
Detoxification

Chemicals entering body (mostly via food) must pass through liver

THE LIVER DETOX PATHWAYS AND ESSENTIAL NUTRIENTS

Detoxification Pathways

Toxins fat soluble)

STEP 1

STEP 2

Waste Products

(water soluble)

Required Nutrients

B Vitamins Folic Acid

Glutathiane

Antioxidants

eg. Milk Thistle

Carolenoids

Vitamin E

Vitamin C

Required Nutrients

Amino Acids

(Glutamine

Giveine

Taurine

Cysteine

Sulphurated-

phytocher/fisals-eg

found in garlia &

cruciferous vegetables

Eliminated from the body via:

Gall Bladder

Kidneys

Bile

Bowel

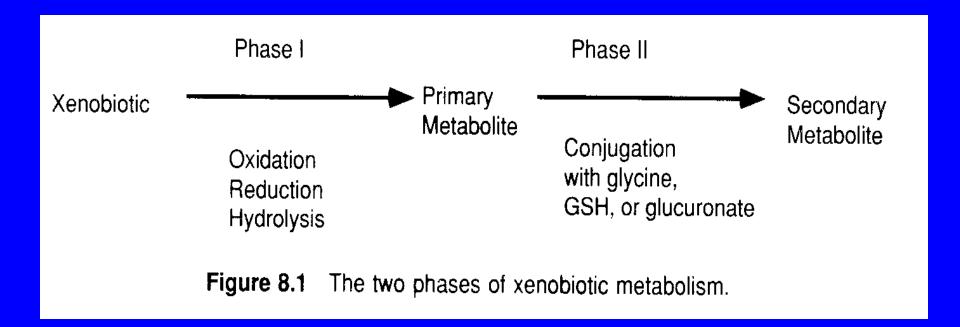
actions

Urine

Toxin List

metabolic end products, micro-organisms, contaminants / pollutants, insecticides, pesticides, food additives, drugs, alcohol

Detoxification


Principle of detoxification

- elimination of hydrophobic compounds from body
- formation of polar / soluble products

Two principal phases (phase I & II)

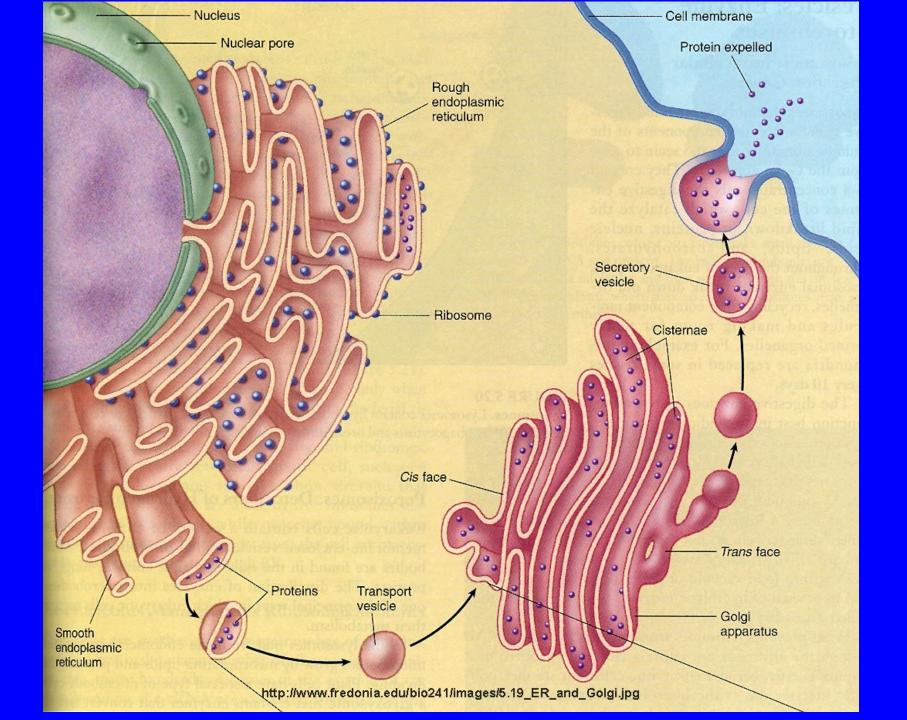
- well studied in vertebrates (mammals)
- liver: major organ involved in detoxification
- plants: similar oxidating enzymes: cytochrom oxidase, phenol oxidase, peroxidase

Phase III - elimination - both from cell & body

Phase I

MFO enzymes

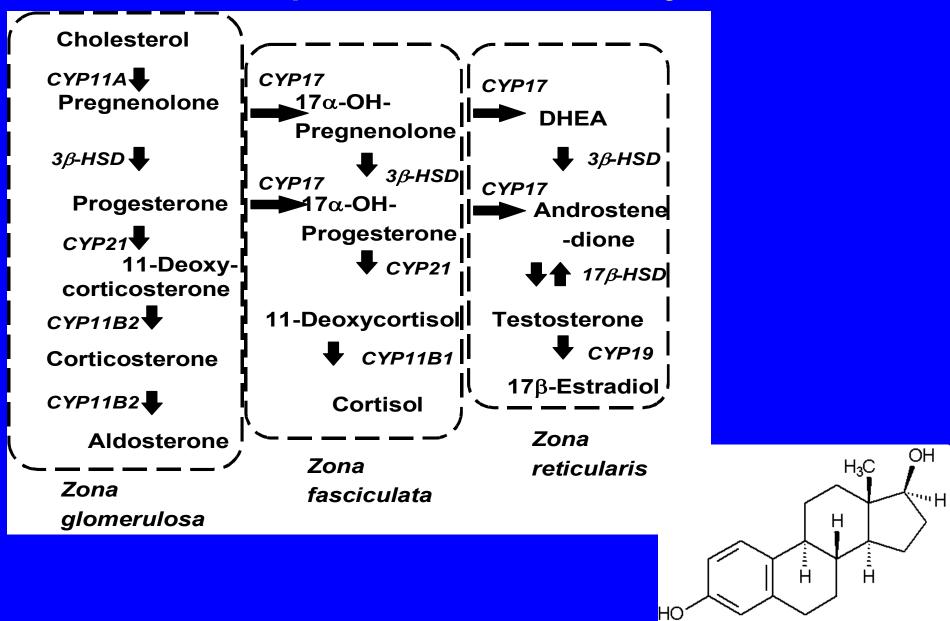
(mixed function oxidase, mixed function oxygenase)


- membrane enzymes bound to **Endoplasmic reticulum**
- membrane vesicles "microsomes" = S-9 fraction can be extracted from cells

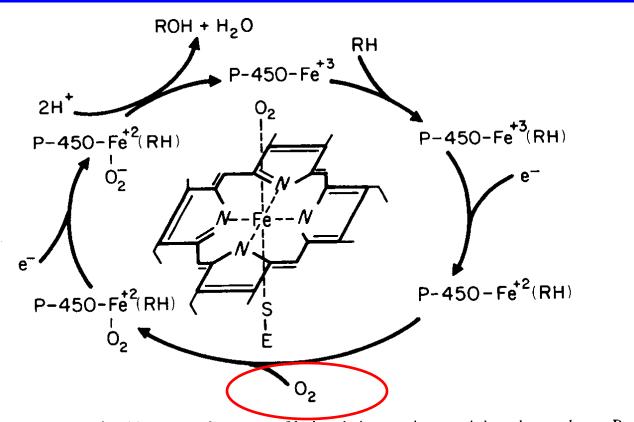
MFO: principle enzymes: cytochromes P450 (CYPs)

- haem-containing enzymes (superfamily of more than 150 genes)
- several classes and subclasses (different substrate specificity; structure ...)

Cytochrome P450 1A (CYP1A)


- basic for detoxification of hydrophobic environmental contaminants
 Cytochrome P450 19A (CYP19)
 - "aromatase" involved in synthesis of estradiol (aromatization of testosterone)

Family	Function	Members	Names
LCYP1 L	drug and steroid (especially estrogen) metabolism	3 subfamilies, 3 genes, 1 pseudogene	CYP1A1, CYP1A2, CYP1B1
CYP2	drug and steroid metabolism	13 subfamilies, 16 genes, 16 pseudogenes	CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP2W1
LCYP3 I	drug and steroid (including testosterone) metabolism	1 subfamily, 4 genes, 2 pseudogenes	CYP3A4, CYP3A5, CYP3A43
CYP4	arachidonic acid or fatty acid metabolism	6 subfamilies, 11 genes, 10 pseudogenes	CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22, CYP4V2, CYP4X1, CYP4Z1
CYP5	thromboxane Ag synthase	1 subfamily, 1 gene	CYP5A1
LICYP7 I	bile acid biosynthesis 7-alpha hydroxylase of steroid nucleus	2 subfamilies, 2 genes	CYP7A1, CYP7B1
CYP8	varied'	2 subfamilies, 2 genes	CYP8A1 (prostacyclin synthase), CYP8B1 (bile acid biosynthesis)
CYP11	steroid biosynthesis	2 subfamilies, 3 genes	CYP11A1, CYP11B1, CYP11B2
LCYP171	steroid biosynthesis, 17-alpha hydroxylase	1 subfamily, 1 gene	CYP17A1
LCYP191	steroid biosynthesis: aromatase synthesizes estrogen	1 subfamily, 1 gene	CYP19A1
CYP20	unknown function	1 subfamily, 1 gene	CYP20A1
CYP21	steroid biosynthesis	2 subfamilies, 2 genes, 1 pseudogene	CYP21A2
CYP24	vitamin D degradation	1 subfamily, 1 gene	CYP24A1
CYP26	retinoic acid hydroxylase	3 subfamilies, 3 genes	CYP26A1, CYP26B1, CYP26C1
CYP27	varied	3 subfamilies, 3 genes	CYP27A1 (bile acid biosynthesis), CYP27B1 (vitamin D3 1-alpha hydroxylase, activates vitamin D3), CYP27C1 (unknown function)
LLAB301	7-alpha hydroxylation of 24-hydroxycholesterol	1 subfamily, 1 gene	CYP39A1
CYP46	cholesterol 24-hydroxylase	1 subfamily, 1 gene	CYP46A1
CYP51	cholesterol biosynthesis	1 subfamily, 1 gene, 3 pseudogenes	CYP51A1 (lanosterol 14 alpha demethylase)


Phase	Туре	Reaction (gene)	Substrate C
1	MFO	O-Deethylase (CYP1A1)	7-Ethoxycoumarin
	MFO	Aryl hydrocarbon hydroxylase (CYP1A1)	PAH
1	MFO	Hydroxylase (CYP3A7)	Cortisol
1	MFO	Aromatase (CYP19)	Androgens
1	MFO	Cholesterol side-chain cleavage (CYP11A)	Cholesterol
1	MFO	Estrogen catechol formation,	Estrogens
		2-Hydroxylation (CYP1A1)	7 ·
		4-Hydroxylation (CYP1B1)	
	MFO	25-Hydroxycholecalciferol hydroxylase	25-Hydroxycholecalciferol
	Oxidoreductase	17β-Hydroxydehydrogenase	
		Type 1	Estrone to estradiol
		Type 2	Estradiol to estrone
	Oxidoreductase	11β-Hydroxydehydrogenase	Cortisol/cortisone
	Oxidation	Dehydrogenase	Alcohol/acetaldehyde
	Oxidation	Monoamine	Norepinephrine
II	Sulfatase	Sulfate cleavage	Steroid sulfates
II	Conjugation	GST	Epoxides
II	Conjugation	Catechol-O-methyltransferase	Catecholamines, catechol estrogens

CYPs - example: steroid hormone synthesis

CYPs & Phase I of detoxification - major reactions

oxidation
hydrolysis
(reductions and others)

Scheme 3.1. Outside: suggested sequence of hydroxylation reactions carried out by cytochrome P-450. Inside: schematic presentation of the configuration of the P-450 prosthetic group.

Oxidation

Side Chain Oxidation

$$O_2$$
 O_2
 O_1
 O_2
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_6
 O_7
 O_8
 O_8
 O_8
 O_8
 O_8
 O_9
 O_9

Aromatic hydroxylation

$$R-N$$
 $+$
 CH_3

N-Dealkylation

$$R-O-CH_3$$
 $R-OH + HCHO$

O-Dealkylation

$$R-CH_2-CH-CH_2$$
 $R-CH_2-C-CH_2 + NH_3$ $| I \\ NH_2 | O$

Deamination

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2H_5
 O_2H_5
 O_2N
 O_2H_5
 O_2N
 O_2H_5
 O_2N
 O_2N

Desulfuration

Reduction

Hydrolysis

$$(C_2H_5)_2NCH_2CH_2OOC$$
 NH_2 $+ HOCH_2CH_2N(C_2H_5)_2$

Phase II

Conjugation reactions:

reactive xenobiotics or metabolites formed in phase I

- endogeneous substrates
 - saccharides and their derivatives glucuronic acid,
 - aminoacides (glycine)
 - peptides: glutathione (GSH)

Phase II enzymes:

glutathion S-transferase (GST)

epoxid hydrolase (EH)

<u>UDP-glucuronosyltransferase (UDP-GTS)</u>

sulfotransferase (ST)

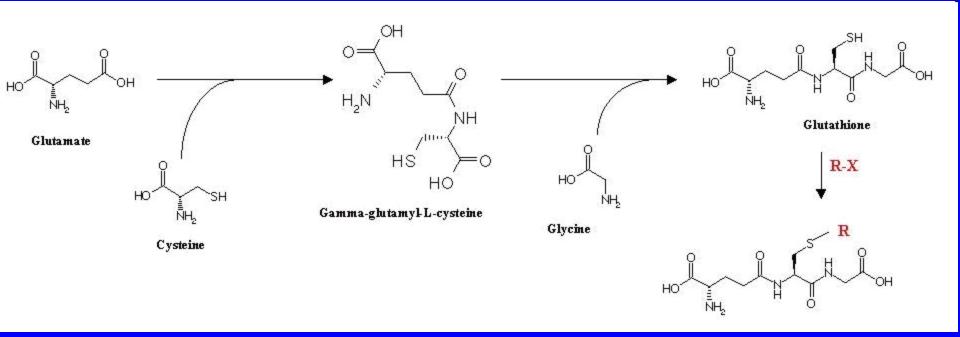

+ Excretion of conjugates in urine, sweat or bile

Table 3. Major phase II detoxification activities in humans

Reaction	Enzyme	Localizationa	Substrates
H ₂ O	Epoxide hydrolase	Microsomes Cytosol	Epoxides
Glutathione	Glutathione transferases	Microsomes	Electrophiles
Glucuronic acid (UDPGA) ^b	Glucuronyl transferases	Microsomes	Phenols, thiols, amines, Carboxylic acids
Sulfuric acid (PAPS) ^b	Sulfotransferase	Cytosol	Phenols, thiols, amines
Methyl Group (SAM) ^b	N- and O- methyl transferases	Cytosol Microsomes	Phenols, amines
Acetic acid (Acetyl-CoA) ^b	N-acetyl transferases	Cytosol	Amines
Amino acids (Acetyl-CoA, taurine, glycine)	Amino acid transferases	Microsomes	Carboxylic acids

Glutathione:

- major donor of SH (thiol) groups in cells (MW ~ 300 g/mol)
- concentrations ~ 5 mM (1.5 g/L)

Phase II reactions

Phenylacetic acid

Glutamine

Benzoic acid

Glycine

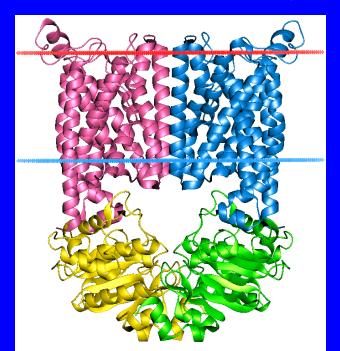
Hippuric acid

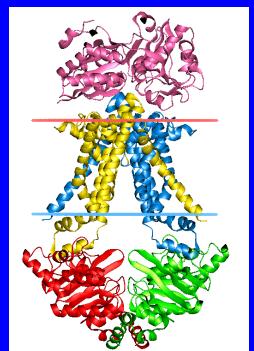
Glutathione

$$\begin{array}{c|c} & & & \\ & & & \\ \text{NH}_2 & & & \\ & & \text{NH} & & \\ & & \text{COOH} & & \\ \end{array}$$

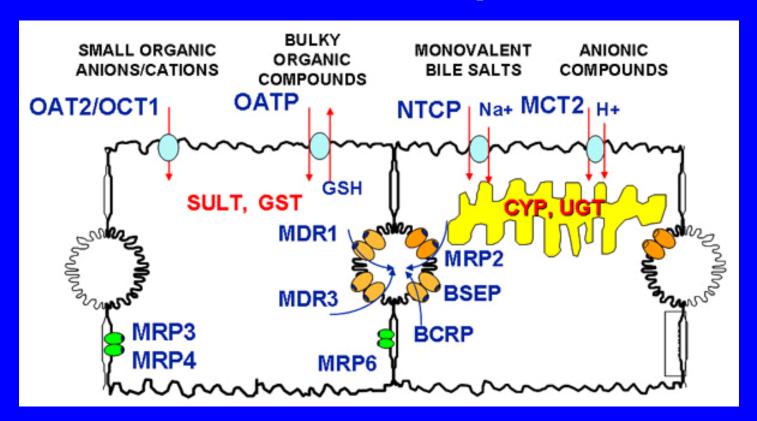
GST

Glutathione-S-Conjugate

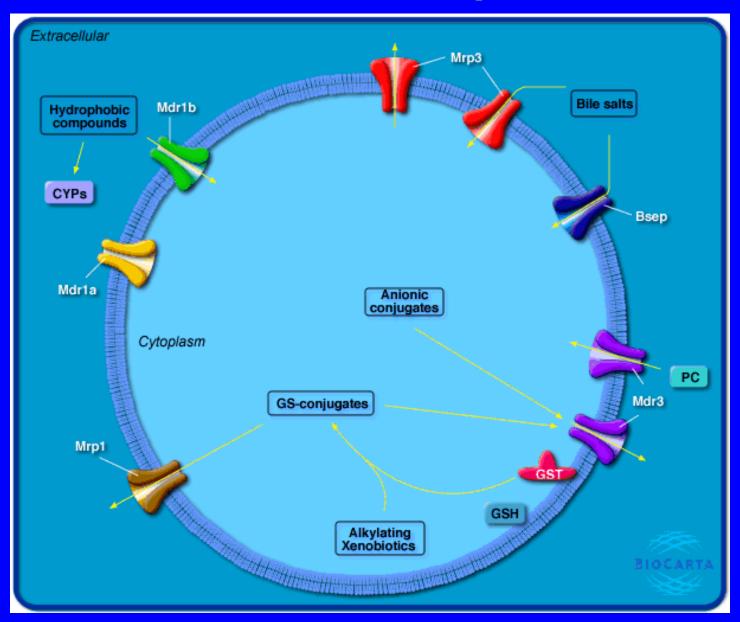

Displacement of aromatic halogens by glutathione


3,4-Dichloronitrobenzene

Phase III - transporters


ATP-binding cassette transporters (ABC transporters)

- protein superfamily (one of the largest, and most ancient in all extant phyla from prokaryotes to humans)
- transmembrane proteins transport across extra- and intracellular membranes (metabolic products, lipids, sterols, drugs)



Phase III - transporters

- MRP (MDR) multidrug resistance-associated protein family
- OATP: Organic anion transporting polypeptide
- P-glycoprotein
- ... many others

Phase III - transporters

Detoxification enzymes may be induced by substrates

- CYP1A - induction via AhR

- -Substrate: hydrophobic organochlorine compounds (PCDDs/Fs, PAHs PCBs ...)
- [see also: lectures on nuclear receptors]
- Other CYPs substrate-induced
- Phase II enzymes by reactive toxicants
- ABC transporters by respective chemicals

AhR dependent CYP1 induction

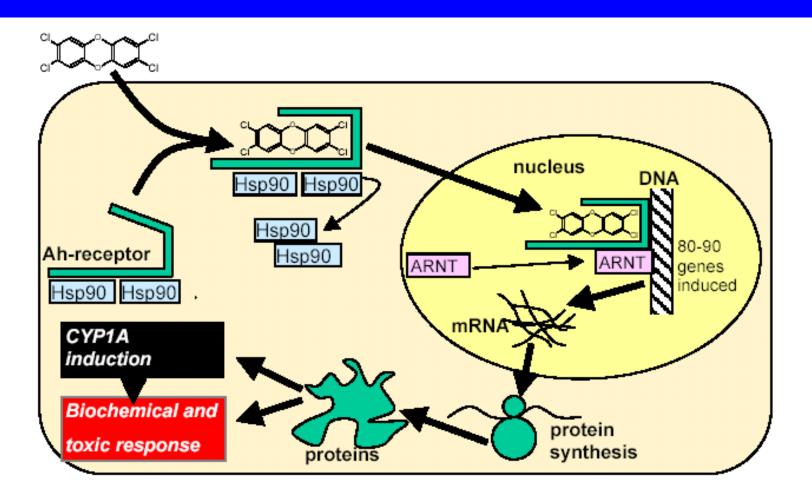
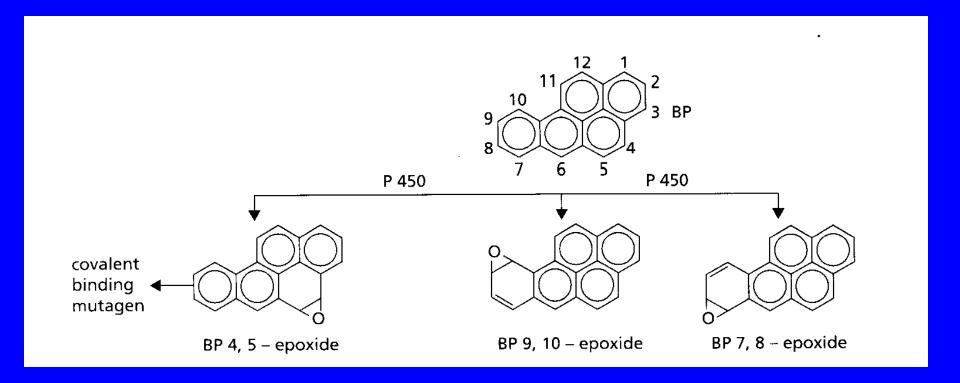
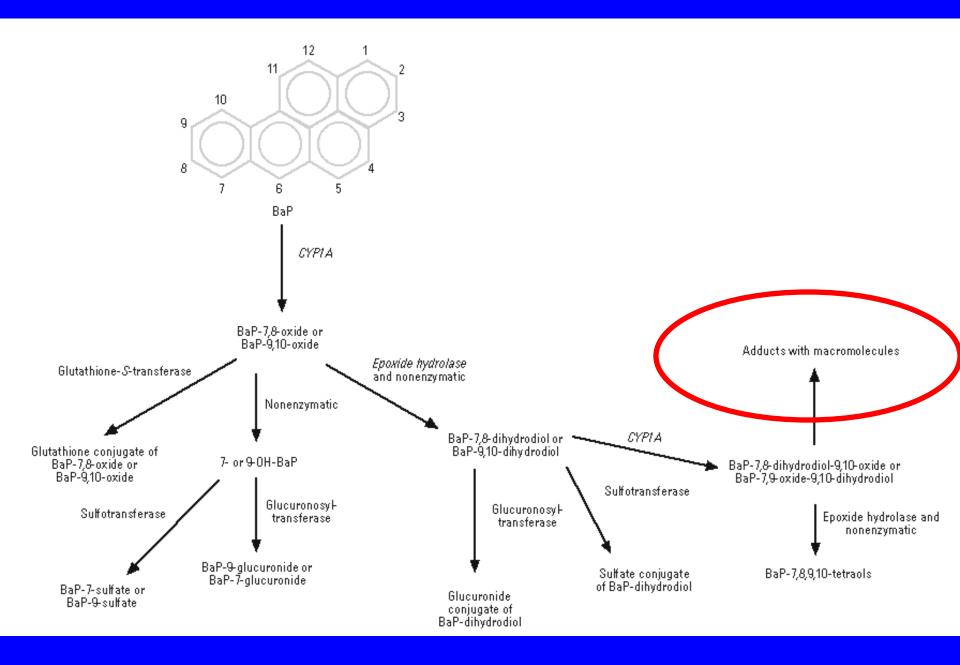


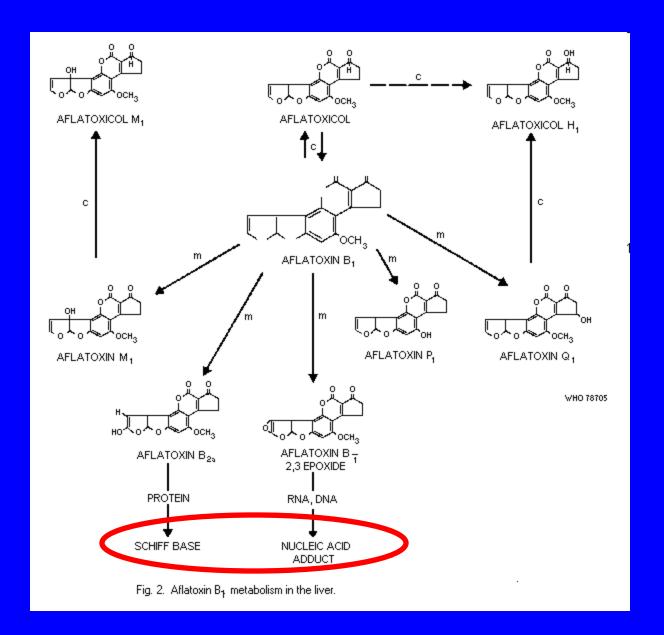
Figure 5. The mechanism of CYP1A induction mediated through the aryl hydrocarbon receptor (AhR). (Figure by M. Engwall).

Induction of detoxication enzymes


- -> increased **energetic demand** (ATP, metabolism)
- -> may lead to **resistance** to toxic compounds
- -> activation of pro-mutagens/pro-carcinogens
- -> increase of <u>oxidative reactions</u>


 production of Reactive Oxygen Species (ROS)

 [see oxidative damage and stress lectures]
- -> side toxic effects [see nuclear receptor lectures]
 - increased degradation of endogeneous compounds (retinoids regulatory molecules degraded by CYP1A
 - crosstalk with other mechanisms & receptors


Activation of promutagens by CYPs

Benzo[a]pyrene

Aflatoxin B1

