## Cell communication & regulation: a target for toxicants

Any sensitively regulated process is susceptible to toxicants

**! REGULATIONS & SIGNALLING** 

**Hierarchy** 

- systems: neuronal  $\leftarrow \rightarrow$  endocrine
- cell-to-cell hormonal & neuronal signal transmission contact channels

- intracellular signal transduction

## **HORMONES** - fate

1. Biosynthesis of a particular hormone in a particular tissue

- 2. Storage and secretion of the hormone
- 3. <u>Transport</u> of the hormone to the target cell(s)

4. Recognition of the hormone by an associated cell membrane or intracellular receptor protein.

5. Relay and **amplification of the received hormonal signal** via a signal transduction process -> cellular response.

6. The reaction of the target cells is recognized by the original hormone-producing cells (**negative feedback loop**)

7. Degradation and metabolism of the hormone



### Endocrine system:

1. Pineal gland, 2. Pituitary gland, 3. Thyroid gland, 4. Thymus, 5. Adrenal gland, 6. Pancreas, 7. Ovary, 8.Testis



Example: feedback loop

## **HORMONES - actions and controls**

- \* stimulation or inhibition of growth
- \* mood swings
- \* induction or suppression of apoptosis (programmed cell death)
- \* activation or inhibition of the immune system
- \* regulation of metabolism
- \* preparation for fighting, fleeing, mating ...
- \* preparation for a new phase of life
  - (puberty, caring for offspring, and menopause)
- \* control of the reproductive cycle

## TOXICITY TO HORMONAL ACTION = ENDOCRINE DISRUPTION

ED & EDCs - major problem in environmental toxicology

- Effects at all levels of hormonal action (synthesis, transport, action ....)

 <u>Multiple effects</u> (! Not only "xenoestrogenicity" & feminization) (*immunotoxicity, reproduction …*)

(WILL BE DISCUSSED FURTHER)

Intersex roach testis containing both oocytes and spermatozoa, caused by exposure to environmental oestrogens



\* **Amine-derived hormones** are derivatives of the amino acids tyrosine and tryptophan. Examples are catecholamines and thyroxine.

(small molecules - similar to organic toxicants - TOXIC EFFECTS)

Adrenalin





## Epinephrine $NH_2$ HO Dopamine $NH_2$ HO HO Norepinephrine

#### **Further:**

\* <u>Peptide hormones</u>

\* <u>Lipid and phospholipid-derived hormones</u>

\* **<u>Peptide hormones</u>** chains of amino acids. - <u>small</u>: TRH and vasopressin; <u>proteins</u>: insulin, growth hormone, luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating hormone).

Large molecules; receptors on surfaces of the cells (Interactions with toxic chemicals **less likely**)

Example - insulin



Lipid derived hormones (1) (from linoleic acid, arachidonic acid) - prostaglandins





#### Lipid derived hormones (2)

(small molecules - similar to organic toxicants - TOXIC EFFECTS)

<u>- steroid hormones</u> (from cholesterol)

testosterone, cortisol, estradiol ...



## Cell communication & regulation: a target for toxicants



# **Cell communication (1)**



# **Cell communication (2)**



# **Cell communication (3)**



## Signal transduction - target of toxicants

## - Regulation of cell life / death (apoptosis)

- metabolism
- proliferation
- differentiation
- death (apoptosis)

## - Signalling

- "network" of general pathways
- similar in all cells / different cell-specific effects

# Signalling disruption

- Consequences of signalling disruption

- unwanted changes in proliferation / differentiation / apoptosis
- -> cell transformation (carcinogenicity)
- -> embryotoxicity
- -> immunotoxicity
- -> reproduction toxicity
- .... other chronic types of toxicity

## Signal transduction - principles

: major processes

- protein-(de)phosphorylation (PKinases, PPases)
- secondary messengers (cAMP / IP3, PIP2, DAG, Ca2+, AA)

1: Membrane receptors (G-protein, kinases) -> PKA activation: CAMP

2: Membrane receptors -> PLC / PKC activation -> PKC activation: IP3, PIP2, DAG, Ca2+, AA

**3: Cytoplasmic (nuclear) receptors** 

## Membrane receptors (PKs): G-proteins (GPCRs)

#### G PROTEIN-COUPLED RECEPTORS



## **Biological functions**

smell and taste (~1000 types of receptors) perception of light neurotransmission function of endocrine and exocrine glands chemotaxis exocytosis control of blood pressure embryogenesis development cell growth and differentiation HIV infection oncogenesis

### **<u>1:</u>** Membrane receptors (PKs)

-> Adenylate cyclase -> cAMP -> PKA – modulation





## (!!!) Mitogen Activated Protein Kinases (MAPK) – dependent effects



## 2: Membrane receptors -> Phospholipase C: PIPs -> DAG -> PKC / arachidonic acid + IP3 -> Ca<sup>2+</sup>





# Signalling <u>crosstalk</u>



## **Examples**

## ER-independent estrogenicity (PAHs)

modulation of PKs/PPases: phosphorylation
-> activation of ER-dependent genes

PAHs significantly potentiate the effect of 17β-estradiol (*via increased phosporylation of ER*)



Vondráček et al. 2002 Toxicol Sci 70(2) 193

## **Cholera toxin - activation of adenylate cyclase**



### Lipopolysaccharide (bacteria) - immunotoxicity

