Biomarkers

Biomarkers

- markers in biological systems with a sufficently long half-life which allow location where in the biological system change occur and to quantify the change.

Toxicology – present status:

- identification of markers of long-term risks
 - : human (health, toxicology and carcinogenesis)
 - : ecotoxicology early markers of toxic effects

Biomarkers - summary

Biomarker:

change which occurs as response to "stressors" (xenobiotics, disease, temperature...) which <u>extend</u> the adaptive response beyond the normal range

In vivo biomarkers:

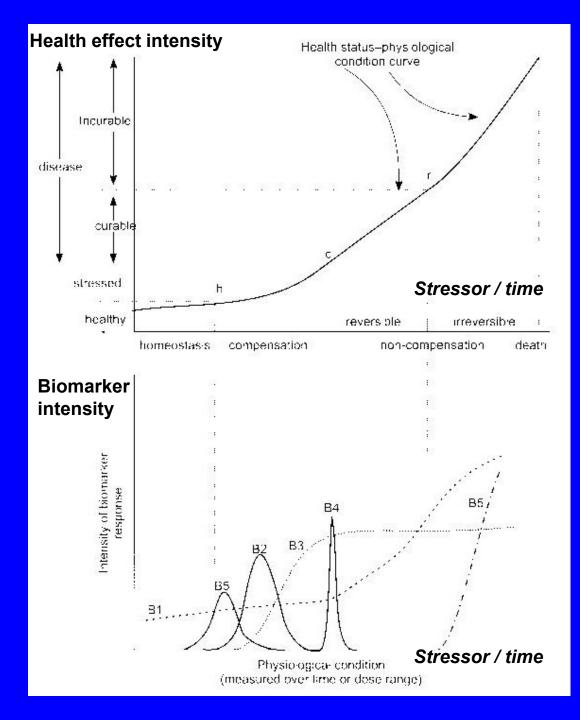
changes measured in stressed animals ("classical biomarkers")

In vitro biomarkers

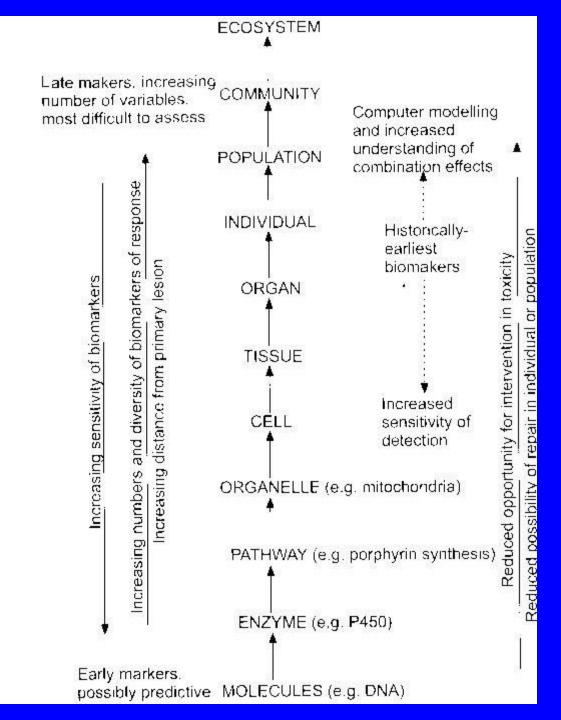
in vitro testing to characterize potencies of xenobiotic to induce <u>specific biological activity</u> (genotoxicity, estrogenicity, dioxin-like activity, tumor promotion ...)

= biological potencies (markers) of potential hazards

Biomarkers & Exposure


h: homeostatic conditions

c: reversible stage


r: irreversible effects of pollutants

Biomarkers:

- temporal change
- B5, B2; short period: B4
- continuous increase B3
- repeated occurrence (B5)
- irreversible change

Biomarkers at different levels of biological organisation

Biomarkers - classification

Categorization US National Academy of Sciences

- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

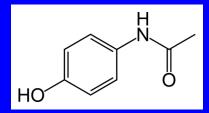
Continuum exists among biomarkers

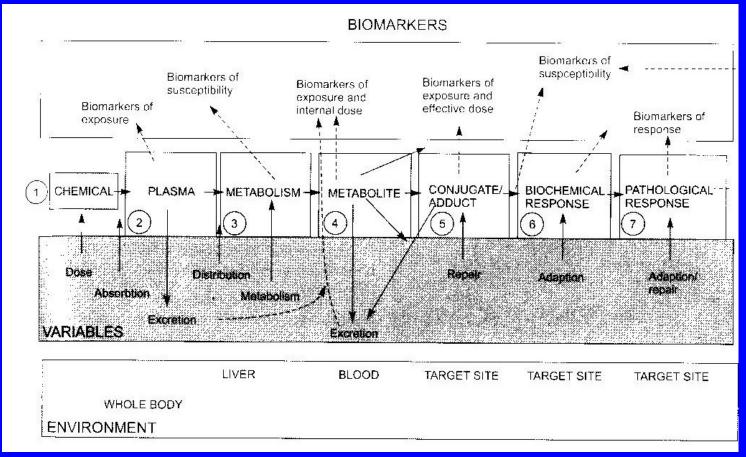
example: adducts of toxicant with DNA

? biomarker of exposure / ? response

Specific (selective) in vivo biomarkers

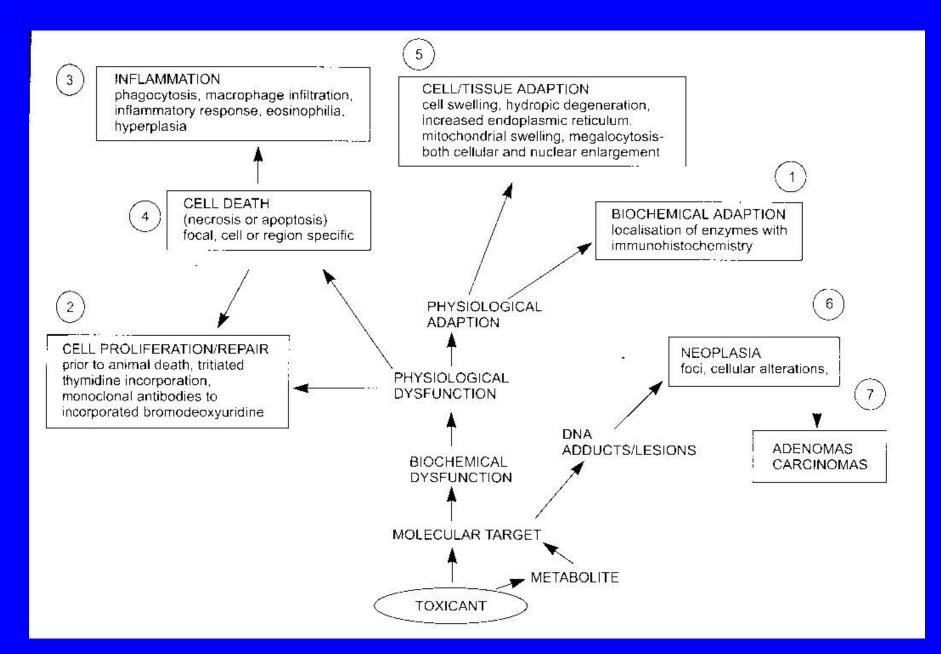
- Biomarkers selectively reflecting specific types (mechanisms) of toxicity
- E.g. inhibition of AcCholE :
 exposure = organophosphates; effect = neurotoxicity
- + provides specific information
- multiple biomarkers must be measured in parallel


Non-specific (non-selective) in vivo biomarkers


- Biomarkers of general stress
- E.g. induction of Heat Shock Proteins (hsp)
- + general information about stress
- sensitive to many "stressors" (temperature, salinity ...)

In vivo biomarkers - sampling

- Non-destructive (non-invasive)
 - : blood / haemolymph collection & analyses
 - : skin, feather, hair ...
 - : life of the organism not affected
- Destructive (invasive)
 - : whole animal -> multiple biomarker evaluation


EXAMPLE- Paracetamol

- (1) paracetamol
- (2) parent compound measurement <u>biomarker of exposure</u>
- activation to reactive metabolite (N-ac-p-benzoquinone, NAPQI) by CYPs; reaction with GSH / measurement levels of CYPs; levels of GSH <u>susceptibility</u>)
- (4) GSH-NAPQI conjugate <u>exposure</u>, <u>susceptibility</u>
- (5) NAPQI-protein adducts -> toxicity: <u>exposure</u>, <u>effective dose</u>
- (6) adaptations: GSH depletion, inhibition of protein synthesis <u>biomarkers of response</u>
- (7) protein alkylation -> degeneration of hepatocytes: necrosis -> increase concentrations of bile acids, bilirubin in plasma; start of inflamation in degraded tissue <u>response / effect</u>

Human biomarkers – example

Human biomarkers – example

Table 1 Examples of different biomarkers illustrated with specific examples and examples of the stressor which may result in the biomarker changes

Type of biomarker	Biomarker	Specific example	Stressor
Exposure	DNA adducts Protein adduct DNA fragments	Styrene oxide- \mathcal{O}^6 guanine N^7 -Guanyl-aflatoxin B_1 7,8-Dihydro-8-oxoguanine	Styrene exposure Dietary aflatoxin Reactive oxygen species
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholinesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1,3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alanine aminotransferase) ALP (alkaline phosphatase) CK or CPK (creatine kinase)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/muscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilirubin	Hepatotoxic and nephrotoxic compounds Hepatotoxic compounds Liver injury
	Clotting time Urinary metabolites Raised antioxidant levels Enzyme induction Stress proteins Protective proteins Allergic response Histology Clinical observations Population studies	Prothrombin Glucose, raised creatinine, GSH conjugates Liver glutathione P450 induction hsp 60, hsp 70, hsp90 Metallothionein Antibodies, e.g. IgG Dermatitis Chromosomal aberrations, micronuclei Heart rate, temperature, sleeping time Breeding patterns, migrations	Warfarin (rodenticide) Pancreatic abnormalities, kidney damage Reactive oxygen species Polycyclic aromatic hydrocarbons Cadmium, heat Heavy metals, e.g. cadmium Antigens Nickel Genotoxic agents Barbiturates Climate change
Susceptibility	Phenotype Oncogenes 'Cancer' genes	Acetylator phenotype (<i>NAT 2</i>) Dominant oncogenes (<i>ras, mic</i>) Recessive suppressor gene (<i>p52</i>) Breast–ovary cancer gene (<i>BRCA 1</i>)	

Further examples

Toxicity biomarkers

	Table 9.2	Availability	of	biomarkers	in	blood
--	-----------	--------------	----	------------	----	-------

Biomarker	Blood	Tissue of choice	Comment
AChE inhibition	+?	Brain	Effects in blood more transient
Neurotoxic esterases		Brain	Enzyme is limited to brain
Biogenic amines	-	Brain	Changes in blood too transient
DNA			
Strand breakage	?	Wide range	Nucleated avian red blood cells are possible
Adduct formation	+	Wide range	Haemoglobin is good substitute for DNA
SCE	+	Wide range	Blood lymphocytes can be used
Degree of methylation	?	Wide range	Nucleated avian red blood cells are possible
MFO	-	Liver	Western blotting technique on leucocytes is possible
Thyroid	+	Thyroid	Circulating levels of T ₃ and T ₄ are sensitive
Retinols	+	Liver	Advances to use plasma are being made
Porphyrins	+?	Liver	Advances to use plasma are likely
ALAD	+	Blood	Tissue of choice
Enzymes	+	Blood	Tissue of choice
Immunotoxic	-	Lymphatic cells, bone marrow	Limited number of tests available for blood

What kind of biomarkers to measure?

Do we know possible exposure (toxicant)?

- : specific biomarkers
- ? estrogenic effects in effluents
- ? dioxin-like effects, mutagenicity in urban areas
- ? neurotoxicity (AcChE) in rural areas

Do we expect complex exposures/contamination?

- integrated approach needed
- nonspecific biomarkers (hsp) ...

Multiple biomarker evaluation

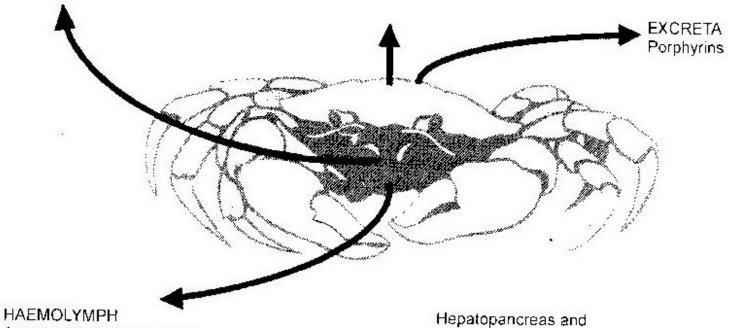
GILLS
Benzopyrene mono-oxygenase activity
NADH ferricyanide reductase activity

activity Micronuclei (mutagenicity) total proteins **HEPATOPANCREAS**

Benzopyrene mono-oxygenase activity

Ethoxyresorufin-O-deethylase

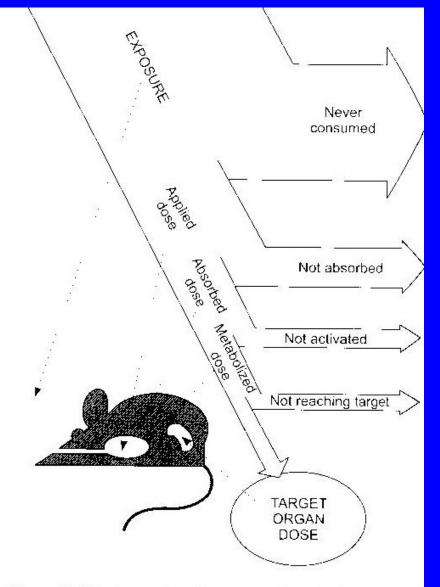
NADPH cytochrome c reductase


NADH cytochrome c reductase

SDS-PAGE for P450

Alkaline unwinding assay (DNA damage)

Porphyrins


Total proteins

Acetylcholinesterase activity
Butycholinesterase activity
Micronuclei
Total proteins

Hepatopancreas and gills as % of body weight

Biomarkers of susceptibility

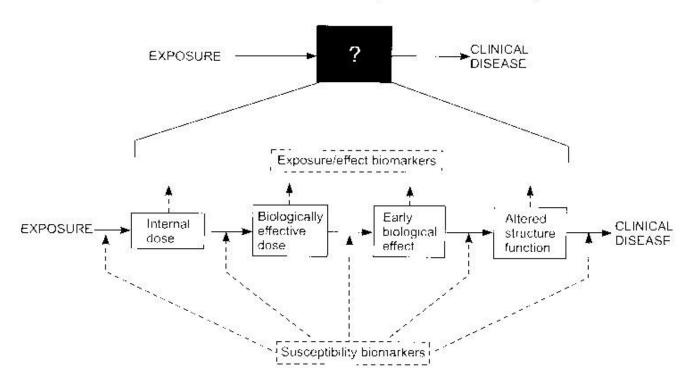


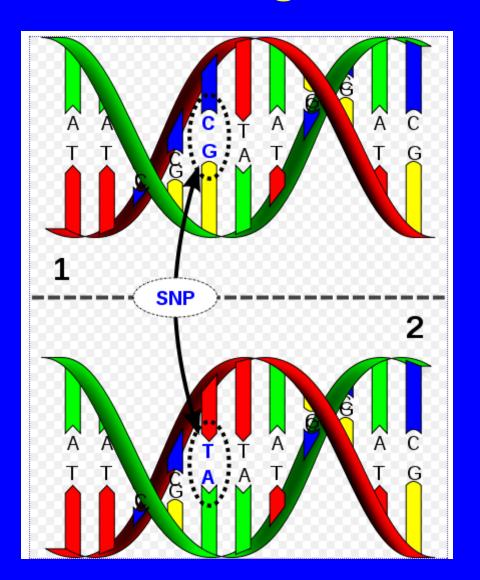
Figure 2 Representation of the relationships between ambient exposure and critical target dose and the progressive decrease in effective exposure due to various biological barriers. Source: *Low-Dose Extrapolation of Cancer Risks: Issues and Perspectives*, p. 188. Used with permission. c. 1995 International Life Sciences Institute, Washington, DC, U.S.A.

Toxicokinetics

& Biomarkers of susceptibility

Biomarkers of susceptibility

Figure 1 The biomarker paradigm linking exposure with disease and showing expansion of the classical epidemiological 'black box' to reveal discrete mechanistic stages. Reprinted with permission from *Environ, Sci. Technol.* (1997) **31**, pp. 1837–1848. Copyright 1997 American Chemical Society.

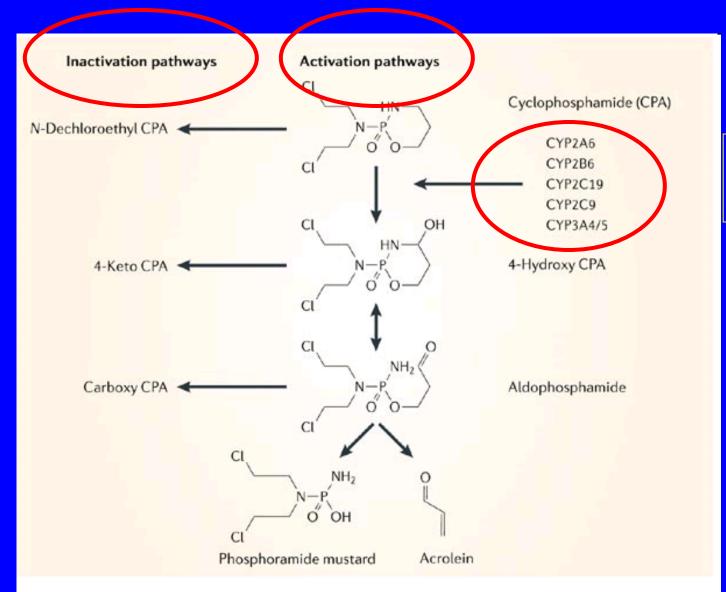

Biomarkers of susceptibility

Metabolism and genotype

- genetic polymorphism in detoxification enzymes
- variability in specific isoenzymes
- susceptibility to "activate" toxicants:

 <u>example:</u> N-acetylation of arylamines NAT2
- familial cancers
- susceptibility to genotoxins
- susceptibility to drugs (including anticancer drugs)

Example: genetic polymorphism SNPs - single nucleotide polymorphism



SNP -> affects protein functions

Many genotypes (from many individuals) must be sequenced to identify SNPs

(Some) SNPs identified for some (few) genes

Example: cyclophosphamide toxicity

Genetic polymorphism

Copyright © 2006 Nature Publishing Group Nature Reviews | Cancer

Example: genetic polymorphism

CYP450 Enzymes and Polymorphisms

Diagnostics

Fraction of drug metabolism	Major polymorphisms
40-45%	Rare
20-30%	'2xn, '4, '10, '17, '41
10%	*2, *3
5%	*2, *3
5%	*1K
2-4%	-
2-4%	-
2%	*4, *9
1%	,3
<1%	,3
	metabolism 40-45% 20-30% 10% 5% 5% 2-4% 2-4% 2% 1%

Alleles known to be involved in polymorphism

The CYP 2D6 gene is extremely polymorphic with more than 70 allelic variants described so far ¹

Ingelman-Sundberg, TRENDS in Pharmacological Sciences, Vol. 25 No.4 April 2004 Dahl, Clin. Pharmacokinet 2002; 41 (7): 453-470

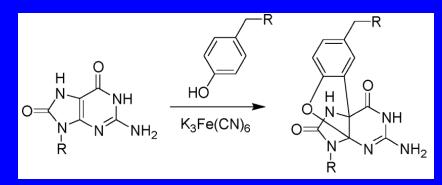
AMPLI@HIP

Biomarkers of EXPOSURE

Biomarkers of Exposure

Biomarkers of ... internal / effective dose

depending on toxicokinetics


- internal dose (short / long term)
 - Cd in urine, DDE in fat tissues
 - should be easy to sample (urine, breath)
 - instrumental analytical methods (analyses of toxicant)

- effective dose

- the chemical interacted with the biological target
 - = ADDUCTS

TOXICANT ADDUCTS with BIOMOLECULES

- 1) Selective adducts (chemical-specific)
 - DNA aducts: <u>styrene</u>-oxide-O6-guanine; N7-guanyl-<u>aflatoxin</u> B1;
 - hemoglobin-pesticides
 - extraction
 and chemical determination (HPLC, GC)
- 2) Non-selective adducts

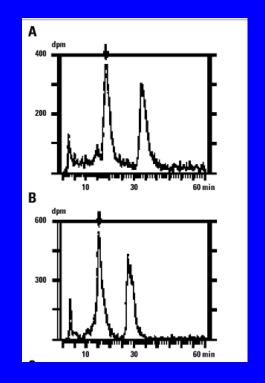


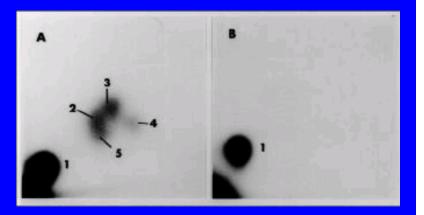
Table 1 Reported human haemoglobin adduct levels for various xenobiotics Chemical Adduct/analyte Method Adduct level (type of exposure) (nmol g - haemoglobin) N, N-Dimethylformamide 3-Methyl-5-isopropylhydantoin Hydrolysis; GC-MS 75-1000 (exposed) (occupational) 4-12 (control) Epichlorohydrin (occupational) N- (2, 3-Dihydroxypropyl)valine Modified Edman; GC-MS 0.020 (exposed smokers) 0.007 (exposed non-smokers) 0.013 (control smokers) 0.007 (control non-smokers) Acetaminophen (drug 3-(Cystein-S-yl)acetaminophen Immunoassay 100-4100 overdose) PAHs (occupational) BPDF-Hb Spectrofluorimetry 0.005 - 0.139Ethylene oxide (occupational) N-Hydroxyethylvaline Modified Edman: GC-MS 5-20 (exposed) 0.1-0.5 (control smokers) 0.01-0.1 (control non-smokers) Ethene (occupational) N- Hydroxyethylvaline Modified Edman: GC-MS 0.02 Propylene oxide (occupational) N- Hydroxypropylyaline Modified Edman; GC-MS 0.05 - 3.5 (exposed) < 0.02 (unexposed) Acrylonitrile (smoking) N- Cyanoethylvaline Modified Edman; GC-MS 0.09 NNK (smoking) 4- Hydroxy-1-(3-pyridyl) Hydrolysis: GC-MS 0.0015 (smokers) butan-1-one 0.0005 (non-smokers) 4-ABP (smoking) 4-ABP-cysteine Hydrolysis: GC-MS 0.00025-0.0025 (smokers) 0.00005-0.0005 (non-smokers) Acrylamide (occupational, N- (2-Carbamovlethyl)valine Modified Edman: GC-MS 9.5 (production workers) smoking) 0.054 (laboratory workers) 0.116 (smokers) 0.031 (non-smokers) Butadiene (occupational) N- (2,3,4-Trihydroxybutyl)valine Modified Edman; GC-MS 0.010-0.014 (exposed) 0.002-0.003 (control) 2-Phenylethanol Styrene (occupational) Cleavage with Raney nickel, 3.7-8.0 (exposed) GC-MS 2.0-8.6 (control)

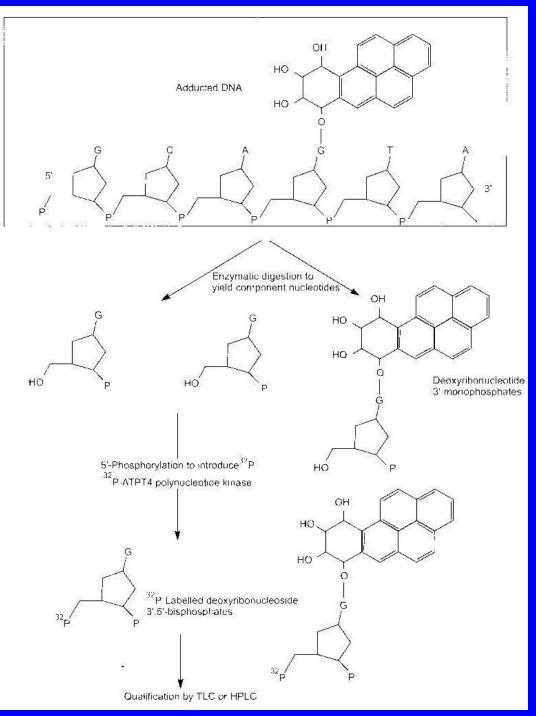
TOXICANT ADDUCTS with BIOMOLECULES

2) Non-selective aducts

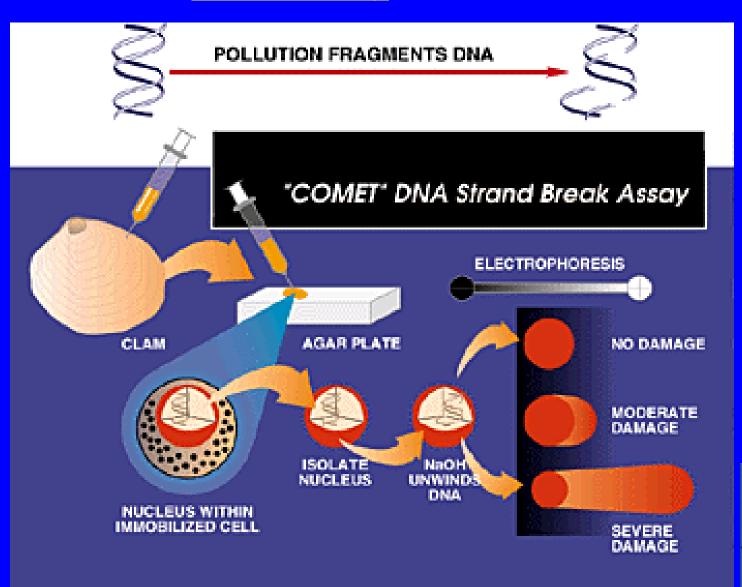
 binding with DNA (proteins) but no further information on the structure of aduct (causative agent)

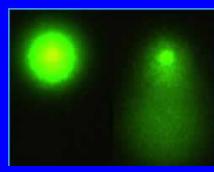
- Analysis:

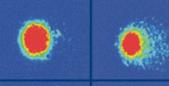

- 32P-postlabelling assay
- DNA-strand breaks
 - comet assay
- identification of oxy-DNA 8-hydroxy-2´-deoxyguanosine

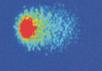

32P-postlabelling assay

TLC result

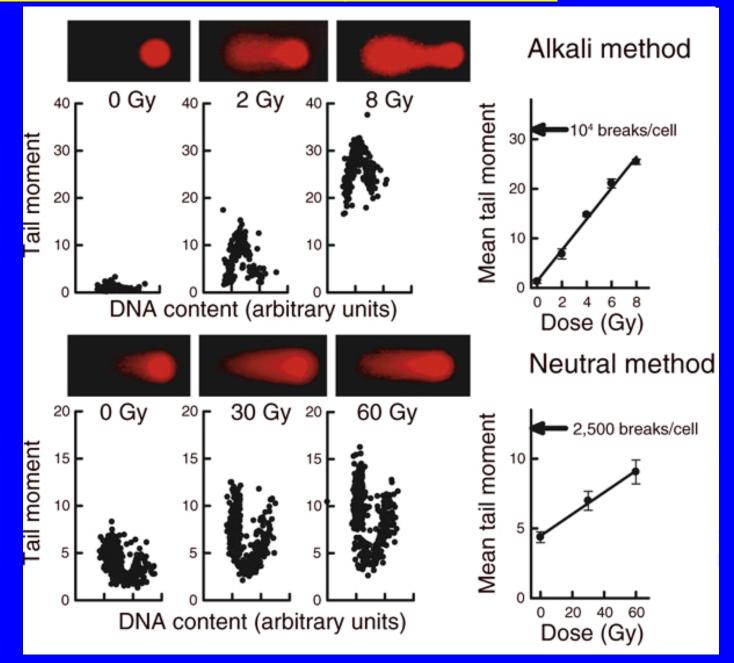

A - 2-5 = various adducts

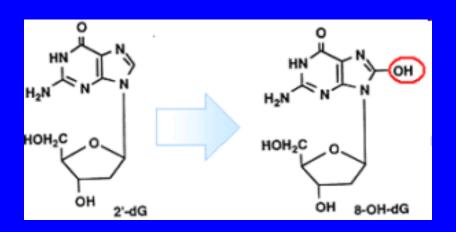

B - controls





Comet assay




Example results - Comet assay vs. radiation

8-hydroxy-2'-deoxyguanosine analysis

Oxidative damage to DNA

- many causes
- 8-OH-dG is the most common DNA marker

Analysis:

- HPLC
- immunochemistry (ELISA)

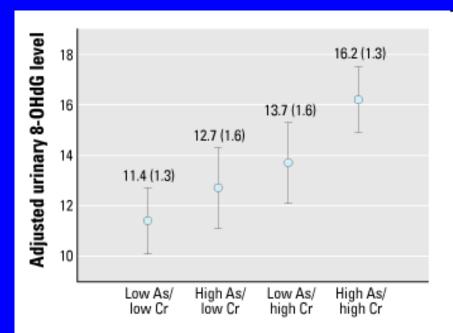
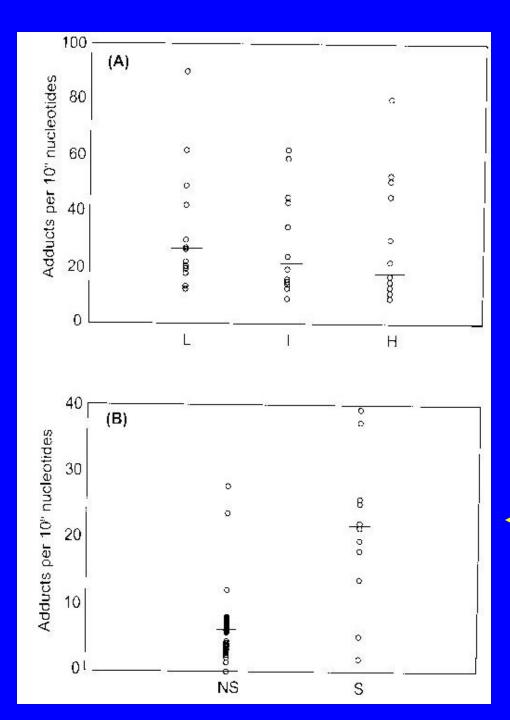



Figure 1. Adjusted urinary 8-OHdG level (ng/mg creatinine) by urinary arsenic and urinary chromium concentrations. Values shown are mean ± SE. Cut points were determined according to medians (arsenic, 7.7 μg/g creatinine; chromium, 2.0 μg/g creatinine) of urinary creatinine-adjusted levels among all subjects.

PAH-DNA adducts

Occup. exposure (Low / Intermed. / High)

Occupational Non-exposed (NS) vs. Exposed (S)