prof. Viktor Kanický, Analytická chemie I 1 ANALYTICAL CHEMISTRY prof. Viktor Kanický, Analytická chemie I 2 Analytical chemistry nανάλυσις = analysis nMaterial Þ decomposition Þ A, B, C Þ identification nScience : Analytical Chemistry(ACH) nMethodology: Chemical Analysis nAnalytical chemistry is the science of creation and evaluation of analytical signals carrying information about the chemical composition of the sample nAnalytical Chemistry qqualitativeÞ EVIDENCE (WHAT?) qquantitativeÞ DETERMINATION? (HOW MUCH) prof. Viktor Kanický, Analytická chemie I 3 History of Analytical Chemistry nEgypt, China, Indie, Greece (Demokritos, Platon, Aristoteles, (5.-4. st. BC), Middle Ages– alchemists nanalysis q„dry“ - reaction in solid phase (heating of solids – metallurgy) q„wet“ – in solution nfundamentals qR. Boyle 17. century qJ. Dalton 18.-19. century qA. L. Lavoisier 18. century qFresenius (19. st.): separation and identification of cations using hydrogen sulphide qInstrumental methods: spectral analysis, Bunsen a Kirchhoff (19.cent.) qJ. Heyrovský: polarography, Nobel Prize1959 prof. Viktor Kanický, Analytická chemie I 4 Methodology of analytical chemistry nAnalytical approach in Science and Humanities qPartition of problem into particular simpler parts, solution of these partial tasks and combining of individual information for understanding of the whole nDecomposition of material into chemical species Þ molecules, atoms, ions n X nAnalysis by physical methods– study of matter in solid state, without decomposition, dissolution nComputer Based Analytical Chemistry (COBAC) nACH is a scientific discipline that develops and applies methods, instruments and strategies to gather information on the composition and nature of matter in space and time n prof. Viktor Kanický, Analytická chemie I 5 Chemistry Theory Synthesis Explanation Characterisation Analyses Analytical chemist Instrument prof. Viktor Kanický, Analytická chemie I 6 Classification of analytical methods according to principle nChemical methods (chemical reactions) qGravimetry qVolumetry (titrimetry) q nPhysico-chemical methods qSpectroscopic (radiations, particles - electrons, ions) qSeparation (separation of comonents in time and space between two phases) qElectrochemical (electrode processes) q nBiochemical methods (enzymes, microorganisms) prof. Viktor Kanický, Analytická chemie I 7 Classification of analytical methods according to object of analysis nMaterial (examples) qwater, geological, metallurgical, ceramics, building, environmental, pharmaceutical, foodstuff, clinical nDetermined component type - analyte (examples): qElemental analysis of samples with inorganic and organic matrix qAnalysis of organic compounds qDetermination of radioactive isotopes nAnalyte content qTotal analysis (main constituents, S=100%) qtrace(mg/g) and ultratrace(ng/g, pg/g) analysis nSample size (g, mg, mg, ng, ml, nl) n prof. Viktor Kanický, Analytická chemie I 8 Elemental analysis nElemental analysis enables: qverification of the presence of the element (qualitative analysis) qdetermination of elemental concentration/content (quantitative analysis) qidentification of structure, in which the element is present (structural analysis) qidentification of compound, in which the element is bound (speciation) nWHOWHO analysis qwhat (qualitative) qhow much (quantitative) qwhere (structure) qhow bound (speciation) nThe aim is to find structure vs properties relation n n prof. Viktor Kanický, Analytická chemie I 9 General procedure for analysis nSampling qRepresentative sample qHomogeneous sample nSample transfer to a form suitable for analysis qDecomposition, dissolution, pressing of powdered samples qSeparation of components (from matrix, separation of individual analytes), concentration of constituents nAnalytical signal measurement qmass, volume, flow of electromagnetic radiation or ions, electrochemical potential, current, charge, conductivity nData evaluation qMean value, standard deviation, error, uncertainties, validation nConclusions, analytical report n prof. Viktor Kanický, Analytická chemie I 10 Analytical system nAnalytical system is a subsystem of higher information system nSampling system and analytical system n Sampling system Laboratory sample Analytical statement Analytical system prof. Viktor Kanický, Analytická chemie I 11 Analytical system nScheme of analytical process Laboratory sample Preparation of sample for measurement measuring Analytical signal Signal evaluation Analytical results prof. Viktor Kanický, Analytická chemie I 12 Analytical signal nAnalytical chemistry is the science of creation and evaluation of the analytical signal (AS), carrying information about the chemical composition of the sample nAS has two aspects - dimensions: qPosition (wavelength of radiation, half-wave potential), corresponding to quality (WHAT?) qMagnitude, intensity (radiant flux, limiting diffusion current, corresponding to quantity (HOW MUCH?) nAnalytical signal intensity is generally a function of concentration of determined analyte cA, concentration of other components czi, and a number of variables pj (insrumental parameters, reagents) n S = S(cA, czi, pj) n prof. Viktor Kanický, Analytická chemie I 13 Generating of analytical signal in optical atomic emission spectrometry (OES) and mass spectrometry (MS) Solid sample Solid particles molecules solution nebulizations atoms ions + photons vaporization dissociation desolvation Gaseous sample ionization excitation OES MS prof. Viktor Kanický, Analytická chemie I 14 Atomic (optical) emission spectromety in inductively coupled plasma ICP-AES, ICP-OES nAtomic (line) emission spectrum of chlorine and oxygen in UV region prof. Viktor Kanický, Analytická chemie I 15 Mass spectrometry ICP-TOF-MS nResolution m/z: 137Ba+ a 138Ba+ nMass spectrum 137Ba+ ∆m = 0.312 amu 138Ba+ Signal position prof. Viktor Kanický, Analytická chemie I 16 Analytical process scheme ANALYZER Signal generating Signal isolation Signal detection Sample introduction into analyzer Sample pretreatment Sample preparation Sample storage Sampling chemik Signal treatment Analytical result Statistics Algorithms Software prof. Viktor Kanický, Analytická chemie I 17 Inductively coupled plasma Sample solution Carrier gas Ar Nebuliser Sample introduction Aerosol hν Signal isolation Spectrometer polychromator SiO2 hn Doped Si electrodes electrode hole-electron storage Inversion zone integration) substrate gate 0 V Signal detection Atomic line spectrum prof. Viktor Kanický, Analytická chemie I 18 Mass (inorganic) spectrometry in inductively coupled plasma source ICP-MS ICP-MS prof. Viktor Kanický, Analytická chemie I 19 Analytical method nSampling and sample storage, preservation of representative material nProcessing of the part of the sample for quantitative analysis nDetermination nCalculation of results n nDEFINITION (ISO 3534) n qrandom error = component of measurement error, which changes in the course of repeated measurements in an unpredictable way qsystematic error, bias = component of measurement error, which does not change in the course of repeated measurements or changes in a predictable way n prof. Viktor Kanický, Analytická chemie I 20 Analytická metoda nDEFINICE (ISO 3534) n nprecision = tightness of agreement between the results obtained with the repeated use of the same experimental procedure under defined conditions (random error) qRepeatability qReproducibility q ntrueness = tightness of agreement between the „true (actual) value“ and the mean value of measured results (systematic error, bias) naccuracy = method is accurate if it is satisfied at the same time precision and trueness of the results prof. Viktor Kanický, Analytická chemie I 21 Repeatability nRepeatability represents random fluctuations of the measured values of the analytical signal (or results) around the mean value within one experiment (a series of replicates) n nCause of fluctuations is noise: in case of emission spectrometry – example: qshot noise (photons) qflicker noise (sample introduction noise) qdetector noise q nRepeatability is usually expressed as standard deviation (SD) or relative standard deviation (RSD) prof. Viktor Kanický, Analytická chemie I 22 bias accepted value Recommended, Certified value experimental value repeatability precision concentration prof. Viktor Kanický, Analytická chemie I 23 Standard deviation and fluctuation peak - peak n5 s includes 99% of the population nFor mean value 100 and standard deviation 1 are fluctuations between 97.5 and 102.5 n 5s s prof. Viktor Kanický, Analytická chemie I 24 Reproducibility nPrinciple as in the case of repeatability, in addition, one other parameter changes n nReproducibility may be: qBetween laboratories qBetween operators in one laboratory qBetween analyzers qIn different days qetc… n prof. Viktor Kanický, Analytická chemie I 25 Repeatability x Trueness repeatability good poor good trueness good good poor prof. Viktor Kanický, Analytická chemie I 26 Parameters of data sets nArithmetic mean = mean value of Gaussian = normal distribution, n values n nSample standard deviation = dispersion parameter of the sample set, for n > 7 n nmedian = mean value insensitive to outliers qFor odd n the median of a set of values arranged by size X1, … X(n+1)/2, … Xn is equal to the middle value of the series: q qFor even n the median is equal to arithmetic mean of the central pair n n n n prof. Viktor Kanický, Analytická chemie I 27 Parameters of data sets - Span nStandard deviation sR of data set for n is calculated from the span of values: n n prof. Viktor Kanický, Analytická chemie I 28 Level of significance and confidence interval of mean nA level of significance indicates the probability that the true parameter value does not lie within the 100(1- α)% interval nConfidence interval L1,2 of the mean X on the level of significance α is an interval, in which the true value μ lies with probability (1- α) npro α = 0,05 je ± 2σ n P (X) n prof. Viktor Kanický, Analytická chemie I 29 Trueness nStandard deviation s is estimate of σ n prof. Viktor Kanický, Analytická chemie I 30 Statistical testing nComparison of results of analyses nnull hypothesis: the assumption that between the compared values ​​is no other difference than that which can be explained by the presence of random errors nnull hypothesis H0 is rejected if the actual difference exceeds a critical value that corresponds to the pre-selected significance level α nrisk that we reject the correct null hypothesis is called the error of the 1st kind and is given by the significance level α qPI = 1 – α is the probability that we accept the correct null hypothesis prof. Viktor Kanický, Analytická chemie I 31 Test of Trueness nStudent test (Gosset), trueness: n n n if n > 7 n n nfor the number of degrees of freedom ν = n-1 and the chosen significance level α, e.g. α = 0.05 for P = 95%, then the difference is statistically significant n prof. Viktor Kanický, Analytická chemie I 32 Test of Trueness using span nLord test n n n n n → statistically significant difference prof. Viktor Kanický, Analytická chemie I 33 Correspondence of results nMoore test of outliers nLord test of outliers rozdíl statisticky významný prof. Viktor Kanický, Analytická chemie I 34 Correspondence of results ntest of averages (Student test) qIf the value t is greater than the critical value tkrit, the difference in averages is statistically significant: prof. Viktor Kanický, Analytická chemie I 35 Correspondence of results ntest of averages (Studentův test) qIf t is greater than the critical value, then the difference is statistically significant prof. Viktor Kanický, Analytická chemie I 36 Exclusion of outliers nT-test; Grubbs test for n > 7 Þ extreme values are outliers prof. Viktor Kanický, Analytická chemie I 37 Exclusion of outliers nQ-test; Dean-Dixon test for if Then are Q1 a Qn outliers prof. Viktor Kanický, Analytická chemie I 38 Types of analytical methods nISO Guide 32 proposal classifies methods of chemical analysis according to calibration procedure: qAbsolute methods (calculable methods) – result can be calculated on the basis of relations resulting from chemical and physical laws, using measured values (titrimetry, gravimetry, coulometry) qRelative methods – analyzed sample is compared with a set of calibration samples with known contents using the detection system, which has a linear response to the concentration of fixed components ndifferences between calibration and analyzed samples do not affect the signal in comparison with the magnitude of uncertainty nsamples before measurement can be adjusted (adjustment of the matrix of calibration samples to the matrix of analyzed samples, elimination of interferences) n n prof. Viktor Kanický, Analytická chemie I 39 Types of analytical methods qComparative methods - analyzed sample is compared with a set of calibration samples with known contents using the detection system, which responds not only to the fixed component, but also to change the composition of the matrix ncalibration of such a method requires use of certified reference materials (CRM) nit is a quick method to control technological processes (wave-dispersive X-ray fluorescence spectrometry in the production of steel, alloys, oxide powder, ceramic materials, etc.) n prof. Viktor Kanický, Analytická chemie I 40 Analytical chemist n80% in industrial laboratories, the analytical chemist is a solver of problems and issues ngood theoretical knowledge of the methods used and the ability to develop experimental techniques and to select relevant, the optimal method ndevelopment of specialized analytical procedures for analysis of routine and unique, unusual samples, communication with experts from other disciplines to obtain information about analyzed materials, the ability to choose a compromise between the cost analysis and its accuracy n n prof. Viktor Kanický, Analytická chemie I 41 Industrial analytical laboratory environment Communication Statistical uncertainty Accuracy of analysis Duration of analysis Price of analysis prof. Viktor Kanický, Analytická chemie I 42 Method of analytical problem solving nknowledge of chemistry of the problem nknowledge of sampling and sample processing nuse of suitable separation methods nuse of proper calibration and standards nselection of the best methods for measuring the analytical signal n prof. Viktor Kanický, Analytická chemie I 43 Theoretical Foundations of Analytical Chemistry nDissolving of substances and solutions qsolution: solid, liquid, gaseous qAnalytical chemistry– liquid solvents qdissolution = overcoming of intermolecular forces between particles qDissolution of A = dispersion of A in a solvent B n B B DEB> 0 DEA> 0 A A DEAB< 0 B A DEA+ DEB+ DEAB < 0 Þ DEAB > DEA+ DEB prof. Viktor Kanický, Analytická chemie I 44 Nature of intermolecular forces and dissolution Substance to be dissoleved solvent Nature of intermolecular forces solubility electrolyte polar similar electrolyte nonpolar diffrenet nonelectrolyte polar diferent nonelectrolyte nonpolar similar + - + - prof. Viktor Kanický, Analytická chemie I 45 Dissolution nRelative permitivity » eR dielectric constant dipole momentD n nNonpolar solvents qvan der Waals forces qSolid nonelectrolytes: nSolubility is given (to10-3 mol/l) DHt= latent heat of melting » increasing of distances between particles, dispersion qLiquids: miscibility according to eR qGases- nonpolar molecules: O2, N2, H2, CH4 better soluble in n-pentane and n-hexane than in water prof. Viktor Kanický, Analytická chemie I 46 Dissolution nPolar solvents qElectrostatic forces qH2O: D = 1,84; eR= 80 nshielding of attractive forces between ions in solution qIonic compounds : dissociation q M+A-® M(H2O)+x + A(H2O)-y nDegree of dissociation a, conductivity, strong electrolytes, conc. ´ activity qPolar compounds: ionization+ dissociation: q H(+)-Cl(-) + H(+)-O(-)-H(+) ® H3O+Cl- ®H3O++ Cl- n prof. Viktor Kanický, Analytická chemie I 47 Solubility of electrolytes in water nSolid electrolyte qIons in crystal lattice qPolar molecules nEnergy necessary for disruption of chemical bond qGain by hydration of ions Þ solubility » DE (bond strength, hydration) nBond strength in ionic compounds qLattice energy U = f(z, r, k), z = charge, r = ion radius, k = coordination number nU = const´z2/r0 for similar ions, r0 = rK + rA n rK, rA- crystallographic values Þ influence of particular ions n (dU/dr) = const ´(z2/r02) = const ´(z/r0)2 square of ionic potential, changes in series of similar compounds nHydration energy of ions EH – is proportional to: qbond strength between ion and water molecule (dipole) » z2/r qnumber of coordinated water molecules nIons bound molecules of H2O the stronger, the greater is z and smaller r nChange of EH » const ´(z2/r2) » z/r prof. Viktor Kanický, Analytická chemie I 48 Solubility of electrolytes in water nIonic potential z/r decreases (z decreases, r increases) Þ U, EH decrease, hydration energy decreases slower, because at higher r number of coordinated water molecules increases (compensation of the decrease) nSolubility of ionic compounds depends on balance EH + U qionization (dissociation) = endothermal process, U > 0 qhydration = exothermal process, EH < 0 nCompound dissolve: qwell, if EH + U < 0, (U < | EH| ) qwith difficulty, if EH + U > 0, (U > | EH| ) nSolubility of fluorides of alkali metals increases LiF Þ CsF, because U decreases from Li ® Cs steeper than EH (decrese of EH is hindered by growth of coordinated molecules H2O (Li+ 4 H2O, Cs+ 8 H2O) prof. Viktor Kanický, Analytická chemie I 49 Solubility of electrolytes in water nSolubility of salts of small ion (Li+, Na+, F-) increases with decrease of z/r of counterion: qLiF < LiCl = LiBr < LiI qNaF < NaCl < NaBr < NaI qLiF < NaF < KF < CsF nSolubility of salts of big ion (Cs+, I-) diminishes with decrease of z/r of counterion qCsF > CsCl > CsBr > CsI qLiI > NaI > KI > RbI > CsI nSolubility of salts of medium-size ion (K+, Rb+, Cl-, Br-) at first with decrease of z/r diminishes and then slightly increases or remains constant: qKF > KCl > KBr > KI qRbF > RbCl > RbBr < RbI qLiCl > NaCl > KCl < RbCl < CsCl nOH- = small ion Þ Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2 nIonic potential: 3,08 2,02 1,77 1,48 nBig ions: PO43-, SO42-, S2O32-, SiF62-, CrO42-, IO3-, NO3- : Þ qMg2+ > Ca2+ > Sr2+ > Ba2+ (in this sense decreases z/r of cations) prof. Viktor Kanický, Analytická chemie I 50 Solubility of electrolytes in water nEffect of electron shell – example Pb2+ a Tl+: n n n nSimilarity of Rb+ s Tl+ qSoluble hydroxides RbOH, TlOH and carbonates Rb2CO3, Tl2CO3 qLittle soluble Rb2[ PtCl6], Tl2[ PtCl6] nexception: F-: CaF2 < SrF2 < MgF2 < BaF2 (small ion) nexception: CO32-: Mg2+ >Ca2+ > Ba2+ > Sr2+ (big ion) nexception: C2O42-: Ca2+ > Sr2+ > Ba2+ > Mg2+ (big ion) nEffect of z/r on solubility of salts of cations of transition elements is limited qPrevails influence of unoccupied d-orbitals (ligand field, stabilization energy) n Pb2+ 2 8 18 32 2 PbS PbCrO4 PbI2 PbCl2 Tl+ 2 8 18 32 2 Tl2S Tl2CrO4 TlI2 TlCl Little soluble salts prof. Viktor Kanický, Analytická chemie I 51 Solubility of electrolytes in water nElectrolytes with polar covalent bound nStrength is higher then corresponds to ionic attraction nThe smaller the difference of electronegativities the stronger the bond and lower solubility n nexample: according to z/r the AgCl solubility should be comparable with that of KCl, generally of halogenides, but AgF only is well soluble n prof. Viktor Kanický, Analytická chemie I 52 Theoretical fundamentals of analytical chemistry nAnalytical reactions: qSample treatment (decomposition) qSeparation and preconcentration of analytes in solution qdetermination nEvaluation of chemical reation: qThermodynamic criterion qKinetic criterion qChemical thermodynamics – change of energy qChemical kinetics – reaction path, mechanism, reaction rate nAnalytical reaction occurs (in solutions) qAt constant pressure qAt constant temperature nChange of energy content = change of Gibbs energy nkinetics: qIon reactions qRadical reactions prof. Viktor Kanický, Analytická chemie I 53 Requirements for analytical reactions 1.Fast reactions - během promíchání (titrace) 2.Unambiguous reactions - without byproducts 3.Completness of conversion – equilibrium ® products n nChemical equilibrium nCollision theory of chemical reactions nA + B Þ AB (activated complex) Þ products nNA NB – number of particles in a given volume nNumber of collisions AB is given by combinatorial number: n(NA + NB)!/[2!(NA + NB – 2)!] – NA!/[2!(NA – 2)!] – NB!/[2!(NB – 2)!]= NA·NB nSimilarly for aA + bB Û AaBb the number of possible groupings reads = n= (NA)a·(NB)b/a! ·b! nInstant reaction rate n v=k[A]a · [B]b n prof. Viktor Kanický, Analytická chemie I 54 Requirements for analytical reactions qStandard thermodynamic quantities DG°, DH°, DS° qDG°= DH°-T DS° = -RT ln Ka T, p = const. qD = final – initial state, R = 8,314 J K-1mol-1 qDG°= 5,708·103 log Ka, DG°» J mol-1 qMolar concentration of substance cA= nA/V q nA – number of moles, V – volume n aA + bB Û cC + dD v=k[A]a · [B]b v´=k´[C]c · [D]d K = k/k´ nTheromodynamic equilibrium constant n prof. Viktor Kanický, Analytická chemie I 55 Requirements for analytical reactions nActivity aA = [A] yA [A] – equilibrium concentration nyA – activity coefficient, expresses diffrences in behaviour: qsolvation, electrostatic effects between ions nConcentration ´ thermodynamic constant n nActivity coefficients, theory Debye-Hückel: qMolal activity coefficients g qMolar activity coefficients y qMolar fraction, activity coefficients f prof. Viktor Kanický, Analytická chemie I 56 Requirements for analytical reactions nStrong electrolytes qDebye-Hückel: q - log g = 0.5115 · zi2Ö(I)/[1+Ö(I)] 25°C, zi – ion charge, q I = ½Σcizi2 ionic strength q valid for c< 10-3 mol/l q limit D-H relation: - log yi = 0.5115 zi2Ö(I) nWeak electrolytes (in the absence of strong electrolytes) qActivity = molar concentration, valid for molecules without charge up to c < 0,1 mol/l (non-dissociated weak electrolytes) nNonelectrolytes (in presence of strong electrolytes) qFor concentrations c0< 0,5 mol/l and I < 5 je q log y0 = k·I qActivity of nonelectrolytes increases in presence of ions Þ their solubility decreases (salting out of solutions) n prof. Viktor Kanický, Analytická chemie I 57 Thermodynamic and concentration equilibrium constants nKa = lim (log K) for I ® 0 nlog K = log (Ka) + Dlog K nDlog K = log K - log (Ka) = Dzi2(Ö(I)/[1+Ö(I)] – 0,3I) nDzi2 = algebraic sum of charges, Dzi2 of products >0, Dzi2 of reactants < 0 n 2 0,1 I 1 -Dlog K K depends most steeply at ionic strength I <0,1 prof. Viktor Kanický, Analytická chemie I 58 Completness of reaction from equilibrium constant nposun rovnováhy nadbytkem činidla n (fotometrie, gravimetrie, extrakce) ´ rušení, vedlejší reakce aA + bB Û cC + dD cA, cB initial concentrations of reactants, conversion to 99,90 % at equilibrium [A] = [B] = 0,001cA , [C] = [D] = 0,999cA je-li K = 106 Þ 99,9% conversion to products K= x2/(1-x)2 prof. Viktor Kanický, Analytická chemie I 59 Effect of reaction kinetics nHalftime of reaction < 10 s, titration, redox processes at n1 ¹ n2 are slow n nExploitation in kinetic methods – determination of concentrations from time dependences n nIncrease in the reaction rate: heating, transfer to reaction complex using catalyst n prof. Viktor Kanický, Analytická chemie I 60 Types of chemical equilibria Protolytic reactions Complex forming reactions Redox reactions Homogeneous Precipitation reactions Distribution equilibria Liquid- liquid Ion-exchanger equilibria Heterogeneous System prof. Viktor Kanický, Analytická chemie I 61 Protolytic equilibria npolyprotic acid HnB nHnB Û Hn-1B- + H+ nconsecutive eqilibria nStepwise = consecutive n nHn-1B- Û Hn-2B2- + H+ nHB1-n Û Bn- + H+ n noverall equilibrium nHnB Û nH+ + Bn- n n stepwise dissociation constant stepwise protonization constant overall constant prof. Viktor Kanický, Analytická chemie I 62 Protolytic equilibria nDistribution diagram of H4B acid d(H4B) d(H3B-) d(H2B2-) d(HB3-) d(B4-) prof. Viktor Kanický, Analytická chemie I 63 Protolytic equilibria n2 conjugated acid-base pairs nAcid-base equilibrium of amphiprotic solvent= autoprotolysis q2 SH Û SH2++ S- KSH= [SH2+][S-] nProtolytic equilibrium of acid qHB + SH Û SH2+ + B- q[SH] >> [HB], [B-], [SH2+] q nDissociation constant of base qNH4OH Û NH4+ + OH- q nAcidic dissociation constant of base qNH4+ Û NH3 + H+ q n KaKb=Kw= [H+][OH-] - ion product of water (self-ionization) n prof. Viktor Kanický, Analytická chemie I 64 Complex (forming) equilibria nComplex: qCoordination compound– association equilibrium: q m M + n L Û MmLn , M - centr. ion, L - ligand nCumulative (overall) stability (formation) nConstant bnm nConsecutive stability constants K: qM + L Û ML qML + L Û ML2 qbnm = K1 K2…Kn nBjerrum formation function : qAverage number of particles of ligand L bound to the central ion M at the overall composition of the complex forming system n prof. Viktor Kanický, Analytická chemie I 65 Complex (forming) equilibria nBjerrum formation function n n n n n ncM and cL – total (analytical) concentrations of metal (ion) and ligand [L] n n cL - [L] = [ML] + 2 [ML2] + ….+ n [MLn] = n b1[M][L] + 2 b2[M][L]2 + …+ n bn [M][L]n = n n prof. Viktor Kanický, Analytická chemie I 66 Complex (forming) equilibria ncM = [M] + [ML] +…+ [MLn] = [M] + [M] b1 [L] + …+ [M] bn [L]n = = [M] {1 + b1 [L] +…+ bn [L]n } = n= [M] {1 + }, [M] in the nominator and denominator reduces Þ relation for nFormation f. = f { log [L] } n 1,0 1 2 3 1) K1= K2=104 2) K1= 105 K2 = 103 -6 -4 -2 log [L] 3) K1= 106 K2 = 102 2,0 prof. Viktor Kanický, Analytická chemie I 67 Complex (forming) equilibria nDistribution coefficient indicates the relative share of individual complexes n dk = [MLk]/cM n n aM(L) = side reaction coefficient n nConditional stability constant n conditioned concentration (asterisk) q n n [ML*] = [ML] + [MHL] + … = aML [ML] [M*] = cM - [ML*] = [M] + [MOH] + … = aM[M] [L*] = cL- [ML*] = [L] + [HL] + … = aL[L] aML= side reaction coefficient prof. Viktor Kanický, Analytická chemie I 68 Complex (forming) equilibria ndistribution diagram of complex ML (1:1), log K = 3,0 dM dML 50% ML 50% M K=103 = [ML]/([M][L]) [ML]=[M]Þ[L]=10-3 prof. Viktor Kanický, Analytická chemie I 69 Complex (forming) equilibria ndistribution diagram of complexes ML a ML2, log K1= log K2= 3,0 dM dML2 dML 33,3% M 33,3% ML 33,3% ML2 K1=103 = [ML]/([M][L]) [ML]=[M]Þ[L]=10-3 K2=103 = [ML2]/([ML][L]) [ML2]=[ML]Þ[L]=10-3 prof. Viktor Kanický, Analytická chemie I 70 Complex (forming) equilibria ndistribution diagram of complexes ML and ML2, log K1= 3 log K2= 6,0 dM dML2 dML K1=103 = [ML]/([M][L]) K2=106 = [ML2]/([ML][L]) [ML2] = [M] Þ [L] = 10-4,5 [ML2] + [ML] + [M] = 1 Þ [ML2] = [M] = 0,484 [ML] = 0,016 prof. Viktor Kanický, Analytická chemie I 71 Solubility equilibria nMmNn (s) Û MmNn Û mMn+ + nNm- n I II III nStrong electrolytes: qIn polar solvent I + III qIn non-polar solvent I + II nWeak electrolytes: in polar solvent I + II + III nChemical potential n n n nIsothermal-isobaric process qG = U + pV - TS = H – TS qmi= mi0 + RT ln ai mi- mi0 = RT ln ai q is work associated with the transfer of 1 mole of solute from the state of unit activity to activity ai n n Gibbs energy Partial molar free enthalpy prof. Viktor Kanický, Analytická chemie I 72 Solubility equilibria nEquilibrium between solid phase and saturated solution DG = 0 qmI = mIII = mmM0 + mRT · ln aM + nmN0 + nRT · ln aN nActivities are constant and unit in solid phase qmI0 = mIII0 + RT·ln aMm · aNn nSolubility product constant (Ks)a= aMm · aNn , const. at const. T naM = [Mn+] · yM aN = [Nm-] · yN n Ks= [Mn+]m [Nm-]n = (Ks)a/(yM · yN) n Þ for a certain value of ionic strenght nConditional solubility product KS* = KS · (aM(L))m (aN(H) )n nElectrolyte solubility: c [mol/l] qStoichiometry of precipitate: q n(MmNn) : nM : nN = 1 : m : n Þ [Mn+] = m·c , [Nm-] = n·c n n Þ n prof. Viktor Kanický, Analytická chemie I 73 Redox equilibria nRedox processes– electric work is exerted ´ protolytic and complex forming equilibria n nElectric work is associated with transfer of n = nAnB electrons from reduced form of substance B onto oxidized form of substance A: n-DG = nA nB F E° n where nA, nB are amounts of substances, F is Faraday constant (96 484 C mol-1) and E° is standard cell voltage n nRedox pairs = partial reactions: nAox + nAe- Û Ared EA° nBox + nBe- Û Bred EB° n nNernst-Peters equation: n EA = EA° + [RT/(nAF)]ln(aAox/aAred) n standard H-electrode, p = 101,32 kPa, aH+ = 1, c = 1,18 mol/l HCl, Pt black, H2 gaseous n 2H+ + 2e- Û H2 (g) n prof. Viktor Kanický, Analytická chemie I 74 Redox equilibria nE0H+/H2 = 0; EAº > 0; Aox is stronger oxidant than H+ n EAº < 0; Ared is stroger reductant than H2 n n- DG0 = RT ln (Ka) Þ log (Ka) = -DG0/(2,303RT) = n = nA· nB · F·Eº/(2,303 RT); Eº = EAº-EBº: n „total conversion“ (99,9 %) at nA= nB is at Ka=106 n nT = 25 °C prof. Viktor Kanický, Analytická chemie I 75 Sampling and sample preparation for analysis ncomposition of the analyzed sample must correspond to the composition of the examined substances qSampling of solids ČSN 650611, liquids ČSN 650512 q nSampling involves two operations qgross sample collection from analyzed substance ngross sample – sample portion taken from analyzed substance; from solid material – it is processed by mechanical mixing, quartering, splitting, grinding, sieving and gradual sample reduction qanalytical sample collection from gross sample nanalytický vzorek – must have identical composition with analyzed material prof. Viktor Kanický, Analytická chemie I 76 Transferring the sample into a solution nA) Dissolution in 1) water 2)acids 3)hydroxides n„Wet“ decomposition: qHCl, HNO3, H2SO4, HClO4, HF qBeakers, dishes, pressurized autoclaves: glass, quartz, porcelain, PTFE qheating: gas burner, hotplate, microwave oven nB) Fusion 1)acid 2)alkaline n „Dry“ decomposition: qSodium carbonate, potassium carbonate, borax, disulphate, hydroxides– conversion to salts dissoluble in acids and in H2O qCrucibles Pt, Ni, Fe, glassy graphite qBurner, muffle furnace q q n prof. Viktor Kanický, Analytická chemie I 77 Transferring the sample into a solution nDissolution nspontaneous process in which particles are released from the range of forces, which bind them in solid phase by the effect of solvation forces that stabilize the particles in solution q nSolvent qLiquid capable of dissolving gases, liquids or solids, without chemically reacting with them qMost important - water prof. Viktor Kanický, Analytická chemie I 78 Transferring the sample into a solution nDecomposition in acids qHCl, diluted 1+1 (6 mol/l), without the effect of oxidation ndissolves: 1)Metal with negative reduction potential 2)Alloys Fe s Cr, Co, Ni, Ti 3)Salts of weak acids 4)Carbonate ores 5)Oxidic ores (Zn, Mn, Fe) 6)Hydrolytic products (BiOCl) ndoes not dissolve: 1)Bauxite, corindum 2)spinels MIIO . MIII2O3 prof. Viktor Kanický, Analytická chemie I 79 Transferring the sample into a solution qHNO3, diluted1+1 (cca 4,6 mol/l, 30%), conc. too, oxidation effects, nitrates - soluble ndissloves: 1)Most of metals with exception of Au and platinum group metals 2)alloys: Bi, Cd, Cu, Pb, Fe-Mn, Fe-P 3)ores: Cu, Mo, Co, Ni nMII + 2 NO3- + 8 H+ Û 3 M2+ + 2 NO + 4 H2O nAs, Sb transferred into solution (H3AsO3) nSn – precipitates stannic acid: n Sn + 4 NO3- + 4 H+ + (x-2) H2O Û SnO2· x H2O + 4NO2- nConcentrated HNO3 qPassivation Al, Cr, Fe qOxidation of organic compounds n prof. Viktor Kanický, Analytická chemie I 80 Transferring the sample into a solution qHCl + HNO3 (3+1) aqua regia ndissolves: 1)PGM and Au 2)Ores and some silicates 3)phosphides, arsenides, antimonides, sulphides Þ acids: phosphoric, arsenic, chloroantimonic q nActive component Cl2 a NOCl n HNO3 + 3 HCl Þ NOCl + Cl2 + 2H2O n 2 NOCl Þ 2 NO + Cl2 n 2 NO + O2 Þ 2 NO2 n Hg + 2 NOCl Þ HgCl2 + 2 NO nAu + 3/2 Cl2 + HCl Þ [AuCl4]- + H+ n n prof. Viktor Kanický, Analytická chemie I 81 Transferring the sample into a solution qHF conc. nDecomposes all silicates: q SiO2 + 4 HF Û SiF4 + 2 H2O qRocks, ores (Nb, Ta, W), glasses, ceramics, alloys qUsed in mixture with H2SO4 orHClO4 (increased boiling point), H2SO4 binds water and prevents thus hydrolysis, perchloric acid exhibits oxidative effects qH2SO4 nDiluted behaves as HCl: qalone – limited use, sulphates less soluble than chlorides nConcentrated qOxidative effects, diss. Sb: q 2 Sb + 6 H2SO4 Þ 2 Sb3++ 3 SO42- + 3 SO2 + 6 H2O qphosphides, arsenides Þ phosphoric and arsenic acids qKjeldalization – mineralization of organic nitrogen containing substances n q q prof. Viktor Kanický, Analytická chemie I 82 Transferring the sample into a solution qHClO4 conc. (72%) exhibits oxidative effects at elevated temperature ndissolves: 1)steels(Cr, Si, V, P) 2)carbides 3)In mixture with HF for decomposition of silicates nadvantage: soluble salts ndisadvantage: explosive with organic compunds n qH3PO4 1)alloys 2)ferrovanadium, ferrosilicium, ferrochromium, ferroboron n prof. Viktor Kanický, Analytická chemie I 83 Transferring the sample into a solution nDecomposition in hydroxides qNaOH, KOH (35%) ndissolves: 1)Light alloys (Al, Zn, Si, Mg), resulting aluminates, zincates, silicates: n 2 Al + 2 OH- + 6 H2O Û 2 [Al(OH)4]- + 3 H2 n Mg + 2 H2O Û Mg(OH)2 + H2 q 1) n prof. Viktor Kanický, Analytická chemie I 84 Transferring the sample into a solution nFusion nprocess, where high-temperature heated material changes from solid to liquid qResulting products are dissoluble in water or dissolved acids qAccording to fusion agent: alkaline and acidic fusion nAlkaline fusion: transfer of acidic components (silicates, sulphates) in a solution by melting, flux is anhydrous sodium carbonate or a mixture of sodium carbonate and potassium nAcidic fusion: conversion of base-forming oxides to soluble salts (metal oxides, etc.). Transfer into solution by fusion with potassium sulphate, or sodium tetraborate. n nFusion agents qReagents used for decomposition by fusion qAlkaline fusion: sodium carbonate, alkaline hydroxide, mixture of sodium carbonate and sulphur; for acidic fusion: potassium disulphate, boron oxid, boric acid, sodium tetraborate prof. Viktor Kanický, Analytická chemie I 85 Převádění vzorku do roztoku nAlkaline fusion ndecomposed: quartz, glass, porcelain, enamels, cement, aluminosilicates qNa2CO3 1)Aluminosilicates are converted into soluble alkaline aluminates and silicates 2)Other oxides are converted to carbonates or depolymerize and in HCl are converted into soluble chlorides qNaOH, KOH q n fusion in crucibles Ag, Ni or Fe n ndecomposed: ores W, Sn, Cr, Ti, Sb, Zr, corindum, bauxit, partially silicates qLi2B4O7, LiBO2 1)Formation of borate glasses soluble in diluted acids –Si retained in solution prof. Viktor Kanický, Analytická chemie I 86 Převádění vzorku do roztoku nSintration qReaction i solid phase at increased temperature but below the melting point of sintration reagent (Na2O2) qPt crucibles, sintered material soluble in water q n prof. Viktor Kanický, Analytická chemie I 87 Převádění vzorku do roztoku nAcidic fusion qKHSO4, K2S2O7 q 2 KHSO4 Û K2S2O7 + H2O q TiO2 + 2 K2S2O7 Û Ti(SO4)2 + 2 K2SO4 ndecomposed: aluminates, spinels, ores Cu, Sb, Ni, Ti nLeaching of sulphates Zr a Ti at cold by addition of H2SO4 n nActive constituent is SO3 n S2O72- Û SO42- + SO3 n Al2O3 + 3 SO3 Û 2 Al3+ + 3 SO42- n TiO2 + 2 SO3 Û Ti4+ + 2 SO42- n n