prof Viktor Kanický, Analytická chemie I 1 GRAVIMETRY prof Viktor Kanický, Analytická chemie I 2 Gravimetry nBasic method, classical nConstituent to be determined is transferred from a given, precise amount of a sample into a defined chemical individuum, whose mass determined by weighing is a measure of a content of the constituent in the sample nAnalytical weighing balances (scales) in principle isosceles lever + pendulum qsensitivity qaccuracy rovnoramenne vahy.JPG prof Viktor Kanický, Analytická chemie I 3 Weighing q1) accuracy – the same length of both scale beams q (Gauss method of double weighing) nBuoyancy force (reduction of weighing at vacuum) n mx – real mass n z – weight of the weight n sx, sz – specific mass of mx , z n σ – specific mass of air nΣ = 0,0012 g.cm-3, sz = 8,4 g.cm-3 (brass) → for z = 1 n 0,5 g of subst. ≈ buoyancy 0,08 mg prof Viktor Kanický, Analytická chemie I 4 Weighing nOther influencing factors: qair humidity: adsorption of H2O, time factor qfinger prints: tweezers, laboratory tongs qhygroscopic substances: ground-glass weighing bottles qelectric charge: powdered non-conductive substances on dry glass qweights (relative calibration – calbration standards) qweighing procedure: to lock balances, opening… no overloding !!! prof Viktor Kanický, Analytická chemie I 5 Weighing q2) sensitivity l – scale beam § G – beam weight § d - distance qAnalytical balances q Capacity: The larges weight the balance is capable of weighing Accuracy: the extent to which a given measurement agrees with the standard value for the measurement. (i.e. given weight is 100.000 g, weighed 100.002 g, accuracy is 2 mg. qCalibration: to determine, check or rectify the graduations of balance. It is the comparison between the output of a scale or balance against a standard value. qReproducibility: ability of scales to return to the same numeric result with repeated application of the same weight. (hysteresis) q q q n gravimetrie1 Weighing nHysteresis: property of load cells, and other weighing systems dependant on elastic materials, such as spring balances, resulting in different indication at the same load, depending upon the direction of approach to that load, i.e. whether it is approached by increasing the load or decreasing the load. Hysteresis error refers to the condition of repeatedly weighing the same object, but obtaining different readings on the numeric readout. nDrift: is a progressive (continuously upward or continuously downward) change in the number displayed on the digital readout. The weight readings does not stabilize, or unstable readings with no weight applied. All analytical balances show some uncertainty. prof Viktor Kanický, Analytická chemie I 6 Weighing nPrecision: The extent to which a given set of measurements of the same sample agree with their mean. Amount of agreement between repeated measurements of the same quantity. Also know as repeatability. A scale can be extremely precise, but not necessarily be accurate. nRepeatability: refers to an instrument’s ability to consistently deliver the same weight reading for a given object, and to return to a zero reading after each weighing cycle. Test this by repeatedly weighing the same object. nCount (digit): The smallest increment of weight which the digital display resolves. Also called "division.” nDivisions: The amount of increments a scale offers. n prof Viktor Kanický, Analytická chemie I 7 Weighing prof Viktor Kanický, Analytická chemie I 8 forcemotor.gif Mechanically the sensor is a simple lever & fulcrum. One end of the lever holds the weighing pan where an unknown weight is placed. On the opposite end of the lever is a FORCE COIL suspended in a magnetic field (much in the same way a speaker operates). The displacement detector, and power amplifier produce an appropriate current to hold the lever balanced in the null position for any weight placed on the pan. The amount of current required to do this is proportional to the weight on the pan. The MICROPROCESSOR monitors the current produced in response to the applied load to determine the magnitude of the weight. Software contained in memory allows the user through the front panel, keybord or one of the optional interfaces to perform such tasks as converting units of weight and parts counting. In addition the user can change filter parameters to suit most environments or gather statistical data form groups of weights. Calibration coefficients and user developed constants are stored in a non volatile memory. prof Viktor Kanický, Analytická chemie I 9 Precipitation nclassical separation technique for gravimetry npreparation of pure compounds qinsolubility of precipitate x loss (< 0,1 mg) qsolubility of precipitate ≈ concentration of saturated solution above the precipitate qLow soluble salts ≈ strong electrolytes ≈ complete dissociation q q q ← unit activity of the solid phase is included in the constant q q = solubility product (thermodynamic value) prof Viktor Kanický, Analytická chemie I 10 Calculation of solubility of pure compounds nuni-univalent electrolyte n qIt is valid in distilled water in the absence of other ions prof Viktor Kanický, Analytická chemie I 11 Calculation of solubility of pure compounds nexample: How many grams of AgCl is contained in 1 l of saturated solution of AgCl, M (AgCl) = 143,32 g.mol-1 n n n nexample: What is the solubility of Ag2CrO4 in H2O? prof Viktor Kanický, Analytická chemie I 12 Solubility nFactors influencing solubility qown ions qpH qcomplexation qtemperature qsolvent qparticle size qionic strength } side reactions prof Viktor Kanický, Analytická chemie I 13 Factors influencing solubility n1) influence of own ions – excess of precipitatnt qM+B- a) precipitant excess: q b) precipitant excess: qgenerally n nexample: n by precipitating of Ag+ by excess of n n → washing the precipitate by diluted solution of precipitant, no water n x large excess → (soluble) complexes formation → dissolution prof Viktor Kanický, Analytická chemie I 14 Factors influencing solubility nexample: calculate concentration of SO42- necessary for quantitative precipitation of BaSO4 (M (BaSO4) = 233,43g.mol-1; Ks = 1,08 . 10-10) nCondition: m (BaSO4) in solution < 10-4 g; V = 300 cm3 n prof Viktor Kanický, Analytická chemie I 15 Factors influencing solubility n2) pH and complex formation qside equilibria → soluble complexes (hydroxocomplexes of cations, protonization of anions) q qsolid phase dissolution q qacids and bases increase solubility of precipitate q prof Viktor Kanický, Analytická chemie I 16 Factors influencing solubility qconditional solubility product q c (M) c (B) q qα – side reaction coefficient prof Viktor Kanický, Analytická chemie I 17 Factors influencing solubility nexample: diprotic acid: prof Viktor Kanický, Analytická chemie I 18 Factors influencing solubility nexample: what is solubility of CaF2 in 0,01 M – HCl? n prof Viktor Kanický, Analytická chemie I 19 Factors influencing solubility nexample: calculate solubility of AgI v 0,01 M NH3 n n n n n n n n n n Solubility increases 40x. n prof Viktor Kanický, Analytická chemie I 20 Factors influencing solubility nexample: calculate molar solubility of BaCO3 at pH = 6 and I = 0,1 (pKs = 8,09; pK1 = 6,15; pK2 = 9,99) prof Viktor Kanický, Analytická chemie I 21 Factors influencing solubility qDissolution of BaCO3 in H2O, influenced pH, iteration n1) hydrolysis neglected → n n2) we find pH at hydrolysis of CO32- n a) n n hydrolytic constant n n n n n b) nwe neglect for calculation of pH, because prof Viktor Kanický, Analytická chemie I 22 Factors influencing solubility n c) pH of weak acid: n n n n n3) we find cond. solub. product. Ks´ and c (BaCO3) n n n n n n4) we repeat calc. pH according 2c) with c (CO32-) = 1,48.10-4 n we get pH = 9,90, Ks´ = 10-7,74, c (BaCO3) = 1,35.10-4 M n further approximation yields c (BaCO3) = 1,32.10-4 M n prof Viktor Kanický, Analytická chemie I 23 Factors influencing solubility qdependence of solubility of sulfides on pH – principle of „sulfane“ separation of cations qsulfide MS: qboundary condition: pH ≤ 6 – simplification → x (S) q comprises only 1 term: q K1, K2 – dissoc. const. H2S a HS-, hydrolysis of M is neglected prof Viktor Kanický, Analytická chemie I 24 Factors influencing solubility graf_1 prof Viktor Kanický, Analytická chemie I 25 Factors influencing solubility qInfluence of formation of complexes with own ions q M – cation; B – anion, ligand; MB – weak soluble comp. q q soluble complexes q (MB)r – soluble, non-dissociated portion of MB q q βMB – stability constant q q q q q q calculation of solubility MB in excess of precipitant prof Viktor Kanický, Analytická chemie I 26 Factors influencing solubility nexample: AgCl, solub. compl. [AgCl2]-, [AgCl3]2-, [AgCl4]3- n Ks, β1 β2 β3 β4 graf_2 prof Viktor Kanický, Analytická chemie I 27 Factors influencing solubility qDependence of solubility of hydroxides on pH prof Viktor Kanický, Analytická chemie I 28 Factors influencing solubility nHydroxides of trivalent cations are less soluble than hydroxides of divalent ones. nAt pH 4,5 to 6: Fe(OH)3 ↓, Al(OH)3 ↓ quantitatively nSeparate from Zn2+, Mn2+, Co3+, Ni2+,Ca2+ and Mg2+ graf_3 prof Viktor Kanický, Analytická chemie I 29 Factors influencing solubility n3) ionic strength (influence of third ions) qindifferent electrolyte q 1) q q 2) q q 3) q q q qsolubility increases with increasing concentration of third ions n n n prof Viktor Kanický, Analytická chemie I 30 Factors influencing solubility n4) particle size of precipitate n influence of surface of crystals n n n n n n n n colloid dispersion – charge of adsorbed ions decreases solubility q n qfor > 10-3 mm is valid q qsolubility increases – crystal edges – weaker attractive forces qsmall crystals dissolve – bigger grow aging of the precipitate OSTWALD - FREUNDLICH prof Viktor Kanický, Analytická chemie I 31 Factors influencing solubility n5) influence of solvent qOrganic solvents decrease solubility of inorangic substances qexample: CaSO4 in 50% EtOH quantitatively precipitates q LiCl soluble in amylalcohol, q neither KCl a NaCl qInfluence increases with charge of ions q q n prof Viktor Kanický, Analytická chemie I 32 Properties of precipitates ndepend on : - chemical composition n - properties and composition of medium in which precipitation occurs n - method of precipitating nprecipitate types: - colloidal (sulfur) n - gel-like (Fe(OH)3) n - lumpy (AgCl) n - crystalline (convenient, better filterable, more pure than amorphous): §fine (BaSO4) §coarse(PbCl2) nrequirements: filterability, easy drying, ignition, defined composition prof Viktor Kanický, Analytická chemie I 33 Properties of precipitates nmechanism: 1) formation of oversaturated solution (metastable) q 2) formation of crystallization centers (cores, primary) q 3) growth of paticles (aging) nbig particles grow at the expense of small n qa) rate of formation of precipitate (Weimarn) q c´ - instantaneous concentration of oversaturated solution c - solubility prof Viktor Kanický, Analytická chemie I 34 Properties of precipitates qb) mean particle size depends on original concentration of solution (Weimarn) q q q q nMore soluble substances – bigger particles nt – time – aging n qc) mean particle size increases q with time of contact of precipitate q with original solution. n graf_5 graf_6 prof Viktor Kanický, Analytická chemie I 35 Properties of precipitates naging: nless perferct → more perfect crystals nMetastable modifications→ stable (aragonit → kalcit) nchange of number of crystal water moleules n ndehydratation (hydrat. oxidy Fe, Ti, Sn, Al, Zr, Th) npolymeration (CoS, NiS) graf_7 prof Viktor Kanický, Analytická chemie I 36 Properties of precipitates qColloidal dispersions (10-5 – 10-7 cm): Brown motion q Tyndall effect qRTG → crystalline character nlarge specific surface (S/V) nadsorption ability qexistence of colloidal dispersions: repulsive elastic forces qelectric double layer → micelles qexample: q change of sign of charge in q isoelectric point x point of equivalence graf_8 prof Viktor Kanický, Analytická chemie I 37 Properties of precipitates ncoagulation qcharges of the same sign on micelles x coagulation qelectrolyte excess disturbs a double-layer→ micelles coagulate qcoagulation increases with discharge of salt in washing solution (AlCl3 >> NH4Cl, 1000 x) q x ammonia salts preferred–removable at heating q dispersion stability – H2O molecules binding → nlyophobic colloids – unstable (As2S3, S, Au, AgX) nlyophilic cololoid – stable (starch, gels, proteins, Al2O3.xH2O, SiO2.xH2O) npeptization – the opposite of coagulation qat filtration and washing with water – removing of electrolyte – unwanted effect! – therefore we wash with electrolyte soloution prof Viktor Kanický, Analytická chemie I 38 Contamination of precipitates qco-precipitation qpost-precippitation (induced preciptation) q ncoprecipitation adsorption n occlusion n inclusion n mixed crystals n a) adsorption: depends on – conc. of adsorbed substances n - properties of adsorbed substances n - properties of precipitate nPaneth-Fajans: most adsorbed own ions and forming low soluble substances prof Viktor Kanický, Analytická chemie I 39 Coprecipitation qexample: BaSO4 in excess of Ba2+: Br- < Cl- < ClO3- < NO3- q BaSO4 in excess of SO42-: Na+ < K+ < Ca2+ < Pb2+ qeasier adsorbed ions with higher charge qFreundlich adsorption isotherm q (T=const.); k, n – const.; x – amount /1 g precip. qrelatively highest adsorption of impurities occurs at lowest conc. of impurities qcontamination of precipitate is proportional to surface → coagulated colloidal dispersion x coarse crystalline precipitate graf_9 prof Viktor Kanický, Analytická chemie I 40 Coprecipitation n b) occlusion: mechanical stripping of extraneous components of solution at precipitating and growth of crystals around the impurity ≈ concentration of solution and ≈ rate of precipitation n n c) inclusion: mechanical closure of parent solution at crystal growth prof Viktor Kanický, Analytická chemie I 41 Coprecipitation n d) mixed crystals: isomorphic substitution of ions at ∆rion < 10-15 % and at the same crystal group = solid solutions n preferred ions with the same electric charge numbers n n n n D – partition koef.; c1,c2 – koncentration of isomorphic const.; t – precip.; r-solution n n it is not possible to purify by repeated precipitating with the same precipitant!!! n D less depends on T(K), precip. rate, conc. n prof Viktor Kanický, Analytická chemie I 42 Coprecipitation qtypes of contamination q q graf_10 prof Viktor Kanický, Analytická chemie I 43 Postprecipitation npostprecipitation– induced 1)originally pure precipitate: 2)after some time from oversaturated solution of MgOx precipitates MgOx n it is therefore advisable to keep concentration ratios, and CaOx soon be filtered off, dtto sulfides nKlathrates: inside benzen prof Viktor Kanický, Analytická chemie I 44 Amorphous precipitates nAmorphous precipitates – by coagulating of colloids → gels qlarge specific surface → significant sorption qcoagulation by excess of electrolyte – source of contamination qfiltration – immediately after precip. qto wash with electrolyte solution (peptization!!!) nMinimizing of coprecipitation – by a suitable procedure prof Viktor Kanický, Analytická chemie I 45 Principles of precipitation nprecipitation from hot solutions – better formation of crystal lattice without third ions – contaminating ions; to cool before filtration in case of more soluble precipitates (MgNH4PO4) nprecipitation from sufficiently diluted solutions; repeated precipitation (2x) (hydroxides); diminuition of coprecipitation of cations on precip. A+B- by precipitating with B- and vice versa nprecipitating agent is added slowly at agitation x local increase of concentration; formation of coarse precipitate with small surface nallow to settle before filtration– less occlusion x less postprecipitation! nthorough washing (hot water, electrolyte), colloids!! Too much soluble substances by alcohol n prof Viktor Kanický, Analytická chemie I 46 Precipitation procedure n1) solution of substance to be precipiated is adjusted according to instruction (pH, temperature) and precipiptated with clear solution of preciptitating reagent 1. n2) precipitation is carried out in 250-400 ml beakers, sample volume is adjusted to ca 100-200 ml 1. n3) precipitation solution is added slowly from burette or pipette + stirring with glass rod 1. n4) after the precipitate is settled the test for complete precipitation is performed n prof Viktor Kanický, Analytická chemie I 47 Precipitation procedure nPrecipitating from homogeneous medium: qprecipitatin reagent occurs gradually and continuously by chemical reaction qdecomposition, hydrolysis qexample: precipitation of sulfides by thioacetamide (at hot, hydrolysis) q q q q sulfide precipitates better coagulate and less adsorb reakce1 prof Viktor Kanický, Analytická chemie I 48 Precipitation procedure qexample: precipitation of hydroxides (M3+, M4+) separation from M2+ q binding H+ prof Viktor Kanický, Analytická chemie I 49 Filtration nrate of filtration n n n P – filtration area n r – pore radius n p1-p2 hydrostatic pressure differecnce between both sides of filtration medium n l – effective length of capillaries n η – dynamic viskosity n V – capillary volume n t – time qfiltration acceleration: nincrease P (folded filter,frit) p1-p2 (exhausting, longer filer funnel stem) ndecreased η (by warming) prof Viktor Kanický, Analytická chemie I 50 Filtration nbesides mechanical effect influenced by: nhydration nadhesion nadsorption nelektrokinetic effect ncharacter of filtered substance n qhydration – swelling of lyophilic filtration material → filtration retardation (retained even smaller particles) qadhesion – liquid in capillaries flows slower along capillary walls prof Viktor Kanický, Analytická chemie I 51 Filtration qadsorption – precipitate particles adhere on capillary walls qelektrokinetic effekct – potential difference between capillary wall and liquid → nnegative charge of fitr. paper retains cations and positively charged particles of the precipitate npaper retains negative particles after washing with HCl qcharacter of filtered substance – it creates another filtration layer – different capillarity nGels – filter clogging, therefore larger filter porosity is required and filtration with exhausting is necessary (p1-p2) prof Viktor Kanický, Analytická chemie I 52 Filtration nquantitative paper filters (ash-free) pure cellulose, 0,01 mg of ash nDifferent colour codes n„red ribbon“ – medium fast filtration (amorphous Fe2O3) n„yellow ribbon“ (colloides, sulfides) n„green ribbon“ – slow filtration, fine precipitates n„blue ribbon“ – slow filtration, very fine crystalline precipitate, BaSO4 n„black ribbon“ - fast filtration, coarse precipitates n„white ribbon“ – medium fast filtration, standard filter for many applications prof Viktor Kanický, Analytická chemie I 53 Filtration n> 10% solutions of acids or bases damages paper filters npaper filters can not be used for filtration of substances that are reduced at ashing n nfiltration crucibles qcrystalline precipitates qglass crucibles – only drying (to 200°C) qporcelain crucibles – ignition (to 1200°C) prof Viktor Kanický, Analytická chemie I 54 Washing of precipitate nremoval of residues of parent solution –decantation is efficient – washing in beaker after precipitation nusing smaller volumes more times n n n n V1 – filtrate volume retained by precipitate n V2 – washing volume n cn – concentration of third ions after n-times washing prof Viktor Kanický, Analytická chemie I 55 Washing of precipitate nprecipitate – ionex – it is necessary to substitute third ions by adsorption of ions of a washing solution electrolyte n ncrystalline precipitates – washing by solution of salt with common ion with precipitate n ncolloidal precipitates – washing by solution of electrolyte protecting from peptisation n nammonium salts – easily removable by ignition n nwater at last, alcohol for more soluble precipitates prof Viktor Kanický, Analytická chemie I 56 Drying na) drying in open atmosphere nremoval of excess moisture until equilibrium with the pressure of water vapor in the air at a given temperature qFreundlich adsorption isotherm y = a.xb – monomolecular layer of water q a) non-hygroscopic substances q b) hygroscopic substance q (more layers of H2O) q q ad b) can not be dried in open atmosphere → it is necessary to decrease ambient pressure and increase temp.; vacuum drying qWater vapor pressure of surface bound water is lower nižší, therefore 105-110°C is needed graf_11 prof Viktor Kanický, Analytická chemie I 57 Drying nb) in dessicator – dessicants nchemically (P2O5) nBy adsorption (silik.) n mg/l H2O in vapor n P2O5 2 . 10-5 n Mg(ClO4)2 5 . 10-4 (anhydron) – for elemental analysis n BaO 7 . 10-4 n KOH 2 . 10-3 n silica gel 3 . 10-2 – retains water vapor up to 40 % of its mass n addition of CoCl2 – anhydrous blue → wet pink, regeneration 180-200°C prof Viktor Kanický, Analytická chemie I 58 Drying qmolecular sieves – silicates Al, Ca, K, Na q qgas adsorption nacid (CO2, SO2) ≈ CaO, KOH, NaOH nalkaline (NH3) ≈ P2O5, H2SO4 n qalcohol vapors ≈ CaCl2 q qbenzine, chloroform, ether ≈ paraffin prof Viktor Kanický, Analytická chemie I 59 Drying nc) at elevated temperature qdryer oven to180°C, ± 5°C control, 105-110°C, also: loss of crystallization water q q q qvolatilization: NH3, CO2, SO2, ammonium salts at 150°C, volatile chlorides qfiltration paper can withstand 150°C qdrying to constant wight– if a precipitate is dried directly to the form suitable for weighing – repeat the drying and weighing until the weight change (0,2 mg) q n prof Viktor Kanický, Analytická chemie I 60 Ignition ntransfer of precipitate to ignited state nporcelain crucible + triangle with ceramic rollers (Pt- crucible) n temperatures: n Bunsen burner - porcel. 700-800°C n - Pt 850-1000°C n Teclu + 100°C x Buns. n Mecker + 200°C x Buns. kahan prof Viktor Kanický, Analytická chemie I 61 Principles and procedures of ignition 1)drying and ignition of empty crucible to constant weight slowly (non-luminous flame), tongs 2)filter into the crucible: a)to dry at 70°C in drying oven or over burner b)to incinerate (charring, air, no fire!!!) n 3)ignition (500-1000°C) – burner, muffle furnace; after cooling down to 100-200°C → into dessicator; to constant weight (± 0,2 mg) prof Viktor Kanický, Analytická chemie I 62 Types of gravimetric determinations a)without precipitation reagent – salts ignition, heavy metal salts with anions of volatile acids (NO3-, CO32-, SO42-) → CuO, ZnO, Fe2O3, Al2O3, Cr2O3, Bi2O3, Sb2O3, SnO2, TiO2, ZrO2) b) b)addition of precip. reagent : H2S, HCl, H2SO4, NH4OH, Na2HPO4, AgNO3, BaCl2 oragnic reagents : 8-hydroxyquinoline, anthranilic acid, oxalic acid prof Viktor Kanický, Analytická chemie I 63 Types of gravimetric determinations c)precipitation from homogeneous solution n for precipitation of hydroxides (urea, carbonyldiamide, carbamide, diaminmethanal): n n for precipitation of oxalates, phosphates and sulphates – hydrolysis of esters: n n for precipitation of sulphides: n n thioacetamide acetamide n n prof Viktor Kanický, Analytická chemie I 64 Overview of gravimetric methods ion precipitating reagent form: precipitated/weighted temperature dry./ign. °C Ag+ HCl AgCl 130 Al3+ NH4OH 8-quinolinol Al(OH)3 / Al2O3 Al(C9H6ON)3 1000 130 Ba2+ H2SO4 (NH4)2CrO4 BaSO4 BaCrO4 700 550 Bi3+ (NH4)2HPO4 8-quinolinol BiPO4 Bi(C9H6ON)3.H2O / Bi(C9H6ON)3 800 130 Ca2+ (NH4)2C2O4 Ca C2O4.H2O 105 Cu2+ benzoin oxime Cu(C14H11O2N) 110 Fe3+ NH4OH 8-quinolinol Fe(OH)3 Fe(C9H6ON)3 1000 120 Hg2+ H2S HgS 110 prof Viktor Kanický, Analytická chemie I 65 Overview of gravimetric methods ion precipitating reagent form: precipitated/weighted temperature dry./ign. °C Mg2+ (NH4)2HPO4 NH4MgPO4.6H2O/Mg2P2O7 1100 Ni2+ 2,3-butandion-dioxim Ni(C4H7O2N2)2 120 Pb2+ K2Cr2O7 anthranilic acid PbCrO4 Pb(C7H6O2N)2 140 110 Zn2+ (NH4)2HPO4 8-quinolinol NH4ZnPO4 / Zn2P2O7 Zn(C9H6ON)2.2H2O/Zn(C9H6ON)2 900 130 AsO43- MgCl2, NH4Cl NH4MgAsO4.6H2O/Mg2As2O7 900 Br-, Cl-, I- AgNO3 AgCl, AgBr, AgI 130 prof Viktor Kanický, Analytická chemie I 66 Overview of gravimetric methods ion precipitating reagent form: precipitated/weighted temperature dry./ign. °C CrO42- BaCl2 BaCrO4 500 PO43- MgCl2, NH4Cl NH4MgPO4.6H2O/Mg2P2O7 1100 SO42- BaCl2 BaSO4 700 prof Viktor Kanický, Analytická chemie I 67 Calculation of gravimetric analysis ngravimetric factor– what is < 1, the error is smaller qex. a (g) sample → b (g) AgCl, chlorides content is prof Viktor Kanický, Analytická chemie I 68 Calculation of gravimetric analysis nindirect determination of K+ and Na+ - mixture of chlorides