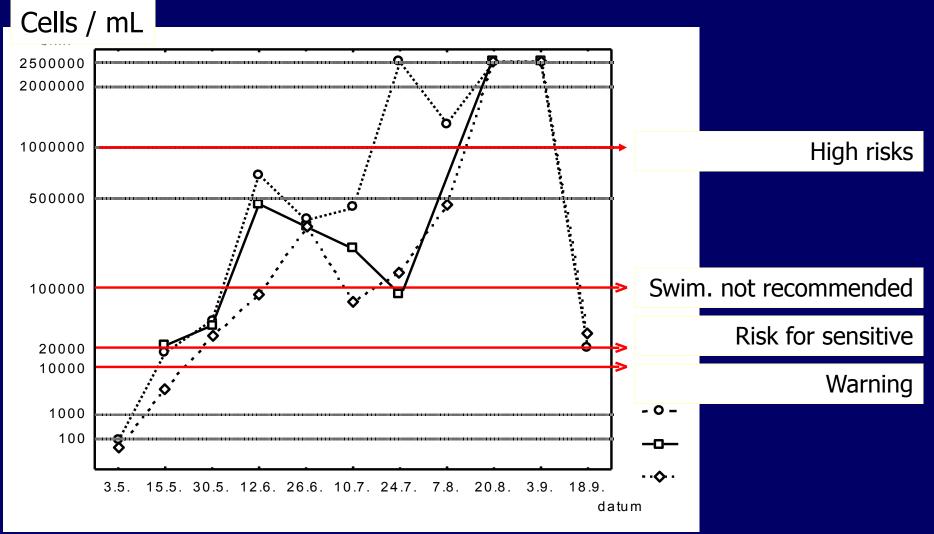
#### Contact dermatitis

non-specific (!!!!)
responsible agents
(? MCs, LPS?)



### Lipopolysaccharides?

Pyrogenicity of LPS


significant in water blooms

(less in lab cultures)

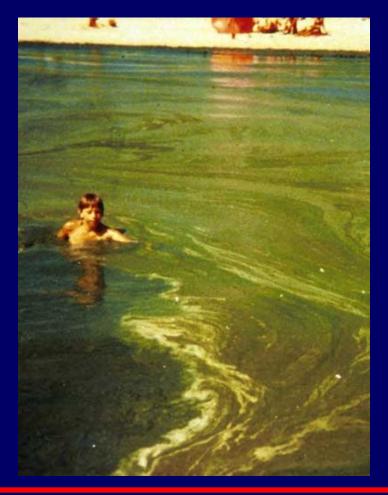
Endotoxin activity (EU mg<sup>-1</sup> d.w.) (EU mg<sup>-1</sup> LPS) Sample Green alga P. subcapitata 0 0 Cvanobacterial culture 301 P. agardhii 35 456 A. flos-aquae 426 38 399 M. aeruginosa 257 36 809 T. variabilis 2 5 1 8 270 848 Water bloom Planktothrix sp. 61 46 959 918 118 7 895 Aphanizomenon sp. M. aeruginosa 799 199 895 989 449 576 Microcystis sp. 48 699 277 Anabaena sp. Heterotrophic bacteria E. coli 14 692 1 347 959 1 702 K. intermedia 239 770 P. putida 11 392 1 294 592 P. fluorescens 55 6 669

Bernardová et al. 2008 J Appl Toxicol

# Toxic cyanobacteria in recreational reservoirs (WHO approach - "preliminary caution")



#### RECREATIONAL EXPOSURE


Contact dermatitis

non-specific (!!!!)
responsible agents
(? MCs, LPS?)



Toxins enter the body

(MCs risk assessment possible)



### Risks of MCs: recreational exposure (US EPA R.A.methodology)

|                     | 7 days per year (chron        |                               |                                  | posure) 1 day acute exposure  |                               |                               |                                  |                               |
|---------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|
|                     | Guidance level 2              |                               | Guidance level 3                 |                               | Guidance level 2              |                               | Guidance level 3                 |                               |
|                     | 100 000 cells/mL              |                               | 2 000 000 cells/ml               |                               | 100 000 cells/mL              |                               | 2 000 000 cells/ml               |                               |
|                     | child                         | adult                         | child                            | adult                         | child                         | adult                         | child                            | adult                         |
|                     | (25kg/80ml.h <sup>-1</sup> )  | (70kg/50ml.h <sup>-1</sup> )  | (25kg/80ml.h <sup>-1</sup> )     | (70kg/50ml.h <sup>-1</sup> )  | (25kg/80ml.h <sup>-1</sup> )  | (70kg/50ml.h <sup>-1</sup> )  | (25kg/80ml.h <sup>-1</sup> )     | (70kg/50ml.h <sup>-1</sup> )  |
|                     | MC dose (µg.kg<br>="bw.day=") | MC dose (µg.kg<br>="bw.day=") | MC dose<br>(µg.kg = 1bw.day = 1) | MC dose (µg.kg = 1bw.day = 1) | MC dose (µg.kg<br>=1bw.day=1) | MC dose (µg.kg<br>=1bw.day=1) | MC dose (µg.kg =1<br>bwv.day =1) | MC dose (µg.kg<br>=1bw.day=1) |
| biomass-bound MC    | н                             | н                             | н                                | н                             | HI                            | н                             | н                                | HI                            |
| median              | 0.00019                       | 0.00004                       | 0.00389                          | 0.00087                       | 0.01013                       | 0.00226                       | 0.20268                          | 0.04524                       |
| concentration       | 0.005                         | 0.001                         | 0.097                            | 0.022                         | 0.253                         | 0.057                         | 5.067                            | 1.1310                        |
| <b>348</b> μg/g dw  |                               |                               |                                  |                               |                               |                               |                                  |                               |
| extreme             | 0.00220                       | 0.00049                       | 0.04406                          | 0.00984                       | 0.11488                       | 0.02564                       | 2.29757                          | 0.51285                       |
| concentration       | 0.055                         | 0.012                         | 1.102                            | 0.246                         | 2.872                         | 0.641                         | 57.439                           | 12.823                        |
| <b>3945</b> μg/g dw |                               |                               |                                  |                               |                               |                               |                                  |                               |

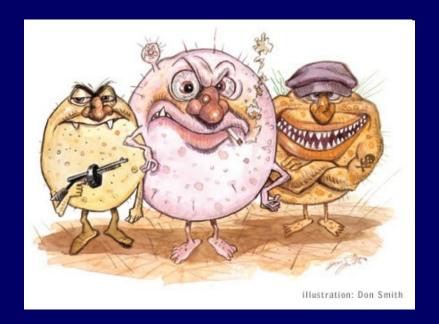
- Recreation exposure
  - -> significant risks of MCs

### Summary I - MCs and the health risks

- MCs present in 80-90% of reservoirs
- High MCs concentrations
- All exposure routes pose significant health risks under certain scenarios
  - ! Recreation, Drinking water

(MCs accumulated in fish - less important)

### **Cyanobacterial** EKOtoxicity?


- Isolated microcystins many toxicological studies
- HOWEVER: Water blooms are more than microcystins
  - complex mixtures of many compounds (toxins, lipopolysaccharides, non-toxic components...)
  - ? accumulated toxicants (metals, POPs ???)

Many studies:

tested complex water blooms BUT interpreted as "MCs"

## Ecotoxicity of <u>WATER BLOOMS</u> to bacterioplankton

- highly relevant question (MCs are evolutionary old ... as well as bacteria)
- only few studies in general low toxicity observed

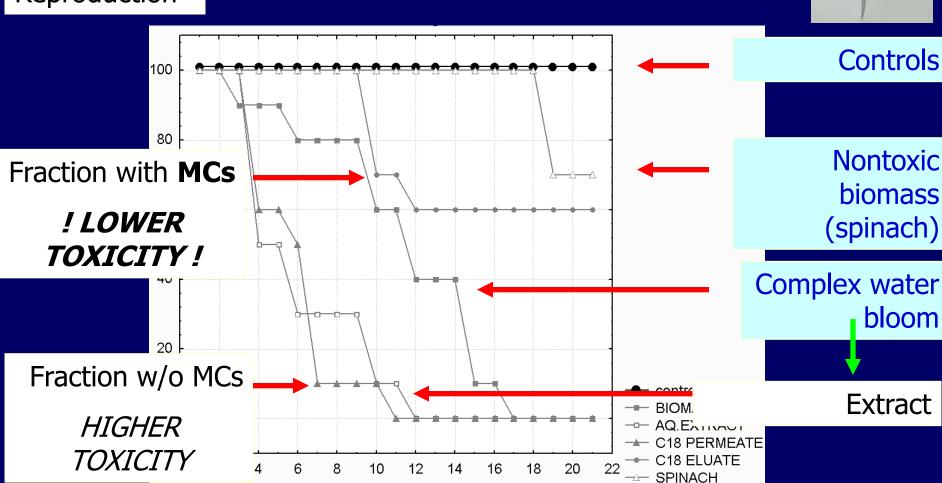


## Ecotoxicity of WATER BLOOMS to algae (phytoplankton)

- Algae = competitors to cyanobacteria
  - limited data
  - weak direct toxicity only at high (nonrelevant) concentrations
  - some studies indicate allelopathy between cyanobacteria & algae (*inhibition of growth, specific effects on dormant stages*)

### Ecotoxicity of WATER BLOOMS to zooplankton

- invertebrates **lower sensitivity** than vertebrates
- variable sensitivity of different (even closely related) invertebrate species
- one of the first hypotheses: "MCs are against predators" (not confirmed - several contras…)


BUT: zooplankton prefers nontoxic strains during feeding (? -> indirect effects on development of toxic blooms ?)



### Ecotoxicity of cyanobacteria



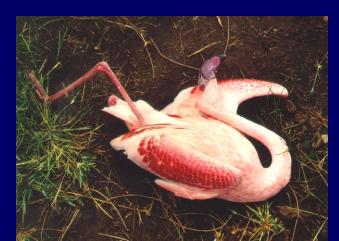




time (day)

## Ecotoxicity of <u>WATER BLOOMS</u> to fish and amphibians

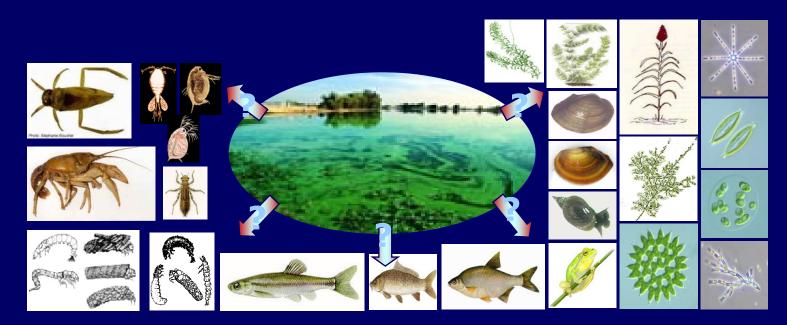
- Many studies ... toxin accumulations
  - + several effects observed (histhology, biochemistry...)
- ! Indirect effects (pH changes, oxygen content) more important in toxicology!




### Ecotoxicity of WATER BLOOMS to birds

- deaths documented (with toxins in bird tissues)
- limited number of controlled experiments
  - low direct toxicity to model birds

! Water blooms stimulate effects of other agents (lead toxicity, immunosupressions)






### Summary II - Ecotoxicological risks

- Only MCs studied (... results disputable ...)
- In general: Lower importance of "known" isolated toxins (such as MCs)

! Complex bloom effects are more important!



### ... emerging toxins

#### Cylindrospermopsin (CYN)

|                               | MC                          | CYN                         |
|-------------------------------|-----------------------------|-----------------------------|
| LD50<br>(acute oral toxicity) | <b>6000</b> μ <b>g/kg</b>   | <b>5000</b> μ <b>g/kg</b>   |
| NOAEL                         | <b>40</b> μ <b>g/kg/den</b> | 30 μg/kg/den                |
| TDI                           | <b>0.04</b> μ <b>g/kg</b>   | <b>0.03</b> μ <b>g/kg</b>   |
| Limit pro pitnou vodu         | <b>1</b> μ <b>g/L</b> *     | 1 μg/L * *<br>15 μg/L * * * |

- discovered in tropics (Australia, Florida, New Zealand ...)
- now reported from Europe ... including C.R.

Risks of both MCs and CYN are comparable (CYN not regulated, concentrations unknown...)

#### Cylindrospermopsin in the C.R.

| + |                |                                                      |             |
|---|----------------|------------------------------------------------------|-------------|
|   | nádrž / odběr  | tax. složení vodního květu                           | CYN (µg/L)  |
|   | **********     | *****                                                | ELISA       |
|   |                |                                                      |             |
| _ | Dubice         |                                                      |             |
|   | Daoice         |                                                      |             |
|   | 2007-08-27     | Apahnizomenon flos-aquae var. klebahnii 5%,          |             |
|   | 2007-00-27     | Limnothrix redekei 70%, Planktothrix sp. 5%,         |             |
|   |                | Microcystis sp. 15%, Anabaena lemmermannii           | 3.135±0.003 |
|   |                | Microcysus sp. 1570, Anabaena lemmermanim            |             |
| _ | 3.67.4         |                                                      |             |
|   | Máchovo jezero |                                                      |             |
|   | 2222 22 22     |                                                      |             |
|   | 2007-07-30     | Aphanizomenon gracile 10%, Aphanizomenon sp. (10%),  |             |
|   |                | Microcystis sp. 30%, Aphanocapsa sp. 10%,            | 0.470±0.032 |
|   |                | Oscillatoriales 20%, Aphanothece sp., Anabaena sp.   | 0.170=0.055 |
| _ |                |                                                      |             |
|   | Svět           |                                                      |             |
|   | DAC!           |                                                      |             |
|   | 2007-07-25     | Aphanizomenon flos-aquae var. klebahnii 5%, Anabaena |             |
|   | 2007 07 25     | flos-aquae 40%, Anabaena planctonica 50%,            |             |
|   |                | nos-aquae 4070, Anabaena pranctonica 5070,           | 0.061±0.010 |

Cylindrospermopsis raciborskii

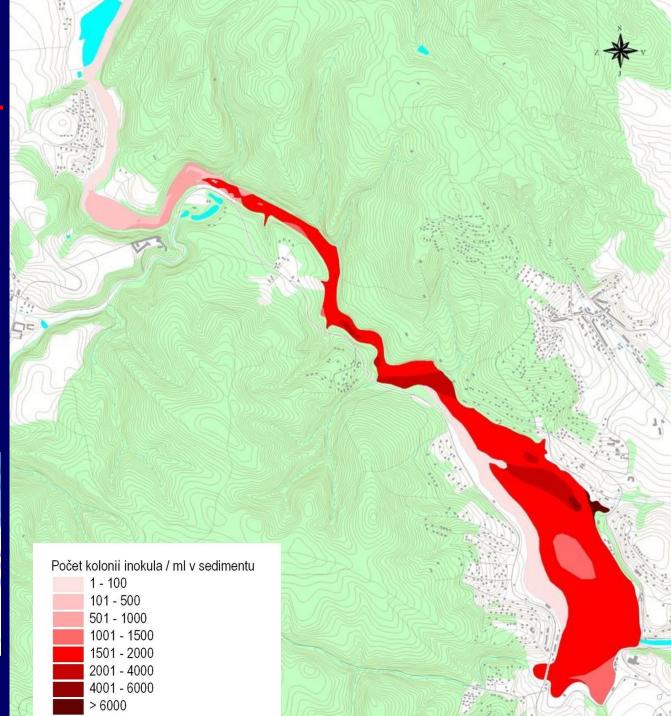
Bláhová et al. 2008 Toxicon

### How to manage toxic blooms?

```
Limit nutrient sources (upstream)
                           in the reservoir
```

- Cyanocides (chemical, natural e.g. Humic acids)
- Flocculants Al(OH)<sub>3</sub>
- Biological control (... planktophagous fish)
- Others (mechanical removal, ultrasonic ...)

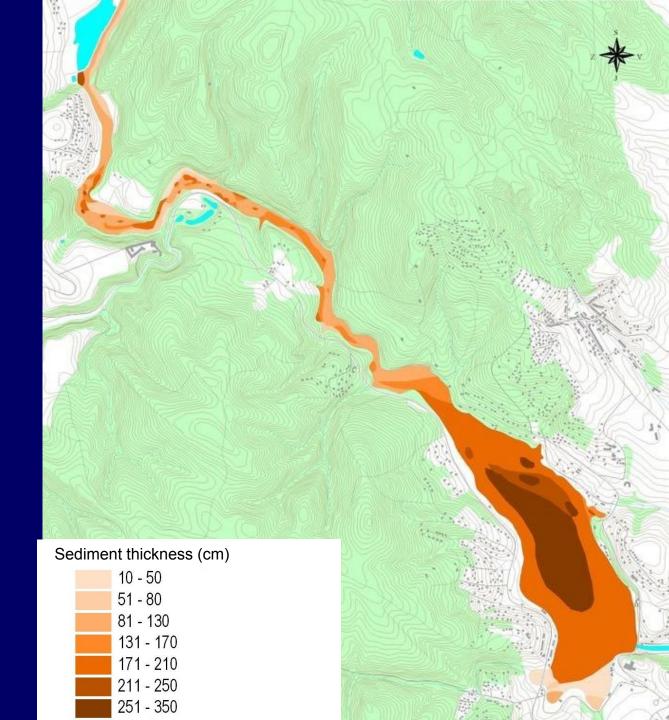
### How to manage toxic blooms?


## No ideal and universal approach exists

- combinations of methos
- locality-specific approach

**Example**Brno reservoir

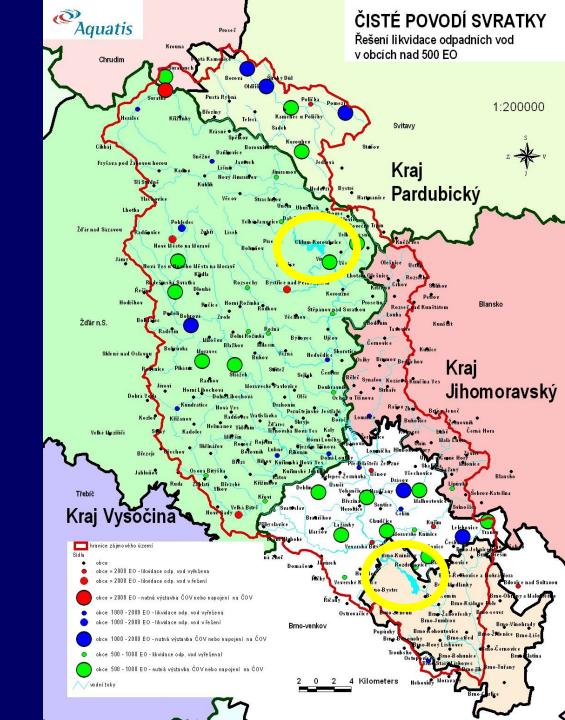
sources of
cyanobacteria
(colonies
in sediment)






### **Sources of nutrients**

... in the reservoir


(sediments up to 3 m thickness)



### **Sources** of nutrients

... upstream

- several small towns & villages (no WWTPs)



#### **CONCLUSIONS**

 Eutrophication causes complex risks with complicated management

#### 1) Ecological risks

- Loss of diversity ... followed by losses of functioning
- Secondary changes in the environment
  - hydrochemistry (pH, O<sub>2</sub>)
  - loss on natural habitats (makrophytes...)
  - new conditions (associated bacteria patogenic ?)
- Susceptibility to catastrophes
- Direct ecotoxicity of individual (known) cyanotoxins seems to be less important

#### **CONCLUSIONS**

#### 2) HEALTH RISKS OF CYANOTOXINS

- **Lower importance** known toxins (MC) in food chains (fish)
- MC in drinking water higher costs needed for management and control
- Important risk recreation!

- New and less explored risks
  - new toxins (and their mixtures) LPS, CYN ...
  - water blooms as "sorbents" of other toxins (metals, POPs)