Redox homeostasis & oxidative stress

Redox homeostasis & oxidative stress

Redox homeostasis

- natural levels of oxidants (O2) and antioxidants in each cell

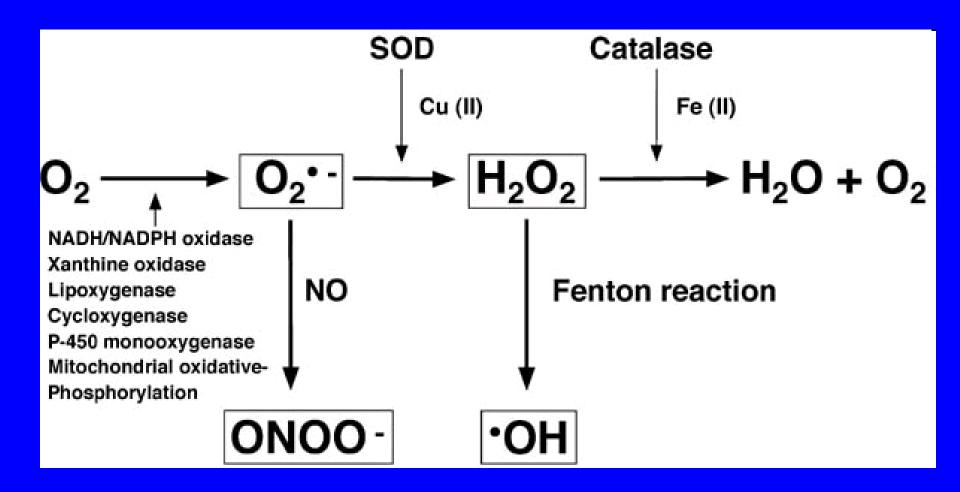
Disruption of redox homeostasis

-> <u>depletion of oxygen</u>: metabolism disruption, acidosis in tissues, cell necrosis

rare: INSIDE TUMORS

- -> overproduction of oxidants:
 - = oxidative stress

GENERAL MECHANISM OF TOXICITY


Overproduction of oxidants

Oxygen – principal molecule in living organisms
Oxygen increases reactive derivatives -> toxicity

ROS = Reactive Oxygen Species: Sources

- production in mitochondria (byproducts)
- redox-cycling (quinones of xenobiotics)
- Fenton-reaction (metals)
- oxidations mediated via MFO (CYP)
- depletion of antioxidants (reactive molecules)

Reactive Oxygen Species (ROS)

SOD = Superoxide dismutase

Reduction of molecular oxygen to superoxide radical

$$O2 + e^- \rightarrow ^{\circ}O2^-$$

Dismutation of superoxide radical

$$2 \, ^{\circ}O_{2}^{-} + 2 \, H^{+} \rightarrow H_{2}O_{2} + O_{2}$$

Transition metal catalyzed reaction (Fenton reaction)

$$^{\circ}O_{2}^{-}$$
 + Meⁿ⁺ \rightarrow Me⁽ⁿ⁻¹⁾⁺ + O_{2}
Me⁽ⁿ⁻¹⁾⁺ + $H_{2}O_{2}$ \rightarrow Meⁿ⁺ + OH⁻ + $^{\circ}OH$

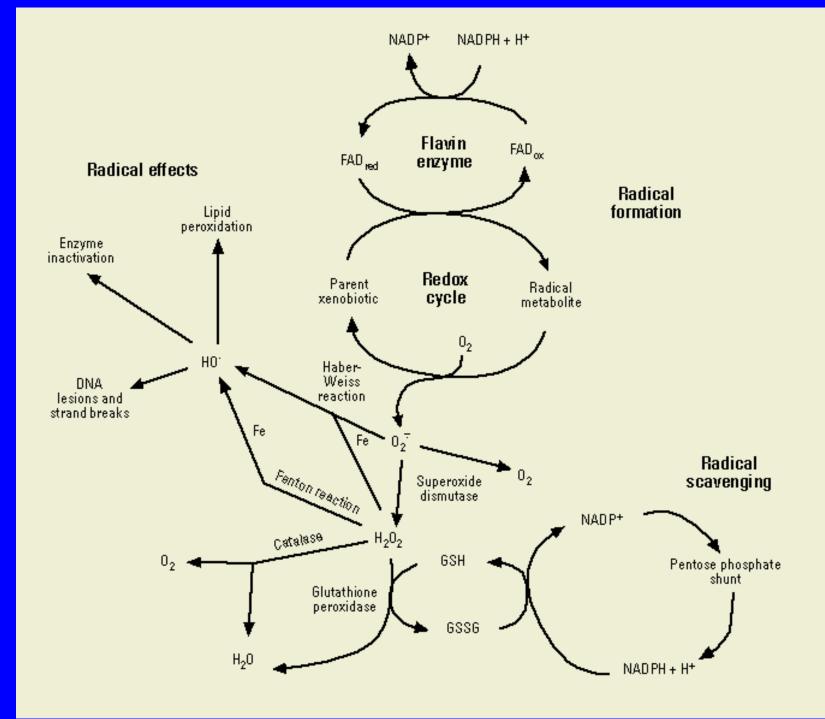
Haber-Weiss reaction

$$^{\circ}\text{O2}^{-} + \text{H}_{2}\text{O}_{2} \rightarrow \text{O}_{2} + \text{OH}^{-} + ^{\circ}\text{OH}$$

 $Me = metal (e.g.Fe^{3+}/Fe^{2+})$

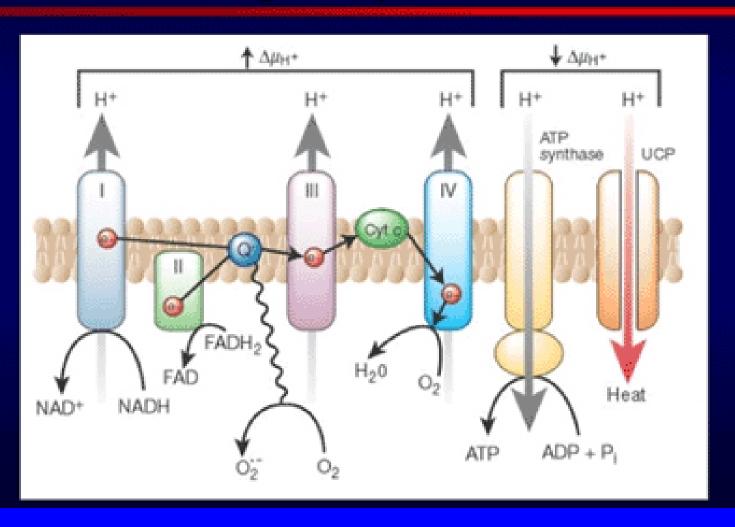
 ${}^{\circ}O_{2}^{-}$ = superoxide radical (superoxide anion)

°OH = hydroxyl radical


OH- = hydroxyl anion

 H_2O_2 = hydrogen peroxide

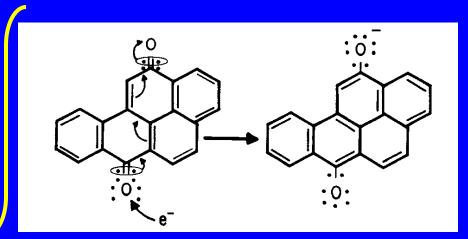
Fenton reaction


Reactive Oxygen Species (ROS)

ROS	Antioxidant	Rate constant, M ⁻¹ ·sec ⁻¹
Superoxide anion of oxygen	carnosine carnosine ascorbate α-tocopherol	$5.0 \cdot 10^{-5}$ $0.8 \cdot 10^{-5}$ $2.7 \cdot 10^{-5}$ $2.0 \cdot 10^{-5}$
Singlet oxygen	carnosine imidazole ergothioneine NaN ₃	$3 \cdot 10^{-7}$ $2 \cdot 10^{-7}$ $2 \cdot 10^{-7}$ $44 \cdot 10^{-7}$
Hydroxyl radical	carnosine	(5-8) · 10 ⁻⁹ 9 · 10 ⁻⁹

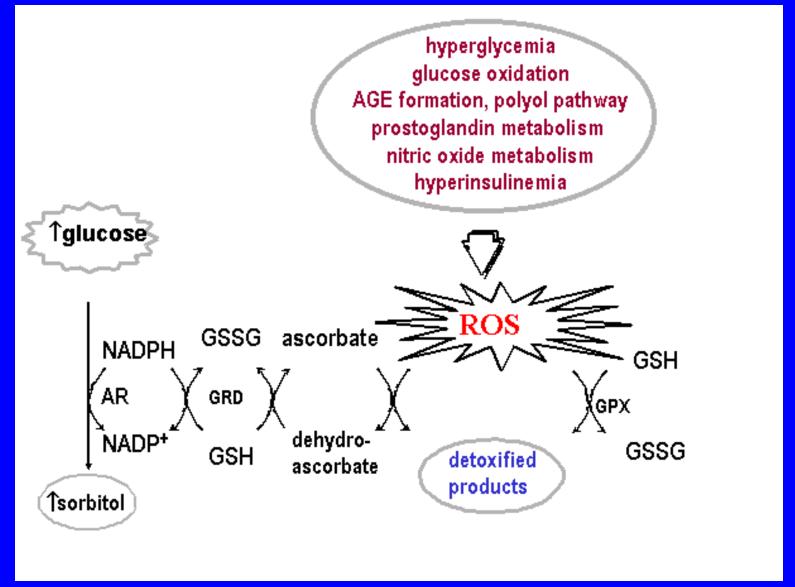
ROS & mitochondria

Glucose-Derived ROS: Mitochondrial Electron Transport System




Examples of chemical-induced oxidative stress

- Metals: fenton reaction -> OH*
- Redox-cycling chemicals: oxy-PAHs
- Depletion of GSH:


 reactive molecules,

 GST-conjugation,
 metals: SH oxidation ...

Antioxidant depletion GSH (glutathione)

Biomarkers of oxidative damage (will be discussed later)

BIOMARKER	AVAILABILITY	FREQUENTLY USED ASSAYS	
Lipid Peroxidation			
F₂-isoprostanes	Plasma, urine	GC/MS, HPLC-MS/MS	
Oxidized low-density lipoprotein	Plasma, serum	ELISA	
(oxLDL)			
Malondialdehyde (MDA)	Plasma, serum, saliva, urine,	Colorimetry, spectrophotometry,	
	exhaled breath condensate	HPLC +fluorescence, GC/MS	
Protein Oxidation			
Protein carbonyls	Plasma, serum	ELISA	
DNA Oxidation			
8-hydroxy-2-deoxyguanosine (8-	Plasma, serum, urine	HPLC-EC, HPLC-MS/MS*, GC/MS,	
OHdG)		Cornet assay*	