TRICLOSAN : environmental exposure, toxicity and mechanisms of action

Journal of Applied Toxicology 31: 285-311, 2011 Dann and Hontela

> Innovation Lectures (INNOLEC) Masaryk University, May 2012

Triclosan – identity, use

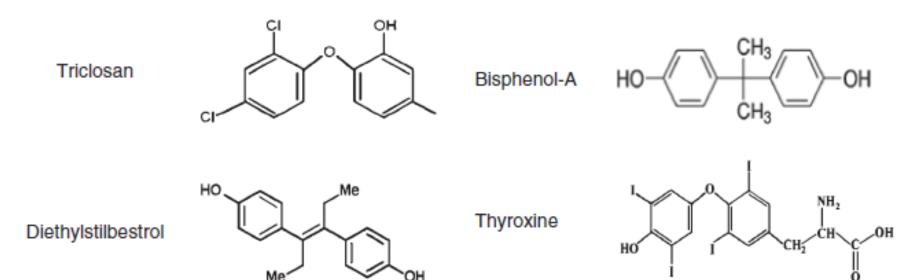
Broad spectrum antimicrobial

personal care products – Irgasan, Aquasept,

Sapoderm, ...

EU Cosmetic Directive (0.1-0.3%)

- sport clothing Ultra-Fresh, Microban, Sanitized, ...
- food packaging


Economy – Life style

Triclosan – key issues

- Detected in surface water, human plasma, breastmilk
- Bioaccumulation
- By-product formation
- Endocrine disruption
 - Thyroid hormones
 - -Sex hormones
- Antibiotic resistance, efficacy

1. Identity and mode of action

- Antimicrobial action of TCS multiple sites in bacteria, blocks synthesis of FFA
- Structural similarity of TCS

to Bisphenol A, to DES to thyroxine

Medium	Sample description	Location	Concentration of TCS
Surface water	Natural streams/rivers	USA	ND ^a to 2.3 μ g l ⁻¹
	Streams with inputs	Switzerland Germany Sweden Australia Japan Switzerland	ND to 0.074 μg l ⁻¹ ND to 0.01 μg l ⁻¹ ND 0.075 μg l ⁻¹ <0.0006–0.059 μg l ⁻¹ 0.011–0.098 μg l ⁻¹
	of raw wastewater	USA	1.6 μg l ^{−1}
	Estuarine waters	USA	0.0075 µg l ^{−1}
Sediment	Freshwater	Switzerland Spain	53 μg kg ⁻¹ ND to 35.7 μg kg ⁻¹
	Estuarine	USA	ND to 800 µg kg ⁻¹
	Marine	Spain	0.27–130.7 μg kg ⁻¹
Sewage sludge	Activated sludge	USA Spain Germany Canada	0.5–15.6 μg g ⁻¹ 0.4–5.4 μg g ⁻¹ 1.2 μg g ⁻¹ 0.62–1.45 μg g ⁻¹
	Biosolids	Australia USA	90–16 790 μg kg ⁻¹ 10 500–30 000 μg kg ⁻¹
k to experin	nental studies	Spain Canada	1508 µg kg ⁻¹ 680–12 500 µg kg ⁻¹

Table 1. Concentrations of triclosan (TCS) in the aquatic environment

2. Exposure

Concentrations of triclosan (TCS) in the aquatic environment

WWTP influent	In-flowing waste water	USA	2.70–26.80 µg l ⁻¹
		Canada Germany Sweden Japan	0.01–4.01 μg l ^{–1} 1.2 μg l ^{–1} 0.38 μg l ^{–1} 2.7–11.9 μg l ^{–1}
WWTP effluent	Treated water	Switzerland Germany Canada USA	0.042–0.213 μg l ⁻¹ 0.01–0.6 μg l ⁻¹ 0.01–0.324 μg l ⁻¹ 0.03–2.7 μg l ⁻¹
	7/1	UK	0.34–3.1 µg l ⁻¹
		Australia Sweden	0.023–0.434 μg I ⁻¹ 0.16 μg I ⁻¹
WWTP – Waste V	Vater Treatment Plant	Japan	0.26–0.27 μg I ⁻¹

3. Degradation products of TCS

Methyltriclosan

biological methylation, $K_{ow} = 5.2$

 $(TCS K_{ow} = 4.7)$

used as marker of exposure to WWTP effluent more persistent than TCS

• Dioxins

generated during photodegradation of TCS at pH > 8

Chloroform and chlorophenols
generated in presence of chlorine or chloramine

Environmental chemistry, Environmental fate

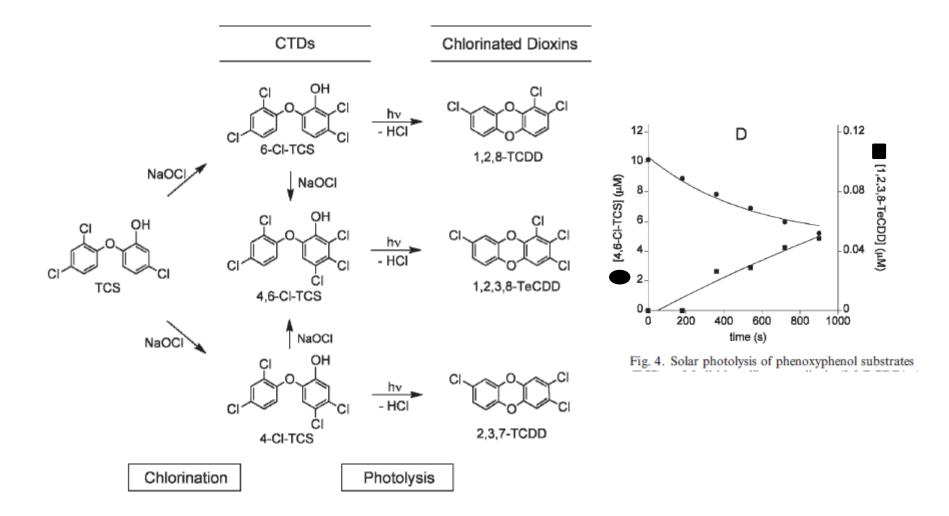
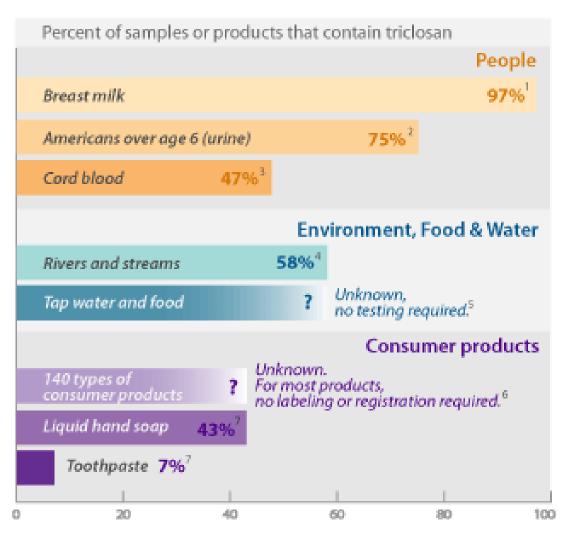



Fig. 1. Hypothesized pathway for the formation of 2,3,7-trichlorodibenzo-*p*-dioxin (2,3,7-TCDD), 1,2,8-trichlorodibenzo-*p*-dioxin (1,2,8-TCDD), and 1,2,3,8-tetrachlorodibenzo-*p*-dioxin (1,2,3,8-TeCDD) from the respective photolysis of 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS), 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol (6-Cl-TCS), and 4,5,6-trichloro-2-(2,4-dichlorophenoxy)phenol (4,6-Cl-TCS) formed from the chlorination of triclosan (TCS).

4. Concentrations of Triclosan in organisms

(Adolfsson-Erici et al. 2002; Queckenberg et al. 2010; Dann & Hontela, 2011)

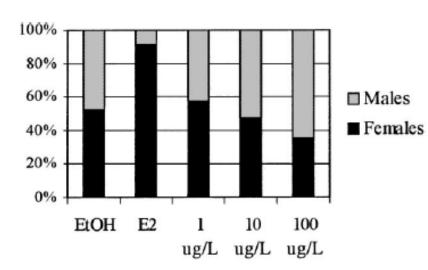
Table 2. Concentrations of			
Organisms	Type of sample	Site description	TCS ($\mu g \ kg^{-1}$)
Algae and invertebrates			
Filamentous algae (Cladophora spp.)	Whole organism	Receiving stream for the city of Denton (TX, USA) WWTP	100–150
	Whole organism		50-400
Freshwater snails (Helisoma trivolvis) Vertebrates	Muscle		50-300
Rainbow trout	Bile	Upstream from WWTP, Sweden (caged);	710
(Oncorhynchus mykiss)	blie	downstream 2 km from WWTP (caged)	17 000
Breams, male (Abramis brama)	Bile	River sites (Netherlands)	14 000-80 000
	Muscle	River sites (Germany)	0.25-3.4
Pelagic fish	Plasma	Detroit River (USA)	0.75-10
Atlantic bottlenose dolphins	Plasma	Estuary, South Carolina	0.12-0.27
(Tursiops truncates)		Estuary, Florida	0.025-0.11
Killer whale	Plasma	Vancouver Aquarium	9.0
(Orcinus orca)		Marine Science Centre	

Table 2. Concentrations of triclosan (TCS) in aquatic organisms

Bioaccumulation (?)

Table 3. Effects of triclosan (TCS) on freshwater (FW) and marine (SW) organisms

Test species	Life stage	System type	Route of exposure	Test duration	TCS exposure	Endpoint
Algae						
Phytoplankton (Dunaliella tertiolecta)		SW	Water (static)	Acute (96 h)	3.5 μg I ⁻¹	EC_{50} (population density)
Green alga (Selenastrum capricornutum	n)	FW	Water (static)	Acute (72 h)	4.7 μg Ι ⁻¹	EC ₅₀ (growth)
Green alga (Scenedesmus subspicatus)		FW	Water (static)	Acute (96 h)	1.4 μg Ι ⁻¹	EC ₅₀ (biomass)
Alga (Closterium ehrenbergii)		FW	Water (static)	Acute (48 h)	620 μg Γ⁻¹;250 μg Γ⁻¹	EC ₅₀ genotoxicity
Blue-green alga (Anabaena flos-aquae) Invertebrates		FW	Water (static)	Acute (96 h)	1.6 μg I ⁻¹	EC ₅₀ (biomass)
Daphnia magna		FW	Water (renewal)	Acute (48 h) 21 days	390 μg Ι ⁻¹ 40 μg Ι ⁻¹	EC ₅₀ NOEC reproduction
Ceriodaphnia dubia		FW	Water (renewal)	Acute (48 h) 7 days	240 μg Ι ⁻¹ 182 μg Ι ⁻¹	EC ₅₀ NOEC reproduction
		FW	Water (renewal)	6–7 days	220 µg l ^{−1}	IC ₅₀ (growth)
Chironomus tentans Hyalella azteca		FW	Water (renewal)	10 days	400 μg Ι ⁻¹ 200 μg Ι ⁻¹	LC ₅₀
Grass shrimp (Palaemonetes pugio)	Embryo Larvae Adult	SW	Water (renewal)	Acute (96 h)	651 μg Γ ¹ 154 μg Γ ¹ 305 μg Γ ¹	LC ₅₀ LC ₅₀ LC ₅₀
Crustacean (Thamnocephalus platyurus)		FW	Water (static)	Acute (24 h)	470 μg Ι ⁻¹	LC_{50}
Bivalve (Mytilus galloprovincialis)	Hemocytes	SW	In vitro	Acute (30 min)	1 μM	↓ lysosomal membrane stability
	Whole anima	al SW	Injection	Acute (24 h)	2.9 ng g ⁻¹	Altered hemocyte and digestive gland function
Zebra mussel (Dreisena polymorpha)	Hemocytes	FW	ln vitro In vivo	Acute (60 min) Acute (96 h)	0.1 μM 1 M	Genotoxicity Genotoxicity


Table 3. Effects of triclosan (TCS) on freshwater (FW) and marine (SW) organisms

Fish Rainbow trout (Oncorhynchus mykiss)	Adult Embryo	FW FW	Water (flow-through)	Acute (96 h) 61 days 35 days	390 μg l ^{−1} 71.3 μg l ^{−1}	LC ₅₀ Delayed swim-up ; ↓ 35 dph survival; erratic swimming, locked jaw
Medaka (<i>Oryzias latipes</i>)	Fertilized eggs Larvae (24 h old) Male fish Fry Eggs	FW FW FW SW	Water (renewal) <i>In ovo</i> injection	14 days Acute (96 h) 21 days Acute (48 h) 14 days 1 day post- fertilization	313 μg ⁻¹ 602 μg ⁻¹ 20 μg ⁻¹ 350 μg ⁻¹ 400 μg ⁻¹ 4.2 ng egg ⁻¹	↓ hatching; delayed hatching LC ₅₀ ↑ liver Vtg LC ₅₀ (hatching) EC ₅₀ (survival)
Amphibians Bullfrog (Rana catesbeiana)	Tadpoles	FW	Water	Acute (96 h)	0.15 μg Γ ¹	↑hindlimb development, ↓ body weight, disruption of thyroid hormone- associated gene expression
Xenopus leavis	XTC-2 cells	FW	In vitro	Acute (24 h)	0.03 μg l ^{−1}	Altered thyroid hormone receptor mRNA expression
Acris crepitans blanchardii	Larvae	FW	Water	Acute (96 h)	367 μg Ι ^{−1}	LC ₅₀
Bufo woodhousii woodhousii	Stage 30				152 μg Ι ^{−1}	

Toxicity of Triclosan

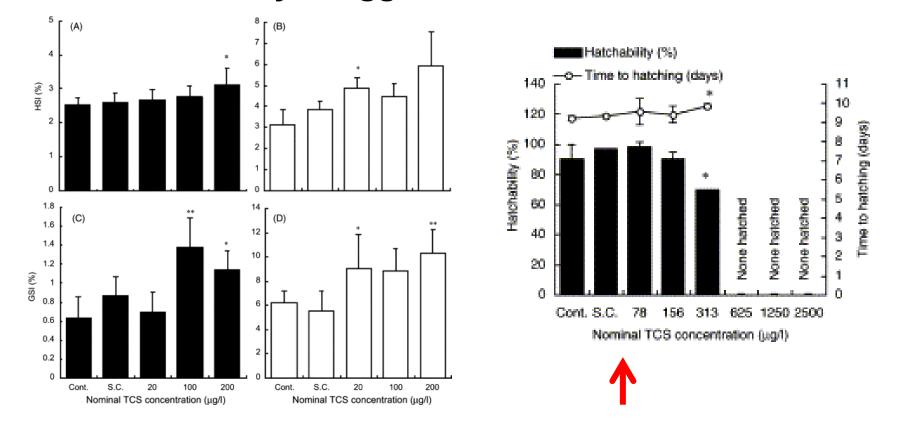
- Algae are highly sensitive to TCS LC50 96 hr = 1-4 µg/L
- Invertebrates and fish average sensitivity

 Amphibians - highly sensitive effects in tadpoles at 0.15 µg/L effects on thyroid status

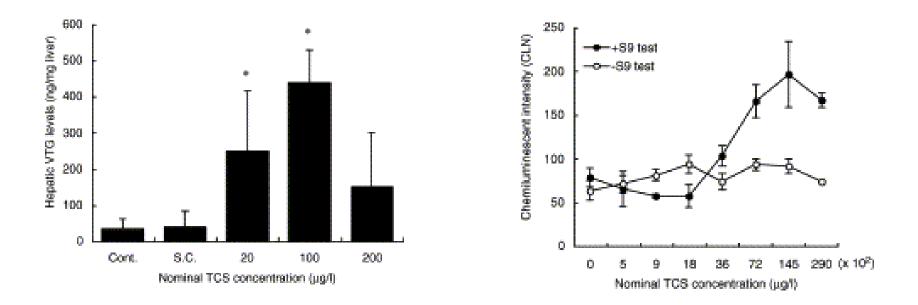
Foran et al. 2000 Mar Environ Res

Triclosan weak androgenic action in medaka, *Oryzias latipes*

Fig. 1. Resultant sex ratio from exposed medaka fry.


Table 1 Fin lengths (mean±S.D.) from adult animals

	EtOH	$1 \ \mu g/l$	10 µg/l	$100 \ \mu g/l$	E2
Dorsal fin					
Males	3.87±0.33	4.00 ± 0.33	3.51±0.63	4.15 ± 0.41	3.30 ± 0.25
Females	2.63 ± 0.09	2.73 ± 0.20	2.78 ± 0.18	$2.83 {\pm} 0.18$	2.62 ± 0.25
Anal fin					
Males	4.20±0.57	4.06 ± 0.37	3.48 ± 0.85	4.48 ± 0.86	3.09 ± 0.45
Females	2.90 ± 0.32	2.63 ± 0.29	2.70 ± 0.31	2.62 ± 0.38	2.55 ± 0.22

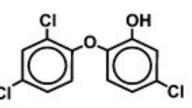


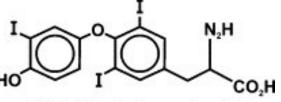
Medaka, *Oryzias latipes* Japanese killifish

Isihibashi et al. 2004 Chemosphere Increase in GSI in male Medaka Lower hatchability of eggs in female

Raut and Angus 2010 Env Toxicol Chem Decrease in sperm count in Mosquitofish Gambusia affinis

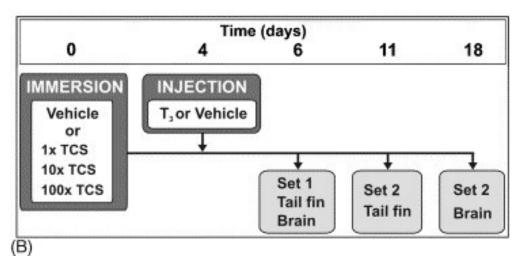
- Estrogenic effects in male medaka induction of Vtg
- Estrogenic activity of TCS enhanced by S9 activation

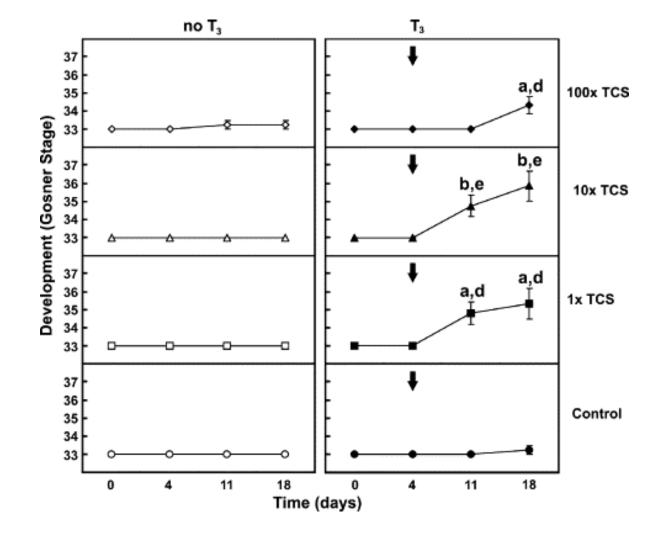

Table 4. Endocrine-disrupting effects of triclosan (TCS)


Test species/system	Life stage	Aquatic system	Route of exposure	Test duration	TCS exposure	Effects
Fish Medaka (Oryzias latipes)	Embryos	FW	Water	14 days	100 μg Ι ⁻¹	Weak androgenic (or anti-estrogenic) effect (†male fin size, slight male bias sex ratio)
	Male fish	FW	Water	14 days	20 μg I ⁻¹	Weak estrogenic activity; ↑Vtg in male fish; activity in yeast assay
Mosquitofish (Gambusia affinis)	Male fish	FW	Water	35 days	101.3 μg l ⁻¹	†vitellogenin, ↓sperm count
Bream (Abramis brama) Amphibians	Bile of male fish	FW	Field sites, Netherlands		No activity up to 0.1 mм	No estrogenic activity detected in ER-CALUX assay
North American bullfrog (Rana catesbeiana)	Tadpoles	FW	In vivo	18 days	0.15 µg I ^{−1}	Disruption of T ₃ -dependent developmental metamorphosis processes
South African clawed frog (Xenopus laevis)	Tadpoles	FW	In vivo	21 days	1.5 μg I ⁻¹ 0.6–32.4 μg I ⁻¹	↓larval growth; no effect on metamorphosis
	Males	FW	Water; i.p. injection	14 days	20–200 μg l ⁻¹ ; inject 4-400 μg g ⁻¹ body weight	No effect on Vtg in males; no effects on CYP1A and EROD; ↓Vtg in i.p. injected

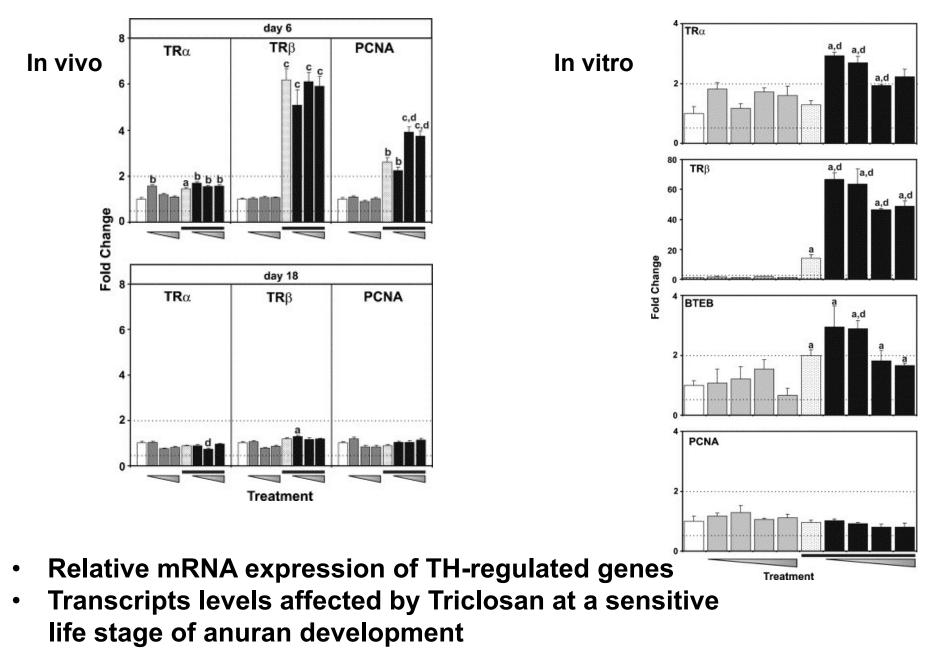
males

Veldhoen et al. 2006, Aquat Toxicol Effects of Triclosan on amphibian metamorphosis Effects of Triclosan on thyroid axis


In vivo Exposure of tadpoles (*Rana catesbeiana*)


(A) Triclosan (TCS)

3,3',5-triiodothyronine (T₃)



In vitro Exposure of XTC-2 cells (*Xenopus laevis* cells)

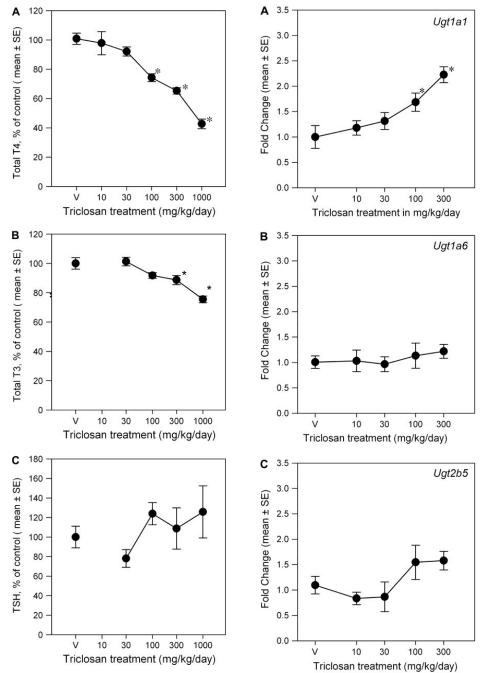
North American bullfrog *Rana catesbeiana*

- Acceleration of development in tadpoles exposed to T3 and TCS
- T3 alone has no effect

No evidence for estrogenic effects (no VTG induction)

South African clawed frog *Xenopus laevis*

Table 4. Endocrine-disrupting effects of triclosan (TCS)


<i>Mammals</i> Sheep	Placenta	In vitro		0.6 пм	↓Estrogen sulfonation (IC₅₀)
			21		
Rats (Wistar)	Pre-pubescent males	Oral (gavage)	31 days	200 mg kg ⁻¹ 30 mg kg ⁻¹	No effect on timing of puberty; ↓levels of plasma testosterone and T₄
	Males; isolated	In vivo (daily intubation)	60 days	5–20 mg kg ^{–1}	Disruption of LH, FSH, pregnenolone and
	Leydig cells	In vitro	2 h	0.01–10 µм	testosterone synthesis; ↓mRNA expression of StAR and steroidogenic enzymes
Rats (Long–Evans)	Adult female	Oral (gavage)	4 days	100 mg kg ⁻¹ day ⁻¹	↓Plasma T₄
	Female weanlings	Oral (gavage)	4 days	300 mg kg ⁻¹ day ⁻¹	\downarrow Plasma T ₄ and T ₃
Human	Adults	brush 2/day with TCS tootpaste	14 days	0.3% w/w TCS	No effect on thyroid status

Crofton et al. 2007 Environ Toxicol Pharmacol

Paul et al 2010 Toxicological Sciences

Inhibition of thyroid axis in rats exposed to Triclosan

Effect on Phase II enzymes (metabolism of thyroid hormones)

Table 4. Endocrine-disrupting effects of triclosan (TCS)

Cell-based assays			
MCF37 breast cancer cells	In vitro	10 µм	Estrogenic and androgenic effects
2933Y cells (human)	In vitro	1.0 and 10 µм	↓Testosterone-induced transcriptional activity
Cell-based nuclear-receptor- responsive and calcium signaling bioassays (AhR, ER, AR, RyR)	In vitro	1–10 µм (for ER- and AR-responsive gene expression; 0.1–10 µм (for RyR response)	Weak AhR activity; antagonistic activity in ER- and AR-dependent gene expression; interaction with RyR1, ↑Ca ²⁺ mobilization in skeletal myotubes
HuH7 cells (human hepatoma cell line) transfected with human pregnane X receptor (hPXR)	In vitro	>10 µм	Activation of hPXR
Induced rat liver microsomes	In vitro	3.1 µм (IC ₅₀)	↓Diiodothyronine (T ₂) sulfotransferase activity

- - - -

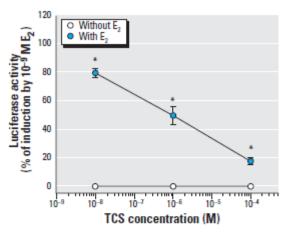
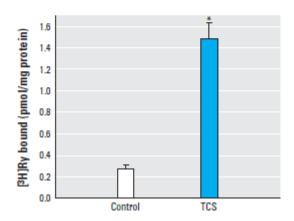



Figure 6. Activity of TCS in the ER-mediated bioassay. *Significantly different from the control.

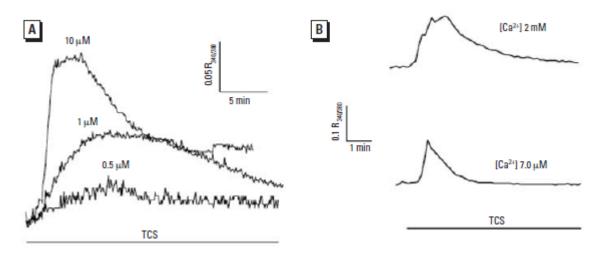
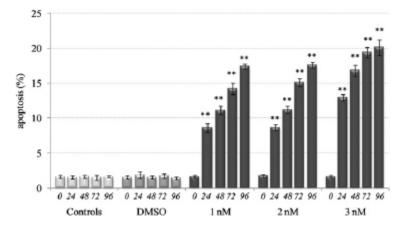
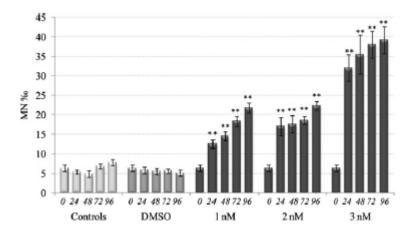



Figure 8. Effect of TCS on cytosolic Ca²⁺ concentration. (A) Cytosolic Ca²⁺ concentration in resting myotubes increased in a dose-dependent manner after TCS treatment; each trace is an average of $n \ge 5$ cells in separate cell cultures in Ca²⁺-replete (1.8 mM) buffer. (B) TCS 1 µM triggered an increase in the cytosolic Ca²⁺ concentration even in nominally Ca²⁺-free (~ 7 µM) extracellular buffer.


- Effects of Triclosan on intracellular Ca²⁺ homeostasis
- Interaction with estrogen

Ahn et al. Environ Health Perspectives 2008

Figure 7. [³H]Ry binding with or without 1.2 μ M TCS in skeletal muscle sarcoplasmic reticulum vesicles. *Significantly greater than the control at p < 0.05.

Fig. 2. Temporal trend (h) of the means of apoptosis frequency \pm SEM calculated for Zebra mussel hemocytes for controls, solvents and treated samples with TCS. Significant values (two-way ANOVA, Bonferroni *post-hoc* test, *p* < 0.05) were obtained for the comparison between treated samples and controls at the same time.

Fig. 3. Temporal trend (h) of the means of micronuclei frequency \pm SEM calculated for Zebra mussel hemocytes for controls, solvents and treated samples with TCS. Significant values (two-way ANOVA, Bonferroni *post-hoc* test, *p* < 0.05) were obtained in the comparison between treated samples and controls at the same time.

Zebra mussel hemocytes genotoxic effects of Triclosan in vitro and in vivo Micronuclei formation Appoptosis

Binelli et al. 2009 Aquatic Toxicology, 2009

Effects of Triclosan in human ?

- Cell –based assays
- estrogenic and androgenic effects in MCF37 breast cancer cells
- weak AhR activity

In vivo effects ???

Efficacy of Triclosan

- Use in oral hygiene +++
- Use in clinical setting as soap +++
- Use in personal care ?
- Use in food wrapping
- Use in sport clothing

Products like soaps and toothpaste contain triclosan, an antibacterial additive

By ANDREW MARTIN Published: August 19, 2011

Fred R. Conrad/The New York Times

Risk assessment for Triclosan

Antibacterial control hospitals oral care

Ecosystem integrity (algal populations) Endocrine disruption amphibians, fish Antibacterial resistance

