F4110 Kvantová fyzika atomárních soustav letní semestr 2011 - 2012

VI. Neutronová interferometrie cvičení

KOTLÁŘSKÁ 11. DUBNA 2012

Úvodem

- Planckova konstanta od teď bude rozhodující
- budeme sledovat komplementaritu částice vlna
- nejprve kvalitativní pohled na de Broglieho/Schrödingerovy vlny
- pak něco o neutronech
- neutronová interference mezi nejkrásnějšími pokusy s vlnovými vlastnostmi částic
- teoretický přístup fysikální optiky analogický teorii optického Machova-Zehnderova interferometru

Schrödingerovy vlny

Schrödingerovy vlny – kvasiklasická aproximace

Fresnelova aproximace fys. optiky ... obvyklý způsob interpretace experimentů

klasické trajektorie

$$\psi(\mathbf{r}) = A(\mathbf{r}) \cdot \exp(i/\hbar \cdot S)$$
$$S(\mathbf{r}) = \int ds \cdot \hbar k(\mathbf{r}(s))$$

Kvantová gravimetrie

Zpravidla se vliv gravitace v kvantové mechanice zanedbává, jsou to malé síly. Kolik tak činí gravitační potenciál neutronu v poli Zemské tíže? $V(x, y, z) = -mg(z - z_0) \approx -1.7 \times 10^{-27} \times 10 \times 0.1/1.6 \times 10^{-19} \approx 10^{-8} \text{ eV}$ S tímto výsledkem můžeme trajektorie vzít jako bez účinku gravitačního pole Fázový rozdíl $\Delta \Phi = \Delta S / \hbar$ $\Delta S = k_0 \{ \int_A + \int_B - \int_C - \int_D \} ds \cdot n(r(s)) = k_0 \{ \int_A - \int_D \} ds \cdot [-V(r(s))] / 2E$

Zpravidla se vliv gravitace v kvantové mechanice zanedbává, jsou to malé síly. Kolik tak činí gravitační potenciál neutronu v poli Zemské tíže? $V(x, y, z) = -mg(z - z_0) \approx -1.7 \times 10^{-27} \times 10 \times 0.1/1.6 \times 10^{-19} \approx 10^{-8} \text{ eV}$ S tímto výsledkem můžeme trajektorie vzít jako bez účinku gravitačního pole Fázový rozdíl $\Delta \Phi = \Delta S / \hbar$ $\Delta S = k_0 \left\{ \int_A + \int_B - \int_C - \int_D \right\} \mathrm{d} s \cdot n(\mathbf{r}(s))$ Η ruší se $= k_0 \left\{ \int_{\Delta} - \int_{D} \right\} \mathrm{d} s \cdot \left[-V(\boldsymbol{r}(s)) \right] / 2E$ navzájem $-\frac{V(\mathbf{r})}{E} \approx 1 - \frac{V(\mathbf{r})}{2E}$ $n(\mathbf{r}) = \mathbf{v}$

Šíření neutronů v nemagnetických látkách

Optický potenciál neutronů v nemagnetických látkách

celková potenciální energie ve vzorku \rightarrow efektivní konstantní pot. energie

D

$$V(\mathbf{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_i \cdot \delta(\mathbf{r} - \mathbf{r}_i) \rightarrow V_{OPT} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N \quad \text{hustota} \\ \text{atomů} \\ \text{louhovlnné neutrony vnímají prostorovou střední hodnotu} \\ \text{potenciální energie} \\ \text{OPTICKÝ POTENCIÁL} \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL} \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POT$$

celková potenciální energie ve vzorku \rightarrow efektivní konstantní pot. energie

$$V(\mathbf{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_i \cdot \delta(\mathbf{r} - \mathbf{r}_i) \rightarrow V_{\text{OPT}} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N \quad \text{hustota} \\ \text{atomů} \\ \text{Dlouhovlnné neutrony vnímají prostorovou střední hodnotu} \\ \text{potenciální energie} \\ \text{OPTICKÝ POTENCIÁL} \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{PTICKÝ POTENCIÁL \\ \text{DPTICKÝ POTENCIÁL \\ \text{DPTICKÝ$$

$$V_{\text{OPT}}(\mathbf{r}) = \frac{1}{\Omega} \int_{\Omega(\mathbf{r})} d^{3} \, \overline{\mathbf{r}} \, V(\overline{\mathbf{r}})$$
$$= \frac{1}{\Omega} \int_{\Omega(\mathbf{r})} d^{3} \, \overline{\mathbf{r}} \, \sum_{\ell} \frac{2\pi\hbar^{2}}{m} b_{\ell} \, \delta(\overline{\mathbf{r}} - \mathbf{r}_{\ell})$$
$$= \frac{2\pi\hbar^{2}}{m} \cdot \frac{1}{\Omega} \sum_{\mathbf{r}_{\ell} \in \Omega(\mathbf{r})} b_{\ell} \equiv \frac{2\pi\hbar^{2}}{m} \overline{b}(\mathbf{r})$$

celková potenciální energie ve vzorku \rightarrow efektivní konstantní pot. energie

$$V(\mathbf{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_{\rm i} \cdot \delta(\mathbf{r} - \mathbf{r}_{\rm i}) \rightarrow V_{\rm opt} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N$$

Dlouhovlnné neutrony vnímají prostorovou střední hodnotu potenciální energie

index lomu

$$n(\mathbf{r}) \approx 1 - V_{\text{OPT}}(\mathbf{r}) / 2E$$

$$n(\mathbf{r}) \approx 1 - \lambda_0^2 \times \overline{b} \cdot N / 2\pi$$

 $E = \frac{\hbar^2}{2m}k_0^2 = \frac{\hbar^2}{2m}\cdot\frac{1}{\lambda_0^2}$

celková potenciální energie ve vzorku \rightarrow efektivní konstantní pot. energie

$$V(\mathbf{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_{\rm i} \cdot \delta(\mathbf{r} - \mathbf{r}_{\rm i}) \rightarrow V_{\rm opt} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N$$

Dlouhovlnné neutrony vnímají prostorovou střední hodnotu potenciální energie

index lomu

$$n(\mathbf{r}) \approx 1 - V_{\rm OPT}(\mathbf{r}) / 2E$$

$$n(\mathbf{r}) \approx 1 - \lambda_0^2 \times \overline{b} \cdot N / 2\pi$$

$$b > 0 \quad n < 1$$
$$b < 0 \quad n > 1$$

 $E = \frac{\hbar^2}{2m}k_0^2 = \frac{\hbar^2}{2m} \cdot \frac{1}{\lambda_0^2}$

Interferometrické měření rozptylových délek

Optický potenciál neutronů v PL: interferometrické měření

celková potenciální energie ve vzorku \rightarrow efektivní konstantní pot. energie

$$V(\mathbf{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_{\rm i} \cdot \delta(\mathbf{r} - \mathbf{r}_{\rm i}) \rightarrow V_{\rm opt} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N$$

Dlouhovlnné neutrony vnímají prostorovou střední hodnotu potenciální energie

index lomu

$$n(\mathbf{r}) \approx 1 - V_{\text{OPT}}(\mathbf{r}) / 2E$$

$$n(\mathbf{r}) \approx 1 - \lambda_0^2 \times \overline{b} \cdot N / 2\pi$$

 $E = \frac{\hbar^2}{2m}k_0^2 = \frac{\hbar^2}{2m}\cdot\frac{1}{\lambda_0^2}$

$\begin{array}{l} Optick\acute{y} \ potenciál \ neutronů \ v \ \mathcal{PL}: \ interferometrick\acute{e} \ m\check{e}\check{r}eni \\ \\ \text{celková potenciální energie ve vzorku } \rightarrow \ \text{efektivní konstantní pot. energie} \\ \\ V(\pmb{r}) = \frac{2\pi\hbar^2}{m} \cdot \Sigma b_{i} \cdot \delta(\pmb{r} - \pmb{r}_{i}) \rightarrow V_{opr} = \frac{2\pi\hbar^2}{m} \cdot \overline{b} \cdot N \\ \\ \text{Dlouhovlnné neutrony vnímají prostorovou střední hodnotu potenciální energie} \\ \\ \text{index lomu} \qquad n(\pmb{r}) \approx 1 - V_{opr}(\pmb{r})/2E \\ \hline n(\pmb{r}) \approx 1 - \lambda_0^2 \times \overline{b} \cdot N/2\pi \end{array}$

Interferenčním měřením indexu lomu najdeme rozptylovou délku b !!!

Ukázka skutečných hodnot

2.2 Neutron optics

Material	$N \ (nm^{-3})$	\overline{b} (fm)	$V_{\rm op} \ (10^{-7} {\rm eV})$	$\begin{array}{c} (1-n) \\ \times 10^{-2} \end{array}$	
Ni	91.3	10.3	2.449	1.49	
SiO_2 (quartz-glass)	22.0	15.75	0.902	0.55	
Ti	56.7	-3.438	-0.508	-0.310	
V	72.2	-0.3824	-0.072	-0.044	4
Al	60.3	3.449	0.541	0.330	

Table 2.2.: Neutron optical data for selected materials calculated for $\lambda = 10$ nm. Source: Koester et al. (1991).

0.K.

 $\overline{7}$

Ukázka skutečných hodnot

2.2 Neutron optics

Material	$N (nm^{-3})$	\overline{b} (fm)	$\begin{array}{c} V_{\rm op} \\ (10^{-7} {\rm eV}) \end{array}$	$\begin{array}{c} (1-n) \\ \times 10^{-2} \end{array}$
Ni	91.3	10.3	2.449	1.49
SiO_2 (quartz-glass)	22.0	15.75	0.902	0.55
Ti	56.7	-3.438	-0.508	-0.310
V	72.2	-0.3824	-0.072	-0.044
Al	60.3	3.449	0.541	0.330

Table 2.2.: Neutron optical data for selected materials calculated for $\lambda = 10$ nm. Source: Koester et al. (1991).

UKÁZKA VÝPOČTU PRO HLINÍKhustota $\rho = 2699 \text{ kg/m3}$ relativní atomová hmotnost A = 27 $N = 1000N_A \times \frac{\rho}{A} \approx 1000 \times 6.02 \times 10^{23} \times 2699/27 = 6.02 \times 10^{28} \text{ m}^{-3} = 60.2 \text{ fm}^{-3}$ o.k. $V_{\text{OPT}} = \frac{2 \times 3.14 \dots \times (1.055 \times 10^{-34})^2}{1.66 \times 10^{-27} \times 1.00866} \cdot 3.449 \times 10^{-15} \times 6.02 \times 10^{28}/1.602 \times 10^{-19} = 5.41 \times 10^{-8} \text{ eV}$ $I - n = (10 \times 10^{-9})^2 \times 3.449 \times 10^{-15} \times 6.02 \times 10^{28}/2/3.14 \dots = 3.30 \times 10^{-3}$ o.k.

 $\overline{7}$

O.K.

The end